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In this contribution, we present results of non-linear dimensionality reduction and
classification of the fs laser ablation ionization mass spectrometry (LIMS) imaging
dataset acquired from the Precambrian Gunflint chert (1.88 Ga) using a miniature time-
of-flight mass spectrometer developed for in situ space applications. We discuss the data
generation, processing, and analysis pipeline for the classification of the recorded fs-LIMS
mass spectra. Further, we define topological biosignatures identified for Precambrian
Gunflint microfossils by projecting the recorded fs-LIMS intensity space into low
dimensions. Two distinct subtypes of microfossil-related spectra, a layer of organic
contamination and inorganic quartz matrix were identified using the fs-LIMS data. The
topological analysis applied to the fs-LIMS data allows to gain additional knowledge from
large datasets, formulate hypotheses and quickly generate insights from spectral data. Our
contribution illustrates the utility of applying spatially resolved mass spectrometry in
combination with topology-based analytics in detecting signatures of early (primitive)
life. Our results indicate that fs-LIMS, in combination with topological methods,
provides a powerful analytical framework and could be applied to the study of other
complex mineralogical samples.
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INTRODUCTION

The current state of space exploration is on the verge of new frontiers, holding promise for discoveries
on other planetary bodies through in-situ robotic exploration (Vago et al., 2015). For example, Mars
and the icy moons of Jupiter and Saturn, once thought to be lifeless, have gained more attention from
the scientific community in recent decades due to new data informing upon the potential habitability of
these bodies (Priscu andHand 2012; Garcia-Lopez and Cid 2017; McMahon et al., 2018). Thus, there is
an ongoing need for sensitive and high-throughput space instrumentation providing precise analytical
data on a microscale (Navarro-González et al., 2006; Goesmann et al., 2017). However, space-type
instruments are usually small and provide only a fraction of the sensitivity and overall capability of their
full-scale laboratory counterparts. Reduction in performance occurs due to the strict constraints on size,
power consumption, andweight of the scientific payload. Therefore, the development of newminiature
instruments and analytical methods with improved capabilities is a continuously pressing issue (Li
et al., 2017; Arevalo et al., 2018; Stevens et al., 2019; Wurz et al., 2020).
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Laser-basedmass spectrometry (Laser Ablation Ionization and
Desorption Mass Spectrometry–LIMS and LDMS) is a modern
and compact analytical method that promises to greatly enhance
the quality of chemical analysis on planetary bodies (Riedo et al.,
2013b; Arevalo et al., 2018). The first LIMS instrument selected
and built for a planetary lander was LASMA, developed for the
Phobos-Grunt mission (Managadze et al., 2010). Recently, the
second LIMS instrument was chosen for the upcoming ExoMars
mission/Rosalind Franklin Rover (Goesmann et al., 2017), further
facilitating developments in this field. Laser-based mass
spectrometry, developed for in-situ planetary exploration, as a
versatile method, can provide a description of molecular
composition and element, isotope characterization of solids
(Moreno-García et al., 2016; Arevalo et al., 2020; Tulej et al.,
2020). The time-of-flight version of LDMS has been shown to be
capable of measuring extremely low concentrations (fmole) of
amino acids in the desorption mode (Ligterink et al., 2020). LIMS
modification of this instrument has been reported to measure
ppbw level trace elements and routinely measure fine chemistry
from a variety of samples (Riedo et al., 2013a; Neuland et al., 2016;
Wiesendanger et al., 2017). Moreover, a number of reports have
indicated that LIMS, particularly fs-LIMS, might be applicable to
the detection of faint signatures of life from microscopic
inclusions (Tulej et al., 2015; Wiesendanger et al., 2018) and
low-biomass Martian analogs (Stevens et al., 2019; Riedo et al.,
2020). However, the field of study of early and primitive life
remains profoundly complex (Brasier and Wacey 2012; Westall
et al., 2015; Wacey et al., 2016) with no single chemical criterion
that can be assigned as definitive proof of biogenicity. A number
of authors have proposed a multi-criteria approach, where a
multitude of methods needs to be applied before any conclusions
can be drawn (Hofmann 2008; Brasier and Wacey 2012; Hand
et al., 2017; Vago et al., 2017; Neveu et al., 2018; Chan et al., 2019).
The multi-method approach enhances the size of parametric
space and reduces the probability of false-positive detection.
Therefore, any advancement within each of the applied
methods can increase the overall confidence of the correct
identification of signatures of life.

In this contribution, we hypothesize that on the basis of the full
feature scale (mass range) present in the fs-LIMS spectral
datasets, it is possible to identify minerals and compounds of
specific chemistry using an unsupervised data-driven approach.
We describe a topology-based analysis pipeline to define the
complexity of the fs-LIMS imaging data in low dimensions and
identify groups of spectra that share a significant degree of
similarity. We apply the aforementioned method to 18,000
composite spectra acquired from the Gunflint chert (1.88 Ga),
which contains populations of well-preserved Precambrian
microfossils of proven biological origin (Wacey et al., 2013).
The analysis of the data reveals four distinct populations of fs-
LIMS spectra, which correspond to two groups of microfossils,
the quartz matrix in which microfossils are entombed and
organic surface contamination spectra. Moreover, we describe
a fine transitional structure between classes and argue that low
dimensional representations are of high utility in in-situ mass-
spectrometry and space research. Further, we speculate that our
approach is scalable to non-space instruments and may,

therefore, prove useful in the field of Precambrian
micropaleontology and high-dimensional analytical chemistry
in general.

METHODS

In this study, we use laser ablation ionization mass spectrometry
for the characterization of the chemical composition of the
Gunflint sample and optical microscopy to identify
morphological features. A thorough review of LIMS operation
principles, current state-of-the-art, and application case studies
can be found in a number of previous reports (Tulej et al., 2014;
Wiesendanger et al., 2017; Grimaudo et al., 2020; Ligterink et al.,
2020) and reviews (Grimaudo et al., 2019; Azov et al., 2020), and
therefore, only a short description will be given here. In the
simplest case, LIMS instruments include two main parts–a pulsed
laser system to ablate and ionize materials and a mass analyzer to
separate and register ions produced during the ablation and
ionization process. The fs-LIMS is a successor of ns-LIMS,
with the only difference that the mass analyzer is coupled to
the fs laser system. Current commercial fs lasers can provide peak
power fluences up to terawatt/cm2, compressed to very short
pulses of femto-second duration. Such high powers can ionize
any material, thus, providing means for an isotope and element
characterization of any solid with very small detection limits and
reduced matrix effects (Riedo et al., 2013c). As an ion source, we
have installed a Ti:Sapphire laser with chirped pulse
amplification, which provides a stable IR-775 nm, ∼190 fs
laser radiation. Conversion of the fundamental wavelength
from IR-775 nm to UV-258 nm was made using a
commercially available third-harmonic generation module.

The fs-LIMS system used in this study consists of a miniature
time-of-flight (TOF) mass analyzer (⌀ 60 × 160 mm) (see
Figure 1) with an axially symmetric design and single unit
mass resolution. The instrument was developed for in-situ
space applications, and due to its miniature design it could be
placed on a rover, lander, or even used as a handheld instrument
(Wurz et al., 2020). In normal operation mode, fs-LIMS could
identify major chemical composition along with ppmw-level
concentrations of trace elements. As shown in Figure 1, the
TOFmass analyzer consists of entrance ion optics (where ions are
confined and accelerated), a drift tube (where ions experience
mass/charge separation), a reflectron (ion mirror which uses an
electric field), and a microchannel plate (MCP) detector system
(Riedo et al., 2017) to register ion flux. The schematic illustration
of the fs-LIMS sample analysis is shown in Figure 1B. The
focused blue light indicates the fs-UV-258 nm laser radiation
that passes through the instrument and ablates the small area of
the sample with a diameter of the ablation spot of about 5 µm.
The positioning of the ablation spots is determined by the internal
microscopy system. The objective of the microscope is located at a
fixed offset from the instrument. After ablation and ionization,
positively charged ions are guided by an electric field of the
instrument into a defined parabolic trajectory so that every ion
that enters the instrument will land on the surface of the detector.
Incoming time-separated ion flux launches an electron avalanche
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within the microchannels of the detector system and creates a
measurable current on the output anodes. Thus, time-of-flight
LIMS measures an output current per unit of time, which is

correlated with the element and isotope abundances of an
investigated spot. Note that the image of the fs-laser beam
passing through the instrument (Figure 1A) is exaggerated - in

FIGURE 1 | (A) 3D render of our miniature time-of-flight mass analyzer. Location of the reflectron, drift tube, entrance ion optics, MCP detector, and dimensions of
the instrument are denoted. The focusing fs-UV laser light shown on the top and the bottom and illustrates an axial design of the mass analyzer. Sample positioning is not
shown. However, in the laboratory setting, the investigated sample is positioned in close vicinity to the entrance plate of the ion optical system of the mass analyzer, right
in the position of the laser focus, to achieve ablation and subsequent ionization of target material. (B) Schematic illustration of the fs-LIMS. An fs-laser radiation (blue
line) ablates and ionizes material from the sample. The positively charged ions are separated and detected using the time-of-flight mass spectrometer. The ablation
position can be precisely located using an integrated microscopy system.

