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1 Introduction

In an interacting system, the simplest processes leading to thermal reaction (or damping,
or interaction) rates are 1→ 2 decays as well as 2→ 1 “inverse decays”. However, the phase
space for such processes is kinematically constrained, as exemplified by the impossibility
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of a massive particle emitting a photon. Therefore, processes which at first sight appear
to be of higher order but do not suffer from a similarly stringent constraint, notably 2↔ 2
scatterings, may play a surprisingly important role in thermal systems.

There are a number of problems for which the importance of various scattering types
has been analyzed in quantitative detail. In the context of massless thermal QCD, this
was first done for photon production, showing that all 2 ↔ 2 scatterings, as well as a
certain subclass of 1 + n ↔ 2 + n reactions, with n ≥ 0, had to be included on equal
footing in order to determine the complete leading order rate [1, 2]. The story is similar
for GeV-scale right-handed neutrino production from a Standard Model plasma in the
early universe, where 2 ↔ 2 scatterings involving weak gauge bosons are numerically the
largest individual contribution [3, 4], or for the flavour equilibration rate of the most weakly
interacting Standard Model particles, right-handed electrons [5]. There are even cases in
which only 2↔ 2 scatterings need to be included at leading order, notably the production
rates of axions, gravitinos, or gravitons [6–11], or particles which interact via the Fermi
model, like neutrinos at low temperatures.

We may expect 2↔ 2 scatterings to prevail quite generally, including in many freeze-in
dark matter computations (cf., e.g., ref. [12]) or leptogenesis scenarios (cf., e.g., ref. [13]).
Yet, 2 ↔ 2 scatterings are often not properly accounted for. For instance, popular dark
matter packages (cf., e.g., refs. [14, 15]) typically treat 2 ↔ 2 scatterings through some
empirical approximation, or interpolation between tabulated points. However, as has been
pointed out e.g. in ref. [16], the fact that virtual corrections to 1 ↔ 2 scatterings are
omitted, implies that such results suffer from uncancelled IR divergences if some masses
are small, and might therefore significantly overestimate the magnitude of 2↔ 2 reactions.1

There should be no technical obstacle to fully including the 2 ↔ 2 scatterings. In
fact, if all plasma particles can be treated as massless whereas the particle of interest is
relativistic, with a mass M ∼ πT , then 2↔ 2, 1↔ 3, as well as the corresponding virtual
corrections to 1↔ 2 interaction rates, can be reduced to a convergent two-dimensional in-
tegral representation [17–19]. However, this has not been worked out for a massive and/or
charge-asymmetric plasma; furthermore, the handling of any new functional form of a ma-
trix element squared requires substantial hand work. It would be welcome to develop a
user-friendly approach, requiring minimal input for a given problem, and applicable for gen-
eral masses, with the price that a three-dimensional integration is performed numerically.

The purpose of the present paper is to show how this task can be met. We provide
a prescription for how the interaction rates originating from 2 ↔ 2 as well as the related
1 ↔ 3 processes can be evaluated. To achieve this, the poles that appear in the matrix
elements squared must be cancelled by the identification and inclusion of the pertinent
virtual corrections to 1↔ 2 processes. For the subsequent numerical evaluation, we gener-
alize the parametrizations that were introduced in ref. [4], to a situation with an arbitrary
mass and chemical potential spectrum of the participating particles. The numerical and

1These packages differ from ours in other aspects as well, notably by considering momentum averages,
whereas we compute momentum-dependent rates, or by focussing on processes respecting an R-symmetry,
whereas we consider the minimal case of a single particle species freezing in or out. The latter setups
coincide if the R-charged sector contains one species which interacts more weakly than the others.
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algebraic scripts implementing these ingredients to a particular example are made publicly
available, with the hope that they can be adapted to other problems with modest effort.

The presentation is organized as follows. We start with an exposition of how to con-
cisely represent 2 ↔ 2 and 1 ↔ 3 scatterings, and how to cancel the poles that appear
in them, in section 2. A regularization permitting to evaluate various contributions before
the cancellation of poles is introduced in section 3. Subsequently parametrizations for the
remaining integrations are introduced, in section 4. Even if all poles have been cancelled,
the results still suffer from divergences in certain limits, as reviewed in section 5. Section 6
summarizes the algorithms implementing the ingredients of sections 2–4. Conclusions are
offered in section 7, deferring formal proofs of thermal crossing relations to appendix A, in-
tegration prescriptions for specific channels to appendix B, and angular averages for virtual
corrections to appendix C.

2 Thermally averaged 2 ↔ 2 and 1 ↔ 3 reactions

2.1 General structure and crossing relations

We are interested in the interaction rate of a non-equilibrium particle, whose four-momen-
tum is denoted by K = (ω,k) and mass squared by M2 ≡ K2 = ω2 − k2. The interaction
rate parametrizes a rate equation, describing how this particle is approaching thermal
equilibrium, or trying to keep up with its changing temperature or density. It is not
necessary for us to specify the exact form of the rate equation, but it could be of Boltzmann
type, or have a more general appearance, involving density matrices. In quantum field
theory, the interaction rate can be defined as the imaginary part (or cut) of a retarded
correlation function [20].

An essential assumption we make is that the coupling between the non-equilibrium
particle and the plasma is much weaker than the generic couplings between the plasma
particles. We work to leading (2nd) order in the weak coupling associated with the non-
equilibrium particle, whereas for plasma couplings, higher orders can be considered as well.2

Given that the plasma particles are assumed to be in equilibrium, their phase space
distributions take standard forms. For a simultaneous treatment of bosons and fermions,
we denote

nσ(ε) ≡ σ

eε/T − σ
, n̄σ(ε) ≡ 1 + nσ(ε) , σ = ± , (2.1)

where T is the temperature. The distributions are related by nσ(−ε) = − n̄σ(ε). Ther-
mal averages of reaction rates involving the non-equilibrium particle, whose physical role

2Actually, our formalism applies somewhat more generally. For instance, for the dynamics of multiple
generations of (degenerate or non-degenerate) right-handed neutrinos, it can be shown [21, 22] that the rate
equations take a form in which many important 4th order effects factorize into products of 2nd order rate
coefficients, for which our discussion applies.

– 3 –
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becomes apparent around eqs. (2.11) and (2.12), are defined as3

scat1→ 3(a, b, c) ≡ 1
2

∫
dΩ1→3Na,b,c , (2.2)

dΩ1→3 ≡
1

(2π)9
d3pa
2εa

d3pb
2εb

d3pc
2εc

(2π)4δ(4)(K − Pa − Pb − Pc) , (2.3)

Na,b,c ≡ n̄σa(εa − µa) n̄σb(εb − µb) n̄σc(εc − µc)
−nσa(εa − µa)nσb(εb − µb)nσc(εc − µc) , (2.4)

scat2→ 2(−a; b, c) ≡ 1
2

∫
dΩ2→2Na;b,c , (2.5)

dΩ2→2 ≡
1

(2π)9
d3pa
2εa

d3pb
2εb

d3pc
2εc

(2π)4δ(4)(K + Pa − Pb − Pc) , (2.6)

Na;b,c ≡ nσa(εa + µa) n̄σb(εb − µb) n̄σc(εc − µc)
−n̄σa(εa + µa)nσb(εb − µb)nσc(εc − µc) , (2.7)

scat3→ 1(−a,−b; c) ≡ 1
2

∫
dΩ3→1Na,b;c , (2.8)

dΩ3→1 ≡
1

(2π)9
d3pa
2εa

d3pb
2εb

d3pc
2εc

(2π)4δ(4)(K + Pa + Pb − Pc) , (2.9)

Na,b;c ≡ nσa(εa + µa)nσb(εb + µb) n̄σc(εc − µc)
−n̄σa(εa + µa) n̄σb(εb + µb)nσc(εc − µc) , (2.10)

where Pa = (εa,pa) are four-momenta, with P2
a = m2

a. All plasma particles are assumed
to be in chemical equilibrium, so that their chemical potentials are constrained by linear
relations.

It is apparent from eqs. (2.2)–(2.10) that a minus sign in front of a label belonging to
an initial state, e.g. −a, corresponds to an inversion of the sign of the corresponding four-
momentum and chemical potential. This pattern continues to hold once matrix elements
squared are added. While the chemical potentials have been treated within the functions
N , it is convenient to interpret scatn→ m as an “operator”, acting on the momenta that
appear in the matrix element squared, with the rule that

scatn→ m(. . . ,−a, . . . ; . . .) Φ(. . . ,Pa, . . .) ≡
1
2

∫
dΩn→mN...a...;... Φ(. . . ,−Pa, . . .) . (2.11)

We now posit that for considering 2 ↔ 2 and 1 ↔ 3 scatterings, it is sufficient to
define the integrand needed for 1→ 3 decays, with the other processes following from it
through crossing symmetries. The reason for selecting the 1→ 3 decays is that they display
maximal symmetries, with all thermalized particles appearing in the final state (of course,

3The overall factor 1
2 can be viewed as a convention, but it also guarantees a straightforward con-

nection to Boltzmann equations on one hand (so that Θ in eq. (2.12) corresponds to a “matrix element
squared”), and to the retarded correlators considered in appendix A on the other (originating then as
Im 1∑

i
εi−i0+ = πδ

(∑
i
εi
)

= 1
2 (2π)δ

(∑
i
εi
)
, with 2π included as part of the usual energy-momentum

conservation constraint).
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Figure 1. As an example of amplitudes needed for determining the basic input for our algorithm,
we show the 1 → 2 process leading to ΓBorn

1→2 = scat1→ 2(`, φ) 4E · P`, and the 1 → 3 processes
leading to eq. (2.13). Double lines correspond to right-handed neutrinos; arrowed lined to leptons
(`); wiggly lines to gauge fields (γ); dashed lines to scalars (φ).

in phase space integrations, inverse processes are included as well, cf. eq. (2.4)). A formal
proof of this statement can be found in appendix A.1.

Concretely, if we denote by Θ(Pa,Pb,Pc) the matrix element squared for 1→ 3 decays,
expressed in terms of physical variables (momenta, masses, energies, and helicities), then,
in accordance with eq. (A.4), the full interaction rate4 reads (for ω > 0)

ΓBorn
2↔2,1↔3 =

[
scat1→ 3(a, b, c)

+ scat2→ 2(−a; b, c) + scat2→ 2(−b; c, a) + scat2→ 2(−c; a, b)
+ scat3→ 1(−a,−b; c) + scat3→ 1(−b,−c; a) + scat3→ 1(−c,−a; b)

]
×Θ(Pa,Pb,Pc) . (2.12)

Mathematically, if ω < 0 were viable, there would also be an 8th channel, of type scat4→ 0.
As an example, consider right-handed neutrino interactions in the symmetric phase

of a Standard Model plasma [3, 4]. Then 1 → 3 decays, illustrated in figure 1, can go to
a final state with a lepton, a gauge boson, and a scalar particle (a, b, c = `, γ, φ).5 The
matrix element squared |M|2 for this process, summed over final-state helicities and with
the substitution ∑τ ukτ ūkτ → /E for the initial-state helicity sum, but for convenience
factoring out Yukawa couplings from the first vertex, leads to

ΓBorn
1→3 ≡ scat1→ 3(`, γ, φ) Θ(P`,Pγ ,Pφ)

≡ scat1→ 3(`, γ, φ) 2(g2
1 + 3g2

2) (2.13)

×
{
−E · P`

s`γ
+

(M2 −m2
φ) E · (Pγ + 2P`)

s`γ(sγφ −m2
φ) − E · (P` +K)

sγφ −m2
φ

−
2m2

φ E · P`
(sγφ −m2

φ)2

}
,

where sab ≡ (Pa + Pb)2, g1,2 are the UY(1) and SUL(2) gauge couplings, respectively, and
mφ is the (thermally corrected) mass of the scalar particle. We note that the representation
can be put in alternative forms by making use of the identity s`γ + sγφ + sφ` = M2 +m2

φ.
The metric signature (+−−−) is assumed throughout.

4We are somewhat lax with terminology here: depending on how Θ is chosen, the “rate proper” may
still require a division of Γ by ω, as appears for instance in the collision term of a Boltzmann equation.

5In the full physical computation, there are also channels in which γ, φ are replaced by a fermion-
antifermion pair, originating from a scalar decay, however the algebraic structure of the corresponding
matrix element squared is rather simple, and brings in nothing new to the case that we consider.
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For the following, it is helpful to rewrite the physical cross section in eq. (2.13), by
denoting the locations of the propagator poles with specific symbols, which may be called
auxiliary masses. This is helpful not only as a labelling of pole locations, but also serves
as an intermediate IR regulator (cf. section 3), and in addition permits to take parametric
derivatives with respect to specific propagators, as is needed later on. With this motivation,
we replace

ΓBorn
1→3

2(g2
1 + 3g2

2) → scat1→ 3(`, γ, φ) (2.14)

×
{
− E · P`
s`γ−m2

˜̀
+

(M2−m2
φ) E · (Pγ+2P`)

(s`γ −m2
˜̀)(sγφ −m2

φ̃
) −

E · (P` +K)
sγφ −m2

φ̃

−
2m2

φ E · P`
(sγφ−m2

φ̃
)2

}
.

The (would-be) masses of the decay products are denoted by m2
` ≡ P2

` , m2
γ ≡ P2

γ , m2
φ ≡ P2

φ.

2.2 Corresponding virtual corrections

If the energy entering one of the propagators in eq. (2.14) equals the on-shell energy of
that line — that is, if three energies are related to each other like in a 1 ↔ 2 process —
then the integrand diverges, and the value of the integral is ambiguous. In accordance with
the KLN theorem [23, 24], such divergences are cancelled by virtual corrections to 1 ↔ 2
processes. Conversely, requiring the cancellation of divergences, we can reconstruct virtual
corrections.

A key observation for cancelling the divergences is that the thermal distribution func-
tions appearing in eqs. (2.4), (2.7), (2.10) can always be factorized, in fact in several ways:

Na,b,c =
[
1+ nσaσb(εa+εb−µa− µb)+nσc(εc−µc)

][
1+ nσa(εa−µa) + nσb(εb−µb)

]
, (2.15)

Na;b,c =
[
1+ nσaσb(εb−εa − µa−µb) + nσc(εc − µc)

][
nσa(εa+µa)− nσb(εb−µb)

]
(2.16)

=
[
nσa(εa+µa)− nσbσc(εb+εc − µb−µc)

][
1+ nσb(εb−µb) + nσc(εc−µc)

]
, (2.17)

Na,b;c =
[
1+ nσaσc(εa−εc+µa+µc) + nσb(εb+µb)

][
nσa(εa+µa)− nσc(εc−µc)

]
(2.18)

=
[
nσaσb(εa + εb + µa + µb)− nσc(εc − µc)

][
1+nσa(εa+µa) + nσb(εb+µb)

]
. (2.19)

In the cases involving energy differences, another useful representation can be obtained
through the identity nσ(−x) = −1−nσ(x). Eq. (2.15) can be put in two alternative forms
by the exchanges a↔ c and b↔ c, whereas eqs. (2.16) and (2.18) give additional identities
via the exchanges b↔ c and a↔ b, respectively.

