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Abstract: Mesenchymal stem cells (MSCs) are adult, immunomodulatory stem cells which reside in
almost all postnatal tissues. Viral antigens and damage-associated molecular patterns released from
injured and infected cells activate MSCs, which elicit strong antiviral immune response. MSC-sourced
interferons and inflammatory cytokines modulate the cytotoxicity of NK cells and CTLs, enhance
the antigen-presentation properties of DCs and macrophages, regulate cytokine synthesis in CD4+ T
helper cells and promote antibody production in B cells. After the elimination of viral pathogens,
MSCs produce immunoregulatory cytokines and trophic factors, prevent the over-activation of
immune cells and promote tissue repair and regeneration. In this review article, we summarize
the current knowledge on the molecular mechanisms that are responsible for the MSC-dependent
elimination of virus-infected cells, and we emphasize the therapeutic potential of MSCs and their
secretomes in the treatment of viral diseases.
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1. Introduction

Among the numerous epidemics of infectious diseases that the world is facing, viral
infections are undoubtedly the biggest pandemic threat in the recent era [1]. The epidemic
outbreaks caused by viruses represents a critical threat to public health, particularly when
preventive vaccines and effective antiviral therapies are not available [1,2]. Since December
2019, humankind has been confronted with a new coronavirus disease (COVID-19) caused
by severe acute respiratory syndrome coronavirus (SARS-CoV-2), which has infected
more than 110 million people worldwide [2,3]. The pandemic of COVID-19 prompted the
scientific world to define new approaches for the prevention and treatment of viral diseases,
including the development of new vaccines and antiviral drugs [2]. Despite the fact that
vaccination is crucially important for the cessation of pandemic outbreaks, the confirmation
of safety and efficacy of newly developed vaccines usually need long-term investigation [3].
Accordingly, antiviral drugs are usually used in clinical practice as the first line of defense
against life-threatening viral diseases [4]. Antiviral agents are primarily designed to affect
one or more phases of the viral life cycle (including viral-host interaction, genome coping
and viral maturation) and/or to enhance antiviral immune response by improving the
cytotoxicity of natural killer (NK) cells and cytotoxic CD8+ T lymphocytes (CTLs) or by
inducing an increased production of antiviral cytokines by dendritic cells (DCs) and CD4+
helper T cells [4]. However, the long-term use of antiviral drugs may provoke the excessive
release of inflammatory cytokines from activated immune cells, which could result in the
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development of life-threatening cytokine storm and massive injury of parenchymal cells [5].
Therefore, new therapeutic agents which may elicit potent antiviral immune response and,
at the same time, could prevent the development of systemic and detrimental inflammatory
response, could have beneficial effects in the treatment of viral diseases [4].

Mesenchymal stem cells (MSCs) are immunoregulatory stem cells that exist in essen-
tially all adult tissues which orchestrate antiviral immune response [6,7]. Immediately after
viral entry, damage-associated molecular patterns (DAMPs) and/or pathogen-associated
molecular patterns (PAMPs) induce the generation of pro-inflammatory (MSC1) pheno-
types in MSCs [7]. MSC1, through the secretion of inflammatory chemokines, attracts
circulating leucocytes into the inflamed tissues and regulate the function of all immune
cells that are involved in antiviral immune response (DCs, macrophages, NK cells, B lym-
phocytes, CD4+ T helper cells and CTLs) [7]. MSC-sourced interferons (IFNs) modulate the
cytotoxicity of NK cells and CTLs, enhance the antigen-presentation properties of DCs and
macrophages, regulate cytokine synthesis in CD4+ T helper cells and antibody production
in B cells, crucially contributing to the efficient removal of virus-infected cells [7,8]. During
the remodeling phase of tissue repair, MSCs obtain anti-inflammatory phenotypes and,
through the release of immunoregulatory molecules (transforming growth factor-β (TGF-
β), indolamine 2,3-dioxygenase (IDO), interleukin (IL)-10, IL-1 receptor antagonist (IL-1Ra),
prostaglandin E2 (PGE2)), suppress the excessive activation of immune cells, preventing the
generation of cytokine storm and detrimental systemic inflammatory response [8]. Accord-
ingly, due to their potent immunomodulatory characteristics, MSCs are, in large number
of experimental studies, explored as potentially new remedy in the treatment of viral
diseases [9,10]. In this review article, we summarized current knowledge on the signaling
pathways and cellular mechanisms that are involved in the MSC-dependent elimination of
virus-infected cells and for MSC-based repair and regeneration of tissues initially injured
by viral pathogens. An extensive literature review was carried out in February 2021 across
several databases (MEDLINE, EMBASE and Google Scholar), from 1990 to the present.
Keywords used in the selection were as follows: “mesenchymal stem cells”, “virus”, “viral
infection“, “viral disease”, “immune cells”, “inflammation”, “immunomodulation”, “ther-
apy” and “regeneration”. Experimental studies which emphasized molecular mechanisms
responsible for the MSC-dependent modulation of antiviral immune response and clinical
trials that provided evidence about efficacy of MSC-based therapy in the treatment of viral
diseases were evaluated in this review.