FIGURE 2 | Microscope images of the Gunflint chert before and after the fs-LIMS imaging campaign are shown. (A) Microscope image of the area (0.9*2 mm2)
chosen for the chemical imaging with our fs-LIMS system. The dark brown patches distributed through the sample and forming a diffuse layer in the middle of the picture
represent a bio-lamination surface. (B) Close-up microscope picture of individual microfossils from the bio-lamination surface. Filamentous (Gunflintia), star-shaped
(Eoastrion), and spherular microfossils (Huroniospora) can be seen. (C) Microscope picture of laser ablation craters (0.9*2 mm2 area covered with 90*200
pixels–18,000 ablation positions) formed after the fs-LIMS imaging campaign. Red lines denote the accuracy of sample positioning (the gap between ablation craters is
consistently 10 µm) and identify the ablation crater diameters. Individual craters range in diameter from 4 to 5 µm. Note, on the upper part of the image, the yellow arrow
indicates an individual microfossil body. The size of the microfossil can be compared with the diameter of the analytical spot.
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the laboratory setting, the laser focal point is located in close
proximity to the entrance electrode of the mass analyzer (see
Figure 1B).

The investigation of a 30 µm thick thin-section of Gunflint
chert has been conducted with our miniature fs-LIMS system.
The sample acquired from the Gunflint Formation (Schreiber
beach locality, Ontario, Canada; Wacey et al., 2012, 2013)
represents a finely polished thin slice of the original rock,
glued to the glass substrate and mounted on a steel holder.
Preliminary optical microscopy was performed on the sample
to identify specific areas of microfossil aggregation (see
Figure 2A). Matrix material in which microfossils are
preserved was identified to be microcrystalline quartz.
Chemical imaging of the rectangular area, containing a bio-
lamination surface (aggregation of microfossils within a
stromatolite) and a clear host area (quartz filled matrix) was
done with the LIMS system using the fs UV-258 nm laser, which
provides a flux of 4.8 eV UV photons, which is well suited for
ionization of glasses and other non-conductive materials with low
absorption coefficients.

Figure 1A. 3D rendering of our miniature time-of-flight mass
analyzer. Location of the reflectron, drift tube, entrance ion
optics, MCP detector, and dimensions of the instrument are
denoted. The focusing fs-UV laser light shown on the top and the
bottom and illustrates an axial design of the mass analyzer.
Sample positioning is not shown. However, in the laboratory
setting, the investigated sample is positioned in close vicinity to
the entrance plate of the ion optical system of the mass analyzer,
right in the position of the laser focus, to achieve ablation and
subsequent ionization of target material. Figure 1B. Schematic
illustration of the fs-LIMS. The fs-laser radiation (blue line)
ablates and ionizes material from the sample. The positively
charged ions are separated and detected using the time-of-
flight mass spectrometer. The ablation position can be
precisely located using the integrated microscopy system.

Data Acquisition
A rectangular area of 0.9 × 2 mm2 was investigated using the fs-
LIMS system (see Figure 2A). A relatively low number of laser
pulses were applied to each surface position – 200 laser shots, to
avoid material displacement and crater-to-crater cross-
contamination. The spatially resolved measurements
conducted on the Gunflint chert resulted in the collection of
18,000 composite spectra (collected from the grid - 90 by 200
position or ablation sites). A composite spectrum collected from
the given position (or ablation site) resulted in the accumulation
of 200 single-shot spectra, with 64,000 data points digitized per
spectrum. Thus, the total number of registered shots resulted in
3.6 ×·106 single-shot spectra. The laser energies applied to each
position amounted to ∼360 nJ/pulse (measured at the sample
surface) using UV-258 nm laser. This energy was appropriate to
produce the optimal quality for the mass-spectrometric signal,
both from the microfossils and the quartz-filled host area.
Analytical conditions were held constant during the data
collection. The diameter of the average ablation crater was
measured to be ∼5 μm, and gaps between ablation craters were
set to 10 µm (see Figure 2C). A custom-built software package

was used to control the translation stage and the laser firing
intervals. A fast data acquisition system from Keysight was used
for digitizing current from the anodes, providing a 3.2 GSa/s
sampling rate. An example of a single composite spectrum
(representing a histogram of 200 individual single-shot
spectra) registered from the Gunflint sample is shown in
Figure 3. A single mass spectrum consists of 64,000 individual
datapoints sampled with a digitizer, where each digitized data
point corresponds to ∼0.33 ns of a flight time. Thus, every
recorded spectrum contains information about ∼20 µs of a
flight time, which provides a mass/charge (m/z) coverage of
up to 800 m/z, providing a complete record of all stable
isotopes and simple molecular compounds. Overall, 18,000
composite spectra were collected from the Gunflint sample,
with a 10 µm gap between ablation craters. Additionally to the
mass spectra collection, noise measurements were recorded,
which allowed the enhancement of the recorded signal.

Figure 2. Microscope images of the Gunflint chert before and
after the fs-LIMS imaging campaign are shown. A) Microscope
image of the area (0.9*2 mm2) chosen for the chemical imaging
with our fs-LIMS system. A. The dark brown patches distributed
through the sample and forming a diffuse layer in the middle of
the picture represent a bio-lamination surface. B) Close-up
microscope picture of individual microfossils from the bio-
lamination surface. Filamentous (Gunflintia), star-shaped
(Eoastrion), and spherular microfossils (Huroniospora) can be
seen. C) Microscope picture of laser ablation craters (0.9*2 mm2

area covered with 90*200 positions – 18,000 ablation sites)
formed after the fs-LIMS imaging campaign. Red lines denote
the accuracy of sample positioning (the gap between ablation
craters is consistently 10 µm) and identify the ablation crater
diameters. Individual craters range in diameter from 4 to 5 µm.
Note, on the upper part of the image, the yellow arrow indicates
an individual microfossil body. The size of the microfossil can be
compared with the diameter of the analytical spot.

Data Preprocessing
The entire imaging dataset, which consists of ∼50 GB of recorded
composite mass spectra, was preprocessed before any analysis was
applied to the data. A mass spectrometry preprocessing routine
applied to the dataset consists of several typical steps that largely
follow methods described in (Gil and Marco 2007) and (Meyer
et al., 2017). The fs-LIMS preprocessing routine applied to the
imaging data consisted of:

1) Noise removal for an improvement of the signal-to-noise ratio
(SNR) of the signal. The noise signal (empty composite mass
spectra) was recorded after the imaging campaign was
completed. The recorded noise waveform was subtracted
from the imaging observations.

2) Baseline subtraction. A filter function was applied to the
noise-removed mass spectra to estimate varying baseline
within multiple windows and regressed using spline
approximation.

