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Abstract: Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterised
by ventricular arrhythmia and an increased risk of sudden cardiac death (SCD). Numerous genetic
determinants and phenotypic manifestations have been discovered in ACM, posing a significant
clinical challenge. Further to this, wider evaluation of family members has revealed incomplete
penetrance and variable expressivity in ACM, suggesting a complex genotype-phenotype relationship.
This review details the genetic basis of ACM with specific genotype-phenotype associations,
providing the reader with a nuanced perspective of this condition; whilst also proposing a future
roadmap to delivering precision medicine-based management in ACM.

Keywords: arrhythmogenic cardiomyopathy; genetics; arrhythmogenic right ventricular cardiomyopathy;
desmosome; cardiac arrhythmia; sudden cardiac death; genotype phenotype correlation

1. Introduction to Arrhythmogenic Cardiomyopathies: Evolving Concepts

Arrhythmogenic cardiomyopathy (ACM) is a relatively new term, used to describe a phenotypically
and genetically heterogenous myocardial disease characterised by high ventricular arrhythmia burden,
myocardial fibrosis/scarring, and an increased risk of sudden cardiac death (SCD) [1]. Over the
last two decades, comprehensive evaluation of ACM patient cohorts has exposed a complex genetic
background. Furthermore, extending clinical evaluation to proband’s family members has revealed
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incomplete penetrance and variable expressivity in ACM, and specific phenotypic manifestations
linked to distinct genetic forms [2]. While the pathophysiological mechanisms involved in ACM
are largely unclear (with multiple theories and potential contributors proposed), applying genetic
knowledge to clinical practice has fundamentally changed clinical care; from a generalised patient-only
approach to a targeted family approach, often with integration of novel, family specific knowledge.

In this review, we provide the reader with an overview of what is known about the genetic basis
of ACM and associated phenotypes. We highlight common challenges in the field of ACM genetics and
propose future directions that may help to further refine our understanding and clinical management
of ACM.

2. Classification of Arrhythmogenic Cardiomyopathies

The evolving terminology used to describe different forms of “arrhythmogenic cardiomyopathies”
reflect the different phases of knowledge surrounding this disease over the last four decades.
Early descriptions of ACM led to the presumed pathophysiological model of a developmental
defect of the right ventricle (RV), hence, was given the term ‘Arrhythmogenic Right Ventricular
Dysplasia’ (ARVD) [3]. Subsequent investigation revealed patients had normal hearts at birth and
disease was progressive and genetically determined, leading to the reclassification as a cardiomyopathy
and the name, ‘Arrhythmogenic Right Ventricular Cardiomyopathy’ (ARVC) [4]. However, to this
date, both terms ARVC and ARVD are often used indiscriminately.

ARVC has long been used to describe a disease confined to the RV with little or no left ventricle
(LV) impairment [5], which is described pathologically by fibrofatty replacement of the right ventricular
myocardium in advanced stages. However, LV involvement, described in the minority of cases
even back in the 18th century by Lancisi, has been recently recognised to be rather common in the
so-called “ARVC” hearts. Moreover, cases with more pronounced dominant left-ventricular involvement,
referred to as arrhythmogenic left-ventricular cardiomyopathy (ALVC) (or left-dominant arrhythmogenic
cardiomyopathy), have also been described [6,7] (Figure 1). Biventricular involvement occurs in 60%
of ARVC diagnoses [8]; literature contains the terms diffuse biventricular fibrosis and/or fibrofatty
replacement referring to biventricular arrhythmogenic cardiomyopathy (BivACM) characterised in
both pathology reports and imaging studies [7,9]. In parallel, genetic forms of dilated cardiomyopathy
(DCM) with subepicardial fibrosis and high ventricular arrhythmia burden starting at early disease
stages—a feature more characteristic to ARVC/ALVC—were discovered, thereby largely contributing to
the need for a new definition and classification of these cardiomyopathies. For the interested reader,
we summarise the different nosology in chronological order in Table 1.
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Figure 1. Explanted heart images showing pathological features of different phenotypes in ACM,
adapted from Calkins (2013) [10], Thiene et al. (2016) [11], Corrado et al. (2020) [12]. (A) Gross
specimen shows dilated thin RV, fatty replacement of entire RV free wall epicardium and thin fibrotic
endocardium (white arrow). (B) Gross specimen shows little evidence of RV involvement, however
subepicardial grey band of fibrotic tissue (black arrow) is seen in the posterolateral section of the LV.
(C) Gross specimen shows fibro-fatty biventricular involvement (black arrows). (D) Histology image
shows fat replacement extending from epicardium to endocardium. (E) Histology image with trichrome
staining identifies fibrous scars within fat tissue. LV = left ventricle; RV = right ventricle.

Table 1. Summary of evolving definition and classification of cardiomyopathies and ACM.

1957 The Term ‘Cardiomyopathy’ First Introduced [13]

Bridgen describes cardiomyopathies as ‘uncommon, noncoronary myocardial diseases’ and
describes some general features found.

1980 WHO-ISFC Task Force Report on Definition and Classification of Cardiomyopathies [14]

Cardiomyopathies defined as ‘heart muscle diseases of unknown cause’. Classified into four
morphological phenotypes: DCM, HCM, RCM, and Unclassified cardiomyopathy.

1977 ARVD First Recognised and Described [15]

Fontaine et al. coin and first recognise ARVD when mapping and treating VT originating from
the RV. They propose this new disease be termed ‘dysplasia’ due to the likely theory of a

postnatal developmental disorder.

1982 ARVD First Comprehensive Classical Description [3]

Marcus et al. comprehensively describe ARVD in a case series of 24 patients.

1988 ARVC First Described [16]

Thiene et al. describe ARVC in group of young adults who died from SCD mostly
during exercise.

1994 ESC-ISFC Task Force Diagnostic Criteria for ARVD/C [17]

Proposed new criteria for the clinical diagnosis of ARVD/C using structural, histological,
electrocardiographic, arrhythmic, and familial features.

1995 Updated WHO-ISFC Task Force Report on Definition and Classification of
Cardiomyopathies [18]

Cardiomyopathies re-defined as ‘diseases of the myocardium associated with cardiac
dysfunction’—broadening the definition to include known causes of myocardial disease.

Classification split into two groups: primary (intrinsic to myocardium) and specific (secondary
to external processes). Fifth phenotype added to primary group: ARVC.
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Table 1. Cont.

2006 AHA Statement on Contemporary Definitions and Classifications of the
Cardiomyopathies [19]

The AHA propose a new aetiological-based categorisation split into primary (involving only
the heart) and secondary (generalised multiorgan involvement) cardiomyopathies. These are

subdivided into genetic, mixed, and acquired forms—importantly genetic forms are given
their own designation for the first time. Ion channel disease added to the classification.

2008 ESC Working Group on Myocardial and Pericardial Diseases: Classification of the
Cardiomyopathies: A Position Statement * [20]

Cardiomyopathies defined as ‘A myocardial disorder in which the heart muscle is structurally
and functionally abnormal, in the absence of coronary artery disease, hypertension, valvular
disease and congenital heart disease sufficient to cause the observed myocardial abnormality.’
ESC divides cardiomyopathies into five known morphological phenotypes: (1) DCM, (2) HCM,
(3) RCM, (4) ARVC, and (5) unclassified cardiomyopathies, which are further categorised into

familial and nonfamilial groups.

2010 Revised Task Force Diagnostic Criteria for ARVC [5]

Proposed an updated diagnostic scheme for ARVC based on (1) functional and structural
characterization of the right ventricle, (2) histopathological characterisation, (3) repolarisation,

(4) depolarisation abnormalities, (5) arrhythmias, and (6) family history and genotype.

2013 MOGE(S) Classification of Cardiomyopathies [21]

Proposed a descriptive genotype-phenotype nosology system based on five attributes:
Morphofunctional characteristics, Organ involvement, Genetic/familial inheritance pattern,

AEtiological annotation, Functional Status of patients.

2019 2019 Definition and Treatment of Arrhythmogenic Cardiomyopathy: an Updated Expert
Panel Report [22]

A consensus statement compiled following a moderated roundtable discussion of an
international group of experts in 2017, Athens, Greece, which defined arrhythmogenic

cardiomyopathy as a ‘family of diseases that feature structural myocardial abnormalities
(identified by macro- and microscopic pathological examination besides cardiac imaging) and
ventricular arrhythmia’. Terms include ARVC, ALVC, aDCM, isolated non-ischaemic scar and

hypokinetic, non-dilated left ventricle. Fundamental aspects include arrhythmia, electrical
abnormalities, structural abnormalities (important not essential chamber dimensions or
contractility but tissue characterisation is important), heritability (family history, genetic
aetiology, cardiocutaneous, neuromuscular features), exclusion of phenocopies (such as

sarcoidosis, myocarditis, PHTN, and congenital abnormalities).

2019 2019 HRS Expert Consensus Statement On evaluation, Risk Stratification, and
Management of Arrhythmogenic Cardiomyopathy [1]

New definition and classification proposed for ARVC (now referred to as ACM) defined as an
‘arrhythmogenic heart muscle disorder not explained by ischemic, hypertensive, or valvular
heart disease.’ This is broad and include classical ARVC, ALVC, arrhythmogenic biventricular
cardiomyopathy, as well as other cardiomyopathies such as amyloidosis, Chagas, sarcoidosis,

myocarditis, HCM.

