Leguia, Marc G.; Rao, Vikram R.; Kleen, Jonathan K.; Baud, Maxime O. (2021). Measuring synchrony in bio-medical timeseries. Chaos, 31(1), 013138. American Institute of Physics 10.1063/5.0026733
Text
5.0026733.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (2MB) |
Paroxysms are sudden, unpredictable, short-lived events that abound in physiological processes and pathological disorders, from cellular functions (e.g., hormone secretion and neuronal firing) to life-threatening attacks (e.g., cardiac arrhythmia, epileptic seizures, and diabetic ketoacidosis). With the increasing use of personal chronic monitoring (e.g., electrocardiography, electroencephalography, and glucose monitors), the discovery of cycles in health and disease, and the emerging possibility of forecasting paroxysms, the need for suitable methods to evaluate synchrony-or phase-clustering-between events and related underlying physiological fluctuations is pressing. Here, based on examples in epilepsy, where seizures occur preferentially in certain brain states, we characterize different methods that evaluate synchrony in a controlled timeseries simulation framework. First, we compare two methods for extracting the phase of event occurrence and deriving the phase-locking value, a measure of synchrony: (M1) fitting cycles of fixed period-length vs (M2) deriving continuous cycles from a biomarker. In our simulations, M2 provides stronger evidence for cycles. Second, by systematically testing the sensitivity of both methods to non-stationarity in the underlying cycle, we show that M2 is more robust. Third, we characterize errors in circular statistics applied to timeseries with different degrees of temporal clustering and tested with different strategies: Rayleigh test, Poisson simulations, and surrogate timeseries. Using epilepsy data from 21 human subjects, we show the superiority of testing against surrogate time-series to minimize false positives and false negatives, especially when used in combination with M1. In conclusion, we show that only time frequency analysis of continuous recordings of a related bio-marker reveals the full extent of cyclical behavior in events. Identifying and forecasting cycles in biomedical timeseries will benefit from recordings using emerging wearable and implantable devices, so long as conclusions are based on conservative statistical testing.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
04 Faculty of Medicine > Department of Head Organs and Neurology (DKNS) > Clinic of Neurology |
UniBE Contributor: |
Grau Leguia, Marc, Baud, Maxime |
Subjects: |
600 Technology > 610 Medicine & health |
ISSN: |
1054-1500 |
Publisher: |
American Institute of Physics |
Language: |
English |
Submitter: |
Chantal Kottler |
Date Deposited: |
03 Dec 2021 10:12 |
Last Modified: |
05 Dec 2022 15:54 |
Publisher DOI: |
10.1063/5.0026733 |
PubMed ID: |
33754758 |
BORIS DOI: |
10.48350/161317 |
URI: |
https://boris.unibe.ch/id/eprint/161317 |