All the factors in eqs. (2.15)–(2.19) are of the type that appear in 1 ↔ 2 processes,
defined in eqs. (2.22) and (2.25). It is such 1↔ 2 processes that cancel the IR divergences
of the 2↔ 2 and 1↔ 3 reactions.

– 6 –
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In order to make the statement concrete, let us denote thermally averaged phase space
integrals for 1 ↔ 2 processes, interpreted as operators acting on the momenta Pa and Pb
with the rule introduced in eq. (2.11), by

scat1→ 2(a, b) ≡ 1
2

∫
dΩ1→2Na,b , (2.20)

dΩ1→2 ≡
1

(2π)6
d3pa
2εa

d3pb
2εb

(2π)4δ(4)(K − Pa − Pb) , (2.21)

Na,b ≡ n̄σa(εa − µa) n̄σb(εb − µb)− nσa(εa − µa)nσb(εb − µb) , (2.22)

scat2→ 1(−a; b) ≡ 1
2

∫
dΩ2→1Na;b , (2.23)

dΩ2→1 ≡
1

(2π)6
d3pa
2εa

d3pb
2εb

(2π)4δ(4)(K + Pa − Pb) , (2.24)

Na;b ≡ nσa(εa + µa) n̄σb(εb − µb)− n̄σa(εa + µa)nσb(εb − µb) . (2.25)

Furthermore we denote

scat1↔ 2(a, b) ≡ scat1→ 2(a, b) + scat2→ 1(−a; b) + scat2→ 1(−b; a) . (2.26)

Single pole. Let us start by considering a first-order pole in a variable sab. The corre-
sponding “residue” is denoted by

Θ̂(1)
ab (Pa,Pb,Pc) ≡ lim

s
ab
→m2

d

(sab −m2
d) Θ(Pa,Pb,Pc) , (2.27)

where Θ(Pa,Pb,Pc) is the matrix element squared appearing in eq. (2.12).
There are various ways to establish what kind of 1↔ 2 processes are needed in order

to cancel this pole. Probably the most economical is to consider a master sum-integral, as
explained in appendix A.2. In this case, the 2 ↔ 2 and 1 ↔ 3 processes and the virtual
corrections to 1↔ 2 processes that cancel their poles are generated simultaneously from a
single structure that respects the KLN theorem. Alternatively, one could take the cancel-
lation of divergences as the construction principle, and then make use of the factorization
formulae in eqs. (2.15)–(2.19), however the implementation of the latter strategy is tedious.

We adopt a notation where ΓBorn
1↔2 denotes the interaction rate corresponding to a Born-

level 1 ↔ 2 process, and ∆ΓBorn
1↔2 the virtual corrections to this process. Our algorithm

reconstructs, strictly speaking, only the IR sensitive part of the full ∆ΓBorn
1↔2 . Specifically,

the virtual correction associated with a residue like in eq. (2.27) reads

∆ΓBorn
1↔2 ⊃ scat1↔ 2(d, c)B(Pd; a, b) Θ̂(1)

ab (Pa,Pb,K − Pd) . (2.28)

Here we have defined a “bubble” operator, B, acting on the momenta Pa and Pb, and

– 7 –
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having Pd as an input parameter, as

B(Pd; a, b) Φ(Pa,Pb) ≡
∫

pa

1
2 + nσa(εa − µa)

2εa
Φ(Pa,Pd − Pa)

(Pd − Pa)2 −m2
b

+
∫

pa

1
2 + nσa(εa + µa)

2εa
Φ(−Pa,Pd + Pa)
(Pd + Pa)2 −m2

b

+
∫

p
b

1
2 + nσb(εb − µb)

2εb
Φ(Pd − Pb,Pb)

(Pd − Pb)2 −m2
a

+
∫

p
b

1
2 + nσb(εb + µb)

2εb
Φ(Pd + Pb,−Pb)
(Pd + Pb)2 −m2

a

, (2.29)

where
∫

p ≡
∫ d3−2εp

(2π)3−2ε . Let us stress again that, taken literally, eq. (2.29) is not well-defined
on its own, due to the poles that the integrands contain, however it is well-defined in
connection with eq. (2.12), because then the poles cancel.

Multiple poles in a single variable. If some process can be mediated by different
particle types (e.g. Higgs and Z0 bosons), then it is possible that interference terms contain
two different poles in a single kinematic variable. In this case, we can partial fraction the
dependence on that variable,

1
(sab −m2

d)(sab −m2
e)

= 1
m2
d −m2

e

( 1
sab −m2

d

− 1
sab −m2

e

)
, (2.30)

and then make use of eq. (2.28).
A related situation is met if there is a second order pole in a single variable. The

corresponding residue is denoted by

Θ̂(2)
ab (Pa,Pb,Pc) ≡ lim

s
ab
→m2

d

(sab −m2
d)2 Θ(Pa,Pb,Pc) . (2.31)

The simplest procedure in this case is to make use of the result for a single pole, just taking
a mass derivative thereof:

∆ΓBorn
1↔2 ⊃

d
dm2

d

{
scat1↔ 2(d, c)B(Pd; a, b) Θ̂(2)

ab (Pa,Pb,K − Pd)
}
. (2.32)

Here we have assumed a notation like that introduced in eq. (2.14), whereby m2
d appears as

a pole location. We note that the mass derivative acts both on scat1↔ 2(d, c), and on the
coefficient function B(Pd; a, b) Θ̂(2)

ab , which is a function of m2
d via its dependence on Pd.

Single poles in separate variables. The most complicated case is when there are
poles in two separate kinematic variables, as can happen in interference terms. Say, if the
variables sab and sbc can go on-shell, then the corresponding residue is defined as

Θ̃ab;bc(Pa,Pb,Pc) ≡ lim
s
ab
→m2

d

lim
s
bc
→m2

e

(sab −m2
d) (sbc −m2

e) Θ(Pa,Pb,Pc) , (2.33)

where Θ is the function in eq. (2.12).

– 8 –
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It is important to realize that if a residue like in eq. (2.33) exists in a 1 → 3 matrix
element, then there is necessarily also another decay channel, namely one in which the
particles d, b, e are in the final state, whereas the propagators of a and c appear in the
matrix element squared. Concretely, noting that the direction of the line b gets inverted in
the second “cut”, poles of this type must appear in the combination

ΓBorn
1→3 ⊃ scat1→ 3(a, b, c)

Θ̃ab;bc(Pa,Pb,Pc)
[ (Pa + Pb)2 −m2

d ] [ (Pc + Pb)2 −m2
e ]

+ scat1→ 3(d,−b, e)
Θ̃ab;bc(Pd + Pb,−Pb,Pe + Pb)

[ (Pd + Pb)2 −m2
a ] [ (Pe + Pb)2 −m2

c ] . (2.34)

Once again, a convenient way to prove that interference terms necessarily appear in this
form goes through the consideration of master sum-integrals, as shown in appendix A.1.
We note that if the particle b is neutral (i.e. carries no chemical potential), and a = d,
c = e, then eq. (2.34) can be reduced to a single structure.

The virtual corrections cancelling the poles of eq. (2.34) can now be expressed as

∆ΓBorn
1↔2 ⊃ scat1↔ 2(d, c)C(Pd , Pc ; a, b, e) Θ̃ab;bc(Pa,Pb,Pc)

+ scat1↔ 2(a, e)C(Pa , Pe ; d,−b, c) Θ̃ab;bc(Pd + Pb,−Pb,Pe + Pb) , (2.35)

where we have defined a “cubic” or “triangle” operator, C, which is similar to the bubble
operator in eq. (2.29), but acts now on three momenta, with two incoming momenta (those
related to scat1↔ 2) appearing as parameters. The incoming momenta are constrained by
their sum equalling K (cf. eq. (4.19)), which permits to simplify some of the structures
appearing:

C(Pd,Pe; a, b, c) Φ(Pa,Pb,Pc)

≡
∫

pa

1
2 + nσa(εa − µa)

2εa
Φ(Pa , Pd − Pa , K − Pa)

[ (Pd − Pa)2 −m2
b ] [ (K − Pa)2 −m2

c ]

+
∫

pa

1
2 + nσa(εa + µa)

2εa
Φ(−Pa , Pd + Pa , K + Pa)

[ (Pd + Pa)2 −m2
b ] [ (K + Pa)2 −m2

c ]

+
∫

p
b

1
2 + nσb(εb − µb)

2εb
Φ(Pd − Pb , Pb , Pe + Pb)

[ (Pd − Pb)2 −m2
a ] [ (Pe + Pb)2 −m2

c ]

+
∫

p
b

1
2 + nσb(εb + µb)

2εb
Φ(Pd + Pb , −Pb , Pe − Pb)

[ (Pd + Pb)2 −m2
a ] [ (Pe − Pb)2 −m2

c ]

+
∫

pc

1
2 + nσc(εc − µc)

2εc
Φ(K − Pc , Pc − Pe , Pc)

[ (K − Pc)2 −m2
a ] [ (Pe − Pc)2 −m2

b ]

+
∫

pc

1
2 + nσc(εc + µc)

2εc
Φ(K + Pc , −Pc − Pe , −Pc)

[ (K + Pc)2 −m2
a ] [ (Pe + Pc)2 −m2

b ] . (2.36)

A rather tedious analysis shows that eq. (2.35) indeed cancels all divergences of eq. (2.34);
alternatively, eq. (2.35) can be obtained by considering the cuts of a corresponding master
sum-integral, as discussed in appendix A.2.
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It is important to stress that the two terms in eq. (2.35) do not correspond one-to-one
to the two terms in eq. (2.34). Rather, to cancel the poles of the first term in eq. (2.34),
parts of both terms of eq. (2.35) are needed. Nevertheless, since both terms of eq. (2.34)
are guaranteed to appear in a correct computation of ΓBorn

1→3 , we can effectively adopt an
algorithm which derives the first term of eq. (2.35) from the first term of eq. (2.34), and
similarly for the second terms. This does produce the correct ∆ΓBorn

1↔2 for eq. (2.35).

Example. For the case in eq. (2.14), there are poles corresponding to the variables s`γ
and sγφ, located at m2

˜̀ and m2
φ̃
, respectively. We also note that the interference term

respects the symmetry described below eq. (2.34), so that only one of the structures in
eq. (2.35) needs to be included. This then leads to

∆ΓBorn
1↔2

2(g2
1 + 3g2

2) ⊃

−scat1↔ 2(˜̀, φ)
[
B(P˜̀ ; `, γ) E · P` + (m2

φ −M2)C(P˜̀,Pφ ; `, γ, φ̃) E · (Pγ + 2P`)
]

−scat1↔ 2(`, φ̃)B(P
φ̃

; γ, φ) E · (P` +K)

−2m2
φ

d
dm2

φ̃

[
scat1↔ 2(`, φ̃)B(P

φ̃
; γ, φ) E · P`

]
. (2.37)

3 IR regularization

Having found a representation for 2 ↔ 2 and 1 ↔ 3 scatterings (cf. eq. (2.12)) as well as
the virtual corrections that render these expressions finite (cf. eq. (2.37)), the next task
is to carry out the integrals in practice. However, the two sets are ill-defined separately.
Therefore we introduce generic masses as intermediate regulators that render both sets
finite, and check in the end that the results are stable if the masses are taken to their
physical values.

For the following, it is helpful to assume that only first order poles are present. Second
order poles, like the one appearing in eq. (2.14), are to be viewed as parametric derivatives,
e.g. 1/(sγφ −m2

φ̃
)2 = ∂

m2
φ̃

1/(sγφ −m2
φ̃
), as was already done in eq. (2.37).

If we partial fraction the energy dependence of the 2↔ 2 and 1↔ 3 matrix elements
squared, it appears in products of fractions like

1
±ε1 ± ε2 ± ε3

. (3.1)

Let now ε3 represent an energy variable that becomes singular in the sense of eq. (2.27). In
the 2 ↔ 2 and 1 ↔ 3 scatterings, these fractions always appear pairwise, such that when
put together we end up having combinations like

2ε3
(ε1 ± ε2)2 − ε23

, (3.2)

where the numerator cancels against a similar term from the integration measure. This
reflects the fact that ε1,2 are energies of external state particles, whereas ε3 is that of a
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virtual state. In the virtual corrections, the same would-be divergence appears as
2ε1

(ε2 ± ε3)2 − ε21
,

2ε2
(ε1 ± ε3)2 − ε22

. (3.3)

Now ε1 or ε2 does not appear as an integration variable, but rather represents the energy
of a virtual particle, ε21 = (p2 ± p3)2 +m2

1 or ε22 = (p1 ± p3)2 +m2
2.

We define integrals over eqs. (3.2) and (3.3) as principal values. Proceeding first with
the virtual corrections, the principal value concerns the integration over the directions of a
momentum like p2 or p1. As shown in section 4.2 and appendix C, these angular averages
can be carried out analytically, and the results are non-singular as long as masses are finite,
apart from integrable (logarithmic) singularities that influence final energy integrations.

Returning then to 2↔ 2 and 1↔ 3 scatterings, the situation is more complicated. In
many cases we can take s±12 = (ε1± ε2)2− (p1±p2)2 as an integration variable in eq. (3.2),
and then the singularity is located at the position where s±12 = m2

3. However, in interference
terms, two separate poles appear. Even though one of the singularities can still be easily
localized, the other one is more challenging. The principal value integration per se can
be dealt with in connection with azimuthal averaging (cf. eq. (4.10)), however a remnant
divergence can manifest itself in energy variables.

We note that, if the singularities of the energy variables cannot be localized analytically,
it is possible to take care of them numerically. This goes by implementing principal value
integration as a limit, viz.