2020 Diagnosis of Arrhythmogenic Cardiomyopathy: The Padua Criteria [23]

These criteria build on the 2010 TFC multi-parametric approach to include biventricular and
ALVC involvement. Of note, introduction of new LV ECG criteria and tissue characterisation

by CMR.

* Most widely used classification of cardiomyopathies currently. ACM = arrhythmogenic cardiomyopathy;
aDCM = arrhythmogenic dilated cardiomyopathy; AHA = American Heart Association; ALVC = arrhythmogenic left
ventricular cardiomyopathy; ARVC = arrhythmogenic right ventricular cardiomyopathy; ARVD = arrhythmogenic
right ventricular dysplasia; CMR = cardiac MRI; DCM = dilated cardiomyopathy; ECG = electrocardiogram;
ESC = European Society of Cardiology; HCM = hypertrophic cardiomyopathy; ISFC = International Society and
Federation of Cardiology; LV = left ventricle; RCM = restricted cardiomyopathy; PHTN = pulmonary hypertension;
TFC = Task Force Criteria; WHO = World Health Organisation.
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The term “ACM” has been used in the 2019 Heart Rhythm Society (HRS) expert consensus
statement on evaluation, risk stratification and management of ACM to reflect the expanding
spectrum of conditions of either genetic or non-genetic aetiology involving the RV, the LV or both
ventricles, whose typical feature is prominent non-ischaemic ventricular myocardial fibrosis/scarring
and ventricular arrhythmias [1,12]. The rationale for using this ‘umbrella term’ is conditions manifesting
with such an ACM phenotype are associated with a particularly high risk of SCD since myocardial
fibrosis acts as a substrate for malignant ventricular arrhythmias [12]. Accordingly, the insertion of an
implantable cardiac defibrillator (ICD) in ACM patients for primary prevention should be considered
in the presence of large arrhythmogenic ventricular scarring, regardless if systolic ventricular function
is not severely reduced [1]. The HRS definition is broad and includes Chagas cardiomyopathy,
hypertrophic cardiomyopathy (HCM) and cardiac amyloidosis, the latter of which is in itself a broad
range of diseases with distinct phenotypes, none of which are the focus of this review.

In 2017, an international group of experts held a roundtable discussion to define ACM, which included
classical ARVC, ALVC, biventricular ACM but also recognised a distinction in some of the classical
non-ischaemic dilated cardiomyopathies with a propensity for arrhythmias (including bradycardias with
conduction system disease, premature ventricular complexes (PVC), ventricular tachyarrhythmias (VTA)),
where this may be the dominant feature with mild or no observable structural abnormalities referred
to as arrhythmogenic DCM (aDCM) [22]. It is also increasingly recognised that some will have mild
hypokinesia, and non-dilated left ventricle, either as a very early stage of the disease or a forme fruste for
classical DCM [24]. Myocardial fibrosis leading to re-entrant arrhythmias are the most common form of
sustained ventricular arrhythmias. However, focal automaticity is also possible, thought to be caused by
additional mechanisms, such as calcium dysregulation, but represent an important contribution to disease
outcome. The distinction between ALVC and aDCM in practical terms may be challenging, particularly in
cases, which have mild phenotypic expression, or are increasingly detected early in the disease process
due to better cascade family screening (Figure 2).

To further refine the spectrum of diseases considered as ACM, an International Expert Panel
has recently proposed the Padua criteria for the diagnosis of ACM [23]. These criteria are aimed to
upgrade the 2010 revised Task Force criteria (TFC) for the diagnosis of ARVC and introduce new
diagnostic criteria regarding tissue characterisation findings by contrast-enhanced cardiovascular
magnetic resonance (CMR) imaging, depolarisation/repolarisation ECG abnormalities, and ventricular
arrhythmia features for diagnosis of ALVC. While the Padua criteria are very new and require validation
in clinical studies, they provide a clear framework for diagnosis of ACM, rather than the HRS umbrella
term. These criteria also acknowledge there may be subtle regional or global abnormalities of contractile
function without dilatation of the LV or RV [25,26].

Defining the ACM phenotype and the genes involved is challenging, this is reflected in Figure 3,
which demonstrates ACM’s genetic heterogeneity and genetic pleiotropy. We will focus on the
desmosomal and extra-desmosomal genes, which cause the classical ARVC phenotype, the biventricular
phenotype and the ALVC/aDCM phenotype.
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Commented [M1]: changed this figure. Figure 2. Spectrum of clinical presentations of right ventricular disease, left ventricular disease, and dilated
cardiomyopathy. (A) ACM and ALVC show overlapping phenotypes with ARVC, but the pathology is seen
primarily in the left ventricle (although right ventricle is also usually affected). (B) Timeline showing the
clinical features of ACM. Hypokinetic non-dilated cardiomyopathy and isolated-ischaemic scar pertain to the
pathology where there is marked ventricular scarring as identified by cardiac MRI. Modified from Elliott et al.
(2019) [22] and Pinto et al. (2016) [24]. ACM = arrhythmogenic cardiomyopathy; aDCM = arrhythmogenic
dilated cardiomyopathy; ALVC = arrhythmogenic left ventricular cardiomyopathy; ARVC = arrhythmogenic
right ventricular cardiomyopathy; BiV = biventricular; BivACM = biventricular arrhythmogenic
cardiomyopathy; CMP = cardiomyopathy; DCM = dilated cardiomyopathy; LV = left ventricle;
PVC = premature ventricular contraction; RV = right ventricle; RWMA = regional wall motion abnormality;
SCD = sudden cardiac death.
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Figure 3. Genetic mutations associated with arrhythmogenic cardiomyopathy. Overlapping genetic
determinant implicated in ACM identified from our clinical experience. ACM = arrhythmogenic
cardiomyopathy; ALVC = arrhythmogenic left ventricular cardiomyopathy; ARVC = arrhythmogenic
right ventricular cardiomyopathy; DCM = dilated cardiomyopathy.

3. Genetic Basis of ACM

The discovery of two Mendelian forms of ACM was key to unravelling its genetic basis.
Protonotarios et al. (1986) reported a series of families with patients presenting with a combination
of cardiomyopathy, palmoplantar keratosis and woolly hair and an autosomal recessive inheritance
pattern [27]. All index patients descended from four families residing on the Greek island of Naxos,
taking the eponymous name Naxos disease. In 2000, genetic analysis of affected patients revealed a
homozygous, truncating two base deletion in the JUP gene encoding for plakoglobin (a desmosomal
protein) [28]. Similarly, Carvajal-Huerta (1998) reported a group of patients in Ecuador with a familial
cardiocutaneous syndrome also inherited in an autosomal recessive fashion [29]. Carvajal syndrome,
as it was later named is characterised by ACM (ALVC form), striate palmoplantar keratoderma and
woolly hair. Later in 2000, genetic analysis revealed a single homozygous deletion in the DSP gene
leading to a truncated desmoplakin protein—the most abundant of the desmosome proteins [30].
These early reports prompted targeted genetic analysis of other desmosomal proteins in ARVC
patients, which in turn led to identification of pathogenic variants in all known desmosomal genes.
More recently, non-desmosomal pathogenic variants have also been identified in ARVC, and many
have been implicated in ALVC or biventricular disease forms.

Below, we discuss genes considered to be causative or associated with all three phenotypic
subtypes of ACM, presented as a historical narrative; also, we describe distinct phenotypes and major
validatory evidence supporting pathogenicity in ACM. The broad classification is desmosomal and
non-desmosomal genes. This is summarised in Table 2. Further, we have highlighted exemplar
phenotypes for each major gene implicated in ACM (Figures 4–19).
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Table 2. Summary table for the genes implicated in ACM

Gene Protein Type Frequency * Predominant
Inheritance Pattern

Predominant
Ventricular
Disease **

OMIM Entry Exon Location;
Exon Count Remarks Gene-Disease Validity

Classification ***

PKP2 Desmosome 20–45% AD RV, BIV ARVC9 12p11.21; 14 Classical ARVC, AR also reported Definitive for ARVC

DSG2 Desmosome 4–15% AD RV, LV, BIV ARVC10 18q12.1; 16 Frequent LV involvement, AR also reported Definitive for ARVC

DSP Desmosome 1–13% AD LV, BIV ARVC8 6p24.3; 24 Cardiocutaneous Syndrome AR (Carvajal), can also have
cardiocutaneous with AD Definitive for ARVC

DSC2 Desmosome 1–7% AR RV, BIV ARVC11 18q12.1; 18 Cardiocutaneous AR Definitive for ARVC

JUP Desmosome 0–1% AD and AR RV, BIV ARVC12 17q21.2; 19 Cardiocutaneous syndrome AR (Naxos) Definitive for ARVC

TTN Sarcomere 18% AD RV, LV, BIV - 2q31.2; 365 DCM Limited for ARVC

LMNA Nuclear Intermediate
Filament 3–4% AD LV, BiV - 1q22; 17 DCM, Lipodystrophies, Myopathies Limited for ARVC

DES Cytoplasmic
Intermediate Filament <1% AD LV, BIV ARVC7 2q35; 9 Myofibrillar myopathy, DCM Moderate for ARVC

FLNC Actin cross-link 0–3% AD LV, BIV - 7q32.1; 48 High propensity for arrhythmia, SCD, structural abnormalities,
LGE and HF. Should consider ICD as a primary prevention. -

TJP1 Intercalated Disc 0–4% [31] AD - 15q13.1; 33 Limited for ARVC

CDH2 Intercalated Disc 0–2% AD RV, BIV - 18q12.1; 19 - Limited for ARVC

CTNNA3 Intercalated Disc <1% AD RV, BIV ARVC13 10q21.3; 27 Low penetrance Limited for ARVC

TMEM43 Nuclear Envelope <1% AD RV, BIV ARVC5 3p25.1; 13 Founder variant in Newfoundland, SCD Definitive for ARVD 5

PLN Calcium Regulation 0–12% AD LV, BIV - 6q22.31; 2 Founder mutation in Netherlands. High risk of SCD—may
consider ICD as primary prevention Definitive for CMP

RYR2 Calcium Regulation 9% AD Exon 3 deletion
DCM

ARVC2 1q43; 107

CPVT
Refuted for ARVC,

Definitive for CPVT
Conflicting evidence of misdiagnosis CPVT as ARVC with the

exception of exon 3 deletions associated with structural
abnormalities.