3) Jitter correction. Since materials within the analyzed sample
might be of better or worse ionization efficiency (mainly due
to topography), temporal variation of ion yields is expected to
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occur so that times-of-flight of given ion packets might slightly
vary. Typically, this effect is small and affects the peak shapes in
a minor way. However, since we collected a relatively large
dataset, a correction procedure has been applied. To correct for
mismatch of times-of-flight, we have used an autocorrelation
function described in (Gil and Marco 2007).

4) Low pass filtering. The low pass filter with normalized cutoff
frequency at 0.13 πrad/sample and stopband attenuation of
60 dB was applied to each composite mass spectrum. This step
removes the remaining high-frequency component from the
recorded signal. Typically, it improves the SNR by two to five
and does not alter the peak shapes.

5) Parametric peak preserving smoothing. The Savitzky–Golay
filter function (Press and Teukolsky 1990) was applied to
flatten the baseline further and increase the SNR.

6) Mass scale assignment. An average time-of-flight spectrum of
all 18,000 spectra was recalculated for mass calibration
purposes. A simple quadratic equation was used to
calibrate the mass scale with the time-of-flight spectrum
(Riedo et al., 2013a).

7) Single mass unit decomposition. An integration of
consecutive 260 single unit masses, starting from 1H, was
achieved by recalculating the time-of-flight windows from the
mass calibration equation and utilizing direct Simpson’s
integration (Meyer et al., 2017).

Figure 3 shows a typical raw spectrum (top panel) acquired
from the Gunflint sample before any data preprocessing has been

applied. The bottom panel shows a spectrum after preprocessing
and reveals significantly improved SNR (104) and a flat baseline.
After step number seven, multiple isotope maps were calculated
using Kriging interpolation (further information in the text and
see Figure 4) for an investigation of the distribution of major
abundant elements. The imaging dataset was z-score normalized
to remove the imbalanced scales. An assessment of the pairwise
correlation factors was made, showing that approximately half of
the dimensions (single unit masses) are empty or very weakly
expressed.

The principal component analysis (PCA) reduction down to
the first 60 principal components was applied to remove empty
dimensions dominated by noise from the original dataset. The
Uniform Manifold Approximation and Projection (UMAP)
algorithm (McInnes et al., 2018) was used to further
characterize non-linear dependencies present in the PCA
reduced data matrix. The overall classification of the UMAP
scores was made using a hierarchical density-based clustering
algorithm (HDBSCAN) (Campello et al., 2013; McInnes et al.,
2017). The specific spectra identified from the microfossils were
further visualized using theMapper algorithm (Singh et al., 2007).
The identification of the modules present in the Mapper network
was conducted using a greedy modularity optimization algorithm
(Louvain) (Blondel et al., 2008).

Figure 3. Comparison of fs-LIMS spectra (composite
spectrum - 200 laser shots, recorded from single pixel), before
and after data preprocessing, acquired from the Gunflint chert
sample. Each line in the spectrum represents a single unit mass.

FIGURE 3 |Comparison of fs-LIMS spectra (composite spectrum of 200 laser shots, recorded from single position), before and after data preprocessing, acquired
from the Gunflint chert sample. Each line in the spectrum represents a single unit mass. The increase of SNR to 104 and correction of the baseline can be noted. See the
text for the full description of preprocessing procedures. Exemplary atomic lines are denoted on top of the spectrum.
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The increase of SNR to 104 and correction of the baseline can be
noted. See the text for the full description of preprocessing
procedures. Exemplary atomic lines are denoted on top of the
spectrum.

RESULTS

We calculated the intensity maps of major (abundant) isotopes to
understand a basic representation of the data. In Figure 4, the
spatial distributions of 12C, 1H, and 39K are illustrated and the
chemical maps reveal specific areas where isotopes show elevated
intensities. In comparison with the optical image of the same area
(see Figure 2A), one can see that most of the dark brown patches
identified from optical microscopy as microfossils preserved in
the bio-lamination surface are spatially correlated with increased
values of 12C and 1H. This observation is consistent with the fact
that major elements within microfossil bodies are C and H.
However, the intensity map of 39K reveals different
distribution. A top-right corner of the sample, which was
previously identified as a clean matrix (milky quartz), reveals
elevated concentrations of 39K and relatively intense ion yields of
12C. In fact, after a closer investigation of the mass spectra
recorded from that region, we identified a full range of
biorelevant elements (CHNOPS).

Additionally, a full range of Si isotopes, various silicon oxides,
and small chains of hydrocarbon clusters were observed from that
region. Considering that a particular location from optical
microscopy does not show any distinct mineralogical
association with described elements, we concluded that the
identified area could belong to the organic contamination.
From our previous studies of the Gunflint sample
(Wiesendanger et al., 2018), particularly the chemical depth

profiling of the neighboring region, it was identified that
organic contamination is present as a thin surface layer and
organic spectral features quickly decay with increasing depth. The
organic contamination potentially comes from the sample
handling and preparation procedures and likely represents a
small layer of lipids finely distributed on the surface.

In general, the manually inspected mass spectra from various
regions appeared to be somewhat similar. They contain the same
elements with varying concentrations–Si, CHNOPS, and
polyatomic molecules of similar composition. This observation
makes it difficult to manually define compounds observed from
the Gunflint sample since they seem to represent continually
mixing variants. The borders between chemical classes are fused
into each other. Thus, the deterministic classification solely based
on isotope intensity maps cannot be made. However, we can
further explore the chemical variations within different parts of
the sample. For example, the spectral features from the top-right
corner also show very close proximity to the chemical
composition of the host mineral - Si, O, and various Si oxide
chains indicate that ablation craters were deep enough to pass
through the layer of organic contamination and probe the
chemical composition of the original underlying mineral.
Lower parts of the isotope maps, shown with black regions
(Figure 4-left) after a closer investigation of the mass spectra,
were proposed to be from quartz, showing previously described
simple chemistry–Si, O, and minor amounts of Na, K, Al. The
latter elements (Na, K, Al) could be found as impurities within the
chert since they are relatively common in the seawater and could
have precipitated together with Si during the time of the rock
formation, or they could be from phyllosilicates (clay minerals)
that can occasionally occur in the matrix of Gunflint Formation
stromatolites, e.g., (Lepot et al., 2017). Since the 12C and 1H maps
outline the structure of the bio-lamination surface, previously

FIGURE 4 | Left panel–Exemplary isotope intensity maps (warmer colors indicate high concentrations) retrieved from the fs-LIMSmass spectra. The bio-lamination
surface (aggregation of microfossils) could be identified from 12C and 1H maps (bright yellow to red areas), distribution of 39K indicates the presence of the surface
contamination (upper left corner, bright yellow to the red area). Dark areas on the isotope maps indicate low-intensity regions and correspond to the quartz matrix. To
compare with an optical image, see Figure 2A. Right panel–Low dimensional structure of the imaging data cube revealed by UMAP. Triangulated mesh represents
volumetric isodensity surface of UMAP scores calculated from the 18,000 fs-LIMS mass spectra. Three separate entities could be observed from the spectral
neighborhood, namely quartz, contamination, and microfossils. The point cloud data plotted along with the density surface.
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identified from the optical microscopy, we can investigate the
spectra from the lamination site. The spectra from that area can
be characterized by the presence of the bio-relevant
elements–with increased concentrations of CHNOPS and an
additional minor contribution from Fe, Mn, and Cr. Another
notable observation is that spectra from the lamination surface
reveal relatively strong polyatomic molecules formation patterns.
Various hydrocarbon molecules accompanied by Si oxide chains
populate the mass spectra up to 200 m/z.