2. Molecular Mechanisms Responsible for MSC-Dependent Modulation of Antiviral
Immune Response

Cytotoxic NK cells and CD8+CTLs efficiently eliminate infected cells [11]. Infected
MSCs express viral antigens on major histocompatibility complex (MHC) class I molecules
and directly activate CD8+CTLs [6]. Additionally, upon the activation of Toll-like receptor
(TLR)-3, -7 and -9 by viral antigens, MSCs obtain pro-inflammatory (MSC1) phenotypes
and produce antiviral cytokines interferon (IFN)-α and IFN-β that enhance the cytotoxicity
of CTLs and NK cells [6,9,10]. MSC1-primed CTLs and NK cells produce perforins and
granzymes which induce the apoptosis of virus-infected cells by activating BH3-interacting
domain death agonist (Bid), pro-apoptotic Bax and/or Bak proteins and caspase-9 and
caspase-3 [6,9,10]. Upon activation by MSC1, CTLs and NK cells secrete a large amount of
IFN-γ, which enhances the phagocytic properties of tissue-resident macrophages, enabling
the efficient removal of apoptotic cells [6]. Additionally, virus-infected MSCs are able
to induce the activation of NK cells in a contact-dependent manner, as well [9,10]. An
increased expression of UL16-binding protein (ULBP), CD155 and CD112, which are
ligands for activating receptors of NK cells (NKp30, NKG2D and CD226, respectively),
was observed in infected MSCs, indicating that MSCs may enhance the cytotoxicity and
antiviral properties of NK cells in a juxtacrine manner [9,10].