SCN5A Sodium Channel 0–2% AD LV, BIV - 3p22.2; 29 BrS, LQTS Type 3, AF Limited for ARVC,
Definitive for BrS

TGFB3 Cytokine Unknown AD RV ARVC1 14q24.3; 8 - Limited for ARVC

RBM20 Splicing Factor Unknown AD LV - 10q25.2; 16 High risk of SCD—considered primary prevention by ICD Definitive for DCM

BAG3 Chaperone Unknown AD LV - 10q26.11; 4 -

NKX2-5 Homeobox Unknown AD - 5q35.1; 3 -

(Modified from Gandibakhch et al. (2018)). * Taken from Gandibakhch et al. (2018) [32] unless specified. ** Taken from Elliott et al. (2019) [22]. *** Taken from ClinGen [33].
AD = autosomal dominant; AF = atrial fibrillation; AR = autosomal recessive; ARVC = arrhythmogenic right ventricular cardiomyopathy; BIV = biventricular disease; BrS = Brugada
syndrome; CPVT = catecholaminergic polymorphic ventricular tachycardia; DCM = dilated cardiomyopathy; HF = heart failure; LGE = late gadolinium enhancement; LQTS = long QT
Syndrome; LV = left ventricle; RV = right ventricle; SCD = sudden cardiac death.
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Figure 4. Exemplar MRI and ECG finding found in ACM patients with PKP2 mutations. (A) CMR of a
patient with PKP2 c1664del T mutation reveals moderate enlargement of the right ventricle; (B) yellow
arrow shows apical fibrosis in LGE mode;.(C) 12-Lead ECG of same patient showing ventricular
tachycardia with left bundle branch block morphology and inferior axis; (D) resting 12-Lead ECG
upon admission to our hospital showing sinus rhythm, and T-wave inversion is present in V1-V4.
Reproduced with permission from Trenkwalder et al. (2015) [34].
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Figure 5. Exemplar MRI and ECG finding found in ACM patients with DSG2 mutations. (A) CMR of a
patient with DSG2 p.Leu237Ter mutation showing dilation of both ventricles; (B) a representative ECG
of the same patient showing T wave inversion in V1-V3. Reproduced with permission from Chen et al.
(2020) [35].
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Figure 6. Exemplar MRI and ECG finding found in ACM patients with DSP mutations. (A) CMR of a
patient with DSP mutation showing left ventricular lateral wall fatty infiltration (red arrow); (B) LGE
MRI of the same patient showing fibrosis/scaring of both left ventricular lateral wall and septum;
(C) 12-lead ECG showing T-wave inversion in V5-V6 (anterolateral leads). Reproduced with permission
from Mattesi et al. (2020) [36].
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Figure 7. Exemplar MRI and ECG finding found in ACM patients with DSC2 mutations. (A,B) CMR
of a patient with DSC2 p.Arg49His mutation showing biventricular involvement in the LGE mode
(red arrows); (C) 12-lead ECG showing a reduction of R waves amplitude in left precordial leads (left
involvement) and inverted T waves in V1-V6 (RV strain pattern); together they indicate biventricular
involvement. Reproduced with permission from Gaido et al. (2017) [37].



Int. J. Mol. Sci. 2020, 21, 6615 13 of 47

Figure 8. Exemplar MRI and ECG finding found in ACM patients with JUP mutations. (A,B) CMR of
a patient with JUP mutation showing LGE of the RV free wall, secondary to fibrosis (white arrow);
(C) ECG findings in a different patient with JUP mutation at 3 different times (separated by two vertical
lines into 1. right panel = sinus rhythm with T waves inversion in V1–V6, and 2. middle and 3.left
panels = ventricular tachycardia). (A,B) were reproduced with permission from Mavrogeni et al.
(2012) [38]; (C) was reproduced with permission from Protonotarios et al. (1986) [27].
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Figure 9. Exemplar MRI and ECG finding found in ACM patients with TTN mutations. (A) CMR of a
patient with TTN mutation, the white arrows show mid-wall scars in the inferior septum and inferior
wall; (B) ECG of a different patient with TTN Thr2896Ile mutation showing epsilon waves. (A) was
reproduced from Augusto et al. (2019) [39]; (B) from Taylor et al. (2011) [40] with permissions.
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Figure 10. Exemplar MRI and ECG finding found in ACM patients with LMNA mutations. (A) CMR of a
patient with LMNA mutation showing a mid-wall (LGE) scar in the septum and inferior RV; (B) 12-lead
ECG of a different patient with a p.Gly382Val LMNA mutation, which shows sinus bradycardia,
poor R-wave progression, T-wave inversion in V1–V3 leads. (A) reproduced with permission from
Augusto et al. (2019) [39]; and (B) reproduced with permission from Quarta et al. (2012) [41].
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Figure 11. Exemplar MRI and ECG finding found in ACM patients with DES mutations. (A) CMR
of a patient with DES mutation (deletion of guanine at position 735) showing extensive mid-wall
fibrosis (LGE short-axis view); (B) 12-lead ECG of a different patient with p.Gly382Val mutation of
the LMNA gene showing sinus tachycardia, inverted T waves in V1–V3 ad poor R wave progression.
Reproduced from Koitka et al. (2017) with permission [42].
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Figure 12. Exemplar MRI and ECG finding found in ACM patients with FLNC mutations. (A,B) CMR
of a patient with p.Arg991X (nonsense) mutation of the FLNC gene; the arrows show basal lateral
subepicardial fibrosis in the LGE mode (white arrows); (C) 12-lead ECG of the same patient showing
T-wave inversion in III and aVF (inferior leads). Reproduced with permission from Hall et al. (2020) [43].

Figure 13. Exemplar MRI and ECG finding found in ACM patients with TJP1 mutations. (A,B) CMR of a
patient with TJP1 p.Tyr669Cys mutation showing right ventricular dilatation (white arrows); (C,D) LGE
shows mid-mural fibrosis in the inferior-lateral wall of the left ventricle (empty arrows); (E) 12-lead
ECG of the same patient showing shows sinus rhythm, intra-ventricular conduction delay, and T wave
inversion in V1 to V5. Reproduced with permission from De Bortoli et al. (2018) [44].
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Figure 14. Exemplar MRI and ECG finding found in ACM patients with CTNNA3 mutations.
(A) CMR of a patient with CTNNA3 p.val94asp mutation showing marked right ventricular dilatation;
(B) 12-lead ECG of the same patient showing a first degree heart block and T-wave inversion in
V1–V4; (C) sustained ventricular tachycardia, with left bundle-branch block and left axis deviation.
Reproduced with permission from van Hengel et al. (2013) [45].
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Figure 15. Exemplar MRI and ECG finding found in ACM patients with TMEM43 mutations. (A–D): CMR
images of a male subject with TMEM43 p.S358L mutation. (A) Biventricular dilatation, wall motion
abnormalities; (B) asynchronous contraction (red arrows); (C,D) LGE showing severe and almost concentric
intra-myocardial lesions (red arrows); (E) a representative 12-lead ECG of a different patient with the same
TMEM43 mutation, showing poor R-wave progression with 1-mV R-wave voltage in lead V3 and widened
QRS complex. Reproduced with permission from Dominguez et al. (2020) [46].
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Figure 16. Exemplar MRI and ECG finding found in ACM patients with PLN mutations. (A) CMR image
from a patient with PLN p.Arg14del mutation showing inferolateral wall thinning and late-gadolinium
enhancement of the LV inferolateral wall; (B) 12-lead ECG of the same patient showing normal sinus
rhythm with low voltages in all leads (<0.5 mV) and flattened or inverted T-waves in V1-V6 and inferior
leads (II, III, aVF). Reproduced with permission from te Rijdt et al. (2019) [47].
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Figure 17. Exemplar MRI and ECG finding found in ACM patients with RYR2 mutations. (A) CMR of a
patient with RYR2 p.Trp98Ter mutation showing dilated cardiomyopathy; (B,C) 12-lead ECG showing
inverted T waves in leads II, III, aVF, V3–V6, and two premature ventricular complexes originating
from the anterobasal left ventricle. Reproduced with permission from Costa et al. (2020) [48].
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Figure 18. Exemplar MRI and ECG finding found in ACM patients with SCN5A mutations. (A,B) CMR
of a female patient with SCN5A mutation (p.Arg1898His) showing end-diastolic and end-systolic state,
respectively. The white arrow shows an enlarged right ventricle and dyskinesia in the RV outflow tract;
(C) a 12-lead ECG of the same patient showed T-wave inversion in V1–2. Reproduced with permission
from te Riele et al. (2017) [49].
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Figure 19. Exemplar MRI and ECG finding found in ACM patients with NKX2-5 mutations. (A) A
cardiac MRI of a patient with NKX2-5 c.471_472delCA variant showing non-dilated hypokinetic
ventricle, no valvular heart disease, no LGE; (B) ECG finding of a different patient with the same
NKX2-5 mutation as in (A). CMR = cardiovascular magnetic resonance; ECG = electrocardiogram;
LGE = late gadolinium enhancement; LV = left Ventricle; RV = right Ventricle. Gene location images
taken from https://www.ncbi.nlm.nih.gov/gene/.