1
(ε1 ± ε2)2 − ε23

−→ P
1

(ε1 ± ε2)2 − ε23
≡ lim

δ→0
Re
[ 1

(ε1 ± ε2)2 − ε23 + 2iδ

]
. (3.4)

In general δ has to be set to a small value for reliable results, e.g. δ ∼ (10−4T )2.
Finally, it is appropriate to stress that actual poles do not always appear. To this end,

consider a general structure appearing in eq. (2.34),

ΓBorn
1→3 ⊃ scat1→ 3(a, b, c)

Θ̃ab;bc(Pa,Pb,Pc)
[ (Pa + Pb)2 −m2

d ] [ (Pc + Pb)2 −m2
e ] . (3.5)

The allowed ranges of the kinematic invariants for the 1 → 3 process (“Dalitz plots”)
and its crossings can be established as usual (cf. section 4.1 and appendices B.1–B.4). In
particular, 1 → 3 channels are realized if M > ma + mb + mc, and poles exist in the
propagators if

md ∈
(
ma +mb,M −mc

)
, me ∈

(
mb +mc,M −ma

)
, (3.6)

respectively. The 2↔ 2 channels are always open, and poles exist if

md < min
(
|ma −mb|, |M −mc|

)
or md > max

(
ma +mb,M +mc

)
, (3.7)

me < min
(
|mb −mc|, |M −ma|

)
or me > max

(
mb +mc,M +ma

)
. (3.8)

The 3→ 1 channels can be realized in three different ways, and poles are met if

ma > mb +mc +M ⇒ md ∈
(
M +mc,ma −mb

)
, me ∈

(
mb +mc,ma −M

)
, (3.9)

mb > ma +mc +M ⇒ md ∈
(
M +mc,mb −ma

)
, me ∈

(
M +ma,mb −mc

)
, (3.10)

mc > ma +mb +M ⇒ md ∈
(
ma +mb,mc −M

)
, me ∈

(
M +ma,mc −mb

)
. (3.11)
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For the example in eq. (2.14), with a → `, b → γ, c → φ, d → ˜̀, e → φ̃, and setting
subsequently mφ̃ → mφ and m˜̀ → m`, and assuming that mφ and M are macroscopic
whereas m` and mγ are small, poles can only exist in the 2↔ 2 channels, and then only if

mγ > 2m` ( there are poles ) . (3.12)

In the physical world, both of these masses vanish in an unresummed computation. The
results depend continuously on them, so that the massless limit is well-defined. If we take
mγ → 0 first, eq. (3.12) indicates that there are no poles in any of the real scatterings.

Even if unproblematic in principle, the case in which poles do appear is discussed from
a different perspective in section 5.4.

4 Phase space integrals

4.1 Phase space integrals for t-channel 2↔ 2 reactions

Among the reactions in eq. (2.12), we start by considering 2↔ 2 processes, which in many
cases are physically the most important ones. A corresponding analysis of 1→ 3 and 3→ 1
processes can be found in appendix B.

For purposes of the practical integration, it is convenient to label the initial and final-
state four-momenta, energies, masses and chemical potentials with different symbols (Ka
vs. Pa, Ea vs. εa, Ma vs. ma, and νa vs. µa, respectively). Here on-shell energies are
denoted by

Ea(k) ≡
√

k2 +M2
a , εa(p) ≡

√
p2 +m2

a , (4.1)

so that Ka = (Ea(ka),ka) and Pa = (εa(pa),pa). The momentum label can often be left
out from the energies without a danger of confusion.

With the given momenta and channels, Mandelstam invariants are defined as usual,

scat1→ 3 : sij = (Pi + Pj)2 , (4.2)
scat2→ 2 : s = (P1 + P2)2 , t = (P1 −K1)2 , u = (P2 −K1)2 , (4.3)
scat3→ 1 : s = (K1 +K2)2 , t = (P1 −K1)2 , u = (P1 −K2)2 . (4.4)

For 2↔ 2 processes, we introduce two parametrizations, the t- and s-channel ones [4].
In principle both of them can be used for any matrix element squared. However, if only one
propagator appears in the integrand, the kinematic variable should be chosen to correspond
to that variable, because then we can easily identify the pole location (if one appears), and
implement the corresponding principal value integration (cf. section 3). In the interference
terms, where two propagators appear, it is convenient to choose the parametrization ac-
cording to which is the “most singular” kinematic invariant, in order to understand the
behaviour in the massless limit (cf. section 5.1). The most singular variable is identified
by putting auxiliary masses such as those introduced in eq. (2.14) to zero. Furthermore, if
u appears as a singular variable, we can make use of the substitution P1 ↔ P2, in order to
rename it into t. Thus, the most singular variable can always be chosen as t or s.

– 12 –



J
H
E
P
0
9
(
2
0
2
1
)
1
2
5

With this prescription, and numbering the momenta and chemical potentials corre-
sponding to scat2→ 2(−a1; b1, b2) as K1 ≡ −Pa1

, Pi ≡ Pbi , ν1 ≡ −µa1
, µi ≡ µbi

, so that
the sign flips associated with initial-stage particles have already been included when show-
ing K1 and ν1, the crossings of eq. (2.12) yield the following t-channel rate for the example
of (2.14) (the case of s-channel scatterings is discussed in appendix B.2):

ΓBorn
2↔2(t)

2(g2
1 + 3g2

2) → scat2→ 2(−γ; `, φ)
{
− E · P1
t−m2

˜̀
+

(m2
φ −M2) E · (K1 − 2P1)
(t−m2

˜̀) (u−m2
φ̃
)

}

+scat2→ 2(−`; γ, φ)
{
E · K1
t−m2

˜̀
+

(M2 −m2
φ) E · (P1 − 2K1)

(t−m2
˜̀) (s−m2

φ̃
)

}
(4.5)

+
[
scat2→ 2(−γ;φ, `) + scat2→ 2(−φ; γ, `)

]{
−E ·(P2 +K)

t−m2
φ̃

−
2m2

φ E · P2
(t−m2

φ̃
)2

}
.

Here E can be K, or the medium four-velocity, U ≡ (1,0), or a linear combination thereof.
The key idea now is to have t as an integration variable, so that most of the poles are

easily resolved. To achieve this we introduce a four-momentum Q such that t = Q2, and
rephrase the integration measure from eq. (2.6) as∫

dΩt
2↔2 ≡

∫ d3p1 d3p2 d3k1 d4Q
8(2π)9ε1(p1) ε2(p2)E1(k1)

(2π)4 δ(4)(P1 −K1 −Q
)
δ(4)(Q+ P2 −K

)
= 1

8(2π)5

∫ d3p1 dq0 d3q
ε1(p1) ε2(q−k)E1(q−p1)

δ
(
ε1(p1)−E1(q−p1)−q0

)
δ
(
q0 + ε2(q−k)−ω

)
,

(4.6)

where we have integrated over p2 and k1. The Dirac-δ’s fix two angles as

q · p1 = q0 ε1(p1) + M2
1 −m2

1 − t
2 , q · k = q0ω + m2

2 −M2 − t
2 , (4.7)

where pi ≡ |pi|. The other Mandelstam variables can be expressed as

u = m2
1 +M2 + 2 (k · p1 − ωε1(p1)) , s = m2

2 +M2
1 − t− 2 (k · p1 − ωε1(p1)) . (4.8)

If products like 1/(umsn) appear, with m,n > 0, the dependence on k ·p1 should be partial
fractioned to appear as powers of inverse first-order polynomials.

The azimuthal angle between k and p1 is unconstrained as of now. We note that this
angle does not appear inside the thermal distribution functions in this parametrization (cf.
eq. (4.18)). Choosing q as the z-axis, we may write

k · p1 = kp1 cos θq,k cos θq,p1︸ ︷︷ ︸
≡a

+ kp1 sin θq,k sin θq,p1︸ ︷︷ ︸
≡b

cosϕ , (4.9)

where cos θq,k and cos θq,p1 are fixed through eq. (4.7). Let us define a generating function,
incorporating the possibility of a numerical principal value regularization à la eq. (3.4), as

Fq;k,p1;z ≡ lim
δ→0

Re
〈 1
z − k · p1 + iδ

〉
ϕ

≡ lim
δ→0

Re
∫ π

−π

dϕ
2π

1
z − a− b cosϕ+ iδ

= lim
δ→0

Re sign( z − a )√
(z − a+ iδ)2 − b2 . (4.10)
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This average vanishes if |z − a| < |b| (for δ → 0), i.e. when poles are actually crossed.
Nevertheless the function is singular when approaching this domain from the outside, i.e.
|z − a| → |b|+, so that a regularization is still needed, either numerically through δ, or
analytically, by resolving the singular domains of the outer integrations.

Through a series in 1/z, the azimuthal averages of positive powers of k ·p1 are readily
extracted from eq. (4.10). In this case we can put sign( z − a )→ 1, yielding

〈
k · p1

〉
ϕ

= a ,
〈
(k · p1)2〉

ϕ
= a2 + b2

2 ,
〈
(k · p1)3〉

ϕ
= a

(
a2 + 3b2

2

)
. (4.11)

Derivatives with respect to z yield averages of negative powers, however they are not
needed for eq. (4.5), unless we use a t-channel parametrization for an s-channel process (cf.
eq. (B.9)).

With all angles resolved, the remaining integration measure can be worked out. As
a first step, we may consider separately the two “vertices” (or energy conservation con-
straints) appearing in eq. (4.6), finding∫

dΩt
2↔2 = 1

(4π)3k

∫ ω−m2

−∞
dq0

∫ k+
√

(q0−ω)2−m2
2

|k−
√

(q0−ω)2−m2
2|

dq
{
θ(−t)

∫ ∞
ε−1

dε1

+θ(t) θ
(
(m1 −M1)q0

)
θ
(
(m1 −M1)2 − t

) ∫ ε+1

ε−1

dε1

}
, (4.12)

where ε±1 are from eq. (4.16). Subsequently it is advantageous to replace the variables q0, q

through t = q2
0 − q2, q0, yielding a Jacobian

dq0 dq = dt dq0
2q . (4.13)

The integration range of t can be established as (−∞, (m2−M)2), and for the part t > 0 we
find that the sign of q0 depends on M −m2, such that θ(t)θ((M −m2)q0) may be inserted
in the integrand. Altogether, eq. (4.12) can thus be converted into∫

dΩt
2↔2 = 1

(4π)3k

{∫ 0

−∞
dt
∫ q+

0

q−0

dq0

∫ ∞
ε−1

dε1

+θ((M−m2)(m1−M1))
∫ min((M−m2)2, (m1−M1)2)

0
dt
∫ q+

0

q−0

dq0

∫ ε+1

ε−1

dε1

}
1
2q , (4.14)

where q =
√
q2

0 − t and

q±0 ≡
ω(t+M2 −m2

2)± k
√
λ(t,M2,m2

2)
2M2 , (4.15)

ε±1 ≡
q0(t+m2

1 −M2
1 )± q

√
λ(t,m2

1,M
2
1 )

2t . (4.16)

Here the Källén function is defined as
√
λ(x,m2

1,m
2
2) ≡

√
x2 +m4

1 +m4
2 − 2x(m2

1 +m2
2)− 2m2

1m
2
2 . (4.17)
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Finally, the thermal distributions associated with 2 ↔ 2 scatterings, cf. eq. (2.7), can
be factorized as in eq. (2.16), which after the insertion of q0 = ε1 − E1 = ω − ε2 from
eq. (4.6) and renaming chemical potentials as mentioned above yields

Nτ1;σ1σ2 =
[
nτ1σ1(q0 − µ1 + ν1)− nσ2(q0 − ω + µ2)

][
nτ1(ε1 − q0 − ν1)− nσ1(ε1 − µ1)

]
.

(4.18)

The first factor implies that the q0-integral is exponentially localized around modest |q0|,
even if the boundaries from eq. (4.15) can obtain large values; likewise, the integration
over ε1 is exponentially convergent at large ε1.

We note that if τ1σ1 =+, the first factor in eq. (4.18) has a pole at q0−µ1 +ν1 =0, but
the second factor vanishes at the same point, lifting it. In order to avoid numerical issues
with this, it is helpful to replace eq. (4.18) by an alternative representation if |q0−µ1+ν1|�
T , viz. Nτ1;σ1σ2 ={1+n−1

τ1σ1(q0−µ1+ν1)[1+nσ2(ω−q0−µ2)]}[1+nτ1(ε1−q0−ν1)]nσ1(ε1−µ1).

4.2 Phase space integrals for virtual corrections

The virtual corrections, discussed in section 2.2, have the structure of a 1↔ 2 phase space
average, which we call an “outer integral”, convoluted with a bubble or triangle function,
which we call an “inner integral” (cf. eqs. (2.28), (2.32), (2.35)). Let us discuss these
in turn.

Outer integration. An outer integral like scat1↔ 2(d, c) in eq. (2.28) contains three
different channels, corresponding to 1→ 2 decays and two different 2→ 1 inverse decays,
cf. eq. (2.26). Remarkably, the three channels can be combined into a single expression,
once we make use of the identity nσ(−x) = − n̄σ(x) in the 2→ 1 channels and substitute
εi → −εi in one of them. For instance, if we choose εd as the integration variable, then

scat1↔ 2(c, d) Φ(Pc,Pd) = θ(λ(M2,m2
c ,m

2
d))

16πk

×
∫ ε+

d

ε−
d

dεd
[
1 + nσc(ω − εd − µc) + nσd(εd − µd)

]
sign

(
εd(ω − εd)

)
Φ
(
K − Pd,Pd

)
×
{

1 + ε ln
[

k2µ̄2

M2(ε+d − εd)(εd − ε
−
d )

]
+O(ε2)

}
, (4.19)

where
√
λ is from eq. (4.17), we have expressed the spacetime dimension as D = 4 − 2ε,

and the integration bounds are analogous to eq. (4.15), viz.

ε±d = ω (M2 +m2
d −m2

c)± k
√
λ(M2,m2

c ,m
2
d)

2M2 . (4.20)

Furthermore the direction of pd is fixed similarly to the second constraint in eq. (4.7),

k · pd = ω εd + m2
c −m2

d −M2

2 . (4.21)

– 15 –



J
H
E
P
0
9
(
2
0
2
1
)
1
2
5

The sign function in eq. (4.19) is negative in the 2 → 1 channels, in one because of the
inverted sign of εd and in the other because of the negative sign of ω − εd.6

For completeness we have shown the part of O(ε) in eq. (4.19), because the inner
integrals normally contain 1/ε divergences; µ̄ denotes the scale parameter of the MS scheme.
In this context is also appropriate to note that in D dimensions, some of the coefficients in
eq. (2.13) contain additional parts proportional to D − 4, which had been omitted. If we
worry about the renormalization of the coupling associated with the vertex in figure 1 (left),
these terms should be included, but normally such renormalization effects are genuinely
small in a weakly coupled system, unlike the IR effects that we are mostly interested in.

Inner integrations. For the inner integrals, we need to consider B from eq. (2.29) and C
from eq. (2.36). For generality we start with C, which contains one more angular variable.
Let us recall that all propagators within the thermal averages are assumed regularized as
principal values.