After sensing viral pathogens, tissue-resident MSC1 releases monocyte-attracting
chemokines which enable the recruitment of circulating monocytes and DCs into the site
of inflammation (Figure 1) [6,9]. Plasmacytoid DC (pDC) is characterized by the high
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constitutive expression of interferon regulatory factor 7 (IRF-7), which plays a crucially
important role in the transcriptional activation of virus-inducible cellular genes, including
type I interferon genes [12]. MSC-recruited pDCs respond to viruses with a rapid and
robust production of IFN-α and IFN-β, which enhances the antiviral properties of CTLs
and NK cells [6,9,10]. Following IFN production, pDCs mature into antigen presenting cells
that help to shape the adaptive immune response by increasing the expression of MHC
class I and II molecules, enabling the activation of virus-specific naïve CD8+ and CD4+
T lymphocytes [12]. IFN-α and IFN-β, derived from MSC1 and pDCs, activate myeloid
DCs (mDC) and enhance their antigen-presenting properties, as well [9]. The cross-talk
between activated cDC, CTLs and CD4+ T helper lymphocytes is crucially important for
an efficient antiviral immune response [11]. IL-12, derived from activated cDCs, induces
generation of IFN-γ-producing effector CD4+Th1 cells, which, in an IFN-γ-dependent
manner promote, class-switching in B cells, enabling the synthesis and secretion of virus-
specific IgG antibodies [11]. Additionally, by producing IFN-γ, CD4+Th1 cells enhance the
cytotoxicity of CTLs and NK cells, resulting in the apoptotic cell death of infected cells [11].
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Figure 1. Molecular mechanisms responsible for MSC-based modulation of antiviral immune response. Virus-infected MSCs
present viral antigens to CTLs in an MHC class I-dependent manner and express ULBP, CD155 and CD112, which serve as
ligands for activation receptors of NK cells. MSC1 secrete antiviral IFN-α and IFN-β that enhance production of perforins,
granzymes and IFN-γ in CTLs and NK cells. After sensing viral pathogens in inflamed tissues, MSC1 produces monocyte-
attracting chemokines which promote the recruitment of DCs and circulating monocytes into the site of inflammation.
MSC1-recruited DCs produce IL-12, IFN-α and IFN-β which induce generation of IFN-γ-producing effector CD4+Th1
cells. CD4+Th1 cells in an IFN-γ-dependent manner promote class-switching in B cells, enabling synthesis and secretion
of virus-specific IgG antibodies. CTLs, CD4+Th1 lymphocytes and NK cells produce IFN-γ which induces generation
of inflammatory (M1) phenotypes in macrophages, enhancing their antimicrobial properties. M1 macrophages produce
MSC-attracting chemokines and cytokines that attract MSC1 from stem cell niches in inflamed tissue, creating a “positive
inflammatory loop” which enables efficient elimination of viral pathogens. Abbreviations: mesenchymal stem cells (MSCs);
cytotoxic T lymphocytes (CTLs); UL16-binding protein (ULBP); natural killer (NK) cells; interferon (IFN), interleukin 12
(IL-12), dendritic cells (DCs).
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CD4+Th1 cell-sourced IFN-γ induces the generation of pro-inflammatory (M1) pheno-
types in tissue-resident macrophages, enhancing their phagocytic properties [11]. Inflam-
matory M1 macrophages efficiently remove apoptotic cells and produce MSC-attracting
chemokines that attract MSC1 from stem cell niches in inflamed tissue [13]. Importantly,
these M1 macrophage-sourced inflammatory factors enhance the production of antiviral
cytokines, IFN-α and IFN-β in recruited MSC1 [14]. Accordingly, an interplay between
M1 macrophages and MSC1 creates a “positive inflammatory loop” in the inflamed tissue,
which enables the efficient elimination of viral pathogens, apoptotic cells and cellular
debris [14].

Upon the removal of virus-infected cells, MSCs attenuate on-going inflammation,
prevent the over-activation of immune cells and restore tissue homeostasis [15]. During
the resolution phase of tissue repair, under the influence of inflammatory cytokines (tu-
mor necrosis factor alpha (TNF-α) and IFN-γ), MSCs obtain anti-inflammatory (MSC2)
phenotypes [6]. MSC2 produces a large amount of anti-inflammatory and pro-angiogenic
factors that enhance tissue regeneration after the elimination of virus-infected cells [9,10,15].
MSC2, through the activation of aryl hydrocarbon receptor (AhR), induces the expansion
of innate lymphoid cells (ILCs) [16]. Amphiregulin, released from MSC-activated ILCs,
promotes the synthesis of proteins that regulate the proliferation of epithelial cells (c-Myc,
cyclin D1 and CDK4), importantly contributing to the regeneration of injured epithelial
cells [16]. MSC2-derived immunomodulatory molecules (IL-10, PGE2 and galectin-3) in-
duce the generation of tolerogenic phenotypes in DCs [8]. MSC2 and tolerogenic DCs, in
an IDO-dependent manner, induce the expansion of immunosuppressive Tregs, enabling
the creation of an immunosuppressive microenvironment [8]. Additionally, MSC2-sourced
PGE2 and IDO induce the generation of immunosuppressive (M2) macrophages which, in a
TGF-β and IL-10-dependent manner, induce tissue repair [17]. Additionally, by producing
pro-angiogenic and trophic factors, MSC2 induces neo-vascularization and promotes the
proliferation and differentiation of tissue-specific progenitor and stem cells, enabling the
enhanced repair and regeneration of tissues, initially injured by viral pathogens [18].