3.1. Desmosomal Genes

Desmosomes are calcium-dependent multi-protein junctional anchors described in lay terms
as ‘cellular glue’. Whilst desmosomes establish tight extracellular adhesion between neighbouring
cells, they also link to the intermediate filament cytoskeleton enabling structural resilience particularly
under high mechanical stress. Desmosomal proteins have a number of additional functional roles;
most notably, they regulate the transcription of genes involved in adipogenesis and apoptosis, and play
a major role in myocardial electrical conduction through regulation of gap junctions and calcium
homeostasis. These functions are poorly understood, and specific observations are noted below (a more
extensive guide can be found in reference [50]) [51,52]. Desmosomes are part of a larger structure
known as the intercalated disc (ID) (Figure 20). Alongside the desmosome, the ID contains several
macromolecular complexes with distinct properties: the adherens junction, the gap junction and ion
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channel. Contrary to previous thought, growing evidence suggests these individual components
(in particular, desmosomes, gap junctions and voltage gated sodium channels) interact together to
electrically, metabolically and structurally couple neighbouring cardiomyocytes as a single functional
unit known as the connexome [52,53].

Figure 20. Select proteins implicated in the pathogenesis of ACM at the cardiomyocyte junction.
BAG3 = BAG family molecular chaperone regulator 3; Nav1.5 = voltage-gated Na+ channel 1.5; NKX2-5
= NK2 homeobox 5; RBM20 = RNA-binding motif protein 20; SERCA = sarcoplasmic reticulum Ca2+

ATPase; SR = sarcoplasmic reticulum; TGF-β3 = transforming growth factor β3; TJP1 = tight junction
protein. * = location is still unclear.

Desmosomal proteins can be divided into three families known as 1. cadherins; 2. armadillos;
and 3. plakins. Desmosomal cadherins (Desmocollin-2 (DSC2) and Desmoglein-2 (DSG2)) are
transmembrane proteins that extracellularly bind with adjoining desmosomal cadherins and
intracellularly bind to armadillos. When DSC2 and DSG2 are bound, the desmosome adopts a
calcium-dependent hyper-adhesive state, which has the ability to shift to a lower affinity state during
wound healing and embryonic development [50,51]. The cardiac armadillo family (Plakophilin-2
(PKP2) and Plakoglobin (PKG)) is characterised by the armadillo arm repeat-a repetitive tandem
amino acid sequence of about 40 residues in length composed of a pair of alpha helices that form a
hairpin structure [51]. The armadillos help to stabilise the intracellular desmosomal plaque—they link
cadherins to desmoplakin and mediate the interaction between desmoplakin and the intermediate
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filament, desmin [51]. The desmosomal plakin family consists only of desmoplakin (DSP) which binds
the desmosome to the intermediate filament, desmin [51].

Nearly 60% of ARVC patients have a genetic alteration in at least one of the five genes encoding
cardiac desmosome proteins: DSC2, DSG2, PKP, JUP, DSP [23]. All desmosomal genes have multiple
lines of evidence replicated in time to confirm their pathogenicity in ARVC, with many reports providing
clinical, histological and functional evidence for causality in the full spectrum of ACM. Desmosomal
ARVC predominantly follows autosomal dominant inheritance with incomplete penetrance; exceptions
include Naxos disease (triad of autosomal recessive ARVC, palmoplantar keratoderma, and woolly
hair) [28,54], and Carvajal syndrome (a variant of Naxos disease with ALVC, associated with
early morbidity), caused by recessive mutations in JUP and DSP, respectively. Around 75% of
genotype-positive ARVC cases in American cohorts, and nearly 60% of genotype-positive index cases
in European cohorts are caused by single pathogenic variants in PKP2, making it the most commonly
involved ARVC gene [55–57]. Mutations in DSP are often associated with ALVC, and DSG2 and PKP2
with BivACM, although the latter is observed in all gene groups at later stages of disease progression [7].

In general, autosomal recessive disease tends to have a more advanced phenotype and penetrance,
and whilst intuitive to expect adverse outcomes, little data exist to support this [58,59]. In Naxos,
disease outcomes were similar to autosomal dominant PKP2 patients [60]. Desmosomal pathogenic
variants usually predispose to younger disease onset and affected patients often have a strong family
history of ARVC/SCD [61]. In general, patients with ALVC or biventricular disease are known to have
worse outcomes than those with spared LV, and SCD prior to advanced ALVC disease appears to be
common [62]. Multiple pathogenic variants have been associated with higher risk of SCD [62].

3.2. Non-Desmosomal Genes

Non-desmosomal pathogenic variants are causative of ACM in a significant proportion of cases.
While ARVC is more often caused by desmosomal variants, genetic defects in non-desmosomal genes
are thought to be more frequently involved in ALVC.

3.2.1. Titin (TTN) (Encoded by TTN)

Titin is the largest natural protein (38,138 residues, MR 4200 kDa) and is a giant protein with
a length > 1 µm [63,64]. Although the TTN gene is not the largest, it is one of the largest with the
greatest number of exons (363), as well as the largest single exon (17,106 bp). Titin protein is the
third most abundant protein in muscle after actin and myosin, and is an essential component of
the sarcomere linking myosin and the Z disc, providing structural support, flexibility, and stability.
Different isoforms exist in different muscles, including cardiac muscle. Additional functions include
a spring-like region allowing muscle to stretch, as well as chemical signalling and assisting in the
formation of new sarcomeres [65].

Titin truncating variants are now the most frequent genetic cause of DCM [66], as well as
peripartum cardiomyopathy [67]. Given TTN’s size, it is likely to result in greater de novo variant (s)
from background mutagenesis. Considering the relatively high frequency of missense variants in the
general population, and reclassification of pathogenic to benign classification, currently only truncating
(nonsense) and frameshift variants are considered likely to be pathogenic, with a few exceptions.

In ARVC cases with negative desmosomal genetic testing, missense and truncating variants
in TTN have been reported [40]. In one study of 38 families with TFC positive ARVC, 312 exons
of TTN expressed in human cardiac titin and entire 3′ UTR were sequenced, identifying 8 unique
TTN variants in 7 (18%) families, which were absent in 400 ethnically matched controls and genomic
databases. One of the pathogenic variants, Thr2896Ile, showed complete segregation with the ARVC
phenotype in one large family and mapped within a highly conserved immunoglobulin-like fold
(Ig10 domain) located in the spring-like region of titin. The phenotype of TTN pathogenic variant
carriers was characterised by a history of SCD (5 of 7 families), worsening myocardial dysfunction
causing death or cardiac transplantation (8 of 14 cases), frequent cardiac conduction disease (11 of 14),
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and incomplete penetrance (86%). A subsequent genotype-phenotype natural history study from the
same group, compared TTN variant carriers to desmosomal carriers and ARVC phenotype-positive but
negative for TTN or desmosomal pathogenic variants (noncarriers) and noted, TTN carriers were more
likely to develop conduction system disease and supraventricular arrhythmias than non-carriers [68].
On echocardiography, TTN carriers were more likely to have left atrial enlargement, mitral regurgitation
(MR) and RV dilation than both desmosomal and noncarriers. However, prognosis (both mortality and
morbidity) was worse and T wave inversion (TWI) was more frequent in desmosomal variant carriers.

3.2.2. Lamin A/C (LMNA) (Encoded by LMNA)

Lamins are nuclear intermediate filament proteins that support and determine the shape of the nuclear
envelope [63,64]. LMNA encodes two products—Lamin A and Lamin C via alternative splicing. LMNA
pathogenic variants have been associated with a broad range of cardiac phenotypes, including cardiac
conduction disease, atrial and ventricular arrhythmias, and DCM; as well as extracardiac manifestation
such as lipodystrophies, skeletal myopathies, and premature ageing syndromes [41]. LMNA was first
implicated in ACM by Quarta et al. (2012); 4 out of 108 ARVC patients who tested negative for
desmosomal pathogenic variants were found to carry LMNA variants [41]. Two of these patients had
fibrofatty myocardial changes consistent with ARVC, and staining revealed reduced plakoglobin in
the ID—a characteristic finding [41]. However, LMNA variants are most commonly associated with
an aDCM phenotype with conduction system disease and a high premature ventricular contraction
(PVC)/ventricular tachycardia (VT) burden, often being the initial manifestations of laminopathies [69–71].

LMNA is a ubiquitously expressed nuclear envelope protein that interacts with chromatin
through lamin-associated domains to regulate gene expression [72,73]. In human cardiomyocytes,
LMNA interacts with around 20% of the genome and has suppressive effects on expression of several
thousand genes [74]. Consequently, pathogenic variants in the LMNA gene may suppress expression of
genes implicated in inherited arrhythmias, such as SCN5A [75]. Although the molecular basis of aDCM
and ACM associated with the LMNA pathogenic variants have yet to be delineated, the regulatory role
of LMNA on many genes probably explains the phenotypic pleiotropy of LMNA-mediated disease.