A dimensionality reduction algorithm was applied over the full
mass range of the fs-LIMS imaging data (1–260 amu) to find similar
spectra in the dataset.We used theUMAP algorithm (McInnes et al.,
2018) to analyze our observations. The first six UMAP components
were retrieved from the dataset precompressed with PCA. The
UMAP scores were calculated using the Euclidean distance as a
metric; every 15 nearest neighbors were used in the construction of
the k-nearest neighborhood graph, with a small minimal distance
(0.1), and iterated over 400 epochs. This particular set of
hyperparameters were found to be appropriate for an
approximation of the global structure of the manifold. In the
right panel of Figure 4, a distribution of the first three UMAP
components is shown. The spectral neighborhood appears to be
relatively busy (see point cloud data). However, three main
protrusions can be observed from the equal density surface of the
UMAP scores. The composition of protruding clusters matches our
previous interpretation of the data. The lower part of the plot
represents a relatively large cluster of mass spectra acquired from
the Quartz-filled matrix. A smaller cluster observed in the vicinity of
the main body corresponds to the spectra measured from the area
with signatures of organic contamination. It is noteworthy that the
contamination cluster is more connected to the main quartz cluster
and that the structure of the density surface indicates a smooth
transition from pure quartz to the spectra from the surface
contamination. The transition structure forms a narrow neck
where the similarity of spectra gradually changes from one class
to another. From the point cloud data, we could see that the
contamination cluster is relatively fuzzy, and the fine structure of
the transition could be observed on the isodensity surface.

Through the same transition pathway, a cluster of spectra that
corresponds to the microfossils preserved within the bio-
lamination layer could be observed. In comparison to the
cluster of spectra with organic contamination, the density
surface of the microfossils cluster forms a separate transition
line. The cluster of microfossils forms a smooth identifiable
shape, which gradually rises further apart from the quartz and
contamination clusters. As one can see, the relative proximity of
the spectra located closer to the transition “neck” indicates the
ablation of small parts of microfossils. From the investigation of
the individual spectra (see Figure 3), we have noted that almost all
spectra frommicrofossils contain spectral features from the filling
quartz mineral. This observation could be explained by the fact
that bodies of microfossils represent partially collapsed and
degraded cell walls. The thicknesses of the partially decayed
cell walls vary from the first tens of nm to the first hundreds
of nm, and these walls are all entombed in the silica matrix. By
ablation of small portions of the microfossils and larger portions
of the silica matrix, we can explain the smooth transition

structure, where similarity of spectra transitions from the
clean silica matrix. Thus, the end members of the microfossil
cluster represent the best volumetric sampling of microfossils, as
well as the best chemical composition of the fossils.

Overall, the volumetric density estimate of the UMAP scores
provides a good overview of the spectral types and their transition
structures. Also, it is possible to identify outliers (e.g., microscopic
inclusions of other minerals) from this graph, for example, by
recalculating the isolation forest scores (or any other outlier
detection algorithm) – the data points that are weakly
connected to the main clusters will have high values, thus,
easily identifiable. In the fs-LIMS analysis, where fine
chemistry is often of great interest, such information might be
valuable because it allows the identification of detached spectra
from the bulk of very similar ones.

Figure 4. Left panel–Exemplary isotope intensity maps
(warmer colors indicate high concentrations) retrieved from
the fs-LIMS mass spectra. The bio-lamination surface
(aggregation of microfossils) could be identified from 12C and
1Hmaps (bright yellow to red areas), distribution of 39K indicates
the presence of the surface contamination (upper left corner,
bright yellow to the red area). Dark areas on the isotope maps
indicate low-intensity regions and correspond to the quartz
matrix. To compare with an optical image, see Figure 2A.
Right panel–Low dimensional structure of the imaging data
cube revealed by UMAP. Triangulated mesh represents
volumetric isodensity surface of UMAP scores calculated from
the 18,000 fs-LIMS mass spectra. Three separate entities could be
observed from the spectral neighborhood, namely quartz,
contamination, and microfossils. The point cloud data plotted
along with the density surface.

The UMAP isodensity estimate reveals the continuous
structure of spectral similarities, and therefore it is not clear
where to define a boundary between different classes. A density-
based clustering approach was used to define discreet classes from
the low dimensional UMAP scores. The six UMAP components
were used to discretize distributions using a Hierarchical Density-
Based Spatial Clustering (HDBSCAN) algorithm (Campello et al.,
2013; McInnes et al., 2017). An HDBSCAN provides relatively
conservative class assignments compared to other clustering
algorithms and potentially more accurate in its predictions. An
advantageous side of HDBSCAN over DBSCAN, for example, is
that it can find clusters with varying densities, which is precisely
the case with our data, where we have an oversampled data from
the silicified matrix and a relatively small number of spectra from
the microfossils. Moreover, it is possible to calculate the
confidence probabilities of the assignment of each spectrum to
the cluster, which makes troubleshooting of clustering results
more intuitive and less bothersome. However, the downside of
the conservative clustering is that some portions of the data might
be classified as noise if they do not tightly belong to the densely
packed cluster. In contrast to the previous interpretation of
UMAP scores, the clustering algorithm found two microfossil
populations, a cluster of surface contamination, and quartz from
the matrix. The additional cluster of microfossils was hidden on
the backside of the quartz-related spectra (see Figure 4). The
Mapper networks were applied to the spectra registered from the
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microfossils to visualize the proximity structure between these
two classes.

Figure 5A shows a spectral similarity network constructed
from the fs-LIMS spectra registered from the microfossils, using
the first three UMAP components as a lens. A python
implementation - Kepler Mapper (Van Veen et al., 2019) of
the Mapper algorithm (Singh et al., 2007) was used to calculate
the similarity network of LIMS spectra. However, other open-
source implementations exist - e.g., recently published Giotto-
TDA (Tauzin et al., 2020). The density-based clustering was
applied to identify clusters within overlapping filter function
windows. In total, twenty windows were applied to construct
the network with 40% overlap over three UMAP components,
forming 8,000 sampling windows and resulting in a complex
network with 417 nodes and 2,967 edges (from 1,964 composite
spectra registered from the microfossils). Note that the number of
filter dimensions is user-defined, and in principle, they might be
defined as an n-dimensional hypercube, though two-dimensional
filters provide the best interpretability. The nodes present in the
network indicate groups of fs-LIMS spectra with a high degree of
similarity. The nodes might contain one or hundreds of spectra,
depending on the size of the filter function window. The edge
between nodes is drawn if nodes share the same observations (it

might be one or many more spectra). The coloring of the network
is conducted according to the eigenvector centralities of the
nodes. Blue parts of the network indicate the central nodes,
and red parts indicate less connected network components.

The structure of the network identifies the presence of two
connected communities. Figure 5B shows the same spectral
similarity network as in Figure 5A but colored according to the
Louvain modularity, calculated from the network topology. The red
part of the network (nodes are not shown) categorizes the spectra
identified from the type-2 microfossils, and the blue network
indicates the type-1 microfossils. The type-2 microfossils can be
characterized by increased proximity to the cluster of spectra
registered from the quartz. In contrast to the spectra from type-2,
type-1 microfossils are almost completely detached from other
groups and form a community of highly connected nodes and
correspond to the spectra in a linear protrusion in Figure 4 (right
panel). Note that the HDBSCAN and Louvain clustering provides
mutually supportive clustering results, although the Mapper
networks provide better tolerance to noise, thus allowing for
improved clustering performance. In order to check that cluster
assignments are not artifactual, we performed a clustering robustness
analysis. The Rand Index (RI) metric was used to assess the
clustering similarity between 10 random subsamples of the data
registered from microfossils. In total, 75% of the data was used to
generate random subsamples. The output UMAP subsamples were
clustered using the Louvain community detection algorithm. The RI
similarity matrix for Louvain clustering of random samples could be
found in the supplementary information (see Supplementary Table
S1 and Supplementary Figure S3). Overall, 45 different clustering
pairs revealed an average RI score of 92.5%with a standard deviation
of 2%, which indicates that communities shown in Figure 5 are not
artefactual and that the cluster assignments are robust. Most of the
clustering uncertainty can be attributed to the transition zone
between two types of microfossils. The type-2 microfossils reveal
more inhomogeneity (see Supplementary Figures S1, S2) in
comparison to the type-1 microfossils and represent more
intermixed with the host mineral material.

