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Abstract
We revisit the classical Schmitter problem in ruin theory and consider it for randomly cho-
sen initial surplus level U. We show that the computational simplification that is obtained 
for exponentially distributed U allows to connect the problem to m-convex ordering, from 
which simple and sharp analytical bounds for the ruin probability are obtained, both for the 
original (but randomized) problem and for extensions involving higher moments. In addi-
tion, we show that the solution to the classical problem with deterministic initial surplus 
level can conveniently be approximated via Erlang(k)-distributed U for sufficiently large k, 
utilizing the computational advantages of the advocated randomization approach.

Keywords  Schmitter problem · Ruin theory · Ruin probability · Laplace transform · 
Stochastic ordering · Erlangization

1  Introduction

At the ASTIN Colloquium 1990 in Montreux, the Swiss actuary Hans Schmitter pre-
sented an algorithm for the exact evaluation of the ruin probability �(u) of a Cramér-
Lundberg surplus process for an insurance portfolio with initial surplus u, for the case 
when the claim amount distribution is discrete on a finite range (Schmitter (1990)). 
Also inspired by Bowers (1969), he then posed the following question: If the indi-
vidual claims are known to have mean � and variance �2, which claim size distribu-
tions minimize or maximize the ruin probability for a given u, respectively? I.e., the 
problems are
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where X is the random variable describing the individual claim sizes. This problem was then 
further discussed by Brockett et al. (1991) and taken up in Kaas (1991), where it was also 
extended to the related problem of finding extremal values of stop-loss premiums for com-
pound Poisson distributions with similar moment restrictions. Much later, De Vylder et al. 
(1997b); De Vylder and Marceau (1996) provided a numerical solution to the Schmitter prob-
lem based on a renewal equation that approximates the classical ruin model using a discrete 
time grid and partially solved the original problem in De Vylder et al. (1997a).

While on the basis of these contributions the problem can be considered as quite well 
understood, it was never solved in full generality. Correspondingly, despite the consider-
able time that has passed since then and the gradual shift of criteria for solvency consid-
erations in insurance practice in the meantime, we would like to add an additional layer 
of complexity and understanding of the Schmitter problem in this paper by taking the 
perspective of a randomized initial surplus level.

Randomization as a principle has proven to be a very useful tool in risk theory lead-
ing to simpler expressions (see e.g. Albrecher et  al. (2013), Ivanovs (2013)) or even 
unexpected identities (Albrecher and Ivanovs (2017)), but particularly also to consider-
able computational advantages (cf. Carr (1998), Asmussen et al. (2002), Albrecher and 
Goffard (2021)). The idea for the latter computational approach is to replace a determin-
istic quantity by a random variable with matching expected value, often with the advan-
tage of smoothing the corresponding computational problem, leading to simpler and 
amenable expressions. In a final step, if possible the variance of that random variable is 
reduced considerably such that the resulting value can be an excellent approximation of 
the original computationally complex problem (“Erlangization”).

In our setting, we replace the deterministic initial surplus level u by an exponentially 
distributed random variable U with mean u. The expected value of the resulting ruin 
probability can then be expressed in terms of the (simpler) Laplace transform of the 
classical ruin probability under the Cramér-Lundberg model. At this level, analytical 
lower and upper bounds for the ruin probability in the Schmitter problem can then be 
established utilizing the strong results in the theory of m-convex orders obtained by 
Denuit et al. (1999, 1998) (see also Lefèvre et al. (2020) for a recent application of this 
ordering concept). In addition, the generality of the latter results in fact allows to give 
sharp upper and lower bounds for the ruin probability when more than two moments of 
the underlying claim size distribution are specified, which can be seen as an extension 
of the Schmitter problem that naturally narrows the gap between the upper and lower 
bound. For a comprehensive survey of stochastic orderings we refer to the monographs 
by Kaas et al. (1994), Shaked and Shanthikumar (1994, 2007) and Müller and Stoyan 
(2002). More recent treatments in a specifically actuarial context include Kaas et  al. 
[Ch.7] (2008) and Asmussen and Steffensen [Ch.8] (2020).

Eventually, we are also interested in using these explicit expressions of the rand-
omized model to approximate the classical situation of deterministic initial surplus 
level u. Developing the results further towards Erlang(k) distributed initial surplus, for 
increasing k (maintaining the expected value at u) this provides increasingly accurate 
approximations for the classical deterministic case, expressed through the explicit for-
mulas of the randomized model.

min/max �(u)

subject to X is a non-negative random variable,

with �(X) = � and Var(X) = �2,
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The remaining paper is structured as follows. First, Section 2 recapitulates the model setting 
and summarizes relevant results from the existing literature. In Section 3 we then analyze the 
problem for an exponentially distributed initial surplus level U. We obtain an expression for 
the corresponding (expected) ruin probability in terms of the Laplace transform of the classi-
cal ruin probability in the Cramér-Lundberg model, and provide sharp lower and upper bounds 
for it when the claim size is bounded. We also provide corresponding bounds in the case of 
more than two pre-specified moments of the claim size distribution. Moreover, we illustrate 
the resulting interval for particular numerical parameters and place various concrete (truncated) 
claim size distributions within these bounds. In Section 4, we expand the randomization idea 
towards Erlang(k)-distributed initial surplus, and in the spirit of Asmussen et  al. (2002) we 
approximate the ruin probability with deterministic surplus via Erlangization and Richardson 
extrapolation. We give numerical illustrations which show that the known and somewhat curi-
ous kinks in the graphs of the known optimal solutions of the classical Schmitter problem can 
be smoothly approximated with this randomization approach. In some cases, a small value of k 
is already sufficient for a good approximation, in others the value of k has to be quite consider-
able. Section 5 concludes.