The high incidence of SCD in these families had led to recommendations to consider prophylactic
implantable cardioverter defibrillators (ICD) for SCD prevention. The 2019 HRS ACM document
provides two class IIa recommendations for a primary prevention ICD in LMNA pathogenic variant
carriers: 1. those with two or more of the following: left ventricular ejection fraction (LVEF) less
than 45%, male, non-sustained ventricular tachycardia (NSVT). 2. Those who have an indication for
pacing [1]. Reports from large cohorts are still needed to support this. In addition, a recent group
have created a LMNA-risk VTA calculator using five parameters (sex, non-missense mutation present,
type and presence of atrioventricular block, NSVT present, LVEF) to provide a risk prediction score for
life-threatening VTA at five years (https://lmna-risk-vta.fr/) [76].

3.2.3. Desmin (DES) (Encoded by DES)

Desmin is a muscle-specific cytoplasmic intermediate filament protein that links the Z-disc to the
junctional and nuclear membrane [63]. As well as providing structural integrity to cardiomyocytes,
DES interacts with other organelles including mitochondria, and is involved in processes that include
nucleus position and sarcomere synthesis, sarcoplasmic reticulum and the T-tubular system [77,78].
Mutations in the DES gene have been reported with all types of morphological cardiomyopathies and
skeletal myopathies. Both autosomal dominant and recessive inheritance patterns are known, and 70%
of pathogenic DES carriers have some form of cardiac involvement.

Desmin is most commonly associated with myofibrillar myopathy I and DCM with a propensity
for conduction system disease and arrhythmia (aDCM). DES was first considered a possible ACM
candidate gene in 2009; a missense variant found in 27 patients expressed a fully penetrant, variable
cardiac phenotype (high-grade AV block, arrhythmias originating from the RV and RV failure) [79].
Further family studies identified more DES variants in ACM patients including variants associated with
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predominant LV involvement (ALVC form) [80], SCD [81], and mixed cardio-skeletal myopathies [82].
A number of in vitro functional alteration studies involving mutant cells suggest a moderate association
between DES and ACM; main findings include evidence of fibrosis and disruption of the ID and
filaments [80,81,83].

The term ‘desminopathy’ is sometimes used for phenotypes caused by pathogenic variants in
DES which result in skeletal muscle disorders with inclusion bodies formation, weakening of the
desmin intermediated filament cytoskeleton, disruption to subcellular organisation of organelles and
myofibrillar degradation. There is marked clinical heterogeneity as well as intra- and inter-familial
variation, with the same mutation. Phenotypes can include isolated cardiomyopathy to a range of
skeletal muscle disorders (limb girdle, scapuloperoneal, distal myopathies) and varying respiratory
involvement [84]. CMR studies, even in asymptomatic individuals, often show early presence of late
gadolinium enhancement (LGE) [85].

3.2.4. Filamin C (FLNC) (Encoded by FLNC)

Filamin C is an actin cross-linking protein found only in striated muscle, important for structural
cell stability [64]. Variants in FLNC were initially shown to be associated with skeletal myofibrillar
myopathy [86], restrictive cardiomyopathy [87] and possibly hypertrophic cardiomyopathy (missense
variants causing protein aggregate toxicity). More recently this gene, particularly truncating variants,
have been associated with a high SCD risk ALVC [88,89], ventricular arrhythmias and a characteristic
LGE pattern on CMR (Table 2) [39,43]. Furthermore, a distinct immunohistochemical phenotype has
been reported in these variants with altered protein localisation in the ID [43]. Further functional
studies are needed to elucidate the mechanistic links resulting in arrhythmia and structural changes.

The high incidence of SCD in these families led to recommendations to consider prophylactic
implantable cardioverter defibrillators (ICD) for SCD prevention: the 2019 HRS ACM document provides
a class IIa/level of evidence C recommendation for a primary prevention ICD in FLNC pathogenic
variant carriers with LVEF < 45% [1]. Reports from large cohorts are still needed to support this.

3.2.5. Tight Junction Protein 1 (TJP1) (Also Known as Zona Occludens 1) (Encoded by TJP1)

TJP1 encodes the ZO-1 (zonula occludens-1) protein, a multi-functional scaffolding protein that
localises to the ID of cardiomyocytes. ZO-1 has been documented to interact with a series of related
proteins, including connexin43, N-cadherin, αT-catenin, and actin, and thus represents an intriguing
candidate for ACM. Limited evidence supports the pathogenic role of TJP1 pathogenic variants in
ACM. Borteli et al. used whole exome sequencing (WES) to identify a variant in one ARVC family,
with further rare variants identified in additional unrelated ARVC cohorts [44]. In silico tools predicted
these variants to be deleterious and affect highly conserved amino acids, and either cause local unfolding
and promote structural rearrangements of the GUK (guanylate kinase) domain, or impair the function
of the disordered region. Case-control studies provided evidence for enrichment with TJP1 variants
in ACM patients compared with controls, supporting the causality of TJP1 variants in ACM [44].
Further evidence from larger cohorts for the role of TJP1 gene as a disease causing in ACM is still needed.

3.2.6. N-Cadherin (CDH2) (Also Known as Cadherin-2) (Encoded by CDH2)

N-cadherin, encoded by CDH2 (part of the Cadherin gene family) is a large transmembrane
adherens junction (AJ) protein (906 residues, 99.8 kDa) that connects actin filaments in neighbouring
cardiomyocyte sarcomeres [52]. Functions include providing strength and stability to cardiac tissue,
calcium-ion-dependent adhesion, as well as playing a role in left-right asymmetry, stability of gap
junctions, development of the nervous system and the formation of cartilage and bone. The CDH2 gene
is large with 16 exons and >200 kb and undergoes alternate splicing resulting in multiple transcript
variants, with one of these involved in a proteolytically processed preproprotein, which generates a
calcium-dependent cell adhesion molecule and glycoprotein. In 2017, WES revealed a novel CDH2
variant in an ARVC three-generation South African family [90]; subsequent screening of a separate
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ARVC genotype-negative cohort identified another CDH2 variant [91]. CDH2 is a strong candidate
gene for ACM; AJs and desmosomes are closely interacting structures and furthermore, PKG, a central
desmosomal protein, is known to associate with cadherins [92].

3.2.7. Catenin Alpha 3 (CTNNA3) (Encoded by CTNNA3)

Alpha T-catenin 3 is an ID adhesion molecule known to interact with implicated ACM molecules,
plakophilin-2 and both N- and E-cadherins [52,93]. Despite this, limited evidence is currently available
implicating CTNNA3 in ACM. In 2013, Van Hengel et al. analysed the CTNNA3 gene in 76 desmosomal-
gene negative ARVC patients; two variants were identified in two probands [45]. The same group used
cell cultures and yeast two-hybrid assays to identify abnormal α-T-catenin dimerization as a possible
pathophysiological mechanism [45]. One study found CTNNA3 knockout mice exhibit a progressive
cardiomyopathy with increased arrhythmic propensity following ischaemia [94].

3.2.8. Transmembrane 43 (Also Known as LUMA) (TMEM43) (Encoded by TMEM43)

TMEM43 is a nuclear membrane organiser protein known to bind with lamin and other nuclear
proteins. Merner et al. reported using positional mapping to isolate a 2.36 Mb disease region
in 15 unrelated ARVC families from a genetically isolated founder population in Newfoundland,
Canada [95]. Bi-directional sequencing identified one rare variant in TMEM43 (p.S358L) [95].
Validation from segregation studies, animal models, expression studies and in vitro assays support a
strong variant-disease relationship. Functional studies have revealed that the p.S358L variant alters
intercalated disc protein expression and reduces conduction velocity in ACM [96], but the pathobiology
of TMEM43 disease is still poorly understood and needs to be further investigated. Independent
pathogenic variants associated with ACM have also been reported in other populations [97,98].
Dominguez et al. recently described the p.S358L mutation within three unrelated non-Newfoundland
Spanish families [46]. Affected patients exhibited an ARVC-5 phenotype similarly described in
the Newfoundland population; a fully penetrant, biventricular with LV predominance ACM with
characteristic ECG findings (lower voltages in V3 and prolonged QRS duration in right precordial leads)
and a high predilection for SCD in males [46,95]. In addition, female carriers known to participate in
vigorous exercise were found to have a more adversely expressed phenotype [46].

3.2.9. Phospholamban (PLN) (Encoded by PLN)

Phospholamban is a 30 kDa homopentamer encoded by the PLN gene, which is small (1 intron,
1 exon and 13.2 kb) and well conserved across species [99]. This protein is involved in calcium regulation
and is a major substrate for cAMP-dependent protein kinase in cardiac muscle. In the unphosphorylated
form it inhibits sarcoplasmic reticulum Ca2+-ATPase (SERCA) and in the phosphorylated form it
no longer inhibits SERCA, which then pumps cytosolic Ca2+ back to the sarcoplasmic reticulum,
and thereby relaxes muscle [100]. Pathogenic variants in PLN are classically associated with aDCM.
In 2012, Van der Zwaag et al. screened a cohort of 97 ARVC and 257 DCM unrelated Dutch index
patients for PLN mutations. Interestingly, 12% of ARVC patients and 15% of DCM patients had a
specific PLN mutation (PLN p.R14del), which was later found to originate from a single founder
over 575 years ago [101]. This variant is carried by 1 in 1500 Dutch people, and has also been
reported in the US, Canada, and other European countries. Delayed afterdepolarisations (DAD)
are a recognised arrhythmic manifestation of intracellular calcium overload, can occur after full
repolarisation, and are induced by spontaneous calcium release. Thus, an important mechanistic
link of initiation of arrhythmia in ACM is due to loss-of-function mutations in SERCA, remaining
unphosphorylated and thus inhibiting SERCA, leading to build up of intracellular Ca2+ and DAD [102].