The spectral similarity network calculated from the first three
UMAP components reveals a better visualization of internal
structure and detects outliers and irregularities. Moreover, the
force-directed layout (ForceAtlas2 (Jacomy et al., 2014)), applied
to the network, exaggerates the positioning of weakly connected
nodes, which makes them easier to detect. Moreover,
interpretation of the low-dimensional embedding of fs-LIMS
data can be easily achieved by coloring the network with
original isotope intensities and synthetic features such as
isotope ratios. Any other functions might be applied to the
data (e.g., Kernel Density Estimate (KDE), Singular Value
Decomposition (SVD), and Principal Component Analysis
(PCA)), which makes Mapper networks a versatile and
powerful tool for insight extraction and hypothesis generation.
Furthermore, by reducing the large fs-LIMS intensity space down
to a network, we can additionally define a multitude of secondary
statistics that could be calculated from the graph topology.
Metrics such as centrality, modularity (e.g., see Figures 5A,B),
average degree, path length (e.g., between the host mineral and
microfossils), and many more, can be applied to the specific

FIGURE 5 | (A) Spectral similarity network constructed from 1964 LIMS
imaging spectra registered from the microfossils. Each node represents a
single or a group of spectra with a significant similarity of intensity profiles. The
edges connected with nodes indicate that nodes have one or more
shared spectra. The network is colored according to the eigenvector centrality
of nodes. A density-based clustering and first three UMAP components were
used as a lens to project the data using the Mapper algorithm. The proximity of
nodes in the network identifies groups of microfossils and transition structure
between two classes. (B) The Louvain clustering of the spectral similarity
network. The blue part of the network identifies type-1 microfossils, and the
red part of the network illustrates spectra registered from the type-2
microfossils. See the text for more details.
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minerals and microfossils to define the multiparametric space
further and enhance the potential for definitive identification.

Figure 5A. Spectral similarity network constructed from 1,964
LIMS imaging spectra registered from the microfossils. Each node
represents a single or a group of spectra with a significant similarity
of intensity profiles. The edges connected with nodes indicate that
nodes have one or more shared spectra. The network is colored
according to the eigenvector centrality of nodes. A density-based
clustering and first three UMAP components were used as a lens to
project the data using the Mapper algorithm. The proximity of
nodes in the network identifies groups of microfossils and
transition structure between two classes. Figure 5B. The
Louvain clustering of the spectral similarity network. The blue
part of the network identifies type-1 microfossils, and the red part
of the network illustrates spectra registered from the type-2
microfossils. See the text for more details.

The overall results of the density-based clustering can be seen in
Figure 6. Clustering results reveal a very closematch with results of
optical microscopy (see Figure 6, right panel) and conclusions
from previous single isotope maps investigations. Moreover, we
have identified two types of microfossils and a contamination zone,
which were not acknowledged from the microscope image. The
type–1 microfossils represent spectra obtained from the
microfossils with the best microfossil over host (matrix mineral)
sampling ratio. Thus, spectra from type-1 can be counted as the
most representative of microfossils. On the other hand, type-2
represents the microfossils with an increased contribution from the
host mineral, which is also shown in Figure 6. The chemical
composition of type-1 microfossils can be characterized with
increased content of carbon and oxygen (12C, 12C2+, and 16O2+

peaks in the mass spectra), whereas type-2microfossils contain less
12C and more hydrocarbons, which indicates lower volumetric
ablation and colder plasma temperatures, thus, more prevalent
recombination processes. Higher plasma temperatures observed in
the type-1 microfossils can be attributed to the higher volumetric
contribution from absorptive kerogen. This observation also finds
confirmation from the spatial distribution of microfossils. In

Figure 6, the first type is mainly distributed in the densely
populated area (see Figure 6, right panel), in contrast to type-2,
which is largely distributed outside of the dense zone, and more
likely to be sampled with larger portions of the host mineral. The
identification of microfossils from the host mineral using fs-LIMS
and low dimensional analysis provides topological biosignatures.
As it was shown in Figures 4, 5, the structure of spectral similarities
identifies the positionings of spectra from different classes and
provides means for identification, classification of large datasets,
and has a potential for the prediction of spectral classes from
previously unseen spectra, given that a sufficiently rich spectral
library is provided.

Figure 6. Hierarchical density-based spatial clustering
(HDBSCAN) of six UMAP components of the imaging dataset
(left panel). The orange pixels represent spectra registered from the
type-1microfossils. The green pixels represent spectra registered from
the type-2 microfossils. The blue pixels represent spectra registered
from the surface contamination. Black and grey pixels–spectra
registered from the quartz matrix of the Gunflint chert. Right
panel–the optical microscopy image of the analyzed area. Note the
aligned distribution of classified spectra with the bio-lamination
surface crossing the image.

DISCUSSION

The identification and chemical characterization of minerals and
prospective biosignatures from large spectral databases generated
using fs-LIMS as well as other in-situ spectroscopic techniques is a
longstanding problem that can be generalized to other analytical
methods as well. For example, other importantmethods proposed for
in-situ space exploration, such as Laser-Induced Breakdown
Spectroscopy (LIBS) (e.g., ChemCam, currently operates on Mars
as part of the Mars Science Laboratory), Raman spectroscopy
(i.e., Raman Laser Spectrometer (RLS), one of the Pasteur Payload
instruments from ExoMars), and a large variety of other
techniques rely on harvesting large spectral information

FIGURE 6 | Hierarchical density-based spatial clustering (HDBSCAN) of six UMAP components of the imaging dataset (left panel). The orange pixels represent
spectra registered from the type-1 microfossils. The green pixels represent spectra registered from the type-2 microfossils. The blue pixels represent spectra registered
from the surface contamination. Black and grey pixels–spectra registered from the quartz matrix of the Gunflint chert. Right panel–the optical microscopy image of the
analyzed area. Note the aligned distribution of classified spectra with the bio-lamination surface crossing the image.
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from the analyte material. This spectral information is often
hard to interpret due to the large dimensionality, complexity,
and size of generated datasets. Outside of the context of space
exploration, in the field of analytical chemistry, similar data
analytical challenges are often encountered in the laboratory.
For example, Secondary Ions Mass Spectrometry (SIMS) or
Liquid Chromatography Mass Spectrometry (LC-MS), as
high-throughput techniques, provide hundreds of mass
lines per spectrum, and the output spectral dataset is not
always easy to interpret. As was shown in this contribution,
analysis of fs-LIMS data using topological methods reveals a
fast and accurate description of spectral classes and provides
a good understanding of transitional structures. In the low
dimensional domain, it might be easier to generate insights
and formulate a hypothesis, thus accelerating the extraction
of knowledge from the given sample.

The analysis of data generated by using our fs-LIMS system
might also be of use for future investigations of Precambrian rocks
containing signatures of putative microfossils. The Gunflint sample
is rare amongst Precambrian rocks as it exhibits an exceptional level
of morphological and chemical preservation, so there is little
argument over the biogenicity of the encased organic material
(Barghoorn and Tyler 1965; Lepot et al., 2017; Wacey et al.,
2012). However, traces of early life can be destroyed or heavily
altered by heat, pressure, and time (diagenetic alteration and later
metamorphism). As was briefly discussed before, the full mass range
spectral proximity analysis provides a means for the classification of
chemically similar entities. For example, organic contamination and
microfossils - similar compounds (both contain CHNOPS and Si
mass peaks), can be distinguished using topological methods (see
Figures 4–6). A big challenge in the field of Precambrian
micropaleontology surrounds the fact that altered and reduced
carbon found in ancient rocks could potentially be of biological
origin but could also have been created by abiotic processes. For
example, Fischer-Tropsch type synthesis might be responsible for
the presence of some abiotic hydrocarbons in Precambrian
formations (Brasier et al., 2002). However, we speculate that
synthetic products of Fischer-Tropsch-like reactions will have a
distinct spectral profile (e.g., polyatomic plasma chemistry
products might be different), and therefore corresponding
topological positioning is expected to be distinguishable from
bona fide microfossils. Thus, there is a hope that signs of life in
controversial samples might be successfully identified using sensitive
methods and full-feature-based topological representations.

The current state of space exploration also faces similar
challenges in the field of in-situ chemical analysis of solids on
planetary bodies. For example, the ns-LIMS instrument proposed
for Europa (Ligterink et al., 2020) reported the identification of
extremely low quantities of biological and abiotic amino acids
from well-defined extracts at the fmole level. However, more
complex molecules (e.g., proteins, polysaccharides, etc.)
combined with various undefined matrices will likely form
complex fragmentation patterns with hundreds of significant
mass lines, thus, making the identification challenging. The
topological representation, in this case, might provide a
number of compounds present in the measured mixture and
their similarity to the predefined classes.