2 � Preliminaries and Previous Results

Consider the classical Cramér-Lundberg model with surplus process

at time t ≥ 0 , where u is the initial surplus level. Here, S(t) = X1 +⋯ + XN(t) denotes the 
aggregate claims up to time t, where the number of claims {N(t); t ≥ 0} up to time t refers 
to a homogeneous Poisson process with rate 𝜆 > 0 and the claim sizes Xi, i = 1, 2,… , are 
independent and identically distributed random variables with distribution function FX and 
expected value �(X1) = � , independent of {N(t); t ≥ 0} . We assume that all moments of 
X1 exist. The premium income per unit of time is c = (1 + �)�� , where 𝜃 > 0 is the safety 
loading. Define the associated aggregate loss process as R(t) = S(t) − ct, for t ≥ 0. The 
probability �(u) of ultimate ruin is the probability that the surplus process C(t) ever drops 
below zero,

The maximal aggregate loss L = supt≥0 R(t) can be decomposed as the sum of ladder 
heights, i.e. as the sum of the amounts by which record lows (here denoted by L1, L2,… ) 
in the insurer’s surplus C(t) appear. Furthermore, the distribution of the Li (i = 1, 2,…) 
is given by the integrated tail distribution FLi

(x) = �−1 ∫ x

0
(1 − FX(z))dz , x > 0. It is well 

known that �(u) is given explicitly by the Pollaczeck-Khinchine formula

where F∗k
Li

 denotes the k-fold convolution of the ladder height distribution (see e.g. Asmussen  
and Albrecher  [Th.IV.2.1] (2009)). The latter expression shows that L is a compound  
geometric random variable and may be written as L =

∑M

k=1
Li, with M being the number 

of ladder heights. It is easy to see that M has a geometric distribution with parameter 

C(t) = u + ct − S(t),

𝜓(u) = ℙ

(
inf
t≥0 C(t) < 0

)
= ℙ

(
sup
t≥0

R(t) > u

)
.

(1)�(u) =
�

1 + �

∞∑
k=0

(
1

1 + �

)k

(1 − F∗k
Li
(u)),
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�(0) = 1∕(1 + �) (see, for example Asmussen and Albrecher  [Cor.IV.3.1] (2009)). The 
Laplace transform of (1) is well-known to be

where MX(−s) = ∫ ∞

0
e−sxdFX(x) is the Laplace-Stieltjes transform of X (cf. Rolski 

et al. [Th.5.3.3] (2009) or Asmussen and Albrecher [Cor.IV.3.4] (2009)).
For the case when the claim amount distribution has discrete support {x1, x2,… , xm} 

(with probabilities p1, p2,… , pm ), Schmitter (1990) gave an explicit expression to compute 
�(u) in the form

where zm = (u − l1 ⋅ x1 −⋯ − lm ⋅ xm)+∕� ⋅ (1 + �) and z+ = max(z, 0).

In the context of the Schmitter problem, 2-point distributions for the claim size play 
a special role. If X assumes the values x1 with probability p and x2 > x1 with probability 
1 − p , then for fixed mean 𝜇 > 0 and variance 𝜎2 > 0 we simply have

or correspondingly

Notice that x2 is increasing in x1 . Moreover, one has the relationships

(see e.g. Kaas et  al. [Ch 10.2] (1994)). If we additionally assume that X ∈ [0, b] ,  
naturally x2 ≤ b, and we have 0 ≤ � ≤ b and 0 ≤ �2 ≤ �(b − �) . The following two extre-
mal cases will be particularly relevant later. Namely, X = {0, 0∗ ∶= (�2 + �2)∕�} and so 
p = �2∕(�2 + �2) and X = {b∗ ∶= � + �2∕(� − b), b}. In here, x∗ denotes the function that 
assigns to x the unique real number such that the random variable X = {x, x∗} has mean � 
and variance �2. Note that if b is not bounded, then as x1 ↑ � , p ↑ 1 and x2 → ∞ ; while the 
probability mass at x2 becomes arbitrarily small, it significantly contributes to the variance.

For any non-negative loss variable X, the stop-loss premium �X is defined by

Note that there is a one-to-one relation between the integrated tail distribution of 
X and its stop-loss premium, namely FLi

(z) = 1 − �X(z)∕�. One important concept 
in the theory of risk ordering is the stop-loss order. Concretely, a random variable X 
is said to be less risky than another random variable Y in stop-loss order ( X ≤sl Y  ) if 
�X(d) ≤ �Y (d) for all retentions d ≥ 0 (it is equivalent to increasing convex ordering, cf. 
Shaked and Shanthikumar (2007)). The problem of finding bounds for stop-loss premi-
ums is a classical topic in actuarial science, see for example Bühlmann et  al. (1977), 

(2)�̂(s) = ∫
∞

0

e−su�(u)du =
1

s
−

c − ��

cs − �(1 −MX(−s)),

�(u) = 1 −
�

1 + �

∑
l1,⋯,lm

(−zm)
l1+⋯lmezm

m∏
j=1

p
lj

j

lj!
,

� = x1 ⋅ p + x2 ⋅ (1 − p) and �2 + �2 = x2
1
⋅ p + x2

2
⋅ (1 − p),

(3)x1 = � −
�2

x2 − �
, x2 = � +

�2

� − x1
and p =

�2

�2 + (� − x1)
2
,

𝜎2

𝜇2 + 𝜎2
≤ p < 1, 0 ≤ x1 < 𝜇, and

𝜇2 + 𝜎2

𝜇
≤ x2

�X(d) = �((X − d)+) = �
∞

d

(1 − FX(z))dz, for d ≥ 0.
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Kaas and Goovaerts (1986) and Steenackers and Goovaerts (1991). For a study of the 
relation between stop-loss premiums and their associated ruin probabilities as well as 
general upper bounds for both stop-loss premiums and ruin probabilities see Cai and 
Garrido (1998) and the references therein.