3. MSC-Based Therapy of Viral Hepatitis

The beneficial effects of MSCs in the attenuation of acute hepatitis and liver fail-
ure have been documented in experimental studies [19–22]. MSCs, in an NO and IDO-
dependent manner, suppress the activation of hepatotoxic, IFN-γ and IL-17-producing
CTLs; CD4+Th1 and Th17 lymphocytes and natural killer T (NKT) cells; inflammatory IL-12,
IL-1β, IL-6 and IL-23-producing DCs; and TNF-α and IL-1β-producing macrophages in the
liver and induce the proliferation of regulatory FoxP3-expressing T and NKT cells [20,21].
Additionally, MSC-sourced HGF promotes hepatocyte proliferation and liver regenera-
tion [8,19].

Similar to these results are findings obtained in recently conducted clinical trials [23–25].
As evidenced by Lin and colleagues [23], allogeneic bone marrow-derived MSCs (BM-MSCs)
significantly increased the 24-week survival rate of 56 patients suffering from hepatitis B
virus (HBV)-related acute on chronic liver failure (ACLF). BM-MSCs (1–10 × 105 cells/kg)
were intravenously (i.v.) injected (once per week for 4 weeks). There were no infusion-
related side effects, indicating that the i.v. administration of MSCs is a safe approach
for the treatment of patients with life-threatening ACLF [23]. Importantly, markedly im-
proved clinical laboratory measurements, including serum total bilirubin and the Model
for End-Stage Liver Disease (MELD) score, were observed in MSC-treated patients with
HBV-ACLF compared with the patients from the control group who received standard
therapy (entecavir combined with nutritional supplementation, human serum albumin and
frozen plasma) [23]. Additionally, MSC-based therapy significantly reduced mortality and
multiple organ failure in patients with HBV-ACLF [23]. The incidence of severe infections
was higher in a group of patients who received standard therapy than in the MSC-treated
patients, suggesting that MSCs managed to suppress the activation of hepatotoxic immune
cells without causing systemic immunosuppressing and secondary immunodeficiency [23].
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Single infusion of umbilical cord-derived MSCs (UC-MSCs; 100 × 106 cells) signifi-
cantly improved the liver function and survival of entecavir-treated patients with HBV-
ACLF [24]. UC-MSC-treated patients had a better appetite, alleviated abdominal distension
and relieved fatigue compared to UC-MSC-non-treated patients with HBV-ACLF [24].
UC-MSCs significantly enhanced hepatocyte function as indicated by improved liver func-
tional markers, including albumin, alanine aminotransferase, aspartate aminotransferase,
total bilirubin, direct bilirubin, prothrombin time (PT) and international normalized ratio
(INR) [24]. Additionally, a significantly decreased MELD score was noticed in UC-MSC-
treated patients with HBV-ACLF, 4 weeks after UC-MSC infusion [24]. Importantly, two
years of follow-up revealed that UC-MSCs significantly increased the survival of entecavir-
treated patients with HBV-ACLF without causing severe side effects, suggesting that the
infusion of UC-MSCs could be considered as an adjunctive therapy to the standard of care
treatment for patients with HBV-ACLF [24].

UC-MSC-sourced exosomes (UC-MSC-Exos) significantly improved the beneficial
therapeutic effects of IFN-α or telaprevir, which are usually used as the standard therapy
for patients suffering from hepatitis C virus (HCV) infection [25]. MSC-Exos contain
all immunosuppressive and angiomodulatory factors as their parental MSCs [26]. As
evidenced by Qian et al. [25], UC-MSC-Exos contain several miRNAs (let-7f, miR-145,
miR-199a and miR-221) which bind to the HCV RNA and prevent the replication of HCV.
Additionally, UC-MSC-Exos showed synergistic effects with IFN-α or telaprevir in the
suppression of HCV replication and, therefore, could be considered as potentially new
adjuvant therapeutic agents in the treatment of patients with HCV [25].