In addition to the typical TWI seen in precordial leads in ARVC, patients with PLN p.R14del have
low voltage QRS [101]. However, the degree of ventricular involvement is highly variable with both
ARVC, BivACM and aDCM. Patients tend to manifest arrhythmias in the 2nd and 3rd decades of
life. There are discrepancies between human clinical, iPSC and murine studies with current efforts
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focused on further elucidating the mechanisms of arrhythmia and structural abnormalities, as well as
developing novel therapeutics [103].

The high incidence of SCD in these families led to recommendations to consider prophylactic
implantable cardioverter defibrillators (ICD) for SCD prevention: the 2019 HRS ACM document
provides a class IIa/level of evidence B recommendation for a primary prevention ICD in PLN
pathogenic variant carriers with LVEF < 45% or NSVT [1]. Reports from large cohorts are still needed
to support this.

3.2.10. Ryanodine Receptor 2 (RYR2) (Encoded by RYR2)

RYR2 is a sarcoplasmic reticulum calcium release channel previously reported in association with
ARVC [104]. However recently, this gene-disease association is increasingly questioned due to contradictory
evidence [105], the presence of ARVC-associated variants in reference alleles, incomplete inheritance
information and strong co-association of catecholaminergic polymorphic ventricular tachycardia (CPVT)
(a cardiac ion channelopathy characterised by adrenergically-mediated arrhythmias in individuals with
structurally normal heart) [33,104,106]. Interestingly, deletion of the exon 3 in RYR2 has been associated
with an extended phenotype of DCM, sinoatrial node dysfunction, atrial fibrillation, and atrial standstill
combined with CPVT [107].

3.2.11. Voltage-Gated Sodium Channel (Nav1.5) (Encoded by SCN5A)

Pathogenic variants in SCN5A were shown to result in a disruption of the voltage-sensing
mechanism of the voltage-gated sodium channel subunit NaV1.5, which conducts the INa current [108].
Defective NaV1.5 results in electrical alterations and myocardial dysfunction. Loss-of-function
variants in this gene cause Brugada syndrome (BrS) and/or progressive cardiac conduction disease,
whereas gain-of-function variants typically produce long QT syndrome (LQTS) type 3 phenotype,
or rarely familial atrial fibrillation [33]. Infrequently, both gain-of-function and loss-of-function variants
in SCN5A can lead to an aDCM phenotype, usually with no apparent macroscopic fibrosis on cardiac
imaging; patients often exhibit conduction disturbances at different levels as well as a high propensity
to ventricular arrhythmias [108,109]. The heterogeneity of SCN5A mutations associated with DCM,
and the heterogeneity of phenotypes renders the mechanistic explanation of SCN5A-mediated DCM
challenging. As such, whether the DCM phenotype is a primary manifestation of the SCN5A genetic
defect or for example a consequence of frequent ventricular arrhythmias, is yet to be answered [72,109].

In 2017, te Riele et al. used WES to discover a missense variant in SCN5A in one of six unrelated
desmosomal gene variant-negative ARVC patients. Cohort validation in 281 ARVC patients found a
SCN5A putative pathogenic variant frequency of almost 2%. Cellular functional characterisation of one
variant found reduced sodium current and reduced Nav1.5 and CDH2 interaction in the ID. Although
Nav1.5 is known to interact with the mechanical junction proteins, PKP2 and CDH2 [49], and PKP2
mutations can be associated with a sodium channelopathy-type phenotype [49], mechanisms linking
SCN5A variants to clear ARVC phenotype remain poorly investigated [109].

3.2.12. Transforming Growth Factor Beta 3 (TGFβ3) (Encoded by TGFB3)

TGFβ3 is a cytokine protein associated with tissue development, homeostasis and fibrosis
induction [110]. In 1994, parametric linkage analysis in five ARVC families identified TGFB3 as
one of six possible candidate genes in a disease region [111]. However, sequencing of coding regions of
these six genes did not identify any pathogenic variants. Over 10 years later, Beffagana et al. identified
two variants in untranslated regions (UTR) of TGFB3; a 5′ UTR mutation segregating in a large ARVC
family and a 3′ UTR mutation associated with an unrelated ARVC patient [110]. Transfection studies
in a murine myoblast cell line found that both variants caused greater luciferase reporter activity
compared to controls [110], suggesting greater TGFβ3 expression. It has been suggested that genetic
defects in TGFB3 induce myocardial fibrotic response through promoting the expression of extracellular
matrix genes and inhibiting extracellular matrix degradation by suppressing the activity of matrix
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metalloproteinases [110,112]. Of note, TGFβ3 is the only secreted protein implicated in the pathogenesis
of ACM so far; should its causality in ACM be extensively validated in future studies, it will suggest a
mechanism involving paracrine and autocrine signalling.

3.2.13. RNA-Binding Motif Protein 20 (RBM20) (Encoded by RBM20)

RNA-binding motif protein 20 is a splicing factor involved in regulating constitutive and
alternative splicing of a number of key cardiac genes (sarcomeric, calcium regulation and ion regulation
genes) [113,114]. Pathogenic RBM20 variants resulting in loss-of-function lead to missplicing of
sarcomeric and calcium-handling genes, implicated in DCM (TTN missplicing considered to be the
major contributing mechanism), and are associated with an aggressive early-onset phenotype with an
increased predilection to cardiac transplantation, severe arrhythmia and SCD [114–116]. Brauch et al.
identified distinct heterozygous missense mutations in exon 9 of RBM20 in 2 large families with
DCM [117]. Moreover, van den Hoogenhof et al. compared the arrhythmia burden of DCM patients
with TTN mutations (n = 22) and DCM patients with RBM20 mutations (n = 18). Most notably, they
found 44% of RBM carriers had sustained ventricular arrhythmia compared to 5% in the TTN group.
From these results, they hypothesised that other mechanisms apart from TTN splicing may explain
the RBM20 phenotype. Using RBM20 knockout murine and cardiomyocyte models, they discovered
intracellular calcium overload as a mechanism due to missplicing of CamkIIδ (another RBM20 target
gene) [113].

Parikh et al. interrogated the 14 exons of RBM20 by comparing 74 patients with cardiomyopathy
phenotype to variants in the general population, and identified exon 11 as a new pathogenic hot spot.
The phenotype included a high prevalence of atrial fibrillation (AF), non-sustained VT, ICD discharge,
and SCD events. Thus, RMB20 is a complex gene involved in regulation of multiple sarcomeric and
calcium-regulatory genes, with a high propensity for arrhythmias and structural abnormalities.

3.2.14. BCL2-Associated Athanogene 3 (BAG3) (Encoded by BAG3)

BAG3 is a co-chaperone of the Heat shock 70 kDa protein 8, which functions to facilitate folding
of newly translated proteins and misfolded proteins, and degrade protein aggregates [118]. In the last
decade, BAG3 variants have been implicated in DCM. One study used WES and genome wide analysis
of copy number variation to identify a large deletion in BAG3 in a 3-generation DCM family [119].
Further variants were identified in 7 unrelated probands from a 311 DCM genotype-negative cohort [119].
Observations from experimental data are inconclusive and limited; one BAG3 knockdown zebrafish model
observed variable phenotypes including heart failure and a skeletal myopathy [119]. Another model from
DCM-related mutant cardiomyocytes identified disrupted Z-discs and stress-induced apoptosis [120].
Of note, BAG3-related DCM is associated with a late onset, severe progressive heart failure (HF) phenotype,
worse outcomes in individuals of African ancestry and a higher likelihood of terminal DCM requiring
cardiac transplantation [118,121–123]. Despite its characteristic late-disease onset, the disease penetrance
in individuals >40 years of age reaches 80% [118].

3.2.15. NK2 Homeobox 5 (NKX2-5) (Encoded by NKX2-5)

NKX2-5 encodes a homeodomain-containing transcription factor essential for cardiac morphogenesis.
Pathogenic variants in NKX2-5 cause diverse cardiac phenotypes with variable expressivity [124],
most commonly progressive atrioventricular block and congenital heart defects (especially secundum
atrial septal defect (ASD)) [125]. NKX2-5 variants have also been implicated in adult-onset DCM [126]
and ventricular arrhythmias [127]. The p.Phe145Leu variant in NKX2-5, carried by 1 in 7100 Icelanders,
was reported to cause severe adult-onset familial DCM with very high penetrance and an increased risk
of SCD [128].
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4. Effect Modifiers

ACM is typically an autosomal dominant disorder with age-related reduced penetrance and highly
variable expressivity [129]. Around 35–50% of patients are found to have no identifiable pathogenic
variant (otherwise known as gene-elusive or genotype-negative), suggesting unidentified genes and
additional disease pathways might be involved. Furthermore, individuals who carry ACM-associated
variants may show no disease expression, indicating that other variables and effect modifiers might
be at play [2,130]. A number of disease modifiers have been recognised in ACM, and; these are
summarised in Figure 21. We discuss in more detail two important effect modifiers below:

Figure 21. Schematic view of the possible modifier genes, post-translational, epigenetic, and environmental
factors contributing to the pathogenesis of ACM including ARVC, ALVC, and biventricular ACM.
Modified from Watkins et al. (2011) [131]. ACM = arrhythmogenic cardiomyopathy; ALVC = arrhythmogenic
left ventricular cardiomyopathy ARVC = arrhythmogenic right ventricular cardiomyopathy.