We may now express the integration measure in spherical coordinates as usual. As-
suming that the inner integral is UV finite (we return to this below), we write∫

pa
= 1

(2π)2

∫ ∞
ma

dεa εa pa
∫ +1

−1
d cos θ

{ 1
2π

∫ 2π

0
dϕ
}
, (4.22)

and similarly for
∫

pb and
∫

pc in eq. (2.36).
For the integrand, we consider two possible structures, defined in eqs. (C.1) and (C.2).

There is freedom in choosing the axis with respect to which θ is measured. This way, the
angular integrals can be carried out explicitly, as detailed in appendix C.

The two middle terms of eq. (2.36), associated with εb, require a more careful look, as
the dependence on the angles needs to be partial fractioned, in order to bring the results
in a form in which we can make use of eq. (C.2). For this we may write

1
[ (Pd − Pb)2 −m2

a ] [ (Pe + Pb)2 −m2
c ]

=
[ 1

(Pd − Pb)2 −m2
a

− 1
(Pe + Pb)2 −m2

c

] 1
m2
a +m2

e −m2
c −m2

d + 2K · Pb
, (4.23)

where we made use of Pd + Pe = K.
Collecting together the contributions, and making use of H from eq. (C.2), we obtain

C(Pd,Pe ; a, b, c) Φ(Pa,Pb,Pc)

'
∫ ∞
ma

dεa pa
(4π)2

{
+
[1

2 + nσa(εa − µa)
]
H

pa;pd,k;εaεd+
m2
b
−m2

a−m
2
d

2 , εaω+m2
c−m

2
a−M2

2

Φ(Pa,Pd − Pa,K − Pa)

+
[1

2 + nσa(εa + µa)
]
H

pa;pd,k;εaεd+
m2
d

+m2
a−m

2
b

2 , εaω+M2+m2
a−m

2
c

2

Φ(−Pa,Pd + Pa,K + Pa)
}

6The integrand is exponentially localized close to one of the integration boundaries, so it makes sense
to have more numerical resolution there.
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+
∫ ∞
mb

dεb pb
(4π)2

{
−
[1

2 + nσb(εb − µb)
]
H

pb;pd,k;ε
b
ε
d
+
m2
a−m

2
b
−m2

d
2 , ε

b
ω+

m2
a+m2

e−m
2
c−m

2
d

2

Φ(Pd − Pb,Pb,Pe + Pb)

−
[1

2 + nσb(εb + µb)
]
H

pb;pd,k;ε
b
ε
d
+
m2
d

+m2
b
−m2

a
2 , ε

b
ω+

m2
c+m2

d
−m2

a−m
2
e

2

Φ(Pd + Pb,−Pb,Pe − Pb)

−
[1

2 + nσb(εb − µb)
]
H

pb;pe,k;ε
b
εe+

m2
e+m2

b
−m2

c
2 , ε

b
ω+

m2
a+m2

e−m
2
c−m

2
d

2

Φ(Pd − Pb,Pb,Pe + Pb)

−
[1

2 + nσb(εb + µb)
]
H

pb;pe,k;ε
b
εe+

m2
c−m

2
b
−m2

e
2 , ε

b
ω+

m2
c+m2

d
−m2

a−m
2
e

2

Φ(Pd + Pb,−Pb,Pe − Pb)
}

+
∫ ∞
mc

dεc pc
(4π)2

{
+
[1

2 + nσc(εc − µc)
]
H

pc;pe,k;εcεe+
m2
b
−m2

c−m
2
e

2 , εcω+m2
a−m

2
c−M2

2

Φ(K − Pc,Pc − Pe,Pc)

+
[1

2 + nσc(εc + µc)
]
H

pc;pe,k;εcεe+
m2
e+m2

c−m
2
b

2 , εcω+M2+m2
c−m

2
a

2

Φ(K + Pc,−Pc − Pe,−Pc)
}
.

(4.24)

We have used the sign ' because the integrals are, in general, UV divergent; below
eq. (4.25) we turn to how the divergences can be subtracted.

For the integral B from eq. (2.29), where only one propagator appears, the results can
be obtained from eq. (4.24) by appropriately dropping structures and renaming variables:

B(Pd ; a, b) Φ(Pa,Pb)

'
∫ ∞
ma

dεa pa
(4π)2

{
−
[1

2 + nσa(εa − µa)
]
2G

pa;pd,k;εaεd+
m2
b
−m2

a−m
2
d

2

Φ(Pa,Pd − Pa)

+
[1

2 + nσa(εa + µa)
]
2G

pa;pd,k;εaεd+
m2
d

+m2
a−m

2
b

2

Φ(−Pa,Pd + Pa)
}

+
∫ ∞
mb

dεb pb
(4π)2

{
−
[1

2 + nσb(εb − µb)
]
2G

pb;pd,k;ε
b
ε
d
+
m2
a−m

2
b
−m2

d
2

Φ(Pd − Pb,Pb)

+
[1

2 + nσb(εb + µb)
]
2G

pb;pd,k;ε
b
ε
d
+
m2
d

+m2
b
−m2

a
2

Φ(Pd + Pb,−Pb)
}
. (4.25)

Here G is from eq. (C.1).

UV subtraction. The nature of the integrals in eqs. (4.24), (4.25) depends on the func-
tions Φ which, in turn, depend on the spin structure of the non-equilibrium particle con-
sidered. For the example in eq. (2.14), which leads to eq. (2.37), Φ contains the helicity
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projectors E · Pi. In this case, or if Φ is independent of the integration momenta, only
the function B needs a subtraction. In case of a quadratic momentum dependence, C
would need a subtraction as well. However, even if C were finite, we endorse adopting a
subtraction procedure, specified as follows.

The most straightforward implementation of a subtraction is to omit the vacuum
contributions from eq. (4.25), and to compute them separately. That is, we may write

B(Pd ; a, b) = B0(Pd ; a, b) +BT (Pd ; a, b) , (4.26)

where BT is obtained by dropping the temperature-independent factors 1
2 from eq. (4.25):

BT (Pd ; a, b) ≡ B(Pd ; a, b)
∣∣ 1

2 +nσi→nσi
, (4.27)

B0(Pd ; a, b) ≡ B(Pd ; a, b)
∣∣ 1

2 +nσi→
1
2
. (4.28)

The part BT vanishes at zero temperature. By returning back to eq. (2.29), it is possible
to verify that the vacuum factors, in turn, amount to a usual vacuum integral,7

B0(Pd ; a, b) Φ(Pa,Pb)→ Re
∫
P

{
iΦ(P,Pd − P)

[P2 −m2
a][(Pd − P)2 −m2

b ]

}
. (4.30)

Now, the vacuum integral can be worked out with standard methods. If the function
Φ in eq. (4.30) depends on momenta, the result can be reduced to integrals with trivial
numerators by making use of Passarino-Veltman relations, however the details depend
on the helicity structure considered. For the case of eq. (2.37), where the momentum
dependence is linear, viz. Φ(Pa,Pb) = caPa + cbPb, we get

∫
P

{
iΦ(P,Pd − P)

[P2 −m2
a][(Pd − P)2 −m2

b ]

}
=
∫
P

{
i [cbPd + (ca − cb)P]

[P2 −m2
a][(Pd − P)2 −m2

b ]

}
(4.31)

where ∫
P

iP
[P2 −m2

a ][ (Pd − P)2 −m2
b ] (4.32)

= Pd
2m2

d

∫
P

{
i(m2

d +m2
a −m2

b)
[P2 −m2

a ][ (Pd − P)2 −m2
b ] + i

P2 −m2
b

− i

P2 −m2
a

}
.

7What is meant here is that the factors in eq. (2.29) combine into

1
4εa

[
1

(εd − εa)2 − ε2
b

+ 1
(εd + εa)2 − ε2

b

]
+ 1

4εb

[
1

(εd − εb)2 − ε2
a

+ 1
(εd + εb)2 − ε2

a

]
= 1

2εa
1

(εd + εa)2 − ε2
b

+ 1
2εb

1
(εd − εb)2 − ε2

a

p0↔ipE= −
∫ ∞
−∞

dpE

2π
1

[p2
E + ε2

a][(zd − pE)2 + ε2
b ]

∣∣∣∣
zd→−iεd

, (4.29)

where the integral has been defined after Wick rotation to Euclidean signature. Rotating back, the principal
value (cf. section 3) corresponds to the real part of a usual Feynman integral, as indicated in eq. (4.30).
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The integrals on the second line of eq. (4.32) can be evaluated,

Re
∫
P

i

P2 −m2 = − m2

(4π)2

(1
ε

+ ln µ̄2

m2 + 1
)
, (4.33)

Re
∫
P

i

[P2 −m2
a ][ (Pd − P)2 −m2

b ] = − 1
(4π)2

[1
ε

(4.34)

+
∫ 1

0
dx ln

∣∣∣∣ µ̄2

m2
a x+m2

b(1− x)−m2
d x(1− x)

∣∣∣∣ ] ,
where terms of O(ε) have been omitted. The integral over x could be carried out [25],
however the integral representation is a practical tool. The are mild singularities within the
integration range ifmd > ma+mb, located at x = [m2

b+m2
d−m2

a±
√
λ(m2

a,m
2
b ,m

2
d)]/(2m2

d).
The presence of 1/ε-divergences in eqs. (4.33) and (4.34) reflects the fact that we

are considering a bare expression. In a full computation, the 1/ε-divergences of virtual
corrections cancel against the renormalization of the parameters that appear in the leading-
order 1 ↔ 2 process. For simplicity, we assume in the following that this renormalization
has been taken care of, specifically that the 1 ↔ 2 process is expressed in terms of MS
scheme couplings and masses, evaluated at the scale µ̄ = 2πT . Under this assumption,
the 1/ε divergences can be dropped from eqs. (4.33) and (4.34) and the scale can be set
to µ̄ = 2πT . It is appropriate to stress, however, that were we considering the bare rate,
before renormalization, then we should recall that the outer integral of eq. (4.19) contains
a part of O(ε), as well as possible overall coefficients proportional to D − 4, which would
give a finite contribution once multiplied by the 1/ε-divergence.

A splitup into thermal and vacuum parts is also possible for the triangle integral C,
even if it does not always contain UV divergences:

CT (Pd,Pe ; a, b, c) ≡ C (Pd,Pe ; a, b, c)
∣∣ 1

2 +nσi→nσi
, (4.35)

C0(Pd,Pe ; a, b, c) ≡ C (Pd,Pe ; a, b, c)
∣∣ 1

2 +nσi→
1
2
. (4.36)

The vacuum limit from eq. (2.36) can be expressed as8

C0(Pd,Pe ; a, b, c) Φ(Pa,Pb,Pc)

= Re
∫
P

iΦ(P , Pd − P , K − P )
[P2 −m2

a ] [ (Pd − P )2 −m2
b ] [ (K − P )2 −m2

c ] . (4.37)

In the case of a linear dependence like in eq. (2.37), we can write

Φ = caP + cb(Pd − P) + cc(K − P) = (ca − cb − cc)P + cb Pd + ccK . (4.38)

The first structure points in a direction spanned by the latter two vectors,∫
P

iP
[. . .][. . .][. . .] = αb Pd + αcK , (4.39)

8This can be established like in footnote 7, but now there are six terms to be combined. However,
as shown in ref. [25], a representation keeping channels with different physical interpretations separate is
preferable, cf. eq. (4.44). We have checked numerically that evaluating the vacuum part of eq. (2.36), with
angular integrals expressed like in eq. (4.24), is indeed consistent with eq. (4.44).
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where (
αb
αc

)
= 1
λ(m2

d,m
2
e,M

2)

(
−2M2 m2

d −m2
e +M2

m2
d −m2

e +M2 −2m2
d

)(
Ib
Ic

)
, (4.40)

with

Ib ≡
∫
P

i (2P · Pd)
[. . .][. . .][. . .] =

∫
P

{
i(m2

d +m2
a −m2

b)
[. . .][. . .][. . .]

+ i

[P2 −m2
b ][(Pe − P)2 −m2

c ]
− i

[P2 −m2
a][(K − P)2 −m2

c ]

}
, (4.41)

Ic ≡
∫
P

i (2P · K)
[. . .][. . .][. . .] =

∫
P

{
i(M2 +m2

a −m2
c)

[. . .][. . .][. . .]

+ i

[P2 −m2
b ][(Pe − P)2 −m2

c ]
− i

[P2 −m2
a][(Pd − P)2 −m2

b ]

}
. (4.42)

The Feynman representation for the first rows of eqs. (4.41) and (4.42) reads

Re
∫
P

i

[P2 −m2
a ] [ (Pd − P )2 −m2

b ] [ (K − P )2 −m2
c ] (4.43)

= 1
(4π)2

∫ 1

0
dy
∫ y

0
dxP 1

m2
ax+ [m2

c −M2x](1− y) + [m2
b −m2

d x−m2
e (1− y)](y − x)

= 1
(4π)2(c+ 2bα)

∫ 1

0
dy
{ 1
y − y1

ln
∣∣∣∣ by2 + (c+ e)y + a+ d+ f

by2
1 + (c+ e)y1 + a+ d+ f

∣∣∣∣
− 1
y − y2

ln
∣∣∣∣ (a+ b+ c)y2 + (d+ e)y + f

(a+ b+ c)y2
2 + (d+ e)y2 + f

∣∣∣∣ + 1
y − y3

ln
∣∣∣∣ ay2 + dy + f

ay2
3 + dy3 + f

∣∣∣∣ } , (4.44)

where we have followed ref. [25], denoting a ≡ m2
e, b ≡ m2

d, c ≡M2 −m2
d −m2

e, d ≡ m2
b −

m2
c−m2

e, e ≡ m2
a−m2

b +m2
e−M2, f ≡ m2

c , α ≡ [m2
d+m2

e−M2±
√
λ(m2

d,m
2
e,M

2)]/(2m2
d),

y0 ≡ −(d+eα)/(c+2bα), y1 ≡ y0 +α, y2 ≡ y0/(1−α), y3 ≡ −y0/α. The kinematics of the
outer integration guarantees that α is real (cf. eq. (2.35)); the sign in front of

√
λ is best

chosen so that no large cancellation takes place in the numerator of α. If the arguments of
the logarithms have real zeros, which happens for λ(m2

a,m
2
b ,m

2
d) ≥ 0, λ(m2

a,m
2
c ,M

2) ≥ 0,
λ(m2

b ,m
2
c ,m

2
e) ≥ 0, respectively, we may express the corresponding integral in terms of (real

parts of) four dilogarithms [25], otherwise the integral representations are quite efficient.