A consequence of the above concept is that if for two Cramér-Lundberg risk pro-
cesses with equal premium per unit of time and claim intensity parameter, but differ-
ent claim sizes, say X and Y, with X ≤sl Y  we have �X(u) ≤ �Y (u) for all u ≥ 0 (see  
Kaas et  al.  [Ch.8.2,Th.2.1] (1994)). Correspondingly, the Schmitter problem may be 
seen as being reduced to finding extremal distributions in the stop-loss order in the class 
of random variables in [0, b] with mean � and variance �2 . However, as pointed out in 
Brockett et al. (1991) there are no extremal distributions in terms of stop-loss order in 
such a class.

Nevertheless one can construct stop-loss transforms in the corresponding range 
(bounded or not) with the given mean, but with minimal variance, larger than the given 
one. For two given moments, the latter is achieved by constructing a polynomial of 
degree 2 above the function (X − d)+ which is tangent to this function in 2 points. The 
abscissas of these points will be the mass points. For a comprehensive description of 
this construction see Kaas et  al. [Ch.10] (1994). In the following we briefly state its 
main consequences.

For unbounded X with mean � and variance �2 , the maximal stop-loss premium 
at fixed retention d is attained by a random variable Z with support {r, r∗} , where 
r, r∗ = d ∓

√
(� − d)2 + �2 , and from (3) then ℙ(X = r) = �2∕(�2 + (� − r)2) . Note that 

{r, r∗} is the 2-point support that has d in the middle. If X ∈ [0, b] , this 2-point distribu-
tion still gives an upper bound, but it is no longer always sharp. Theorem 2.3 in Kaas 
et al. [Ch.10] (1994) provides a sharp upper bound for stop-loss premiums for X ∈ [0, b] . 
For given retention d, the maximal stop-loss premium is attained by the distribution  
with the mass points

with the notation introduced before. However, these results do not provide an upper bound 
for the ruin probability in the Schmitter problem, because it is not the same extremal dis-
tribution across all values of d, but the latter would be needed to bequeath the dominance 
in terms of the stop loss premium from the integrated tail to all its convolutions in (1). 
However, Kaas (1991) showed that if X has lower stop-loss premiums than Y on the inter-
val [0, u], then the same property holds for compound sums with N terms of these random 
variables respectively, and ruin probabilities with an initial surplus u are lower for X than 
for Y. That is, for values of u smaller than 1

2
0∗ , the ruin probability is maximized by the 

2-point claim random variable X = {0, 0∗}. Consequently, in terms of the upper bound the 
Schmitter problem is solved for small values of the initial surplus u.

De Vylder and Marceau (1996) and De Vylder et  al. (1997b) provided numerical 
solutions to the problem based on a renewal equation in a discretized risk model. By 
restricting to lattice distributions, they used the method of linear combinations (see also  
Kaas et  al. [Sec.3] (1992)) to obtain optimal solutions to the problem. They  

{0, 0∗} if 0 ≤ d ≤ 1

2
0∗,

{r, r∗} if
1

2
0∗ ≤ d ≤ 1

2
(b + b∗),

{b∗, b} if
1

2
(b + b∗) ≤ d ≤ b
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noted that for u ≫ b the maximal ruin probability was given by the 2-point claim ran-
dom variable X = {b∗, b}. In fact, De Vylder et al. (1997a) then proved that there exists 
a constant c > 0 such that for all u ≥ c the maximal ruin probability is given by that 
2-point claim random variable. However, the concrete value of c as well as the optimal 
result for intermediate values of u seem to still not be settled up to this day.

The minimal stop-loss premium for risks X with mean � is given by (� − d)+ for all 
retentions d ≥ 0 , i.e. it is attained by the defective random variable Z concentrated at �, 
implying Z ≤sl X and therefore �Z(u) ≤ �X(u) for all u. However, Z does not fulfill the 
variance constraint, so that this is not a valid solution to the Schmitter problem. It does 
provide a general lower bound for its solution though, and for unbounded X the variance 
constraint can then be satisfied by adding an � (↓ 0) mass at infinity, see also Asmussen 
and Albrecher [Cor. IV.8.4] (2009).

3 � Exponentially Distributed Initial Surplus

Let us now replace the deterministic initial surplus u by a random variable U that has 
an exponential distribution with parameter s > 0 . The redefined surplus process then is

where c and S(t) are defined as in the classical ruin model, and U is independent of S(t). 
Using the convenient fact that this choice of U simply puts us in the framework of Laplace 
transforms, due to (2) the ruin probability 𝜓U(s) ∶= ℙ(CR(t) < 0 for some t > 0 ) is then 
given by

Since the randomization of the initial surplus corresponds to a probability-weighted 
averaging over situations with deterministic surplus, it is clear that this step leads to  
a smoothing of the ruin probability shape. Figure  1 compares the ruin probabili-
ties �(u) for deterministic surplus u = {1.5, 4.5, 9.0} and � = 0.5 (the parameters from  
Kaas [Fig.  1] (1991)) with the corresponding randomized quantities of the same 
expected initial surplus �(U) = 1∕s = u for 2-point distributions with given mean � = 3 
and variance �2 = 1 . One observes that the sensitivity w.r.t. the choice of the only free 
parameter x1 is substantially different, and the somewhat curious shape change for 
increasing u from the classical deterministic case is indeed evened out.

Let us now look at the randomized and extended Schmitter problem

with possibly more than two fixed moments of the claims size distribution. Inspired by 
Kaas (1991), using the maximal aggregate loss L and assuming that the moments of 
the claim size are finite, one can express the ruin probability in terms of the claim size 
moments, namely

CR(t) = U + ct − S(t), t ≥ 0,

(4)�U(s) ∶= �(�(U)) = ∫
∞

0

�(u)se−sudu = s ⋅ �̂(s) = 1 − s ⋅
c − ��

cs − �(1 −MX(−s))
.

min/max �U(s)

subject to �(Xk) = �k, for k = 1, 2,… ,m
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The first four terms of this series are given by

𝜓U(s) = ∫
∞

0

𝜓(u)se−sudu =

∞∑
k=0

(−1)k
sk+1

k! ∫
∞

0

uk𝜓(u)du

=

∞∑
k=0

(−1)k
sk+1

k! ∫
∞

0

ukℙ(L > u)du =

∞∑
k=1

(−1)k−1
sk

k!
𝔼(Lk)

=

∞∑
k=1

(−1)k−1
sk

k!
𝔼

(
𝔼

( ∑
l1+l2+⋯+lM=k

(
k

l1, l2,… , lM

) M∏
j=1

L
lj

j

|||M
))

.

