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Halting targeted and collateral damage to red blood cells
by the complement system

M. Jalink1,2 & E. C. W. de Boer3,4 & D. Evers5 & M. Q. Havinga3 & J. M. I. Vos2,6,7 &

S. Zeerleder3,8,9 & M. de Haas1,7,10 & I. Jongerius3,4

Received: 11 February 2021 /Accepted: 18 April 2021
# The Author(s) 2021

Abstract
The complement system is an important defense mechanism against pathogens; however, in certain pathologies, the
system also attacks human cells, such as red blood cells (RBCs). In paroxysmal nocturnal hemoglobinuria (PNH),
RBCs lack certain complement regulators which sensitize them to complement-mediated lysis, while in autoimmune
hemolytic anemia (AIHA), antibodies against RBCs may initiate complement-mediated hemolysis. In recent years,
complement inhibition has improved treatment prospects for these patients, with eculizumab now the standard of
care for PNH patients. Current complement inhibitors are however not sufficient for all patients, and they come with
high costs, patient burden, and increased infection risk. This review gives an overview of the underlying pathophys-
iology of complement-mediated hemolysis in PNH and AIHA, the role of therapeutic complement inhibition now-
adays, and the high number of complement inhibitors currently under investigation, as for almost every complement
protein, an inhibitor is being developed. The focus lies with novel therapeutics that inhibit complement activity
specifically in the pathway that causes pathology or those that reduce costs or patient burden through novel
administration routes.
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Introduction

The complement system is part of innate immunity, and ab-
normalities in its regulation have been associated with a wide
range of pathologies [1]. Red blood cells (RBCs) seem partic-
ularly sensitive to dysregulation of the complement system,
which is not surprising as RBCs are continuously exposed to
complement components [2]. Either an intrinsic deficiency in
complement regulation on RBCs or an extrinsic excessive
complement activation against RBCs can induce premature
and sometimes fulminant destruction of these cells, of which
paroxysmal nocturnal hemoglobinuria (PNH) and autoim-
mune hemolytic anemia (AIHA), respectively, are highly
characteristic. Eculizumab was the first complement inhibitor
to be approved for clinical use and has revolutionized the
treatment of PNH. Yet many challenges remain, including
the lack of any approved complement inhibitors for the treat-
ment of AIHA. Novel complement inhibitors to improve the
treatment of PNH and address complement-mediated AIHA
are currently being developed [3–5].

This review aims to give an overview of developments
within the field of complement-targeting therapeutics that
may in the future further optimize treatment and outcomes
of complement-mediated hemolytic diseases. To this end,
the working mechanism of the complement system and its
contribution to the pathology of PNH and AIHA are first
discussed. Second, current available complement-regulating
agents and novel therapeutic developments are discussed, in-
cluding potential advances in novel targets, efficacy, side ef-
fects, administration route, and patient burden.

The complement system

The complement system is an important part of innate immu-
nity. The system is composed of plasma proteins that activate
one another in a cascade. Due to its continuous presence in
plasma, the system is readily available and can quickly
respond to triggers, supporting the elimination of bacte-
ria, apoptotic cells, and immune complexes. These char-
acteristics give the system a key role in the defense
against pathogens, but it also plays a role in tissue ho-
meostasis [6–9]. In addition to its role in the innate
immune system, the complement system also has a
modulating role in the adaptive immune system [10].

The activation of the complement system can occur via
three different pathways: the classical, lectin, and alternative
pathways. These pathways each have their specific recogni-
tion molecules with corresponding triggers (reviewed in pre-
vious studies [7, 8]). In brief, the classical pathway (CP) is
initiated by C1q, recognizing antibodies bound to target cells,
activating C1r which in turn activates the serine protease C1s
and its downstream pathway [8, 11]. The lectin pathway (LP)