5 Temperature and chemical potential induced IR divergences

After the inclusion of the virtual corrections from section 2.2 (implemented through sec-
tion 4.2), there are no poles in any of the integrands that we have considered, and conse-
quently logarithmic and double-logarithmic IR divergences have been lifted. However, the
Bose and Fermi distributions introduce new scales, the temperature T and the chemical
potentials µi. These lead to possible new sources of divergences, namely that
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(a) a vacuum decay rate is boosted by ∼ (T/mi)n, (T/M)n, and diverges if mi,M � T ;

(b) the Bose distribution is ∼ T/(mi − µi) at small momenta, and diverges if µi → mi.

Such divergences imply that the naive perturbative series needs to be re-organized, or “re-
summed”. Unfortunately it is difficult to automate this treatment, as it requires a carefully
tuned subtraction-addition step, in order to avoid double counting when implementing
the resummation that eliminates the divergence. Here we illustrate the procedure for the
example of figure 1, and briefly mention other widely discussed applications.

5.1 2↔ 2 scatterings via soft t-channel exchange

We start by considering what may be referred to as the high-energy small-angle limit,
parametrically λ2 � −t� s, where λ2 ∼ m2

i ,M
2 and s ∼ (πT )2. In vacuum the structure

of scattering amplitudes has been studied in great detail in this “Regge” domain. If λ2 �
(πT )2, the thermally averaged scattering rates in general diverge, as we now review.

If we expand the integrand in eq. (4.5) in a Laurent series in q0, q, the leading term
may come with a negative power of q0, q and a positive power of ε1. The latter integral is
weighted by the thermal distribution functions, and therefore turns into a positive power
of the temperature. To compensate for the dimensions, the domain of small q0, q then leads
to an IR divergence.

In order to isolate this divergence, we may work out the angles from eq. (4.7), the
azimuthal average from eq. (4.10), as well as all kinematic variables, in the massless limit.
To facilitate this task, it is essential that the parametrization through Q has been so chosen
that the divergences are associated with small values of q0, q. Denoting the massless value
of ε1 by p1, we may approximate the integrand by taking

q0, q � p1 . (5.1)

In this limit eq. (4.7) implies that

cos θq,p1 ≈
q0
q
, cos θq,k ≈

q0
q

+ q2 − q2
0

2qk . (5.2)

We remark that k is often approximated as ∼ p1 � q0, q, however we have included the
correction (q2 − q2

0)/(2qk) in cos θq,k, given that the leading term cos θq,k ' q0/q cancels
against cos θq,p1 , when estimating the magnitude of inverse powers of u and s in eqs. (5.6)
and (5.7). In the massless limit, the integration measure from eq. (4.12) becomes

lim
mi,M→0

∫
dΩt

2↔2 = 1
(4π)3k

∫ k

−∞
dq0

∫ 2k−q0

|q0|
dq
∫ ∞

(q0+q)/2
dp1 , (5.3)

implying that t < 0, i.e. |q0| < q, so that the angles in eq. (5.2) are well-defined.
For estimating the kinematic variables u, s from eq. (4.8), we need to consider the

azimuthal average from eqs. (4.10), (4.11). Inserting subsequently cos θq,p1 and cos θq,k,
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yields

u ≈ −s ≈ p1(q2
0 − q2)(2k − q0)

q2 , (5.4)

u2 ≈ −us ≈ s2 ≈ p2
1(q2

0 − q2)2[3(2k − q0)2 − q2]
2q4 , (5.5)

1
u
≈ −1

s
≈ q

p1(q2
0 − q2) , (5.6)

1
u2 ≈ −

1
us
≈ 1
s2 ≈

q(2k − q0)
p2

1(q2
0 − q2)2 . (5.7)

Now, eqs. (5.3)–(5.5) imply that integrands like s/t, u/t ∼ p1(2k − q0)/q2 lead to a
logarithmically IR-divergent integral, whereas s2/t2, u2/t2 ∼ p2

1[3(2k − q0)2 − q2]/q4 lead
to a quadratic divergence. In contrast, t/s, t/u ∼ q/p1 and t2/s2, t2/u2 ∼ q(2k − q0)/p2

1
indicate that if we choose a t-channel parametrization for a process that is really of u or
s-channel nature, then the IR sensitivity is transmitted from q to p1, and is therefore not
clearly resolved.

It should be stressed that, as long as masses are non-zero, these IR sensitivities are not
divergences in a literal sense. Their presence simply implies that if we consider the limit
mi,M � πT , the thermally averaged cross sections become anomalously large. The way
to handle the large terms goes through Hard Thermal Loop (HTL) resummation [26–29],
which gives a thermal mass ∼ g2T 2 to the would-be massless modes. Subsequently the
Born-level result can be rectified through a subtraction-addition step, with the addition
part involving the HTL-resummed result and the subtraction part its unresummed form,
eliminating double counting. Adapting a clever trick developed in ref. [30], whereby thermal
light-cone observables can be analytically continued to static ones, HTL-resummed results
have been worked up to the NLO level for certain interaction rates characterizing massless
or nearly massless probe particles [31, 32].

For the concrete example of figure 1, HTL resummation affects the lepton propagator,
whereas the scalar propagator only experiences a mass correction.9 Let us denote the
lepton spectral function by

ρ`(q0,q) ≡
(
q0 ρ̂0(q0, q),q ρ̂s(q0, q)

)
, (5.8)

where the temporal and spatial parts read (q0 ≡ Re q0 + i0+) [33, 34]

ρ̂µ(q0, q) = Im
{ 1− δµ,0m

2
`TL

2q0
+ δµ,sm

2
`T (1−q0L)
2q2

q2
0 − q2 −m2

`T + m4
`T

[(qL)2−(1−q0L)2]
4q2

}
, L ≡ 1

2q ln q0 + q

q0 − q
. (5.9)

For |q0| < q, the overall imaginary part originates from ImL = −π/(2q), whereas for
|q0| > q, it originates from a zero of the denominator. The thermal lepton mass reads

m2
`T ≡

g2
1 + 3g2

2
4

∫
p

2nB(p) + nF(p+ µ`) + nF(p− µ`)
p

= g2
1 + 3g2

2
16

(
T 2 + µ2

`

π2

)
. (5.10)

9In general, HTL computations include vertex corrections as well. There is none for our example with
a Yukawa vertex, and more generally they are unimportant when considering “hard” momenta, k ∼ πT .
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The interaction rate ΓHTL is determined by making use of eq. (5.8). Integrating over
angles, the remaining measure can be cast in the form of eq. (4.12), with q·k fixed according
to eq. (4.7) and the integral over ε1 represented by eq. (5.10). In the HTL spectral function,
it is the spacelike domain, with θ(−t), which corresponds to 2↔ 2 scatterings.

Subsequently, we have to subtract the part already included in eq. (4.5). This sub-
traction can be obtained by “re-expanding” eq. (5.9) to O(g2T 2) ∼ O(m2

`T ). With a slight
abuse of notation, we however keep a lepton mass in the denominator, renaming it into
m2

˜̀, whereby it serves as an intermediate IR regulator in the sense of section 3. This then
leads to

∆ΓHTL
2↔2 = − 1

(2π)2k

∫ 0

−∞
dt
∫ q+

0

q−0

dq0

[
1− nF(q0 − µ`) + nB(ω − q0 − µφ)

]
Λ(q0, ω)

×P
{
ε0q0

[
ρ̂0(q0, q)−

πm2
`T

4q0q(t−m2
˜̀)

]
− ~ε · k q · k

k2

[
ρ̂s(q0, q)−

πm2
`T q0

4q3(t−m2
˜̀)

]}
,

(5.11)

where E ≡ (ε0, ~ε ), and the integration bounds are a special case of eq. (4.15), viz.

q±0 ≡
ω(M2 + t−m2

φ)± k
√
λ(M2, t,m2

φ)
2M2 . (5.12)

Let us mention that if we choose m˜̀ = m`T in eq. (5.11), then the numerical value of
eq. (5.11) is quite small. This implies that using the thermal value m`T in the unresummed
computation of section 4.1 would yield a reasonable approximation to the resummed result.
That said, the error would not be parametrically of higher order; eq. (5.11) is of higher order
only as far as the domain q0, q � m`T is concerned, where the subtractions are effective.

In eq. (5.11), we have introduced a function Λ(q0, ω) that necessitates further elabora-
tion. In order to correctly implement HTL resummation for q0, q ∼ m`T � πT , we require
limq0→0 Λ(q0, ω) = 1. What we do outside of this domain, where the effect is formally of
higher order, is a matter of choice. A frequent logic is to set Λ→ Λ?, where[

1− nF(q0 − µ`) + nB(ω − q0 − µφ)
]

Λ?(q0, ω) ≡ nF(µ`) + nB(ω − µφ) . (5.13)

A benefit of this choice is that the remaining integrals can be solved analytically in the
so-called ultrarelativistic regime (mφ,M � k ∼ πT ). On the other hand, a numerical
evaluation with general masses and momenta is more straightforward by setting Λ → 1.
With the latter choice, the magnitude of eq. (5.11) will be illustrated in figure 3.

5.2 2↔ 2 scatterings off soft bosons

Another possible source for an IR divergence in 2 ↔ 2 scatterings is when one of the
external scatterers becomes soft. Technically, this is the case when the argument of a
bosonic thermal distribution vanishes in eq. (4.18). Let us recall that chemical potentials
associated with bosons should be smaller than the particle masses, otherwise we are driven
to Bose-Einstein condensation. In cosmology, chemical potentials are in any case small
compared with the temperature. In most computations it is then sufficient to expand
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to first order in chemical potentials. In this case, the domain of a small bosonic energy
exhibits a quadratic pole, n′B(q0) = −βnB(q0)[1 + nB(q0)] ≈ −T/q2

0 for q0 � T , leading
to a logarithmic divergence if the mass has been omitted. Such a divergence can arise for
instance from the domain q0 ∼ ω inside the thermal distribution nσ2 in eq. (4.18) [35]. It
has also been pointed out that a similar effect can arise even without chemical potentials, if
we consider virtual corrections to 1↔ 2 scatterings and pick up an enhancement ∼ (T/q0)2

from two Bose distributions [36]. Both of these effects are related to kinematic endpoints
for scattering off soft Higgs bosons, and can be regularized simply by keeping the thermal
Higgs mass finite.

In the presence of chemical potentials, some care is needed with virtual lines as well.
For instance, as discussed below eq. (4.18), q0 may cross zero despite the particle having a
mass, and then nτ1σ1 has a would-be pole at q0 = µ1 − ν1 if τ1σ1 = +, which is lifted by
the second factor. If we expand in chemical potentials, the pole is of second order, but it
is still lifted. In order to account for this, it is helpful to make use of the representation
given below eq. (4.18).

5.3 Small-angle 1 + n↔ 2 + n reactions

Even if at first sight simpler than 2 ↔ 2 and 1 ↔ 3 scatterings, it turns out that the IR
structure of 1↔ 2 reactions is more complicated, as the phase space is strongly constrained
by masses. This implies that a subclass of 1 + n ↔ 2 + n reactions, with n ≥ 1, can be
as important as the 1 ↔ 2 reactions, and needs to be incorporated through Landau-
Pomeranchuk-Migdal (LPM) resummation [1, 3, 37]. The procedure requires the inclusion
of “asymptotic”, i.e. large-momentum thermal mass corrections [33]. The full information
cannot be easily deduced from a matrix element squared like eq. (2.14), and therefore
requires an effort specific to the application in question. Profitting from ideas put forward
in ref. [30], LPM-resummed results have been extended up to NLO in some cases [38–40].

Similarly to section 5.1, LPM resummation requires a subtraction-addition step, man-
ifestly avoiding the danger of double counting. It is important here that as LPM resumma-
tion is normally implemented after making use of kinematic simplifications pertinent to the
ultrarelativistic regime, the subtraction should adhere to the same simplifications, guaran-
teeing that the resummation only has a negligible (higher-order) effect in domains where
it is not justified. It is an open problem, deserving further study, how LPM resummation
could be smoothly connected to kinematic domains beyond the ultrarelativistic one.

For the concrete example of figure 1, even though we do not discuss LPM resummation
itself here, for the reason just mentioned, the subtraction term can be deduced from the
same HTL computation that led to eq. (5.11). The difference to eq. (5.11) is that in 1↔ 2
reactions, the lepton is on-shell and timelike, and therefore we need to pick up the pole part
from eq. (5.9).10 Subsequently we again need to re-expand ρ̂µ up to O(g2T 2) ∼ O(m2

`T )
to obtain the terms to be subtracted. However, great care is needed here: in eq. (2.37),
we have reconstructed only a part of the virtual corrections to 1 ↔ 2 scatterings, namely

10Mathematically speaking, the denominator has multiple zeros, however only the trivial one at q0 ≈√
q2 +m2

`T plays a role in the large-momentum regime pertinent to LPM resummation.
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those that have a counterpart on the side of 2↔ 2 and 1↔ 3 scatterings. This subset does
not include the corrections that modify the lepton mass but do nothing else. Therefore,
only terms from the numerator of eq. (5.9) play a role in the re-expansion. Renaming the
mass in the denominator to m2

˜̀, which is viewed as an IR regulator like in eq. (5.11), this
leads to

∆ΓHTL
1↔2 = −scat1↔ 2(˜̀, φ)m2

`T P

{(
ε0 −

~ε · p˜̀ε˜̀

p2
˜̀

)
1
p˜̀

ln
∣∣∣∣ε˜̀− p˜̀
ε˜̀ + p˜̀

∣∣∣∣− 2~ε · p˜̀

p2
˜̀

}
. (5.14)

Here the integration boundaries and angle are from eqs. (4.20) and (4.21), and the expres-
sion in curly brackets represents an angular average of the type in eq. (C.1). Eq. (5.14) is
closely related to and indeed subtracts most of the first term on the first line of eq. (2.37).

The numerical magnitude of eq. (5.14) will be illustrated in figure 3. We note that the
IR divergences of eqs. (5.11) and (5.14) cancel against each other when m˜̀→ 0 [36]; the
IR divergence of eq. (5.14) originates from the region of small ε˜̀, where the phase space
distributions in scat1↔ 2(˜̀, φ) take the same form as on the right-hand side of eq. (5.13).

5.4 How about real intermediate states?

One issue frequently discussed in the Boltzmann equation literature is that of “real in-
termediate states” (cf., e.g., ref. [41]). Consider a reaction in which the Mandelstam
variable entering a line can coincide with the mass-squared of that particle. This case
emerges, for instance, if we consider the process in figure 1 (left), and let the scalar de-
cay into a tt̄ pair, assuming that with thermal modifications it could be possible to have
M − m` > mφ > 2mt. The general conditions for the appearance of real intermediate
states were listed in eqs. (3.6)–(3.11).