Fig. 1   Ruin probabilities as a function of x1 for � = 3 , �2 = 1 , � = 0.5 for the three deterministic surplus 
levels u = 1.5, 4.5, 9 (left column) and the randomized counterpart with the same expected initial surplus 
level (right column)
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Hence, if the first m moments of X are given, then one can approximate

and investigate the behavior with respect to the highest moment. For example, for m = 2

Therefore, distributions with large third moment will make �U(s) small and vice versa. 
For 2-point distributions, a simple calculation shows that, 𝜕

𝜕x1
�(X3) = 𝜎2 +

(
𝜎2

𝜇−x1

)2

> 0 
and 𝜕

2

𝜕x2
1

�(X3) = 2
𝜎2

(𝜇−x1)
3
> 0. Thus, for x1 ∈ [0,�) , its third moment is increasing and con-

vex, so the maximum will be at x1 = 0 and the minimum at x1 → �. In fact, for determinis-
tic surplus and 2-point distributions, Kaas (1991) argued that as ∫ ∞

0
�(u)du = �(L) does 

not depend on x1 and ∫ ∞

0
u�(u)du = �(L2) increases linearly with the third moment of the 

claim distribution, so that for small u, the ruin probability will be large for x1 = 0.

While these considerations are intuitive, from (4) it becomes clear that for the extre-
mal values of the randomized ruin probability it suffices to minimize (maximize) the 
Laplace transform of the individual claim sizes, i.e. to find extremal random variables in 
the Laplace transform order. The Laplace transform order has been introduced by Rolski 
and Stoyan (1976) to compare waiting times in queuing theory. In actuarial science, Denuit 
(2001) studied both univariate and multivariate versions of the Laplace transform order 
and gave several actuarial applications. We can now give sharp bounds for the randomized 
Schmitter problem for two given moments.

Proposition 3.1  Let X be a non-negative random variable with mean � and variance �2 . 
Then

Proof  Note that e−s� is the Laplace transform of a random variable Y degenerate at �. 
Moreover, �2

�2+�2
+

�2

�2+�2
e−s(�+�

2∕�) is the Laplace transform of a random variable Z with 
mean � , variance �2 and such that ℙ(Z = 0) = 1 − ℙ(Z = (�2 + �2)∕�) =

�2

�2+�2
 . Therefore, 

as maximizing the Laplace transform of the individual claim sizes minimizes �U(s) and 

E(L) = �(M)�(L1) =
1

2��
�(X2)

E(L2) = �(M)�(L2
1
) + �(M(M − 1))�2(L1) =

1

3��
�(X3) +

1

2�2�2
�(X2)

E(L3) =
1

4��
�(X4) +

1

�2�2
�(X3)�(X2) +

3

4�3�3
�
3(X2)

E(L4) =
1

5��
�(X5) +

1

�2�2
�(X4)�(X2) +

2

3�2�2
�
2(X3)

+
1

6�3�3
�(X3)�2(X2) +

3

2�4�4
�
4(X2)

(5)�U(s) ≈ s�(L) −
s2

2
�(L2) +⋯ + (−1)m−1

sm

m!
�(Lm)

�U(s) ≈ s
�2 + �2

2��
−

s2

6��
�(X3) − s2

(�2 + �2)2

4�2�2
.

1 − s ⋅
c − ��

cs − �(1 − e−s�)
≤ �U(s) ≤ 1 − s ⋅

c − ��

cs − �(1 −
�2

�2+�2
−

�2

�2+�2
e−s(�+�

2∕�))
.
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vice versa, it suffices to show that Y ≤Lt X ≤Lt Z. The proof of the latter can be found in 
Shaked and Shanthikumar [Ch. 5, Theorem 5.A.21] (2007). 	�  ◻

It is worth noticing that the distribution maximizing the randomized ruin probability 
coincides with the 2-point distribution that maximizes the ruin probability under determin-
istic surplus for small values of u. This is rather intuitive, since �U(s) is a weighted average 
of �(u) with a lot of weight for small values of u.

If more moments of the claim size X in [0,  b] are specified, then one can obtain 
tighter upper and lower bounds for the randomized ruin probability. In view of (4), 
this reduces to the derivation of bounds for the Laplace transform of X in the moment 
space BS([0, b];�1,�2,… ,�m) of all risks X with range [0,  b] such that �(Xk) = �k for 
k = 1, 2,… ,m. Fortunately, our context fits exactly into the framework of Denuit et  al. 
(1999, 1998) who constructed lower and upper stochastic bounds for a given set of risks 
using m-convex stochastic orders. More precisely, consider the class Mm−cx of all func-
tions � ∶ [0, b] → ℝ whose (m + 1)-th derivative �(m+1)(x) exists and is non-negative, for 
all x ∈ [0, b] , or which are limits of sequences of functions whose (m + 1)-th derivative is 
continuous and non-negative on [0, b]. Define the partial order relation ≤m−cx among ele-
ments in BS as

provided the expectations exists. It is then possible to determine two discrete risks X(m)

min
 

and X(m)
max, in BS([0, b];�1,�2,… ,�m) with probability masses depending on the moment set 

(�1,�2,… ,�m) such that

Explicit descriptions for the distribution functions of the extrema up to m = 4 are 
obtained in Denuit et al. [Table 1, Table 2] (1999). Moreover, the latter reference also pro-
vided the extrema with respect to the order ≤m−cx when not only the first m − 1 moments 
and the support are given, but also when the density function of X is known to be unimodal 
with a known mode.1

Proposition 3.2  Let X ∈ [0, b], b > 0, with moments (�1,�2,… ,�m). Then,

which can then be translated to bounds for �U(s).