is activated via mannose-binding lectin (MBL), collectins, and
ficolin which recognize microbial carbohydrate structures.
Upon recognition of their specific patterns, they form a com-
plex with MBL-activated serine proteases (MASPs) which
induces further activation of the LP [12]. Both CP and LP
activation result in C4 and C2 cleavages, which leads to the
formation of the C3 convertase (C4bC2a) that can cleave C3
into C3a and C3b [8]. Lastly, the alternative pathway (AP) can
be activated spontaneously by background hydrolysis of C3,
and it acts as an amplification route of complement activation,
as it is activated following C3b deposition via the other path-
ways. Factor B (FB) will bind to C3b and upon cleavage by
factor D (FD); the C3 convertase (C3bBb) is formed. Similar
to the C3 convertase of the CP/LP, this convertase cleaves C3,
forming C3a and C3b [8, 13]. Both C4b and C3b, formed
upon complement activation, opsonize target cells, which in-
duces phagocytosis. Furthermore, C3b also contributes to the
formation of C5 convertases, which cleaves C5 into C5a and
C5b. C5b interacts with C6, resulting in subsequent binding of
C7, C8, and multiple C9 molecules. These molecules together
form the membrane attack complex (MAC) that creates a pore
by inserting into the membrane of the target cell, resulting in
cell lysis [8]. In the context of RBCs, opsonization and sub-
sequent phagocytosis is a process of extravascular hemolysis
(Fig. 1A), while MAC activation and subsequent cell lysis
refer to intravascular hemolysis (Fig. 1B) [2]. Cleavage of
C3 and C5 also results in the release of the anaphylatoxins
C3a and C5a, which are chemoattractants and modulators of
inflammation. For example, they recruit macrophages and
neutrophils and induce pro-inflammatory cytokine production
by T cells and antigen-presenting cells [9, 14].

As the complement system can be very harmful and is
continuously ready to be activated by invading foreign organ-
isms, it is important to prevent unwanted complement attacks
of host cells. In order to protect host cells, an intricate system
of complement regulators is in place to keep the complement
system under control. Regulators can effectively modulate all
steps in the complement activation cascade and can be divided
into two groups: the membrane-bound and the soluble com-
plement regulators in plasma [6]. The membrane-bound com-
plement regulators consist of complement receptor 1 (CR1 or
CD35), membrane co-factor protein (MCP or CD46), decay-
accelerating factor (DAF or CD55), complement receptor of
the immunoglobulin family (CRIg), and CD59 (Table 1). CR1
binds C3b and C4b and can induce the decay of both C3 and
C5 convertases but also functions as a co-factor for factor I
(FI) [21, 22]. CD46 can also bind C3b and C4b but does not
have any decay-accelerating activity in itself, realizing its reg-
ulatory activity solely as an FI co-factor [23, 24]. CD55 and
CD59 are both glycosylphosphatidylinositol (GPI)-anchored
membrane-bound complement regulators. CD55 accelerates
the decay of the C3 convertases of all pathways, while
CD59 acts on the terminal pathway by preventing MAC
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formation [6, 25]. Lastly, CRIg binds to C3b and iC3b
and inhibits the AP C3 convertase [18, 26]. The expres-
sion profile of these membrane-bound regulators differs
per cell type. For example, RBCs, the main subject of
this review, have CR1, CD55, and CD59 on their sur-
face but lack CD46 and CRIg [24].

The group of soluble complement regulators consists of C1
inhibitor (C1-INH), C4 binding protein (C4BP), factor H
(FH), clusterin (CLU), vitronectin (Vn), and FI which are
constitutively present in plasma. C1-INH and C4BP regulate
both the LP and CP [27, 28]. FH on the other hand is a strong

regulator of the AP, with recognition sites for host cells and
C3b in order to prevent or reverse the formation of the AP
convertase on host cells [29, 30]. Both CLU and Vn inhibit
MAC formation [6, 28]. Lastly, FI inactivates C3b and C4b
and thus regulates all complement pathways. For this, FI
needs the aid of a co-factor, a role that is played by other
complement regulators: C4BP, FH, CR1, or CD46 [31]. The
inactivation of C3b by FI is mediated by the subsequent cleav-
age of C3b to iC3b and of iC3b to C3c and C3dg. For the
latter, only CR1 can act as a co-factor, and this step is key to
prevent iC3b-mediated activation of neutrophils through CR3
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Fig. 1 Mechanisms of extravascular and intravascular hemolysis. (A)
Complement activation on RBCs can occur via the CP (in AIHA) or
via the AP (in PNH). Extravascular hemolysis via the CP is the
consequence of opsonization of the RBC with antibodies, fragments of
C4 (C4b or C4d), and/or fragments of C3 (C3b, iC3b, or C3d).
Extravascular hemolysis via the AP (tick-over) depends on
opsonization with C3 fragments only. Phagocytes express Fc and
complement receptors, which bind to antibodies or the complement
components on the target cell, respectively. The synergy between both
receptors results in highly effective phagocytosis. Upon phagocytosis, the

whole RBC is internalized into the phagocyte within the phagosome. (B)
Intravascular hemolysis can be initiated by both the AP and CP. C1q can
bind to antibodies on an RBC, which induces the cleavage of C2 and C4,
forming the CP convertase C4b2a. Both the CP convertase and
spontaneous background hydrolysis (tick-over) of C3 in the AP result
in C3b cleavage. C3b can then deposit on the cell, or bind to C4bC2a,
forming the C5 convertase. Upon cleavage of C5, C5b is formed, which
associates with C6, C7, C8, and multiple C9 molecules to form the
membrane attack complex (MAC), which inserts itself into the cell
membrane, resulting in lysis. Figure created using Servier Medical Art
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binding, which is described subsequently in more detail [32].
The sensitivity of RBCs to complement-mediated attack de-
pends on the protection offered by both membrane-bound and
soluble complement regulators [25].