If the propagator in question appears quadratically in the cross section, the thermal
phase space average looks potentially divergent. In our procedure, as specified in section 3,
this is regularized by treating the quadratic propagator as a mass derivative of a principle
value, rendering the average integrable. There is necessarily also a 1 ↔ 2 reaction in
which the resonant intermediate state appears as a real particle. Virtual corrections to
these 1↔ 2 processes (a closed tt̄ loop in the above example) reflect the same singularity.
Specifically, after angular averaging, the remaining energy integrals, from eqs. (4.19) and
(4.25), cross a hypersurface where the argument of a logarithm vanishes. Even though
this is again integrable, an efficient numerical procedure normally requires dividing the
integration domain into subregions, so that the singularities appear at their boundaries.

To summarize, real intermediate states (or, in the language of section 3, actual poles)
in the matrix elements squared lead to no IR singularities in our framework. However,
their appearance makes it more tedious to render the practical integrations efficient.

6 Description of algebraic and numerical procedures

Let us summarize in a procedural fashion an algorithm implementing the ingredients in-
troduced in sections 2 and 4.
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The general philosophy is to start from a 1→ 3 amplitude, like in eq. (2.14), describing
how a “non-equilibrium” particle decays into “plasma” particles (the process does not need
to be kinematically allowed in practice). Let us stress again that even if we refer to a decay,
inverse processes are always included as well. The non-equilibrium particle represents a
slow variable which may fall out of equilibrium or never enter it in the first place, whereas
the plasma particles are fast ones, with their density matrices fully characterized by a
temperature and a handful of chemical potentials. There are really two algorithms, an
algebraic [a] and a numerical one [n]. Their ingredients are:

• input parameters describing plasma particles [n]:

These parameters include the temperature; various chemical potentials (lepton and
baryon asymmetries, gauge field backgrounds); effective couplings and masses like
g1, g2,m˜̀,mφ̃

in eq. (2.14), which may incorporate “hard loop corrections” from fast
processes, whereby these are in general functions of the temperature; masses ma,
chemical potentials µa, and statistics σa, associated with the final state of the 1→ 3
process; a specification for negative index choices, according to eq. (A.2).

• input parameters describing the non-equilibrium particle [n]:

Momentum k, mass M , and energy ω =
√
k2 +M2; polarization state, e.g. through

the four-momentum E in eq. (2.14); Standard Model quantum numbers of the vertex
to which the non-equilibrium particle couples, e.g. through its possible dependence
on the lepton flavour in eq. (2.14).

• definition of auxiliary functions [n]:

The basic functions appearing are nσ(ε) from eq. (2.1); the kinematic (Källén) func-
tion from eq. (4.17); azimuthal averages, given by eqs. (4.10), (4.11); angular averages
for virtual corrections, given by G and H from eqs. (C.1), (C.2).

• input of 1→ 3 decay rate [a]:

The key dynamical information enters through a function Θ(P1,P2,P3) (e.g.
eq. (2.14)), which effectively represents a matrix element squared for a Born-level
decay rate, ΓBorn

1→3 = scat1→ 3(a1, a2, a3) Θ(P1,P2,P3), with Pi ≡ Pai .

• reflection of 1→ 3 decay rate into other channels [a]:

The full (Born-level) interaction rate, incorporating the other channels and inverse
processes, is obtained from the 1 → 3 decay rate according to eq. (2.12). Subse-
quently, we can make use of permutations of momenta, to label the four-momenta
according to the conventions that we have adopted. For the 1→ 3 process there are
3! = 6 permutations, whereas for the 2↔ 2 and 3→ 1 cases the identification of one
initial- or one final-state particle, respectively, leaves over a two-fold freedom that
can be used to rename variables. An automated implementation of this step requires
a software with wildcard pattern matching capabilities, such as form [42].

– 26 –



J
H
E
P
0
9
(
2
0
2
1
)
1
2
5

• identification of virtual corrections [a]:

The 1 → 3 rate permits for the automatic identification of IR sensitive virtual cor-
rections to 1 ↔ 2 processes, by searching for poles in the matrix elements squared,
determining the corresponding residues, and attaching these to the proper thermal
average (cf. section 2.2).

• integration measure and thermal distributions for given channel [a]:

Proceeding to the integration, two angles are fixed by energy-momentum conserva-
tion, e.g. from eq. (4.7); all kinematic invariants are fixed in terms of the chosen
integration variables, e.g. from eq. (4.8); thermal distributions can be represented in
a factorized form, e.g. from eq. (4.18); integration measure can be inserted, e.g. from
eq. (4.14).

• azimuthal average [a]:

A key ingredient of the parametrization is that one the remaining integrals, over
the azimuthal angle, can be carried out analytically. The dependence on the az-
imuthal angle originates through a single scalar product, for instance k · p1 in
eq. (4.10), which does not appear in thermal distributions. After the full expression
has been partial fractioned into terms containing positive powers of this variable, or
inverse powers of first-order polynomials, the azimuthal average can be inserted, from
eqs. (4.10), (4.11). For virtual corrections, the full angular averages can be resolved,
from appendix C.

• phase space integrals [n]:

The remaining at most three-dimensional integration can be carried out numeri-
cally, e.g. from eq. (4.14). In virtual corrections the integration is normally two-
dimensional.

• tests [n]:

The procedure contains some redundancies, which permit to crosscheck for its correct
implementation. For 2 ↔ 2 and 3 → 1 processes, if we override the permutations
used to select the “optimal” parametrization, we should get the same result for both
t- and s-channel parametrizations. For 1 ↔ 3 processes, all 3! relabellings of the
final-state momenta should lead to the same result.

Let us conclude by showing example plots for the case of eq. (2.14), for the plasma
input parameters g1 = 1/3, g2 = 2/3, µL = 10−3T , µY = 2 × 10−2T , where µY refers
to the hypercharge chemical potential. The properties of the decay products are set as
σ` = −1,m` = 0.1T, µ` = µL − µY /2; σγ = +1,mγ = 0.01T, µγ = 0; σφ = +1, mφ = T ,
µφ = µY /2. The auxiliary masses are set to m˜̀ = m` and m

φ̃
= mφ. For the non-

equilibrium particle we set M = 0.3T or M = 3T , choosing the helicity projection E = K
or E = U . Recalling our convention of referring to the side of the non-equilibrium particle
as the initial state, 1 → 3 channels are open for the mass M = 3T , and 3 → 1 channels
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for M = 0.3T . The 2 ↔ 2 scatterings are allowed in any case. The results are shown
in figure 2, including for comparison also the results originating from 1 ↔ 2 processes.
For further illustration, in figure 3 we show the influence of thermal resummations from
eqs. (5.11) and (5.14), whose effect is to replace the mass m˜̀ by the proper thermal lepton
massm`T . Our final results are obtained by summing together figures 2 and 3; the outcome
is shown in figure 4, this time as a function of M/T , for various fixed momenta k/T . The
conclusions that we draw from these plots are discussed in section 7.

Finally, even if we are able to produce accurate results for several test cases, it is ap-
propriate to acknowledge that numerical integrations become less efficient in certain limits.
Roughly speaking, the integrations are simple if all masses and momenta are of order T ,
whereas large scale hierarchies are challenging to handle. Examples are the non-relativistic
limit M � T , where a huge cancellation between real and virtual corrections demands
exquisite numerical precision, and the ultrarelativistic regime M � T , particularly with
k � T , where the literal integration ranges can be broad but the integrands are strongly
localized. Moreover, particle spectra leading to real poles can be costly, if principal value
integrations are regularized numerically rather than analytically (cf. sections 3 and 5.4). We
cannot exclude numerical inaccuracies if parameters are pushed to domains which happen
to have eluded our tests.

7 Conclusions and outlook

We have described a method to represent and evaluate thermal 2↔ 2 and 1↔ 3 scattering
rates, including a way to regularize and subtract the poles that appear in the matrix
elements squared. Choosing a language in which the side of the non-equilibrium particle is
called the initial state (even if both processes and inverse processes are always included),
the idea is to give as input a 1 → 3 matrix element squared, which displays maximal
symmetries, as all thermalized particles are in the final state (the process does not need to
be kinematically allowed). The 2↔ 2 and 3→ 1 scattering rates are obtained by crossing
relations, and the virtual corrections to 1↔ 2 rates that cancel their poles are automatically
identified (cf. section 2.2). Vacuum contributions can be pulled apart, so that the final
step is to carry out an exponentially convergent three-dimensional numerical integral. The
results have been worked out for general chemical potentials, and can therefore be applied
not only to cosmology but, potentially, to dense astrophysical environments as well.

In our framework, the full interaction rate can be represented as

Γ ≈ ΓBorn
2↔2,1↔3 + ∆ΓBorn

1↔2 + ∆ΓHTL
2↔2,1↔2 + ΓLPM

1+n↔2+n . (7.1)

The first part, ΓBorn
2↔2,1↔3, captures 2 ↔ 2 and 1 ↔ 3 rates, and the second, ∆ΓBorn

1↔2 ,
the virtual corrections that cancel their poles. The third part, ∆ΓHTL

2↔2,1↔2, represents a
subtraction-addition step implementing HTL resummation (cf. sections 5.1 and 5.3), which
replaces auxiliary masses, used as an intermediate IR regulator, through physical thermal
masses. The last part, ΓLPM

1+n↔2+n, with n ≥ 0, sums together 1 + n↔ 2 + n processes. In
the present paper, ΓLPM

1+n↔2+n has been approximated through its lowest-order term (n = 0),
ΓBorn

1↔2 , given that the corresponding formalism has not been generalized to the case that
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Figure 2. Examples of ΓBorn
2↔2,1↔3, with the matrix element from eq. (2.14), and ∆ΓBorn

1↔2, from
eq. (2.37). The sum of these two is compared with ΓBorn

1↔2, with the matrix element Θ(P`,Pφ) =
4E · P`. The mass is M = 0.3T (left) and M = 3T (right), with the other parameters explained
at the end of section 6. The top row shows results for E = K (normalizing to T 2), the bottom
row for E = U (normalizing to T ). The results are for mγ = 0.01T , noting that real and virtual
corrections separately depend strongly on this IR regulator, however the full result (solid line) is
independent of it.

some particles cease to be ultrarelativistic (in figures 2–4 we have chosen mφ = T to be
relatively “heavy”, whereby restricting to n = 0 should be a fair approximation).

The numerical importance of the virtual corrections can be appreciated from fig-
ure 2 (right). Due to the presence of logarithmic and double-logarithmic IR divergences [17],
the inclusion of only 2 ↔ 2 scatterings would overestimate the correct result by a factor
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Figure 3. Examples of a numerical evaluation of ∆ΓHTL
2↔2, from eq. (5.11), and ∆ΓHTL

1↔2, from
eq. (5.14), for M = 0.3T (left) and M = 3T (right). The top row shows results for E = K
(normalizing to T 2), the bottom row for E = U (normalizing to T ), with the other parameters
explained at the end of section 6. The purpose of these corrections is to replace the auxiliary
mass m˜̀ = 0.1T through the physical thermal lepton mass m`T ≈ 0.3T , which parametrizes HTL
propagators. The 2 ↔ 2 and 1 ↔ 2 corrections depend strongly on the IR regulator m˜̀, however
the full result (solid line) is almost independent of it, as long as we stay away from the constrained
domain M ∈ (mφ −m˜̀,mφ +m˜̀).

∼ 103 for these parameters. Moreover, 1 ↔ 3 rates, which are often overlooked, play an
equally important role as 2 ↔ 2 scatterings. When virtual corrections are included, the
result becomes much smaller than that from 1 ↔ 2 processes, and can be safely omitted.
This conclusion is not changed by HTL resummation, as illustrated in figure 3 (right).

The situation is very different for the parameters in figure 2 (left), where the non-
equilibrium particle is ultrarelativistic (M = 0.3T ). Even though there is still a substantial
cancellation between 2↔ 2 and 3↔ 1 rates and virtual corrections, the remainder is now
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Figure 4. Examples of ΓBorn
2↔2,1↔3 + ∆ΓBorn

1↔2 + ∆ΓHTL
2↔2,1↔2 from eq. (7.1), as a function of M , for

k = T (left) and k = 8T (right). The masses are m˜̀ = m` = 0.1T , mγ = 0.01T , m
φ̃

= mφ = T . The
spikes at around M = mφ ±m˜̀ result from an incomplete cancellation between the unresummed
ΓBorn

2↔2,1↔3 +∆ΓBorn
1↔2 and the HTL subtraction-addition contribution ∆ΓHTL

2↔2,1↔2, as the latter cannot
remove threshold singularities that originate from non-HTL structures, particularly the virtual
double-pole corrections (last line of eq. (2.37)). The spikes could be eliminated by sending m˜̀→ 0,
whereby the physical thermal lepton mass m`T ≈ 0.3T is reinstated by the HTL contribution.

larger than that from the 1↔ 2 processes, provided that k >∼ (a few)×T . This conclusion
is not changed by HTL resummation, whose influence is smaller at similar momenta, as is
illustrated in figure 3 (left). Furthermore the conclusion turns out to be strengthened if
mφ is reduced towards its physical high-temperature value, mφ ' 0.4T .

To summarize, if the non-equilibrium particle is ultrarelativistic (M � T ), it is es-
sential for quantitative investigations to include 2 ↔ 2 and 1 ↔ 3 rates as well as virtual
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corrections to 1 ↔ 2 ones. If the non-equilibrium particle is non-relativistic (M � T ), it
would be dangerous to incorporate 2 ↔ 2 or 1 ↔ 3 rates, without a full account of the
virtual corrections to 1↔ 2 processes that may cancel most of the result.11

A c code implementing the numerical parts of our procedure, and a form code im-
plementing the algebraic ones, are attached as ancillary files to this paper. Even if their
details are specific to the example in eq. (2.14), relevant for leptogenesis scenarios, the
structures and main steps are quite general. Therefore we hope that they can be applied
to other problems as well, for instance in the context of freeze-in dark matter production,
where the need for determining 2 ↔ 2 and 1 ↔ 3 scattering rates has been underlined
recently [12].
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A Proof of thermal crossing relations

A.1 2↔ 2 and 1↔ 3 real corrections

In order to handle any 2↔2 or 1↔3 reaction, we start by introducing the concept of a “mas-
ter” sum-integral. The master sum-integral originates by viewing the interaction rate as an
imaginary part (“cut”) of a retarded correlator, in analogy with the optical theorem. The
retarded correlator can in turn be represented as an analytic continuation of an imaginary-
time (Euclidean) correlator. This representation, even if sounding formal, is quite helpful,
as the imaginary-time expression automatically encodes many independent reactions as
well as the crossing symmetries between them. In particular, each such master structure
is IR finite by itself, containing no poles in accordance with the KLN theorem [23, 24].