The unsupervised identification of minerals from fs-LIMS
chemical imaging datasets might also be of use in the
determination of relative sensitivity coefficients (RSC’s). The
fs-LIMS is a quantitative method; however, it requires the
establishment of RSC’s, which are matrix dependent. With
an introduction of fs-LIMS, some matrices have been reduced
to unity (RSC � 1, no correction needed). However, non-
absorptive samples such as glasses typically still require the
determination of RSC’s for quantitative measurements. In the
case of exploratory analysis, where we do not know the
sample (i.e., field exploration of Martian samples), if one
would know the stoichiometry of the investigated mineral, it
is possible to recalculate correction factors for major
elements, and then through RSC’s dependence on atomic
orbital ionization energy recalculate concentrations of minor
and trace elements (Tulej et al., 2021). The key component
here is the identification of the mineral, and as we described
above, topological methods provide a means to do that.

Here we also need to point out several caveats regarding the
analysis of fs-LIMS data. First, at multiple stages, the data analysis
procedures require a set of hyperparameters to be chosen. For
example, in UMAP embedding andMapper network construction,
we used Euclidean and cosine distances, respectively, and defined
the number of neighbors, number of clusters, and filter functions.
However, a more rigorous study of the effect of hyperparameters
needs to be assessed in future studies regarding the analysis of fs-
LIMS data or data generated by other spectroscopic techniques.
Nevertheless, a recent contribution by (Belchı et al., 2020) provides
an insight into the numerical stability of Mapper-type algorithms.
It was shown that reliable Mapper output could be identified as a
local minimum of instability, regarded as a function of Mapper
input parameters. Other statistical solutions were proposed to
circumvent testing large parametric spaces and keep the most
representativeMapper settings (Carriere et al., 2018). Furthermore,
we have used UMAP scores as a lens in the construction of the
similarity network; however, a large variety of other functions
might be used, and their impact on visualizations needs to be
assessed. It would also be valuable to implement into the analysis
pipeline some domain-specific lenses for technical usage (i.e., mass
resolution, mass accuracy, etc.), which will improve the extraction
of quality metrics.

Overall, in addition to the account of topological descriptors of
early life, we hope that our analysis will facilitate, in time, a
predictive approach in the field of study of early life. The
approach described here might be expanded to more powerful,
state-of-the-art standalone laboratory instrumentation (e.g.,
high-resolution LIMS, SIMS, LA-ICP-MS), where data quality
might provide a whole new quantification perspective.

CONCLUSION

Our contribution offers several important conclusions for in-situ
space research. First, the miniature fs-LIMS system combined
with topology-based data analysis demonstrates the utility and
sensitivity to distinguish organically preserved microfossils from
organic contamination and inorganic host mineralogy. Second,
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the proposed approach might be extended to other complex
samples with multimineral compositions and used with other
high-resolution spectrometric or spectroscopic methods. Third,
our approach - full spectral mass range convolution down to a
similarity network for life detection stands out frommultielement
methods. It offers great flexibility and could be further expanded
to study the chemical discrepancies between individual
populations of microfossils. Furthermore, our analysis reveals
fine transition structures between classes and the detection of
outliers. Last, the fs-LIMS system, in combination with
topological methods, enables faster data analysis, accelerates
the formulation of hypotheses, and the generation of insights
for mineralogical compositions of investigated samples.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the SupplementaryMaterials, further inquiries can be directed to
the corresponding author.

AUTHOR CONTRIBUTIONS

RL performed the experiments and data analysis. RL wrote the
main manuscript. All authors reviewed and revised the
manuscript.

FUNDING

DW acknowledges support from the Australian Research Council
via the Future Fellowship scheme (FT140100321). RL
acknowledges support from Swiss National Science
Foundation, Grant No. 200020-184657.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frai.2021.668163/
full#supplementary-material

REFERENCES

Arevalo, R., Jr, Ni, Z., and Danell, R. M. (2020). Mass Spectrometry and Planetary
Exploration: A Brief Review and Future Projection. J. Mass. Spectrom. 55, e4454.
doi:10.1002/jms.4454

Arevalo, R., Jr, Selliez, L., Briois, C., Carrasco, N., Thirkell, L., Cherville, B., et al.
(2018). An Orbitrap-Based Laser Desorption/Ablation Mass Spectrometer
Designed for Spaceflight. Rapid Commun. Mass. Spectrom. 32, 1875–1886.
doi:10.1002/rcm.8244

Azov, V. A., Mueller, L., and Makarov, A. A. (2020). Laser Ionization Mass
Spectrometry at 55: Quo Vadis? Mass Spectrom. Rev. 1–52. doi:10.1002/
mas.21669

Barghoorn, E. S., and Tyler, S. A. (1965). Microorganisms from the Gunflint Chert: These
Structurally Preserved Precambrian Fossils from Ontario Are the Most Ancient
Organisms Known. Science 147, 563–575. doi:10.1126/science.147.3658.563

Belchı, F., Brodzki, J., Burfitt, M., and Niranjan, M. (2020). A Numerical Measure
of the Instability of Mapper-Type Algorithms. J. Machine Learn. Res. 21, 1–45.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast
Unfolding of Communities in Large Networks. J. Stat. Mech. 2008, P10008.
doi:10.1088/1742-5468/2008/10/p10008

Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J.,
Lindsay, J. F., et al. (2002). Questioning the Evidence for Earth’s Oldest Fossils.
Nature 416, 76–81. doi:10.1038/416076a

Brasier, M. D., and Wacey, D. (2012). Fossils and Astrobiology: New Protocols for
Cell Evolution in Deep Time. Int. J. Astrobiology 11, 217–228. doi:10.1017/
s1473550412000298

Campello, R. J., Moulavi, D., and Sander, J. (2013). “Density-Based Clustering Based on
Hierarchical Density Estimates,” in Pacific-Asia Conference on Knowledge Discovery
and Data Mining (Heidelberg: Springer). doi:10.1007/978-3-642-37456-2_14

Carriere, M., Michel, B., and Oudot, S. (2018). Statistical Analysis and Parameter
Selection for Mapper. J. Machine Learn. Res. 19, 478–516.

Chan, M. A., Hinman, N. W., Potter-McIntyre, S. L., Schubert, K. E., Gillams, R. J.,
Awramik, S. M., et al. (2019). Deciphering Biosignatures in Planetary Contexts.
Astrobiology 19, 1075–1102. doi:10.1089/ast.2018.1903

Garcia-Lopez, E., and Cid, C. (2017). Glaciers and Ice Sheets as Analog
Environments of Potentially Habitable Icy Worlds. Front. Microbiol. 8,
1407. doi:10.3389/fmicb.2017.01407

Gil, A., and Marco, R. (2007). Systems Bioinformatics: An Engineering Case-Based
Approach. Artech.

Goesmann, F., Brinckerhoff,W. B., Raulin, F., Goetz, W., Danell, R. M., Getty, S. A.,
et al. (2017). The Mars Organic Molecule Analyzer (MOMA) Instrument:

Characterization of Organic Material in Martian Sediments. Astrobiology 17,
655–685. doi:10.1089/ast.2016.1551

Grimaudo, V., Tulej, M., Riedo, A., Lukmanov, R., Ligterink, N. F.W., de Koning, C., et al.
(2020). UV Post-Ionization Laser Ablation Ionization Mass Spectrometry for
Improved Nm-Depth Profiling Resolution on Cr/Ni Reference Standard. Rapid
Commun. Mass. Spectrom. 34, e8803. doi:10.1002/rcm.8803

Grimaudo, V., Moreno-García, P., Riedo, A., López, A. C., Tulej, M.,
Wiesendanger, R., et al. (2019). Review-Laser Ablation Ionization Mass
Spectrometry (LIMS) for Analysis of Electrodeposited Cu Interconnects.
J. Electrochem. Soc. 166, D3190–D3199. doi:10.1149/2.0221901jes

Hand, K., Murray, A., Garvin, J., Brinckerhoff, W., Christner, B., Edgett, K., et al.
(2017). Europa Lander Study 2016 Report: Europa Lander Mission. La Cañada
Flintridge, CA: NASA Jet Propuls. Lab.