Proof  Since �(x) = (−1)m+1e−sx belongs to Mm−cx for s > 0, the claim follows from (6) 
and (7). 	�

The bounds for the Laplace transform using m−convex risks were already described 
in Denuit et  al. (2000), extending earlier works of Eckberg (1977), Whitt (1983) and 
Lefèvre et  al. (1986). In particular, Eckberg (1977) derived bounds for the Laplace 

(6)X ≤m−cx Y if and only if �(�(X)) ≤ �(�(Y)) for all functions � ∈ Mm−cx,

(7)X
(m)

min
≤m−cx X ≤m−cx X

(m)
max

for all X ∈ BS.

(8)
M

X
(m)
max
(−s) ≤ MX(−s) ≤ M

X
(m)

min

(−s), for m+1 odd

M
X
(m)

min

(−s) ≤ MX(−s) ≤ M
X
(m)
max
(−s), for m+1 even,

1  Note that in this paper we use the notation ≤
m−cx to denote m-convexity whenever the first m moments are 

available and not (m − 1) as it is standard in the m-convex risk literature.



	 Methodology and Computing in Applied Probability

1 3

transform up to the third moment using the theory of Chebychev systems and applied 
the bounds to problems in queuing and traffic theory. Moreover, the latter reference 
provides bounds for the case where no upper bound is known. We would also like to 
mention that, closely related to the theory of m-convex stochastic orders, using Markov-
Krein theory and the theory of Chebychev systems, Brockett and Cox (1984,  1985) 
obtained similar upper and lower bounds for the expected value of a function of some 
random variable with given moments. Also, De Vylder (1982,  1983),  De Vylder and 
Goovaerts (1982), Kaas and Goovaerts (1986) and Hürlimann (1998) examined related 
bounding problems.

Using (8) we can give explicit bounds for the ruin probability with exponentially distrib-
uted initial surplus in terms of the given parameters. For reference, we restate here the respec-
tive bounds given in Denuit et  al.  [Table 1, Table 2] (1999)) in terms of ruin probabilities 
when up to 4 moments of X are given:

Case m = 1 . If �1 is given, then X(1)

min
 is a random variable degenerate at �1 , and

Therefore,

Case m = 2 . If �1 and �2 are given, then

In this case, it can be seen that

Note that for b → ∞ the above expressions indeed converge to the bounds given in Propo-
sition 3.1.

Case m = 3 . If �1, �2 and �3 are given, then

X(1)
max

=

{
0 with p = 1 −

�1

b
,

b with 1 − p =
�1

b
.

�min
U

(s) = 1 − s ⋅
c − ��1

cs − �(1 − e−s�1 )
,

�max
U

(s) = 1 − s ⋅
c − ��1

cs −
��1

b
(1 − e−sb)

.

X
(2)

min
=

⎧⎪⎨⎪⎩

0 with p = 1 −
�2
1

�2

,

�2

�1

with 1 − p =
�2
1

�2

,
X(2)
max

=

⎧⎪⎨⎪⎩

b�1−�2

b−�1

with p =
(b−�1)

2

(b−�1)
2+�2−�

2
1

,

b with 1 − p =
�2−�

2
1

(b−�1)
2+�2−�

2
1

.

�min
U

(s) = 1 − s ⋅
c − ��1

cs − �(1 −
(b−�1)

2

�2+(b−�1)
2
e−s(�1−�

2∕(b−�1)) −
�2

�2+(b−�1)
2
e−sb)

,

�max
U

(s) = 1 − s ⋅
c − ��1

cs −
��2

1

�2+�2
1

(1 − e−s(�1+�
2∕�1))

.
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Then, the bounds for the ruin probability are given by

Case m = 4 . If �1 and up to �4 are given, then

Here,

As can easily be verified,

X
(3)

min
=

⎧
⎪⎨⎪⎩

r+ =
�3−�1�2+

√
(�3−�1�2)

2−4�2(�1�3−�
2
2
)

2�2
with p =

�1−r−

r+−r−
,

r− =
�3−�1�2−

√
(�3−�1�2)

2−4�2(�1�3−�
2
2
)

2�2
with 1 − p = 1 −

�1−r−

r+−r−
,

X(3)
max

=

⎧
⎪⎨⎪⎩

0 with p3 = 1 − p1 − p2,
�3−b�2

�2−b�1

with p1 =
(�2−b�1)

3

(�3−b�2)(�3−2b�2+b
2�1)

,

b with p2 =
�1�3−�

2
2

b(�3−2b�2+b
2�1)

.

�min
U

(s) = 1 − s ⋅
c − ��1

cs − �
(
1 −

(
1 −

�1−r−

r+−r−

)
e−sr− −

(
�1−r−

r+−r−

)
e−sr+

) ,

�max
U

(s) = 1 − s ⋅
c − ��1

cs − �

(
p1

(
1 − e

−s
�3−b�2
�2−b�1

)
+ p2

(
1 − e−sb

)) .

X
(4)

min
=

⎧
⎪⎪⎨⎪⎪⎩

0 with 1 − p+ − p−,

t+ =
�1�4−�2�3+

√
(�1�4−�2�3)

2−4(�1�3−�
2
2
)(�2�4−�

2
3
)

2(�1�3−�
2
2
)

with p+ =
�2−t−�1

t+(t+−t−)
,

t− =
�1�4−�2�3−

√
(�1�4−�2�3)

2−4(�1�3−�
2
2
)(�2�4−�

2
3
)

2(�1�3−�
2
2
)

with p− =
�2−t+�1

t−(t−−t+)
.