As described previously, complement activation leads to
opsonization of target cells with C3b and C4b, which is of
major importance for phagocytosis. CRs are membrane-
bound molecules expressed on various immune cells and play
a key role in this phagocytic process (see Table 1).
Recognition of C3b and C4b by CRs will lead to activation
of immune cells, resulting in induction of phagocytosis.
Currently, five complement receptors have been identified:
CR1, CR2, CR3, CR4, and CRIg [8]. Next to its role in com-
plement regulation, CR1 is expressed on RBCs, monocytes,
macrophages, neutrophils, and renal podocytes and can bind
both C3b and C4b. CR2 is structurally similar to CR1, al-
though it is only expressed on B cells and thus mainly serves
as a co-stimulatory molecule for activation of the B cell upon
the interaction between antigen and B cell receptor, in which
case CR2 amplifies signal transduction [8, 15, 16, 33]. This
could play a role in AIHA, where C3d is detected on the RBC
surface, as this could thus induce increased B cell receptor
signaling and subsequent antibody production [34]. CR3 and
CR4 both belong to the integrin family but recognize different
C3 fragments (see Table 1). They are expressed on leukocytes,
especially onmacrophages, monocytes, and NK cells, but also
on some B and T cells [17]. Lastly, CRIg is the most recently
discovered complement receptor, which belongs to the
immunoglobin superfamily. CRIg is expressed only on den-
dritic cells and Kupffer cells, which are subtypes of macro-
phages specifically present in the liver [19]. Kupffer cells play
an important role in the clearance of pathogens from the
bloodstream by phagocytosis, and their contribution to intra-
vascular hemolysis has not been elucidated yet. For the bind-
ing of C3 fragments and clearance of C3-opsonized pathogens
by Kupffer cells, CRIg has been deemed essential based on
studies in knockout mice [26].

Apart from complement-mediated phagocytosis, IgG-Fc
receptors (FcR) on phagocytes can initiate antibody-
mediated phagocytosis, which is of major importance in
AIHA, as described subsequently. These receptors bind to

the Fc region of antibodies that have opsonized cells or other
particles. FcRs come in different types, which differ in the
antibody (sub)classes they recognize and their affinity for
the antibodies. Next, they can carry out specific immune ef-
fector functions [35–37]. Antibody characteristics, such as
antibody class and Fc-glycosylation profile, are important
for both interactions between antibody and FcR and comple-
ment activation [35, 36, 38]. Splenic red pulp macrophages,
involved in clearing IgG-opsonized RBCs, distinctively ex-
press all types of activating FcγRs and are specifically impor-
tant in the pathophysiology of AIHA [39]. Altogether, the
interplay between complement and antibody opsonization of
target cells and subsequent activation of CRs and FcRs deter-
mines the process of phagocytosis and is of synergistic nature,
which, in the context of RBCs, results in extravascular hemo-
lysis (Fig. 1A). C3 fragment opsonization seems mainly re-
sponsible for particle binding by phagocytes, while IgG
opsonization seems important for particle ingestion [40].
The presence of C3 fragments together with IgG on a particle
can significantly reduce the amount of IgG required to induce
ingestion and even seems essential for effective induction of
phagocytosis [41].

Complement-mediated diseases affecting
RBCs

Several pathologies have been described where overactivation
and dysregulation of the complement system induce RBC
damage. This is not surprising, as RBCs are continuously
exposed to the complement system in the bloodstream [2].
Of these pathologies, PNH, AIHA, and aHUS are best defined
but in more rare cases involving deficiencies of a single com-
plement regulator (CD55 or CD59) causing similar symptoms
have been described [42]. In this review, we will focus on the
underlying mechanisms and clinical management of AIHA
and PNH, as the damage to RBCs in these pathologies is fully
complement mediated. The pathology of aHUS has been
extensively reviewed [43], and the common belief is that
hemolysis in aHUS is not solely complement mediated but
merely a result of mechanistic hemolysis, which falls outside

Table 1 Complement receptors and their respective ligands

Receptor Ligands Expressed on Effect Ref.