4. MSC-Based Therapy of Difficult-to-Treat Patients with HIV

The progressive loss of CD4+ T cells increases the risk of opportunistic infections in
patients with HIV [27]. Highly active antiretroviral therapy (HAART) is very effective
in the restoration of CD4+T cells [28]. However, about 20% of HAART-treated patients
fail to achieve sufficient reconstitution of CD4+ T lymphocytes and are considered as
immune non-responders (INRs) [29]. HIV-infected INRs experience an increased risk of
opportunistic infections and shorter life expectancy and, therefore, treatment of these
patients is among the most important challenges which needs to be solved [29].

Zhang and colleagues were the first to show that UC-MSC-based therapy may effi-
ciently improve host immune reconstitution in HIV-infected INRs and proposed that the
combination of UC-MSCs and HAART could be used as a novel therapeutic approach
for INR patients [30]. INR patients with HIV who had been receiving HAART for at
least 12 months were randomly assigned to the experimental (n = 7) or control group
(n = 6) to intravenously receive HAART and UC-MSCs (0.5 × 106/kg body weight; 1 infu-
sion/month for 3 months) or HAART and saline, respectively [30]. Importantly, UC-MSCs
did not provoke life-threatening immunosuppression in HAART-treated INRs but altered
the ratio between naïve and effector T helper cells [30]. The total number of naive and
central memory CD4+ T lymphocytes was significantly increased in UC-MSC-treated INRs,
while effector and effector memory CD4+ T cells were not expanded by UC-MSCs [30].
Importantly, the significantly enhanced production of IL-2, which is crucially responsible
for the proliferation of CD4+ T cells, was observed in peripheral blood mononuclear cells
of UC-MSC-treated INRs after their in vitro re-activation by HIV antigens [30]. Addition-
ally, the down-regulated expression of PD-1, which is associated with HIV-specific T-cell
exhaustion, was observed on the membranes of CD4+ T cells of UC-MSC-treated INRs,
indicating that UC-MSCs prevented the PD-1-dependent apoptosis of CD4+ T cells [30].
Importantly, the UC-MSC-induced reconstitution of CD4+ T cells was accompanied by
attenuated systemic inflammatory response, as evidenced by significantly reduced lev-
els of D-dimer, CRP, TNF-α, IL-6 and IL-9 in UC-MSC-treated INRs. The mechanisms
responsible for the UC-MSC-dependent suppression of systemic inflammation are unclear,
but it may be attributed to the immunosuppressive activity of Tregs, since a significantly
higher number of Tregs was observed in the peripheral blood of UC-MSC-treated INRs
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and was not seen in saline-treated controls [30]. Although these findings are promising,
it should be noted that all conclusions were made based on the results obtained in only
seven HIV-infected INRs [30]. Accordingly, a large-scale randomized study should be
realized in the near future to confirm the beneficial effects of UC-MSCs in the therapy of
difficult-to-treat patients with HIV.

5. MSCs and Their Secretomes as Potentially New Therapeutic Agents in the
Treatment of SARS-CoV-2-Induced Lung Inflammation

The SARS-CoV-2-induced infection of pneumocytes and ciliated cells of the airways
usually results in alveolar injury and lung inflammation [3]. In the majority of COVID-
19 patients, alveolar macrophages, lung-infiltrated DCs and T cells efficiently eliminate
the virus and prevent disease progression [3]. However, severe cytokine storm might
develop in some patients due to the massive production of inflammatory cytokines and
chemokines by SARS-CoV-2-over-activated immune cells [31]. The excessive secretion
of these inflammatory mediators results in the development of severe, life-threatening
pneumonia, lung edema and acute respiratory distress syndrome (ARDS) [31].