X(4)
max

=

⎧⎪⎪⎨⎪⎪⎩

z+ =
(�1−b)(�4−b�3)−(�2−b�1)(�3−b�2)+

√
�

2((�1−b)(�3−b�2)−(�2−b�1)
2)

with q+ =
�2−(b+z−)�1+bz−

(z+−z−)(z+−b)
,

z− =
(�1−b)(�4−b�3)−(�2−b�1)(�3−b�2)−

√
�

2((�1−b)(�3−b�2)−(�2−b�1)
2)

with q− =
�2−(b+z+)�1+bz+

(z−−z+)(z−−b)
,

b with 1 − q+ − q−.

� ∶=
(
(�1 − b)(�4 − b�3) − (�2 − b�)(�3 − b�2)

)2
− 4

(
(�1 − b)(�3 − b�2) − (�2 − b�1)

2
)(
(�2 − b�1)(�4 − b�3) − (�3 − b�2)

2
)

�min
U

(s) = 1 − s ⋅
c − ��1

cs − �
(
1 − q+e

−sz+ − q−e
−sz− − (1 − q+ − q−)e

−sb
) ,

�max
U

(s) = 1 − s ⋅
c − ��1

cs − �
(
p+(1 − e−st+ ) + p−(1 − e−st− )

) .
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3.1 � Numerical Illustrations

De Vylder [Sec.II, Ch.3] (1996) gives conditions for the class of all vectors 
(�1,�2,… ,�m) ∈ ℝ

m such that BS([0, b];�1,�2,… ,�m) is not empty. In Denuit et  al. 
[Sec.4.1] (1999), this class of all possible moment sequences is denoted by Dm([0, b]). 
Moreover, they provided expressions for the topological interior, Dm◦([0, b]) , of Dm([0, b]) 
up to m = 4. For completeness we cite the three cases relevant for our applications here, 
namely:

Figure  2 depicts the sharp bounds for the ruin probability with b = 100, � = 0.5 and 
s = 2∕5, i.e. �(U) = 2.5. The upper left figure shows the bounds for �1 = 3.95 as a func-
tion of �2 satisfying (�1,�2) ∈ D2◦([0, b]). For this case, we also know the upper bound 
solution of the Schmitter problem with deterministic surplus and we can compare the two. 
It turns out that the upper bounds of the randomized and the deterministic case are remark-
ably close. The upper right figure shows the sharp ruin probability bounds for three given 
moments as a function of �3 satisfying (3.95, 48.62,�3) ∈ D3◦([0, b]). As remarked in 

D1◦([0, b]) = {𝜇1 ∈ ℝ|0 < 𝜇1 < b},

D2◦([0, b]) = {(𝜇1,𝜇2) ∈ ℝ
2|𝜇1 ∈ D1◦([0, b]) and 𝜇

2
1
< 𝜇2 < 𝜇1b},

D3◦([0, b]) = {(𝜇1,𝜇2,𝜇3) ∈ ℝ
3|(𝜇1,𝜇2) ∈ D2◦([0, b]) and

𝜎2

𝜇1

(𝜎2 − 𝜇2
1
) − 2𝜇3

1
+ 3𝜇1𝜇2 < 𝜇3 < (b − 𝜇1)𝜎

2 −
𝜎4

b − 𝜇1

− 2𝜇3
1
+ 3𝜇1𝜇2}.

Fig. 2   Sharp bounds for the randomized ruin probability �
U
(2∕5) , considered as a function of �2, �3 and �4 

respectively
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the previous section, once sees that the ruin probability decreases with increasing third 
moment. As expected, the bounds are tighter as the knowledge of the second moment is 
incorporated. Finally, the graph at the bottom depicts the bounds of the generalized rand-
omized Schmitter problem for given four moments of X as a function of �4 , leading to yet 
tighter bounds. Note that in this numerical illustration the values of the first three moments 
were selected in such a way that one finds a feasible set of distribution parameters for all of 
the distributions in the following numerical illustration.

In order to illustrate the performance of the bounds and how they improve with the 
addition of moment information, we explicitly calculate �U(s) for some chosen claim size 
distribution in each case, suitably truncated so that it fits into the model setup:

•	 Case m = 1. Truncated Exponential ( � ) model with distribution function given by 

 and Laplace transform 

•	 Case m = 2.

–	 Truncated Gamma ( �, � ) model with distribution function 

 and Laplace transform 

 where �(�, x) = ∫ x

0
z�−1e−zdz is the lower incomplete gamma function.

–	 Truncated US-Pareto ( �, � ) (Lomax) model with distribution function 

 and Laplace transform 

 where Γ(�, x) = ∫ ∞

x
z�−1e−zdz is the upper incomplete gamma function.

•	 Case m = 3. Truncated generalized Gamma ( �, �, � ) model with density and distribu-
tion function given by 

FX(x) =
1 − e−𝜆x

1 − e−𝜆b
, 0 < x ≤ b, 𝜆 > 0,

MX(−s) =
�

� + s

1 − e−(�+s)b

1 − e−�b
.

FX(x) =
𝛾(𝛼, 𝛽x)

𝛾(𝛼, 𝛽b)
, 0 < x ≤ b, 𝛼, 𝛽 > 0,

MX(−s) =

(
�

� + s

)�
�(�, (� + s)b)

�(�, �b)
,

FX(x) =
1 −

(
𝜂

𝜂+x

)𝛼

1 −
(

𝜂

𝜂+b

)𝛼 , 0 ≤ x ≤ b, 𝛼, 𝜂 > 0,

MX(−s) =
�(�s)�e�s

1 −
(

�

�+b

)� (Γ(−�, �s) − Γ(−�, (� + b)s)),

fX(x) =
𝜏 x𝛼𝜏−1𝛽−𝛼𝜏e−(x∕𝛽)

𝜏

𝛾(𝛼, (b∕𝛽)𝜏 )
, FX(x) =

𝛾(𝛼, (x∕𝛽)𝜏 )

𝛾(𝛼, (b∕𝛽)𝜏 )
, 0 < x ≤ b, 𝛼, 𝛽 𝜏 > 0,
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 and Laplace transform 

In each case, the distribution parameters were determined using the method of moments 
for the given moment values set in the example above. For further details on claim size dis-
tributions and truncation see, for example, Albrecher et al. [Sec.3.3 & Ch.4] (2017).