4.1. Inflammation

The role of inflammation in ACM is currently unclear. Myocardial inflammation is very much
present in ACM; two-thirds of ARVC cases show T-cell infiltrates at autopsy; however, it is unknown if
this is a primary phenomenon or reactive to ACM pathology [22]. Numerous reports have implicated
proinflammatory mediators in ACM. Multiple inflammatory cytokines have been found at higher
levels in serum from ARVC patients when compared to controls [132,133]. In addition, further studies
have found marked local myocardial production and secretion of proinflammatory mediators in ARVC
samples and models [132,134], with one study interestingly reporting a correlation between expression
levels of two specific cytokines and ejection fraction in DSG2mut/mut mice [134]. Activation of nuclear
factor-κB (NFκB), an inflammatory-response transcription factor, has been characterised in both in vitro
and in vivo models of ACM; of note, an inhibitor of NFκB was recently found to markedly reduce
inflammatory cytokine levels whilst mitigating the development of ACM disease features [134].

Of note, an increasing number of ACM cases presenting with myocarditis-like ‘hot phases’ are
being reported [135–137]. These episodes may mark the first development of disease or disease
progression [138]. More attention is being paid to the theory that a ‘genetically vulnerable myocardium’
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may be susceptible to myocarditis; however, data remain inconclusive thus far [22]. Protonotarios et al.
retrospectively analysed 16 ARVC patients referred for 18F-fluorodeoxyglucose positron emission
tomography (FDG-PET)—a validated technique for detecting myocardial inflammation in suspected
myocarditis. Despite a number of study limitations, the group demonstrated 36% of their ARVC patients
on FDG-PET had active myocardial inflammation [139]. Lopez-Ayala et al. performed a retrospective
analysis of the medical records of 131 ARVC patients and 64 phenotype-negative genotype-positive
relatives [140]. They found seven patients who had previously presented with acute myocarditis
(one being from the phenotype-negative group); five of these patients carried DSP variants and all of
these patients were relatives from a single ancestor [140]. A recent study reported on monozygotic
twins who presented with myocarditis at ages 17 and 18; further investigation found extensive LGE
pattern only involving the LV and a DSP variant in both twins [141]. This supports the hypothesis
of a genetically susceptible myocardium, with myocarditis being an initial trigger or ‘hot’ phase for
the disease.

Interestingly, in addition to clinical overlap, pathological overlap exists between ACM and cardiac
sarcoidosis, a granulomatous inflammatory condition of the myocardium. Aberrant distribution
of desmosomal proteins at the ID has been reported in sarcoidosis, whilst cytokines implicated
in sarcoidosis have been found to cause loss of junctional plakoglobin in cardiac myocytes [132].
Increasing evidence of autoimmunity has also been recently reported with two studies identifying
anti-heart, anti-intercalated disc and anti-DSG2 autoantibodies in patients with ACM [142,143].
Further study is required to understand and clinically identify specific and distinguishable inflammatory
pathways seen in ACM.

4.2. Exercise

A strong link has been established between endurance exercise participation and an adversely
expressed cardiac phenotype [144,145]. Of those who are desmosomal pathogenic variant carriers,
an increased age-related penetrance of ACM, risk of ventricular tachyarrhythmias and HF is observed [144].
There is evidence to suggest exercise plays a disproportionate role in gene-elusive ACM patients; one study
found this group participated in more high-intensity exercise when compared to desmosomal ACM
patients [146]. Furthermore, gene-elusive patients with the most intense exercise history prior to
presentation were found to present at a younger age [146]. More recently, in ACM patients with ICDs,
exercise reduction has been shown to decrease ventricular arrhythmias, with gene-elusive patients gaining
particular benefit [147]. Further investigation is required to understand the role of exercise in ACM,
in particular in non-desmosomal carriers.

5. SCD Risk Prediction

Central to ACM management, is determining who requires life-saving ICDs. Without doubt, ICD
insertion is always recommended for secondary prevention of SCD in patients with cardiac arrest or
haemodynamically unstable VT; however, primary prevention remains a challenging and daunting
task. We suggest comprehensive and continuous risk evaluation (at least every follow-up visit) of
patients and family members (our recommended general approach is detailed here [148]). However,
a more nuanced genotype-based approach should also be considered; particularly as a significant
proportion of patients have no identifiable preceding symptoms pre-SCD. A greater understanding of
specific pathogenic variant and family-related phenotypes is important in establishing robust ICD
protocols. The Newfoundland ICD protocol specific to TMEM43-p.S358L carriers in their population is
an example of an effective genotype-formulated strategy; 5-year survival has risen from 65 to 95% in
males and from 85% to 97% in females [149].

6. Translational Perspectives and Future Directions

Following numerous breakthrough discoveries in the field of ACM, current understanding of this
disease is changing rapidly with evolving concepts in genetics and molecular biology. The complex
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genetic nature of ACM and its genotype-phenotype associations has resulted in a broader definition of
the disease; however, translation of genetic findings to clinical practice requires an integrated approach
that aims to redefine ACM at a higher resolution.

The current research era has made available new tools for studying the genetics of ACM,
among others WES and whole genome sequencing, multi-omics technologies and human induced
pluripotent stem cell cardiomyocytes (hiPSC-CMs). These tools provide a platform for unravelling the
complex molecular interactions underlying ACM and for in vivo drug testing. In parallel, extensive
long-term, longitudinal characterisation of ACM cohorts with integration of deep phenotyping modalities
enables recognition of new common and rare genotype-phenotype associations, thereby facilitating
the recognition of more benign and more severe populations. It is therefore plausible that increased
understanding of these gene variant-phenotype associations and development of individualised
therapies will move clinical care towards an integrated genotype-mechanism-phenotype approach,
fulfilling the premise of precision medicine in ACM and improving disease outcomes in ACM families.
We provide a list of research priorities in Table 3.

Table 3. Future directions: research priorities in ACM.

Epidemiology and screening
of ACM

Highly variable
Under-studied, underdiagnosed

GWAS may be helpful to establish associations between patients’ genotype and
phenotype; and to test existing genetic risk scores from other cardiac phenotypes

with ACM phenotypes for associations. Moreover, this could be potentially
developed into a screening test

Clinical heterogeneity
Inter and intra-familial variability (even with some mutations)

Deep phenotyping with bipolar and unipolar voltage maps of RV, RVOT, LV, and
with phenocopies

Mechanisms of ACM

Pathophysiology and disease progression
Myocarditis as a possible trigger and predisposition to arrhythmias

Animal models may be used to study the effect of protein mutations on ACM
phenotypes, e.g., titin mutation and its link to heart failure

Genetics

40% undefined genetically
Genotype-phenotype correlation

More precise definition of clinical phenotype
GWAS and phenotype-genotype for effect modifiers?

Desmosome Study extra-cardiac desmosome expression such as buccal cells and skin

Inflammation and myocarditis

Investigate role of inflammation in animals and humans
Discern if ACM patients more susceptible to myocarditis

Is inflammation primary or secondary?
Is myocarditis a trigger for arrhythmogenicity?

Is myocarditis an acute phase of ACM?

Predicting SCD risk

Refine the criteria for ICD implantation in ACM patients e.g., balancing the
benefits and risks of ICD, specifying the type of ICD (TV vs. SC)

Validation Hopkins Primary Prevention ARVC SCD risk calculator
Evaluating blood biomarkers longitudinal studies

Systematic follow-up of G+/P+, G+/P+, G−/P− understand evolution
of arrhythmia

Use of non-ICD therapies to manage arrhythmia risk

Other therapies

Trials using standard anti-HF regimens in ACM (β-blockers,
Angiotensin-converting enzyme, Angiotensin II receptor blocker,

Mineralocorticoid receptor antagonist, Angiotensin receptor neprilysin inhibitor)
Disease-specific pathways to identify novel targets

Skin and hair for testing novel therapies
Precision medicine with the use of ‘avatars’ for testing therapies

Establish trials with surrogate endpoints to expedite drug delivery

GWAS = genome-wide association studies; G+ = genotype positive, G− = genotype negative, P+ = phenotype
positive, P− = phenotype negative, HF = heart failure; RV = right ventricle; RVOT = right ventricular outflow tract;
SC = subcutaneous; SCD = sudden cardiac death; TV = transvenous.
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WES and whole genome sequencing (WGS) are the research standard for novel variant and
new gene discovery and are particularly important in identifying causal genes in gene elusive ACM
patients (35–50%). However, a major obstacle in correctly determining a variant’s pathogenicity is the
availability of reliable functional and biochemical characterisation of genetic variants (Table 4 describes
different experimental techniques).

Table 4. Functional Characterisation of Variants.

DNA level
Genetic interaction mapping

DNA/protein interactions
DNA accessibility assays

RNA level

Microarrays
SAGE (Serial Analysis of Gene Expression)

RNA sequencing
MPRAs (Massive Parallel Reporter Assays)

STARR-sequencing (similar to MPRA)
Perturb-sequencing (couples CRISPR with gene knockdown single gene

expression)

Protein level

Yeast two-hybrid systems (bait with prey originally based on
transcription factor GAL4)

AP/MS (Affinity Purification and Mass Spectrometry)
Deep mutational scanning

Loss of functional techniques

Mutagenesis (deletional or insertional mutagenesis laborious
pre-CRISPR)

RNAi (RNA interference using s20 base dbRNA transfection using
siRNA or virally-delivered short hairpin RNAs

CRISPR

Functional annotation of genes Genomic annotation
Rosetta Stone approach [150]

Bioinformatics

Clustering
Principal component analysis

Machine learning
Artificial neural networks

Support vector machines (supervised machine learning)
Gene ontology (DAVID)

Gene set enrichment analysis (GSEA)
Pathway analysis—Ingenuity

Pathway Studio—Ariadne Genomics

Consortia
ENCODE (Encyclopaedia of DNA Elements)
GTEx (Genotype-Tissue expression project)

CRISPR = clustered regularly interspaced short palindromic repeats.