As can readily be verified pictorially, 2↔ 2 and 1↔ 3 processes correspond to cuts of 2-
loop diagrams. Any 2-loop contribution can, in turn, be represented as a linear combination
of master sum-integrals. Inspired by ref. [43], we define a 2-loop master sum-integral as

Ij1···j6i1···i6 (a1, . . . , a6)

≡
∑∫
P,Q

j1HiP̃ + j2HiQ̃ + j3Hi(P̃−Q̃) + j4H−i(K̃+P̃ ) + j5H−i(K̃+Q̃) + j6H−iK̃

∆i1
P ;a1

∆i2
Q;a2

∆i3
P−Q;a3

∆i4
−K−P ;a4

∆i5
−K−Q;a5

∆i6
−K;a6

. (A.1)

Here Σ
∫
P ≡ T

∑
pn

∫
p is a Matsubara sum-integral, with pn referring to a bosonic or fermionic

Matsubara frequency, and P ≡ (pn,p). The imaginary-time external four-momentum is
denoted byK, the corresponding Minkowskian four-momentum by K. The indices ix, jx are

11The latter statement applies as such to a mass spectrum similar to that in our example, where the
non-equilibrium particle can be heavier than the plasma particles and experiences only inelastic reactions.
If it can participate in elastic scatterings, or if one of the plasma particles has a mass close to that of the
non-equilibrium one, 2↔ 2 reactions can dominate even in the non-relativistic regime.
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integers, whereas the ax label particle species (ax ∈ {h,W,Z,Q, νa, ea, u, d, . . .}). Masses
and chemical potentials appear through

∆P ;ax ≡ (pn + iµax)2 + p2 +m2
ax , ∆P ;−ax ≡ (pn − iµax)2 + p2 +m2

ax , (A.2)

where µax is the chemical potential, max is the mass, and p ≡ |p|. This notation implies
that ∆−P ;ax = ∆P ;−ax , where −ax labels an antiparticle. Momenta denoted by P̃ ≡
(pn + iµax ,p) include a shift by the chemical potential. The H factors in the numerator
denote helicity projections, for instance for spin- 1

2 particles

H
iP̃

= E · iP̃ , (A.3)

where E is some external four-momentum, e.g. K or the medium four-velocity U . For spin-1
fields the projectors are quadratic in momenta, for instance H

iP̃
= p2 − (p · k)2/k2 for the

sum over transverse polarization of on-shell photons. As the helicity projection is a linear
operation, we have assumed a linear dependence on H in eq. (A.1); this is a simplification,
even if we believe that the result holds more generally.

Once the Matsubara sums are carried out, eq. (A.1) contains spatial momentum in-
tegrals, weighted by Bose-Einstein and Fermi-Dirac distribution functions. We now an-
alytically continue k̃n to a Minkowskian frequency, and take the cut. The complete cut
involves virtual corrections to 1 ↔ 2 scatterings, as well as real processes, namely 2 ↔ 2
and 1↔ 3 scatterings. We first focus on the real processes, deferring virtual corrections to
appendix A.2.

Consider, for instance, a cut illustrated as

The corresponding expression reads

Im I
0j2j3j40j6
i11 1 1 i5i6

(a1, a2, a3, a4, a5, a6)
∣∣
k̃n→−i[ω+i0+]

⊃
[
scat1→ 3(a2, a3, a4)

+ scat2→ 2(−a2; a3, a4) + scat2→ 2(−a3; a4, a2) + scat2→ 2(−a4; a2, a3)
+ scat3→ 1(−a2,−a3; a4) + scat3→ 1(−a3,−a4; a2) + scat3→ 1(−a4,−a2; a3)

]
×

j2H−P2
+ j3H−P3

+ j4H−P4
+ j6H−K

(m2
a1 − s23)i1(m2

a5 − s34)i5(m2
a6 −M2)i6 , (A.4)

where we have denoted Pi ≡ Pai and sij ≡ (Pi + Pj)2.
Eq. (A.4) shows that the cases scat2→ 2 and scat3→ 1 can be obtained from scat1→ 3

by pulling one or two legs to the initial state, and inverting the signs of the corresponding
momenta and chemical potentials, thereby proving eq. (2.12) for a special example. The
notation in eq. (2.1) automatically takes care of minus signs associated with fermionic legs.

Finally, consider the other diagonal cut, going through the lines a1, a3, a5. By sub-
stituting P ↔ Q in eq. (A.1), the result can be directly obtained from eq. (A.4), just by
inverting a3 → −a3 and setting P3 → −P3 in the numerator. This confirms eq. (2.34).
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A.2 1↔ 2 virtual corrections

In analogy with the 2-loop master in eq. (A.1), we define a 1-loop master sum-integral as

J j1j2j3i1i2i3
(a1, a2, a3) ≡ ∑∫

P

j1HiP̃ + j2H−i(K̃+P̃ ) + j3H−iK̃

∆i1
P ;a1

∆i2
−K−P ;a2

∆i3
−K;a3

, (A.5)

where the propagator structures are defined according to eq. (A.2).
As originally demonstrated with scalar field theory [44], the imaginary part of eq. (A.5)

can be expressed in terms of phase space integrals, in particular

Im J
j1j2j3
1 1 i3

(a1, a2, a3)
∣∣
k̃n→−i[ω+i0+]= scat1↔ 2(a1, a2)

j1H−P1
+ j2H−P2

+ j3H−K

(m2
a3 −M2)i3 . (A.6)

Here we have set i1 = i2 = 1; results for higher powers can be obtained by taking derivatives
with respect to the masses m2

a1 and m2
a2 . This motivates eq. (2.26).

In order to verify eq. (2.28), we may start from eq. (A.4) but choose, for instance,
i5 = 0, eliminating one of the poles. Simplifying other index choices as well, the part
corresponding to 2↔ 2 and 1↔ 3 processes then amounts to

Im I
0j2j3j40j6
1 1 1 1 0 0 (a1, a2, a3, a4, a5, a6)

∣∣
k̃n→−i[ω+i0+]

⊃ scat1→ 3(a2, a3, a4)
j2H−P2

+ j3H−P3
+ j4H−P4

+ j6H−K

(m2
a1 − s23) , (A.7)

with the other channels following by crossings according to eq. (A.4). We note that this
channel has a pole of the type in eq. (2.27), with a residue −1. It is then sufficient to work
out the corresponding virtual contributions, i.e. the ones in which the lines a1 and a4 are
cut. This yields precisely the structure in eq. (2.28), with the same overall −1.

Finally, for eq. (2.35), we need to consider two possibilities, cutting the lines a1, a4 on
one hand, and a2, a5 on the other. According to eq. (A.1), the results can be related to
each other through the substitution P ↔ Q. In any case, eq. (2.35) can be confirmed.

B Further thermal averages

In this appendix we supplement the procedure described in section 4.1 for t-channel 2↔ 2
scatterings, by working out thermal averages for the other channels appearing in eq. (2.12).

B.1 1→ 3 reactions

For 1 → 3 reactions, all particles (apart from the “external” one, carrying the momen-
tum K) appear on one side and can thus be interchanged as far as momentum labellings
are concerned. Let us use this freedom to choose s12 = (P1 + P2)2 as a potentially IR
sensitive Mandelstam variable. If another Mandelstam variable appears, it can be chosen
as s23 through further permutations. For the example in eq. (2.14), with the momenta for
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scat1→ 3(a1, a2, a3) labelled as Pi ≡ Pai , this gives

ΓBorn
1→3

2(g2
1 + 3g2

2) → scat1→ 3(`, γ, φ)
{
− E · P1
s12 −m2

˜̀
+

(M2 −m2
φ) E · (P2 + 2P1)

(s12 −m2
˜̀)(s23 −m2

φ̃
)

}

+scat1→ 3(φ, γ, `)
{
−E · (P3 +K)

s12 −m2
φ̃

−
2m2

φ E · P3
(s12 −m2

φ̃
)2

}
. (B.1)

The goal now is to have s12 as an integration variable. To this end we introduce a
four-momentum Q such that s12 = Q2, and write the phase space integration measure from
eq. (2.3) as∫

dΩ1→3 =
∫ d3p1 d3p2 d3p3 d4Q

8(2π)9ε1(p1) ε2(p2) ε3(p3)
(2π)4 δ(4)(P1 + P2 −Q

)
δ(4)(Q+ P3 −K

)
= 1

8(2π)5

∫ d3p2 dq0 d3q
ε1(q−p2) ε2(p2) ε3(q−k)

δ
(
ε1(q−p2) + ε2(p2) − q0

)
δ
(
q0 + ε3(q−k) − ω

)
,

(B.2)

where we have integrated over p1 and p3. The Dirac-δ’s fix two angles as

q · p2 = q0 ε2(p2) + m2
1 −m2

2 − s12
2 , q · k = q0ω + m2

3 −M2 − s12
2 . (B.3)

The other Mandelstam variables can be expressed as

s13 = m2
2 +M2 + 2(k · p2 − ωε2(p2)) , s23 = m2

1 +m2
3 − s12 − 2(k · p2 − ωε2(p2)) . (B.4)

As discussed below eq. (4.8), the dependence on k · p2 should be partial fractioned.
The azimuthal average of the angle between k and p2 can be worked out like in

eqs. (4.10)–(4.11), with the exchange p1 ↔ p2. Resolving the energy-conservation con-
straints in eq. (B.2), and replacing subsequently q through s12 = q2

0 − q2, the integration
measure for the 1→ 3 channel becomes∫

dΩ1↔3 = θ(M −m1 −m2 −m3)
(4π)3k

∫ (M−m3)2

(m1+m2)2
ds12

∫ q+
0

q−0

dq0
2q

∫ ε+2

ε−2

dε2 , (B.5)

where q =
√
q2

0 − s12 and, making use of
√
λ from eq. (4.17),

q±0 ≡
ω(s12 +M2 −m2

3)± k
√
λ(s12,M

2,m2
3)

2M2 , (B.6)

ε±2 ≡
q0(s12 +m2

2 −m2
1)± q

√
λ(s12,m

2
1,m

2
2)

2s12
. (B.7)

The phase space distribution associated with 1→ 3 scatterings, cf. eq. (2.4), is conve-
niently factorized as in eq. (2.15), which after the insertion of q0 = ε1 + ε2 = ω − ε3 from
eq. (B.2), as well as the employment of nσ(−ε) = −1− nσ(ε), yields

Nσ1σ2σ3 =
[
nσ1σ2(q0 − µ1 − µ2)− nσ3(q0 − ω + µ3)

][
nσ2(ε2 − µ2)− nσ1(ε2 − q0 + µ1)

]
.

(B.8)
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Integrals over ε2 are exponentially convergent at large ε2; those over q0 are localized close
to the lower bound q−0 .

In the massless limit, the integration range in eq. (B.5) collapses to a point. Therefore
thermal IR divergences of the type discussed in section 5.1 are absent in 1→ 3 decays.

B.2 s-channel 2↔ 2 reactions

The part of 2 ↔ 2 reactions that cannot be put in the form treated in section 4.1 are
s-channels reactions. With the labelling for scat2→ 2(−a1; b1, b2) chosen as K1 ≡ −Pa1

,
Pi ≡ Pbi , ν1 ≡ −µa1

, µi ≡ µbi
, so that the sign flips necessary for initial-state momenta

and chemical potentials are already explicit when using K1 and ν1, the s-channel part
originating from eq. (2.14) becomes

ΓBorn
2↔2(s)

2(g2
1 + 3g2

2) → scat2→ 2(−φ; γ, `)
{
− E · P2
s−m2

˜̀
+

(M2 −m2
φ) E · (P1 + 2P2)

(s−m2
˜̀) (t−m2

φ̃
)

}

+scat2→ 2(−`; γ, φ)
{
E · (K1 −K)
s−m2

φ̃

+
2m2

φ E · K1
(s−m2

φ̃
)2

}
. (B.9)

The goal now is to have s as an integration variable. For this aim we introduce a four-
momentum Q such that s = Q2, and define s-channel parametrization of the integration
measure from eq. (2.6) as∫

dΩs
2↔2 ≡

∫ d3p1 d3p2 d3k1 d4Q
8(2π)9ε1(p1) ε2(p2)E1(k1)

(2π)4 δ(4)(P1 + P2 −Q
)
δ(4)(Q−K1 −K

)
= 1

8(2π)5

∫ d3p2 dq0 d3q
ε1(q−p2) ε2(p2)E1(q−k)

δ
(
ε1(q−p2) + ε2(p2) − q0

)
δ
(
q0 − E1(q−k) − ω

)
,

(B.10)

where we have integrated over p1 and k1. The Dirac-δ’s fix two angles as

q · p2 = q0 ε2(p2) + m2
1 −m2

2 − s
2 , q · k = q0ω + M2

1 −M2 − s
2 . (B.11)

The other Mandelstam variables can be expressed as

t = m2
2 +M2 + 2(k · p2 − ωε2(p2)) , u = m2

1 +M2
1 − s− 2(k · p2 − ωε2(p2)) . (B.12)

The azimuthal average of the angle between k and p2 can be worked out like in
eqs. (4.10)–(4.11), with the exchange p1 ↔ p2. Resolving the energy-conservation con-
straints in eq. (B.10), the integration measure becomes∫

dΩs
2↔2 = 1

(4π)3k

∫ ∞
ω+M1

dq0

∫ k+
√

(q0−ω)2−M2
1

|k−
√

(q0−ω)2−M2
1 |

dq θ
(
s− (m1 +m2)2) ∫ ε+2

ε−2

dε2 , (B.13)

where ε±2 are from eq. (B.16). Subsequently we replace q through s = q2
0 − q2, resulting in∫

dΩs
2↔2 = 1

(4π)3k

∫ ∞
max((M +M1)2, (m1 +m2)2)

ds
∫ q+

0

q−0

dq0
2q

∫ ε+2

ε−2

dε2 , (B.14)
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where q =
√
q2

0 − s and

q±0 ≡
ω(s+M2 −M2

1 )± k
√
λ(s,M2,M2

1 )
2M2 , (B.15)

ε±2 ≡
q0(s+m2

2 −m2
1)± q

√
λ(s,m2

1,m
2
2)

2s . (B.16)

When using the s-channel parametrization, the phase space distribution associated
with 2↔ 2 scatterings from eq. (2.7) is conveniently factorized as in eq. (2.17), which after
the insertion of q0 = ε1 + ε2 = ω + E1 from eq. (B.10) yields

Nτ1;σ1σ2 =
[
nτ1(q0 − ω − ν1)− nσ1σ2(q0 − µ1 − µ2)

][
nσ2(ε2 − µ2)− nσ1(ε2 − q0 + µ1)

]
.