MSCs may prevent the development of SARS-CoV-2-induced lung injury and ARDS by
inducing the generation of immunosuppressive phenotypes in lung-infiltrated inflamma-
tory cells (Figure 2) [32]. MSC-sourced hepatocyte growth factor (HGF), IL-10 and TGF-β
act synergistically to induce the generation of alternatively activated, anti-inflammatory
(M2) phenotypes in alveolar macrophages [33]. MSC-derived PGE2, IL-10 and IDO gen-
erate tolerogenic phenotypes in lung-infiltrated DCs and induce the generation of im-
munosuppressive Tregs [8]. MSCs may directly suppress the expansion of inflammatory,
IFN-γ-producing Th1 and IL-17-producing Th17 cells in the injured lungs [34]. MSCs, in a
program death ligand (PDL)-dependent manner, induce the apoptosis of over-activated
T cells, alleviating their detrimental effects on the inflamed lungs [33]. In addition, MSC-
sourced TGF-β and HGF cause the G1 cell cycle arrest and inhibit proliferation of activated
Th1 and Th17 cells by suppressing the activation of the Jak-Stat signaling pathway [8].

In addition to their immunoregulatory characteristics, the beneficial effects of MSCs
in attenuation of SARS-CoV-2-induced lung injury could be attributed to their angio-
modulatory properties, as well [32,33]. After engraftment in ischemic tissues, MSCs produce
pro-angiogenic factors (vascular endothelial growth factor (VEGF), PDGF, angiopoietin-1
and placental growth factor), which induce the proliferation of endothelial cells, preventing
ischemia-induced injury [33].

Since MSCs may efficiently suppress detrimental immune response and are able to
provide additional oxygen supply to injured lungs, several clinical trials have investi-
gated the therapeutic potential of MSCs in the treatment of SARS-CoV-2-induced lung
inflammation [35–38].

Leng and colleagues showed that the intravenous infusion of MSCs (1 × 106 cells/kg)
attenuated detrimental immune response in the inflamed lungs and improved respiratory
function in 10 patients with SARS-CoV-2 [35]. Within 48 to 96 h after MSC infusion,
the oxygen saturation significantly increased, and pneumonia-related symptoms (high
fever, shortness of breath, and cough) disappeared in all of MSC-treated patients [35]. A
computed tomography (CT) confirmed the beneficial effects of MSCs [35]. SARS-CoV-
2-related ground-glass opacity disappeared after MSC infusion [35]. Importantly, MSCs
prevented the influx of inflammatory immune cells in the lungs of patients with COVID-19
and favored the expansion of anti-inflammatory and regulatory cells, attenuating on-
going inflammation [33,35]. MSCs prevented the development of detrimental systemic
inflammatory response, as evidenced by a significant decrease in the plasma levels of C-
reactive protein (CRP) and TNF-α upon MSC injection [35]. Additionally, MSCs completely
restored liver and kidney function and prevented the development of SARS-CoV-2-induced
multiple organ dysfunction [35].
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Figure 2. MSC-based treatment of SARS-CoV-2-induced ARDS. Severe cytokine storm might develop in patients with SARS-
CoV-2 due to the massive production of inflammatory cytokines and chemokines by SARS-CoV-2-over-activated DCs, M1
macrophages, CTLs and CD4+Th1 and Th17 lymphocytes. MSC-sourced HGF, IL-10 and TGF-β act synergistically to induce
generation of alternatively activated, anti-inflammatory (M2) phenotypes in alveolar macrophages. MSC-derived PGE2,
IL-10 and IDO generate immunosuppressive phenotypes in lung DCs and induce generation of immunosuppressive Tregs.
MSCs induce PDL-dependent apoptosis of inflammatory T cells, reducing their presence in injured lungs. Additionally,
MSC-sourced TGF-β and HGF induce the G1 cell cycle arrest and prevent proliferation of activated Th1 and Th17 cells.
Abbreviations: mesenchymal stem cells (MSCs); severe acute respiratory syndrome coronavirus (SARS-CoV-2); dendritic
cells (DCs); cytotoxic T lymphocytes (CTLs); hepatocyte growth factor (HGF); interleukin 10 (IL-10); transforming growth
factor beta (TGF-β); program death ligand (PDL); prostaglandin E2 (PGE2) indolamine 2, 3 dioxygenase (IDO).