The 2015 American College of Medical Genetics and Genomics and the Association for
Molecular Pathology (ACMG-AMP) proposed a standardised classification system that grades variants
pathogenicity in five classes: Pathogenic (Class 5) >95%, Likely Pathogenic (Class 4) >90%, Variant of
Uncertain significance (Class 3) 10–90%, Likely Benign (Class 2) <10%, and Benign (Class 1) <5% [151].
The ACMG-AMP also proposed guidance on how to evaluate evidence for a variant’s pathogenicity,
important variant and gene characteristics are taken into account; these include variant function,
gene function, family co-segregation with disease, allele frequency in the general population and variant
type. Different types of data and evidence are evaluated, including population data, computational and
predictive data, functional data from basic science studies, segregation data, de novo data, and allelic
data [151]. This guidance provides a universal framework for standardisation amongst laboratories and
individual healthcare institutions; however, one emerging theme contributing to incorrect classification
is lack of specialty expert input. In response to this, the ClinGen Cardiovascular Clinical Domain
Working Group have formed an inherited cardiomyopathy expert panel, made up of international
experts in clinical cardiology, clinical research, molecular diagnostics, genetic counselling and genomic
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medicine, and begun to adapt the ACMG-AMP framework for use in inherited cardiomyopathies such
as ACM. They recently published recommendations for variant classification for MYH7-associated
inherited cardiomyopathies [152]. This multi-specialty integrated approach to variant classification is
needed on local, national and international levels, to maximise patient benefit.

In the oncological world, creating humanised animals—model avatars—of the specific genetic
defect of the cancer, and testing anti-neoplastic agents is being used to deliver precision medicine [153].
Recently, an in vivo rat-hiPSCs-CM model derived from ACM patients and able to reproduce their
genotypic status, has been found to model phenotypic characteristics seen in ACM [154]. This new model
provides a magnified opportunity to investigate the disease mechanisms underlying specific ACM
genotypes and undertake pharmacological testing within the macrocosm of a mammalian heart [155].
Modelling ACM in experimental settings provides important pathophysiological understanding,
but also a possible avenue for discovery of pharmacological therapies. Recently, the compound
SB216763 (a GSK3β inhibitor that prevents degradation of β-Catenin) was found to improve the cardiac
phenotype of zebrafish embryos and murine models expressing different genetic mutations [156,157].
Another example, BAY11-7082 (an NFκB inhibitor) was found to prevent development of all features
of disease in ACM models [134]. These promising discoveries pave the way for precision medicine
therapies in the future.

Bringing together research and clinical practice is vital to improve outcomes in rare and heterogenous
condition such as ACM. To do this, a ‘precision medicine network’ has been proposed which connects
patients, clinicians, laboratories, researchers, bioinformaticians and other stakeholders [158]. At a
simplistic level, a precision medicine network is the infrastructure that facilitates communication
between these parties. This enables efficient flow of data, information and new knowledge to encourage
a ‘learning health system’, where clinical practice and research can synergise with the goal of improving
patient outcomes—this is particularly important in rare diseases where patient cohorts are smaller
and thus may require greater collaboration. For example, in determining pathogenicity of a specific
variant in an ACM patient, the interface between cardiologists, geneticists, bioinformaticians, and
researchers is essential to deliver the best possible care. Specialist cardiologists ‘phenotype’ patients
using advanced studies such as CMR with tissue characterisation, signal-average ECGs, voltage maps,
etc.; geneticists and bioinformaticians ‘genotype’ patients and their families and translate that data into
clinical information and researchers provide validatory information by performing basic science and
clinical research to generate new knowledge (see Figure 22). The initial reluctance of the adoption of
telemedicine due to bonafide concerns over privacy and confidentiality has been surpassed with recent
world events and rapid implementation across the globe. This has been on the whole well received by
both patients and clinicians [159]. One of the major limitations of evaluating novel variants is cascade
clinical and genetic screening in family members who live far from the evaluating centre; telemedicine
now allows families to be evaluated in a single centre and focus on reclassifying variants which are
often ‘private’ to families. This, with shared electronic health records, mailable kits for collecting
biospecimens will facilitate participation in research to discover novel biomarkers and genetic variants.
Social media-based recruitment has also facilitated recruitment of probands and family members who
may be in an area without specialist genetic cardiology services, such as in our Mayo-Cambridge
Registry (https://clinicaltrials.gov/ct2/show/NCT03049254). Recruitment can now also be done via
video-link or an online portal with digital consent as used for the National Institutes of Health (NIH)
All of Us project [160].

https://clinicaltrials.gov/ct2/show/NCT03049254
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Figure 22. An integrated precision medicine systems model in ACM. The goal of precision medicine
is to redefine the classification of diseases such as ACM into more refined classes. Multidimensional
longitudinal data is collected by clinicians, clinical researchers and patients; technological advances in
the last decade have provided opportunities to deeply phenotype and rapidly genotype patients—we
describe some innovative data collection tools in our diagram. Data is curated, analysed and stored known
as data processing by bioinformaticians using computational methods. Processed data can be used to
discover new knowledge about a disease phenotype such as biomarkers, new disease genes etc. (the field
of research). These insights can be translated to provide more personalised management to patients.
As disease phenotypes such as ACM become more refined, e.g., from morphofunctional classes to
molecular classes, more targeted therapies will be discovered. ACM = arrhythmogenic cardiomyopathy.

7. Conclusions

With technological advances in genomic sequencing, diagnostic modalities, and research tools,
opportunities to understand ACM at a deeper level are being realised. The classification of ACM and
nosology of cardiomyopathies are likely to become more refined as we piece together the complex
genotype-phenotype relationship. Thus, an integrated multi-speciality approach involving clinicians,
bioinformaticians, researchers and most importantly, patients is required to translate these molecular
insights into clinical practice. Precision clinical care requires an in-depth and nuanced understanding
of the genetics of ACM, whilst also understanding the correlating deep phenotypic characteristics,
to ensure optimal timely and targeted intervention.
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Abbreviations

ACM Arrhythmogenic Cardiomyopathy

ACMG-AMP
American College of Medical Genetics and Genomics and the Association for Molecular
Pathology

aDCM Arrhythmogenic Dilated Cardiomyopathy
AD Autosomal dominant
AF Atrial Fibrillation
AHA American Heart Association
AJ Adherens Junction
ALVC Arrhythmogenic Left Ventricular Cardiomyopathy
AP/MS Affinity Purification and Mass Spectrometry
AR Autosomal recessive
ARVC Arrhythmogenic Right Ventricular Cardiomyopathy
ARVD Arrhythmogenic Right Ventricular Dysplasia
ASD Atrial Septal Defect
BiV Biventricular
BivACM Biventricular Arrhythmogenic Cardiomyopathy
BrS Brugada syndrome
CMP Cardiomyopathy
CMR Cardiovascular magnetic resonance
CPVT Catecholaminergic Polymorphic Ventricular Tachycardia
CRISPR Clustered regularly interspaced short palindromic repeats
DAD Delayed After Depolarisations
DCM Dilated Cardiomyopathy
ECG Electrocardiogram
ENCODE Encyclopedia of DNA Elements
ESC European Society of Cardiology
FDG-PET 18F-fluorodeoxyglucose positron emission tomography
G+ Genotype negative
G- Genotype negative
GSEA Gene set enrichment analysis
GTEx Genotype-Tissue expression project
GWAS Genome-wide association studies
HCM Hypertrophic Cardiomyopathy
HF Heart failure
hiPSC-CMs Human induced pluripotent stem cell cardiomyocytes
HNDC Hypokinetic Non-dilated Cardiomyopathy
HRS Heart Rhythm Society
ICD Implantable Cardiac Defibrillator
ID Intercalated Disc
ISFC International Society and Federation of Cardiology
LBBB Left Bundle Branch Block
LGE Late gadolinium enhancement
LQTS Long QT syndrome
LV Left ventricle
LVEF Left ventricular ejection fraction
MPRAs Massive Parallel Reporter Assays
MR Mitral Regurgitation
NSVT Non-Sustained Ventricular Tachycardia
P+ Phenotype positive
P- Phenotype negative
PHTN Pulmonary Hypertension
PVC Premature Ventricular Contraction
RCM Restrictive Cardiomyopathy
RV Right ventricle
RVOT Right ventricular outflow tract
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RWMA Regional wall motion abnormality
SAGE Serial Analysis of Gene Expression
SC Subcutaneous
SCD Sudden Cardiac Death
SERCA Sarcoplasmic reticulum Ca2+-ATPase
SR Sarcoplasmic reticulum
TFC Task Force Criteria
TV Transvenous
TWI T Wave Inversion
UTR Untranslated regions
VT Ventricular Tachycardia
VTA Ventricular Tachyarrhythmia
WES Whole exome sequencing
WGS Whole genome sequencing
WHO World Health Organisation
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