The results are given in Fig. 3a where the exact ruin probabilities obtained using (4) 
together with the general bounds are plotted as a function of the expected initial surplus 
�(U) = 1∕s for the same set of parameters as above. In particular, b was selected in such a 
way that no strong truncation effect is present in the distributions. One sees that, for fixed 
�1 only, the truncated exponential case is nicely between the sharp bounds. However, these 
bounds are very wide. When information about the second moment of X is included, the 
tightness of the bounds improves significantly. From (5), one would expect that to be the 
case only for small values of s where information about the first two moments provides a 
good approximation for the ruin probability. However, we can see that even for large val-
ues of s the improvement is considerable. The tightness of the interval for possible ruin 
probabilities becomes even more remarkable when the first three moments are fixed. This 
illustrates that in the context of ruin probabilities, the knowledge of the first few moments 
of the claim size distribution already provides a very accurate approximation. In a broader 
statistical context, for an account on reconstructions of arbitrary distributions from given 
moments, see e.g. Mnatsakanov (2008). Finally, for recent progress on the general proba-
bility level concerning criteria of moment-determinacy of distributions, see Yarovaya et al. 
(2020).

Remark 3.1  All results from this section can easily be generalized to the case where the ini-
tial surplus is assumed to be a mixture of exponential random variables. Indeed, consider a 
random initial surplus O with density

with 0 < qi < 1,
∑n

i=1
qi = 1 and ki > 0 for i = 1,… , n. Then

Since Proposition 3.2 applies to any value s > 0, for every given set of m moment con-
straints and all ki > 0, i = 1,… , n, we obtain �min

U
(ki) ≤ �U(ki) ≤ �max

U
(ki). Therefore,

Consequently, when U is a mixture of exponential random variables, the lower and 
upper bounds for the expected ruin probability are linear combinations of the respective 

MX(−s) =

∞∑
k=0

(−�s)k

k!

�(� + k∕�, (b∕�)� )

�(�, (b∕�)�)
.

(9)fO(u) =

n∑
i=1

qikie
−ki⋅u,

(10)

�O ∶= �(�(O)) =

n∑
i=1

qi ∫
∞

0

�(u)kie
−kiudu =

n∑
i=1

qi ⋅ �U(ki) =

n∑
i=1

qiki ⋅ �̂(ki)

= 1 −

n∑
i=1

qiki
c − ��

cki − �(1 −MX(−ki))

n∑
i=1

qi�
min
U

(ki) ≤ �O ≤
n∑
i=i

qi�
max
U

(ki).
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upper and lower bounds for the ruin probability with exponentially distributed initial 
surplus.

Note that for obtaining these sharp bounds, one still needed to reduce the expressions to 
purely exponential components so that the bounds on Laplace transforms can be used. For 
more general assumptions on U (like a general phase-type distribution) that link cannot be 
carried over in such a direct way. In the next section, we will, however, study the case of 
Erlang(k) distributed U in more detail, which is of particular interest, as for large k a deter-
ministic initial surplus level can be approximated.

(A)

(B)

Fig. 3   Numerical illustration for bounds of the ruin probability under exponentially distributed initial sur-
plus
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4 � Erlang Distributed Initial Surplus

A natural extension of exponentially distributed random surplus is now to consider Erlang 
distributed initial surplus. Concretely, consider U to be an Erlang(k, s) random variable Ek 
with density

We then get

Here �̂(s) = 1∕s − �̂(s) denotes the Laplace transform of the survival probability of 
the classical Cramér-Lundberg risk process and we observe that its derivatives w.r.t. the 
Laplace argument lead to an explicit expression for the case of random Erlang-distributed 
initial surplus. We focus here on the classical Schmitter setting with fixed mean and vari-
ance of the claim size distribution. In Fig. 4 we depict the ruin probabilities for Erlang(k, s) 
distributed initial surplus for 2-point distributions as a function of x1 for a given mean and 
variance, for two expected surplus levels.

In contrast to the exponential case (k = 1) , there is unfortunately no direct relation 
between the optimization problem and the minimization (maximization) of the Laplace 
transform of the ruin probability. What we obtain is in fact an expression in terms of its 
(k − 1)-th derivative (with 𝜕(0)∕𝜕s(0)𝜙̂(s) = 𝜙̂(s) ). For example, for k = 2 we get

Thus, for a fixed parameter s, in order to maximize our ruin probability, we need to min-
imize an expression that depends on both the Laplace transform of X and its first derivative.

fEk
(x) =

1

(k − 1)!
skxk−1e−sx for k ≥ 1, s > 0, x > 0,

�E(k, s) ∶= �(�(Ek)) = ∫
∞

0

�(u)
sk

(k − 1)!
uk−1e−sudu = 1 +

(−s)k

(k − 1)!

�(k−1)

�s(k−1)
�̂(s).

𝜓E(2, s) = 1 + s2
𝜕

𝜕s
𝜙̂u(s) = 1 + s2

𝜕

𝜕s

c − 𝜆𝜇

cs − 𝜆(1 −MX(−s))

= 1 − s2
c + 𝜆

𝜕

𝜕s
MX(−s)

c − 𝜆𝜇

(
c − 𝜆𝜇

cs − 𝜆(1 −MX(−s))

)2

, s > 0.