Hashemian and colleagues conducted a phase 1 clinical trial to evaluate the safety,
tolerability and efficacy of the multiple infusions of placenta-derived MSCs (PL-MSCs) and
UC-MSCs in the treatment of critically ill patients with COVID-19 [36]. A total of 11 patients
with SARS-CoV-2 with life-threatening hypoxemia and ARDS who required artificial res-
piratory support intravenously received PL-MSCs or UC-MSCs (200 × 106 cells/infusion;
total of three infusions) [36]. Significantly reduced dyspnea, improved oxygenation, down-
regulated serum levels of inflammatory cytokines (TNF-α, IL-8 and IL-6) and CRP were
observed in six MSC-treated patients [36]. Five MSC-treated patients were discharged
from the intensive care unit (ICU) 2–7 days after MSCs infusion, while one patient was
discharged from the ICU on day 18. Four MSC-treated patients who had signs of multior-
gan failure died within 5–19 days after the first MSCs injection, and one patient developed
cardiac arrest on day 7 of the MSC infusion [36]. Although results obtained in this study
indicated that multiple infusions of MSCs may rapidly improve respiratory function and
reduce systemic inflammation in patients with COVID-19, the fact that beneficial effects
were not observed in 45% (5/11) of MSC-treated patients suggested the need of a new,
larger clinical trial, which should delineate the efficacy of MSC-based therapy in patients
suffering from severe COVID-19-related lung injury [36].
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Accordingly, Shi and coworkers performed a phase 2 clinical trial to assess the efficacy
of UC-MSCs in the treatment of severe SARS-CoV-2-induced ARDS [37]. Patients with
COVID-19 were randomly assigned to the experimental (n = 65) and control groups (n = 35)
to receive either UC-MSCs (4 × 107 cells per infusion) or placebo on days 0, 3 and 6 [37].
UC-MSCs reduced lung lesion volume, increased the resolution of lung solid component
lesions and significantly improved the respiratory function of patients with COVID-19 [37].
These beneficial effects were not noticed in placebo-treated patients [37]. The 6-min walk
test (6-MWT), performed on the 28th day after the onset of treatment, showed an increased
distance in patients treated with UC-MSCs, indicating the UC-MSC-based restoration of
lung function [37]. These promising results indicate that the use of UC-MSC could be
considered as an adjunctive therapy to the standard of care treatment for patients with
COVID-19 [37]. However, it should be noted that a phase 3 clinical trial is still required to
further evaluate UC-MSC-based effects on mortality and long-term pulmonary disability.

Sengupta and colleagues demonstrated the efficacy of MSC-Exos in the therapy of
SARS-CoV-2-induced moderate-to-severe ARDS [38]. The infusion of BM-MSC-Exos re-
sulted in an improvement of respiratory function and restoration of peripheral blood
leucocytes in 83% of patients with SARS-CoV-2 [38]. However, despite these promising
results, it should be noted that life-threatening lung inflammation and ARDS were ob-
served in 12.5% (3/24) of MSC-Exo-treated patients with SARS-CoV-2, indicating that the
beneficial effects of MSC-Exos must be confirmed in larger clinical trials.

6. Safety Issues Related to the Clinical Use of MSCs in the Treatment of Viral Diseases

MSCs may be easily isolated from almost all adult tissues [6]. MSCs do not alter their
phenotype and function after long-term passaging; can be expanded in vitro; and, in an
appropriate number, can be transplanted in patients that need MSC-based therapy [6–8].
Although the transplantation of MSCs has been used as a new therapeutic approach for
the treatment of inflammatory disorders [39], the fact that MSCs could be targeted by
viruses [9,10] raises serious safety concerns for their use in clinical settings.

MSCs become functionally defective following HIV and herpes virus infection [40,41].
HIV infection suppressed the proliferation and increases the production of pro-inflammatory
cytokines (TNF-α, IL-1β and IL-6) in MSCs [40], while cytomegalovirus (CMV) infec-
tion down-regulates IDO production in MSCs, attenuating their immunomodulatory
properties [41].

HIV and herpes viruses could incorporate their genetic information into the DNA
of MSCs, and, therefore, MSCs could serve as reservoirs for these pathogens [42–44].
HIV infection impairs proliferation and attenuates the immunosuppressive properties
of MSCs [42]. Rollin and colleagues showed that MSCs could transmit parvovirus B19
to hematopoietic cells [43], while Soland and co-workers reported that 7 of 19 “healthy”
CMV-seropositive donors of BM-MSCs harbored low copy numbers of CMV DNA [44].