Hofmann, B. A. (2008). Morphological Biosignatures from Subsurface
Environments: Recognition on Planetary Missions. Space Sci. Rev. 135,
245–254. doi:10.1007/s11214-007-9147-9

Jacomy, M., Venturini, T., Heymann, S., and Bastian, M. (2014). ForceAtlas2, A
Continuous Graph Layout Algorithm for Handy Network VisualizationDesigned
for the Gephi Software. PloS one 9, e98679. doi:10.1371/journal.pone.0098679

Lepot, K., Addad, A., Knoll, A. H., Wang, J., Troadec, D., Béché, A., et al. (2017).
Iron Minerals within Specific Microfossil Morphospecies of the 1.88 Ga
Gunflint Formation. Nat. Commun. 8, 14890. doi:10.1038/ncomms14890

Li, X., Danell, R. M., Pinnick, V. T., Grubisic, A., van Amerom, F., Arevalo, R. D.,
et al. (2017). Mars Organic Molecule Analyzer (MOMA) Laser Desorption/
Ionization Source Design and Performance Characterization. Int. J. Mass
Spectrom. 422, 177–187. doi:10.1016/j.ijms.2017.03.010

Ligterink, N. F. W., Grimaudo, V., Moreno-García, P., Lukmanov, R., Tulej, M.,
Leya, I., et al. (2020). ORIGIN: A Novel and Compact Laser Desorption - Mass
Spectrometry System for Sensitive In Situ Detection of Amino Acids on
Extraterrestrial Surfaces. Sci. Rep. 10, 9641. doi:10.1038/s41598-020-66240-1

Managadze, G. G., Wurz, P., Sagdeev, R. Z., Chumikov, A. E., Tuley, M., Yakovleva,
M., et al. (2010). Study of the Main Geochemical Characteristics of Phobos’
Regolith Using Laser Time-Of-Flight Mass Spectrometry. Sol. Syst. Res. 44,
376–384. doi:10.1134/s0038094610050047

McInnes, L., Healy, J., and Astels, S. (2017). Hdbscan: Hierarchical Density Based
Clustering. J. Open Source Softw. 2, 205. doi:10.21105/joss.00205

McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uniform Manifold
Approximation and Projection for Dimension Reduction. arXiv [Preprint].
Available at: https://arxiv.org/abs/1802.03426 (Accessed September 18, 2020).

McMahon, S., Bosak, T., Grotzinger, J. P., Milliken, R. E., Summons, R. E., Daye,
M., et al. (2018). A Field Guide to Finding Fossils on Mars. J. Geophys. Res.
Planets 123, 1012–1040. doi:10.1029/2017je005478

Frontiers in Artificial Intelligence | www.frontiersin.org August 2021 | Volume 4 | Article 66816311

Lukmanov et al. On Topological Analysis of fs-LIMS Data

https://www.frontiersin.org/articles/10.3389/frai.2021.668163/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2021.668163/full#supplementary-material
https://doi.org/10.1002/jms.4454
https://doi.org/10.1002/rcm.8244
https://doi.org/10.1002/mas.21669
https://doi.org/10.1002/mas.21669
https://doi.org/10.1126/science.147.3658.563
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1038/416076a
https://doi.org/10.1017/s1473550412000298
https://doi.org/10.1017/s1473550412000298
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1089/ast.2018.1903
https://doi.org/10.3389/fmicb.2017.01407
https://doi.org/10.1089/ast.2016.1551
https://doi.org/10.1002/rcm.8803
https://doi.org/10.1149/2.0221901jes
https://doi.org/10.1007/s11214-007-9147-9
https://doi.org/10.1371/journal.pone.0098679
https://doi.org/10.1038/ncomms14890
https://doi.org/10.1016/j.ijms.2017.03.010
https://doi.org/10.1038/s41598-020-66240-1
https://doi.org/10.1134/s0038094610050047
https://doi.org/10.21105/joss.00205
https://arxiv.org/abs/1802.03426
https://doi.org/10.1029/2017je005478
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Meyer, S., Riedo, A., Neuland, M. B., Tulej, M., and Wurz, P. (2017). Fully
Automatic and Precise Data Analysis Developed for Time-Of-Flight Mass
Spectrometry. J. Mass. Spectrom. 52, 580–590. doi:10.1002/jms.3964

Moreno-García, P., Grimaudo, V., Riedo, A., Tulej, M., Wurz, P., and Broekmann,
P. (2016). Towards Matrix-Free Femtosecond-Laser Desorption Mass
Spectrometry for In Situ Space Research. Rapid Commun. Mass. Spectrom.
30, 1031–1036. doi:10.1002/rcm.7533

Navarro-González, R., Navarro, K. F., Rosa, J. d. l., Iñiguez, E., Molina, P., Miranda, L. D.,
et al. (2006). The Limitations on Organic Detection in Mars-Like Soils by Thermal
Volatilization-Gas Chromatography-MS and Their Implications for the Viking
Results. Proc. Natl. Acad. Sci. 103, 16089–16094. doi:10.1073/pnas.0604210103

Neuland, M. B., Grimaudo, V., Mezger, K., Moreno-García, P., Riedo, A., Tulej, M.,
et al. (2016). Quantitative Measurement of the Chemical Composition of
Geological Standards with a Miniature Laser Ablation/Ionization Mass
Spectrometer Designed Forin Situapplication in Space Research. Meas. Sci.
Technol. 27, 035904. doi:10.1088/0957-0233/27/3/035904

Neveu, M., Hays, L. E., Voytek, M. A., New, M. H., and Schulte, M. D. (2018). The
Ladder of Life Detection. Astrobiology 18, 1375–1402. doi:10.1089/ast.2017.1773

Press, W. H., and Teukolsky, S. A. (1990). Savitzky-Golay Smoothing Filters.
Comput. Phys. 4, 669–672. doi:10.1063/1.4822961

Priscu, J. C., and Hand, K. P. (2012). Microbial Habitability of Icy Worlds.Microbe
7, 167–172. doi:10.1128/microbe.7.167.1

Riedo, A., Bieler, A., Neuland, M., Tulej, M., and Wurz, P. (2013a). Performance
Evaluation of a Miniature Laser Ablation Time-Of-Flight Mass Spectrometer
Designed Forin Situinvestigations in Planetary Space Research. J. Mass.
Spectrom. 48, 1–15. doi:10.1002/jms.3104

Riedo, A., Koning, C. d., Stevens, A., Cockell, C., McDonald, A., López, A. C., et al.
(2020). The Detection of Elemental Signatures of Microbes in Martian Mudstone
Analogs Using High Spatial Resolution Laser Ablation Ionization Mass
Spectrometry. Astrobiology 20 (10), 1224–1235. doi:10.1089/ast.2019.2087

Riedo, A., Meyer, S., Heredia, B., Neuland, M. B., Bieler, A., Tulej, M., et al. (2013b).
Highly Accurate Isotope Composition Measurements by a Miniature Laser
Ablation Mass Spectrometer Designed for In Situ Investigations on Planetary
Surfaces. Planet. Space Sci. 87, 1–13. doi:10.1016/j.pss.2013.09.007

Riedo, A., Neuland, M., Meyer, S., Tulej, M., and Wurz, P. (2013c). Coupling of
LMS with a Fs-Laser Ablation Ion Source: Elemental and Isotope Composition
Measurements. J. Anal. Spectrom. 28, 1256–1269. doi:10.1039/c3ja50117e

Riedo, A., Tulej, M., Rohner, U., and Wurz, P. (2017). High-Speed Microstrip
Multi-Anode Multichannel Plate Detector System. Rev. Scientific Instr. 88,
045114. doi:10.1063/1.4981813

Singh, G., Mémoli, F., and Carlsson, G. E. (2007). “Topological Methods for the
Analysis of High Dimensional Data Sets and 3d Object Recognition,” in
Eurographics Symposium on Point-Based Graphics. Editors M. Botsch,
R. Pajarola, B. Chen, and M. Zwicker (The Eurographics Association), 91,
100. doi:10.2312/SPBG/SPBG07/091-100

Stevens, A. H., McDonald, A., de Koning, C., Riedo, A., Preston, L. J., Ehrenfreund,
P., et al. (2019). Detectability of Biosignatures in a Low-Biomass Simulation of
Martian Sediments. Sci. Rep. 9, 9706. doi:10.1038/s41598-019-46239-z

Tauzin, G., Lupo, U., Tunstall, L., Pérez, J. B., Caorsi, M., Medina-Mardones, A.,
et al. (2020). Giotto-Tda: A Topological Data Analysis Toolkit for Machine
Learning and Data Exploration. arXiv [Preprint]. Available at: https://arxiv.org/
abs/2004.02551 (Accessed March 5, 2021).