(B.17)

The latter factor guarantees that integrals over ε2 are exponentially convergent at large ε2;
those over q0 are localized close to the lower bound q−0 .

In the massless limit, the integration domain in eq. (B.13) becomes

lim
mi,M→0

∫
dΩs

2↔2 = 1
(4π)3k

∫ ∞
k

dq0

∫ q0

|2k−q0|
dq
∫ (q0+q)/2

(q0−q)/2
dp2 . (B.18)

Therefore q0 is never small, and q could be small only in the vicinity of q0 = 2k, however
around that point s ≈ 4k2 is large. Therefore s-channel 2 ↔ 2 scatterings do not lead to
IR divergences from small q0, q, of the type that were discussed in section 5.1.

In contrast, if we expand nτ1 from eq. (B.17) to first order in ν1, a second order pole
emerges. Thus a logarithmic divergence can originate from the domain around q0 ≈ ω, as
outlined in section 5.2, which is regularized by finite masses [35]. Likewise the final-state
distributions nσ1 , nσ2 can become singular if the particles are massless bosons and they
carry finite chemical potentials.

B.3 t-channel 3→ 1 reactions

Part of the 3→ 1 reactions from eq. (2.12) can be called t-channel ones, with the Mandel-
stam variables defined according to eq. (4.4). For eq. (2.14), with momenta and chemical
potentials labelled for scat1→ 3(−a1,−a2; b1) as Ki ≡ −Pai , P1 ≡ Pb1

, νi ≡ −µai , µ1 ≡ µb1
,

so that the sign flips necessary for initial-state momenta and chemical potentials are already
included when using Ki and νi, the t-channel processes amount to

ΓBorn
3→1(t)

2(g2
1 + 3g2

2) → scat3→ 1(−`,−φ; γ)
{
E · K1
t−m2

˜̀
+

(M2 −m2
φ) E · (P1 − 2K1)

(t−m2
˜̀) (u−m2

φ̃
)

}

+scat3→ 1(−γ,−φ; `)
{
− E · P1
t−m2

˜̀
+

(m2
φ −M2) E · (K1 − 2P1)
(t−m2

˜̀) (s−m2
φ̃
)

}
(B.19)

+
[
scat3→ 1(−φ,−`; γ) + scat3→ 1(−γ,−`;φ)

]{E ·(K2−K)
t−m2

φ̃

+
2m2

φ E ·K2
(t−m2

φ̃
)2

}
.
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Some of these channels are not allowed kinematically, but this is taken care of automatically
once we work out the integration measure, cf. eq. (B.23) below.

The goal now is to have t as an integration variable. To achieve this we introduce a
four-momentum Q such that t = Q2, and write the phase space integration measure for
3→ 1 reactions from eq. (2.9) as∫

dΩt
3→1 =

∫ d3k1 d3k2 d3p1 d4Q
8(2π)9E1(k1)E2(k2) ε1(p1)

(2π)4 δ(4)(K1 − P1 −Q
)
δ(4)(Q+K +K2

)
= 1

8(2π)5

∫ d3k1 dq0 d3q
E1(k1)E2(q+k) ε1(q−k1)

δ
(
E1(k1) − ε1(q−k1) − q0

)
δ
(
q0 + ω + E2(q+k)

)
.

(B.20)

The Dirac-δ’s fix two angles as

q · k1 = q0E1(k1) + m2
1 −M2

1 − t
2 , q · k = q0ω + t+M2 −M2

2
2 . (B.21)

The other Mandelstam variables can be expressed as

u = M2 +M2
1 − 2(k · k1 − ωE1(k1)) , s = m2

1 +M2
2 − t+ 2(k · k1 − ωE1(k1)) . (B.22)

The azimuthal average of the angle between k and k1 can be worked out like in
eqs. (4.10)–(4.11), with (k,p1) → (k,k1). Resolving the energy-conservation constraints
in eq. (B.20), and replacing subsequently q through t = q2

0 − q2, we note that q0 is always
negative and t is necessarily positive. The integration measure becomes∫

dΩt
3→1 = θ(m1 −M −M1 −M2)

(4π)3k

∫ (m1−M1)2

(M+M2)2
dt
∫ q+

0

q−0

dq0
2q

∫ E+
1

E−1

dE1 , (B.23)

where q =
√
q2

0 − t and, with
√
λ from eq. (4.17),

q±0 ≡
−ω(t+M2 −M2

2 )± k
√
λ(t,M2,M2

2 )
2M2 , (B.24)

E±1 ≡
q0(t+M2

1 −m2
1)± q

√
λ(t,m2

1,M
2
1 )

2t . (B.25)

The phase space distribution associated with 3 → 1 scatterings, from eq. (2.10), is
conveniently factorized as in eq. (2.18), which after the insertion of q0 = E1−ε1 = −ω−E2
from eq. (B.20) yields

Nτ1τ2;σ1 =
[
nτ1σ1(q0 + µ1 − ν1)− nτ2(q0 + ω + ν2)

][
nτ1(E1 − ν1)− nσ1(E1 − q0 − µ1)

]
.

(B.26)

Integrals over E1 are exponentially convergent at large E1; those over q0 are localized close
to the upper bound q+

0 .
In the massless limit, the integration domain of eq. (B.23) shrinks to a point. Thus

there are no thermal IR problems of the type discussed in section 5.1.
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B.4 s-channel 3→ 1 reactions

The remaining processes from eq. (2.12) are s-channel 3 → 1 reactions. For the example
of eq. (2.14), with momenta and chemical potentials labelled for scat1→ 3(−a1,−a2; b1) as
Ki ≡ −Pai , P1 ≡ Pb1

, νi ≡ −µai , µ1 ≡ µb1
, so that the sign flips necessary for initial-state

momenta and chemical potentials have already been included when using Ki and νi, they
amount to

ΓBorn
3→1(s)

2(g2
1 + 3g2

2) → scat3→ 1(−γ,−`;φ)
{
E · K2
s−m2

˜̀
+

(m2
φ −M2) E · (K1 + 2K2)
(s−m2

˜̀) (t−m2
φ̃
)

}

+scat3→ 1(−γ,−φ; `)
{
−E · (P1 +K)

s−m2
φ̃

−
2m2

φ E · P1
(s−m2

φ̃
)2

}
. (B.27)

The goal now is to have s as an integration variable. We introduce a four-momentum
Q such that s = Q2, and write the phase space integration measure for 3 → 1 reactions
from eq. (2.9) as∫

dΩs
3→1 =

∫ d3k1 d3k2 d3p1 d4Q
8(2π)9E1(k1)E2(k2) ε1(p1)

(2π)4 δ(4)(K1 +K2 −Q
)
δ(4)(Q−P1 +K

)
= 1

8(2π)5

∫ d3k2 dq0 d3q
E1(q−k2)E2(k2) ε1(q+k)

δ
(
E1(q−k2) + E2(k2) − q0

)
δ
(
q0 − ε1(q+k) + ω

)
.

(B.28)

The Dirac-δ’s fix two angles as

q · k2 = q0E2(k2) + M2
1 −M2

2 − s
2 , q · k = q0ω + s+M2 −m2

1
2 . (B.29)

The other Mandelstam variables can be expressed as

t = M2 +M2
2 − 2(k · k2 − ωE2(k2)) , u = m2

1 +M2
1 − s+ 2(k · k2 − ωE2(k2)) . (B.30)

The azimuthal average of the angle between k and k2 can be worked out like in
eqs. (4.10)–(4.11), with (k,p1) → (k,k2). Resolving the energy-conservation constraints
in eq. (B.28), and replacing subsequently q through s = q2

0 − q2, the integration measure
becomes∫

dΩs
3→1 = θ(m1 −M −M1 −M2)

(4π)3k

∫ (m1−M)2

(M1+M2)2
ds
∫ q+

0

q−0

dq0
2q

∫ E+
2

E−2

dE2 , (B.31)

where q =
√
q2

0 − s and, with
√
λ from eq. (4.17),

q±0 ≡
−ω(s+M2 −m2

1)± k
√
λ(s,M2,m2

1)
2M2 , (B.32)

E±2 ≡
q0(s+M2

2 −M2
1 )± q

√
λ(s,M2

1 ,M
2
2 )

2s . (B.33)
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The phase space distribution associated with 3 → 1 scatterings, from eq. (2.10), is
conveniently factorized as in eq. (2.19), which after the insertion of q0 = E1 +E2 = ε1 − ω
from eq. (B.28) yields

Nτ1τ2;σ1 =
[
nτ1τ2(q0 − ν1 − ν2)− nσ1(q0 + ω − µ1)

][
nτ2(E2 − ν2)− nτ1(E2 − q0 + ν1)

]
.

(B.34)

Integrals over E2 are exponentially convergent at large E2; those over q0 are localized close
to the lower bound q−0 .

In the massless limit, the integration domain of eq. (B.31) shrinks to a point. Thus
there are no thermal IR problems of the type discussed in section 5.1.

C Angular averages for virtual corrections

We define here angular averages that appear in the virtual corrections discussed in sec-
tion 4.2.

Let (θ, ϕ) be the spherical angles associated with a loop momentum, which in the
following we denote by pa. The axis with respect to which θ is measured will be specified
later on, but the choice plays no role, as all angles are integrated over. The angular average
is taken in the presence of two further vectors, denoted by pd and k, and sometimes it is
also convenient to employ pe ≡ k− pd. We are concerned with two types of averages,

Gpa;pd,k;z Pn(pa · k) ≡
∫ +1

−1

d cos θ
2

∫ 2π

0

dϕ
2π P

Pn(pa · k)
z − pa · pd

, (C.1)

Hpa;pd,k;z1,z2
Qn(pa · k) ≡

∫ +1

−1

d cos θ
2

∫ 2π

0

dϕ
2π P

Qn(pa · k)
(z1 − pa · pd)(z2 − pa · k) , (C.2)

where Pn, Qn are polynomials of degree n, and P denotes the principal value.
Starting with the latter average, the first step is to write

Qn(pa · k) = Qn(z2) +Qn(pa · k)−Qn(z2)
≡ Qn(z2) + (z2 − pa · k) Q̃n−1(pa · k) . (C.3)

If we express the original polynomial as Qn(pa ·k) = ∑n
i=0 ai (pa ·k)i, then Q̃n−1(pa ·k) =∑n−1

j=0 bj (pa · k)j , where the coefficients read bj = −∑n
i=j+1 ai z

i−j−1
2 . Thereby eq. (C.2)

becomes

Hpa;pd,k;z1,z2
Qn(pa · k) = Hpa;pd,k;z1,z2

Qn(z2) + Gpa;pd,k;z1
Q̃n−1(pa · k) . (C.4)

For the first term, we combine the denominators with a Feynman parameter,
1

(z1 − pa · pd)(z2 − pa · k) =
∫ 1

0
ds 1

[s z1 + (1− s) z2 − pa · (k− spe)]2
, (C.5)

where we made use of pe = k − pd. The angle is now chosen as θ ≡ θpa,k−spe . There is
no dependence on ϕ, so that both integrals are readily carried out,∫ +1

−1

d cos θ
2

∫ 2π

0

dϕ
2π

1
[s z1 + (1− s) z2 − pa · (k− spe)]2

= 1
[s z1 + (1− s) z2]2 − p2

a |k− spe|2
. (C.6)

– 40 –



J
H
E
P
0
9
(
2
0
2
1
)
1
2
5

The denominator is a second order polynomial in s, and the integral over s yields∫ 1

0

ds
[s z1 + (1− s) z2]2 − p2

a |k− spe|2
= A(z1−z2)2−p2

ap
2
e , 2[z2(z1−z2)+p2

ak·pe] , z2
2−p2

ak
2 , (C.7)

where the value of Aα,β,γ is given by (α, β, γ ∈ R)

Aα,β,γ ≡
∫ 1

0
dxP 1

αx2 + βx+ γ
(C.8)

=


1√

β2−4αγ
ln
∣∣∣∣ β+2γ+

√
β2−4αγ

β+2γ−
√
β2−4αγ

∣∣∣∣ , β2 > 4αγ
2

β+2γ , β2 = 4αγ
2√

4αγ−β2
arctan

(√
4αγ−β2

β+2γ

)
, β2 < 4αγ

. (C.9)

Let us then turn to the average G from eq. (C.1). The idea here is to choose the angle
θpa,pd to play the role of θ. The other scalar product can be expressed as

pa · k = pak
(
cos θpa,pd cos θk,pd + sin θpa,pd sin θk,pd cosϕ

)
, (C.10)

where θk,pd is fixed by the outer integral (cf. eq. (4.21)). Inserting this as the argument
of Pn yields a polynomial in cosϕ. The azimuthal averages can now be carried out,

∫ 2π

0

dϕ
2π cosnϕ =

[1 + (−1)n]2Γ
(

1+n
2

)
4Γ
(

1
2

)
Γ
(

2+n
2

) . (C.11)

As only even powers contribute, the dependence on sin θpa,pd is quadratic, and can be
expressed in terms of cos2θpa,pd . It is convenient to write cos θpa,pd = pa · pd/(papd).
Thereby

〈Pn(pa · k)〉ϕ =
n∑
k=0

ck(pa · pd)k ≡ Rn(pa · pd) , (C.12)

and eq. (C.1) takes the form

Gpa;pd,k;z Pn(pa · k) =
∫ +1

−1

d cos θpa,pd
2 P

Rn(pa · pd)
z − pa · pd

. (C.13)

To carry out the remaining integral, we repeat the logic of eqs. (C.3) and (C.4).
We write

Rn(pa · pd) = Rn(z) + (z − pa · pd) R̃n−1(pa · pd) , (C.14)

where R̃n−1(pa · pd) = ∑n−1
l=0 dl (pa · pd)l, with the coefficients dl = −∑n

k=l+1 ck z
k−l−1.

Then

Gpa;pd,k;z Pn(pa · k) =
∫ +1

−1

d cos θpa,pd
2 P

{
Rn(z)

z − papd cos θpa,pd
+
n−1∑
l=0

dl p
l
ap
l
d coslθpa,pd

}
.

(C.15)
Both parts are easily integrated, yielding

Gpa;pd,k;z Pn(pa · k) = Rn(z)
2papd

ln
∣∣∣∣z + papd
z − papd

∣∣∣∣+ n−1∑
l=0

[1 + (−1)l]dl plapld
2(l + 1) . (C.16)
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