In contrast to HIV and herpes viruses, it seems that SARS-CoV-2 does not infect
MSCs [33]. RNA-sequencing analysis showed that MSCs did not express angiotensin-
converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) receptors,
which are crucially important for the interaction of SARS-CoV-2 and target cells [35].
Accordingly, most probably, MSCs are not permissive for SARS-CoV-2 and could not serve
as reservoirs for this virus [33].

There are contradictory findings regarding the susceptibility of MSCs to HBV infec-
tion [45–48]. As demonstrated by Ma and colleagues [45], BM-MSCs obtained from healthy
donors fully supported HBV replication and secretion, making them a potential reservoir
of HBV. These findings were supported by Rong and co-workers, who demonstrated that
HBV antigens and HBV DNA were detected in MSCs and that intravenously injected
HBV-exposed MSCs were able to harbor and transport HBV to the injured tissues [46].
In contrast to these data are results obtained by Xie et al. [47] and Wang et al. [48], who
isolated MSCs from the BM and AT of patients with HBV and found that both BM-MSCs
and AT-MSCs were resistant to HBV infection. However, it should be noted that MSCs
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from chronic patients with HBV were not able to optimally proliferate [49], suggesting that
the therapeutic potential of autologous MSCs in the treatment of patients with HBV should
be carefully explored in future randomized clinical trials.

Due to the reduced expression of MHC I and II molecules, MSCs have been consid-
ered as “hypoimmunogenic” cells which could be used in allogeneic transplantation [6].
Nevertheless, the injection of allogeneic MSCs could activate adaptive immunity in MHC-
mismatched recipients, which resulted in the severe aggravation of autoimmune and
chronic inflammatory diseases [50]. Elevated serum levels of Th1 and Th17 cell-sourced
inflammatory cytokines (IFN-γ, IL-17 and IL-22), an increased number of peripheral blood
CD4+ T helper and CD8+CTLs and the aggravation of inflammatory diseases were ob-
served in MSC-treated patients that received allogeneic MSCs [50], raising safety concerns
related to the use of allogeneic MSCs in clinical settings.

7. Conclusions and Future Perspectives

MSCs orchestrate antiviral immune response crucially contributing to the elimination
of infected cells. [9,10] During the early phase of viral infection, MSCs, activated by viral
antigens, elicit strong immune response by producing pro-inflammatory cytokines which
enhance the antiviral properties of immune cells. After the elimination of viral pathogens,
MSCs produce immunoregulatory cytokines and trophic factors that support the repair
and regeneration of injured tissues [9,10].

Despite these promising findings, it should be noted that MSCs express receptors
which are used by HIV, HBV and herpes viruses for their interaction with target cells [42–44].
Therefore, MSCs are permissive for these viruses and could transmit them in allogeneic
recipients [42–44]. Accordingly, prior to transplantation, donor MSCs must be screened
for the presence of HIV, HBV and herpes viruses in order to prevent the incidence of
viral-associated diseases and to assure the safety of MSC-based therapy.

Since the vast majority of MSC-based therapeutic effects in the treatment of viral dis-
eases are attributed to the activity of MSC-derived factors [9,10], MSC-sourced secretomes,
particularly MSC-Exos, are considered as potentially new adjuvant therapeutic agents in the
treatment of viral diseases [25]. However, several challenges need to be addressed before
the clinical use of MSCs-Exos. Bearing in mind that MSC-Exos are highly heterogeneous
depending on the tissue origin of the MSCs from which they were derived, the pre-selection
of the most effective tissue source of MSCs-Exos could be of crucial importance for their
efficacy [17]. Additionally, the injection frequency and the exact therapeutic dose which
maintain the long-lasting effects of MSC-Exos should be defined for each MSC-Exo-treated
viral disease [26]. Finally, the safety issues related to the MSC-Exo-based transmission of
viral DNA must be carefully evaluated in future studies before MSC-Exos can be widely
offered as new antiviral therapeutic agents.
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