Fig. 4   Ruin probabilities for Erlang(k, k/u) distributed surplus as a function of x1 for � = 3 , �2 = 1 , � = 0.5 
and �(U) as specified
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Since the variance of a Erlang distribution goes to 0 as k → ∞ , one particular motivation 
to consider Erlang distributed initial surplus is as a tool to approximate the case of deter-
ministic initial surplus, as in fact one has �E(k, s) → �(u) as k → ∞ . The approximation 
�(u) ≈ �E(k, s) , or Erlang smoothing, was considered in Asmussen et al. (2002) as a numeri-
cal scheme to approximate the finite horizon ruin probability by replacing the deterministic 
time horizon T by an “standarized” Erlang(k, k/T) random variable, which for k → ∞ becomes 
exact (see Asmussen and Albrecher [Ch.IX.8] (2009) for a more general discussion, as well as 
Stanford et al. (2005), Carr (1998) and Kyprianou and Pistorius (2003) for applications of this 
approach to other fields). Concerning the convergence rate with increasing k, for our context 
of random initial surplus one can adapt Theorem 6 of Asmussen et al. (2002) in a straight-
forward way to obtain the following result:

Proposition 4.1  Let u > 0 be the expected initial surplus and let Ek denote the Erlang dis-
tribution with shape parameter k and mean u. Then �E(k, s) → �(u) as k → ∞. More pre-
cisely, for some constant C

As already suggested in Asmussen et  al. (2002), a further improvement of accuracy for 
fixed k can be obtained by Richardson extrapolation. This is a general method (see e.g. Press 
et al. (2007) for details) for computing an abstract quantity y (it could be an integral, a deriva-
tive, etc.) accurately using a sequence yk → y for which the convergence rate is known,

where c1 is typically unknown but can be eliminated. In fact, setting ỹk = (k + 1)yk+1 − kyk, 
we get that ỹk → y and one obtains an improved approximation of convergence rate 
O(k−1−�).

Translated into our context, we then get

with an error rate of order 1∕k2.
For an illustration of the method, consider the same example as in Fig. 1, namely the set  

of 2-point distributions with mean � = 3, variance �2 = 1, and safety loading � = 0.5.  
Figure 5 shows the results of the approximation. One observes that the approximation of the  
deterministic case via the randomized initial surplus is quite satisfactory already for k = 11 . 
The numerical approximation works well even for intermediate values of the initial surplus for 
which the ruin probability (and its kink) is difficult to approximate. In order to also reproduce 
the particular shape of that curve, higher values of k are however needed. It is worth to note 
the tremendous improvement when employing Richardson extrapolation for larger values of u 
(cf. the graph for u = 9).

Remark 4.1  Analogous to the exponential initial surplus case, one can obtain an expression 
for the ruin probability in terms of moments of L. Concretely,

(11)�E(k, k∕u) = �(u) +
C

k
+ O(k−2).

yk = y +
c1

k
+

c2

k1+�
+… ,

(12)�(u) ≈ (k + 1)�E(k + 1, (k + 1)∕u) − k�E(k, k∕u),
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Therefore, one might try to understand the behavior of the �E(k, s) by analyzing the first, 
say, two terms of the previous series to obtain the approximation

In the exponential case k = 1 , as the second moment of l involves the first three moments 
of X, this means that for given �1,�2 one could infer about the behavior of �U(s) by sim-
ply analyzing the first non-given moment, i.e. �3 . We see that the same line of reasoning 

𝜓E(k, s) = �
∞

0

𝜓(u)
sk

(k − 1)!
uk−1e−sudu = �

∞

0

𝜓(u)
sk

(k − 1)!

(
(−1)k−1

𝜕k−1

𝜕sk−1
e−su

)
du

=
s(−s)k−1

(k − 1)!

𝜕k−1

𝜕sk−1 �
∞

0

𝜓(u)e−sudu

=
s(−s)k−1

(k − 1)!

𝜕k−1

𝜕sk−1

∞∑
j=0

(−s)j

j! �
∞

0

ujℙ(L > u)du

=
s(−s)k−1

(k − 1)!

𝜕k−1

𝜕sk−1

∞∑
j=0

(−s)j

(j + 1)!
𝔼(Lj+1)

=
∑
j≥k−1

(−1)j+k−1
sj+1

(j + 1)!

(
j

k − 1

)
𝔼(Lj+1).

�E(k, s) ≈
sk

k!
�(Lk) −

sk+1

(k + 1)!
k�(Lk+1).

Fig. 5   Ruin probabilities as a function of x1 for � = 3 , �2 = 1 , � = 0.5 and three levels of initial surplus u 
(expected surplus �(U) = 1∕s , respectively)
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applied to the Erlang(k) case needs the ( k + 2)-th moment of X, already for the above first 
two terms. This is unfortunate, as the deterministic �(u) will only be obtained for k → ∞ , 
and we see that even in this simple approximation higher-order moments of X already play 
a crucial role. This is in particular the case for moderate values of �(U) , and in those cases 
we have indeed seen in the graphs above that a good approximation of the deterministic 
case needed large values of k.

Remark 4.2  When the goal is to approximate a deterministic initial surplus level, combi-
nations of exponentials (i.e. densities of the form (9) but with qi ∈ ℝ , 

∑n

i=1
qi = 1 ) could 

a priori also be candidates for U, as that class is dense in the class of all distributions on 
the positive halfline, see e.g. Dufresne (2007)). Unfortunately, apart from the fact that an 
enormous number n will be needed for a reasonable approximation of a deterministic u, the 
differing signs of qi in (10) then also do not allow to identify extremal distributions as in 
Section 3.

5 � Conclusion

In this paper we showed how randomization can be used to provide a solution to the 
Schmitter problem in ruin theory and its extension to higher moments. Linking this prob-
lem with established results in the theory of m-convex stochastic orders, we provided sharp 
bounds for the ruin probability under the assumption of an exponential initial surplus. For 
the more general case of Erlang distributed initial surplus, such analytical sharp bounds are 
not within reach. However, we showed how the deterministic classical case can be approxi-
mated by the simple expressions of the randomized case using Erlangization.
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