Tulej, M., Lukmanov, R., Grimaudo, V., Riedo, A., de Koning, C., Ligterink, N. F.
W., et al. (2021). Determination of the Microscopic Mineralogy of Inclusion in
an Amygdaloidal Pillow basalt by Fs-LIMS. J. Anal. Spectrom. 36, 80–91.
doi:10.1039/d0ja00390e

Tulej, M., Neubeck, A., Ivarsson, M., Riedo, A., Neuland, M. B., Meyer, S., et al.
(2015). Chemical Composition of Micrometer-Sized Filaments in an Aragonite
Host by a Miniature Laser Ablation/Ionization Mass Spectrometer.
Astrobiology 15, 669–682. doi:10.1089/ast.2015.1304

Tulej, M., Neubeck, A., Riedo, A., Lukmanov, R., Grimaudo, V., Ligterink, N. F.W.,
et al. (2020). Isotope Abundance Ratio Measurements Using Femtosecond

Laser Ablation Ionization Mass Spectrometry. J. Mass. Spectrom. 55, e4660.
doi:10.1002/jms.4660

Tulej, M., Riedo, A., Neuland, M. B., Meyer, S., Wurz, P., Thomas, N., et al. (2014).
CAMAM: A Miniature Laser Ablation Ionisation Mass Spectrometer and
Microscope-Camera System forIn SituInvestigation of the Composition and
Morphology of Extraterrestrial Materials. Geostand Geoanal Res. 38, 441–466.
doi:10.1111/j.1751-908x.2014.00302.x

Vago, J. L., Westall, F., Coates, A. J., Jaumann, R., Korablev, O., Ciarletti, V., et al.
(2017). Habitability on Early Mars and the Search for Biosignatures with the
ExoMars Rover. Astrobiology 17, 471–510. doi:10.1089/ast.2016.1533

Vago, J., Witasse, O., Svedhem, H., Baglioni, P., Haldemann, A., Gianfiglio, G., et al.
(2015). ESA ExoMars Program: The Next Step in Exploring Mars. Sol. Syst. Res.
49, 518–528. doi:10.1134/s0038094615070199

Van Veen, H., Saul, N., Eargle, D., and Mangham, S. (2019). Kepler Mapper: A
Flexible Python Implementation of the Mapper Algorithm. J. Open Source
Softw. 4, 1315. doi:10.21105/joss.01315

Wacey, D., McLoughlin, N., Kilburn, M. R., Saunders, M., Cliff, J. B., Kong, C., et al.
(2013). Nanoscale Analysis of Pyritized Microfossils Reveals Differential
Heterotrophic Consumption in the ∼1.9-Ga Gunflint Chert. Proc. Natl.
Acad. Sci. U S A. 110, 8020–8024. doi:10.1073/pnas.1221965110

Wacey, D., Menon, S., Green, L., Gerstmann, D., Kong, C., McLoughlin, N., et al.
(2012). Taphonomy of Very Ancient Microfossils from the ∼3400Ma Strelley
Pool Formation and ∼1900Ma Gunflint Formation: New Insights Using a
Focused Ion Beam. Precambrian Res. 220-221, 234–250. doi:10.1016/
j.precamres.2012.08.005

Wacey, D., Saunders, M., Kong, C., Brasier, A., and Brasier, M. (2016). 3.46 Ga
Apex Chert ‘Microfossils’ Reinterpreted as Mineral Artefacts Produced During
Phyllosilicate Exfoliation. Gondwana Res. 36, 296–313. doi:10.1016/
j.gr.2015.07.010

Westall, F., Foucher, F., Bost, N., Bertrand, M., Loizeau, D., Vago, J. L., et al. (2015).
Biosignatures onMars: What, Where, and How? Implications for the Search for
Martian Life. Astrobiology 15, 998–1029. doi:10.1089/ast.2015.1374

Wiesendanger, R., Tulej, M., Riedo, A., Frey, S., Shea, H., and Wurz, P. (2017).
Improved Detection Sensitivity for Heavy Trace Elements Using a Miniature
Laser Ablation IonisationMass Spectrometer. J. Anal. Spectrom. 32, 2182–2188.
doi:10.1039/c7ja00193b

Wiesendanger, R., Wacey, D., Tulej, M., Neubeck, A., Ivarsson, M., Grimaudo, V.,
et al. (2018). Chemical and Optical Identification of Micrometer-Sized 1.9
Billion-Year-Old Fossils by Combining a Miniature Laser Ablation Ionization
Mass Spectrometry System with an Optical Microscope. Astrobiology 18,
1071–1080. doi:10.1089/ast.2017.1780

Wurz, P., Riedo, A., Tulej, M., Grimaudo, V., and Thomas, N. (2020). Investigation
of the Surface Composition by Laser Ablation/Ionisation Mass Spectrometry.
LPI Contrib. 2241, 5061. doi:10.1109/AERO50100.2021.9438486

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Lukmanov, Riedo, Wacey, Ligterink, Grimaudo, Tulej, de Koning,
Neubeck and Wurz. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org August 2021 | Volume 4 | Article 66816312

Lukmanov et al. On Topological Analysis of fs-LIMS Data

https://doi.org/10.1002/jms.3964
https://doi.org/10.1002/rcm.7533
https://doi.org/10.1073/pnas.0604210103
https://doi.org/10.1088/0957-0233/27/3/035904
https://doi.org/10.1089/ast.2017.1773
https://doi.org/10.1063/1.4822961
https://doi.org/10.1128/microbe.7.167.1
https://doi.org/10.1002/jms.3104
https://doi.org/10.1089/ast.2019.2087
https://doi.org/10.1016/j.pss.2013.09.007
https://doi.org/10.1039/c3ja50117e
https://doi.org/10.1063/1.4981813
https://doi.org/10.2312/SPBG/SPBG07/091-100
https://doi.org/10.1038/s41598-019-46239-z
https://arxiv.org/abs/2004.02551
https://arxiv.org/abs/2004.02551
https://doi.org/10.1039/d0ja00390e
https://doi.org/10.1089/ast.2015.1304
https://doi.org/10.1002/jms.4660
https://doi.org/10.1111/j.1751-908x.2014.00302.x
https://doi.org/10.1089/ast.2016.1533
https://doi.org/10.1134/s0038094615070199
https://doi.org/10.21105/joss.01315
https://doi.org/10.1073/pnas.1221965110
https://doi.org/10.1016/j.precamres.2012.08.005
https://doi.org/10.1016/j.precamres.2012.08.005
https://doi.org/10.1016/j.gr.2015.07.010
https://doi.org/10.1016/j.gr.2015.07.010
https://doi.org/10.1089/ast.2015.1374
https://doi.org/10.1039/c7ja00193b
https://doi.org/10.1089/ast.2017.1780
https://doi.org/10.1109/AERO50100.2021.9438486
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	On Topological Analysis of fs-LIMS Data. Implications for in Situ Planetary Mass Spectrometry
	Introduction
	Methods
	Data Acquisition
	Data Preprocessing

	Results
	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