CR1 or CD35 C3b, C4b RBCs, monocytes, macrophages,
renal podocytes

Complement regulation by decay of C3
and C5 convertases, induction of phagocytosis

[8, 10, 15]

CR2 or CD21 iC3b, C3d, C3dg B cells Co-stimulatory in B cell activation [8, 10, 15, 16]

CR3 or CD11b/CD18 C3b, iC3b, C3d Leucocytes Induction of phagocytosis [8, 10, 15, 17]

CR4 or CD11c/CD18 C3b, iC3b, C3c Leucocytes Induction of phagocytosis [8, 10, 15, 17]

CRIg C3, iC3b, C3c Dendritic cells, Kupffer cells Induction of phagocytosis, C3 convertase inhibition [10, 15, 18–20]
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the scope of this current review [43]. However, very recent
data obtained in an in vitro model of aHUS showed that he-
molysis can be a direct result of AP activity as well [44]. More
research will be needed to determine the role of the comple-
ment system on RBC destruction in aHUS in vivo.

Complement in PNH

PNH is a rare hemolytic disease with an estimated incidence
of 1–1.5 cases per million individuals worldwide [45].
Clinical disease is caused by clonal expansion of hematopoi-
etic stem cells with an acquired somatic mutation in the phos-
phatidylinositol glycan-A (PIGA) gene. The absence of PIGA
enzyme activity results in hematopoietic cell deficiency in
GPI-anchored proteins, including the complement regulators
CD55 and CD59. As CD55 is highly important in regulating
the AP and C3 convertases, while CD59 prevents the forma-
tion of the MAC, affected cells are rendered highly vulnerable
to the effects of activation of C3, C5, and the terminal pathway
of complement, culminating in the formation of the MAC
(Fig. 2A) [46]. Protection of PNH RBCs against AP activity

by the soluble complement regulator FH is very important and
does allow the RBCs to endure in circulation for days instead
of immediate cell lysis, which might be expected in cells de-
ficient in GPI-anchored proteins [47].

Hemolytic anemia, mainly due to intravascular hemolysis,
is the hallmark of PNH, resulting in the release and accumu-
lation of free hemoglobin and iron in plasma, subsequent ni-
tric oxide (NO) depletion, and upregulation of pro-
inflammatory cytokines. Thrombosis, at any site and both ve-
nous and arterial, has been the major direct cause of death in
PNH prior to the availability of terminal complement inhibi-
tors. Various mechanisms play a part here, all characterized by
excessive complement activation against hematopoietic cells,
including the formation of prothrombotic platelet
microvesicles, platelet activation, and platelet aggregation
via NO scavenging. There is defective fibrinolysis related to
a lack of several GPI-linked coagulation regulators and a gen-
eral pro-inflammatory state. Several of its other symptoms,
such as dysphagia and erectile dysfunction, are related to gen-
eral smooth muscle dystonia as a consequence of the overall
NO scavenging [3, 45, 48].
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Fig 2. Mechanism behind complement-mediated destruction of RBCs in
PNH and AIHA. (A) Healthy RBCs express the GPI-anchored
complement regulator CD55, which induces decay of C3 convertases,
and CD59, which prevents MAC formation. PNH RBCs, however, do
not express these regulators, meaning that C3b arising from tick-over can
result in opsonization of the RBC. On PNH RBCs, further complement
activation is not prevented and can result in MAC formation and
intravascular hemolysis or in extravascular hemolysis by phagocytosis

of C3 fragment-opsonized RBCs in the liver or spleen, which are often
iC3b or C3b opsonized in PNH patients. (B) RBC autoantibodies in
AIHA patients of either IgG or IgM class bind to RBCs and can induce
CP activation, which leads to further opsonization of the RBC with
complement and in some cases to MAC formation and direct lysis. The
opsonized RBC can be phagocytosed via the IgG-Fc receptors and
complement receptors. Figure created using Servier Medical Art
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Current management of PNH

The treatment of PNH has drastically improved since the in-
troduction of terminal complement inhibitors [49].
Eculizumab is a recombinant humanized monoclonal anti-
body that selectively targets C5, preventing its cleavage into
C5a and C5b and subsequently the formation of theMAC [49,
50]. As such, it compensates for the CD59 deficiency in PNH
but does not overcome the CD55 deficiency. Indeed, two large
phase 3 clinical studies (TRIUMPH study [NCT00122330]
and SHEPHERD study [NCT00130000]) allow for a signifi-
cant reduction of intravascular hemolysis, transfusion require-
ments, and thrombosis incidences following initiation of
eculizumab treatment [51, 52]. In almost all patients, a mild
to severe residual anemia persists, with about 30% of patients
remaining transfusion dependent [46, 53]. Next to underlying
PNH-related bone marrow failure, transfusion dependency is
explained by extravascular hemolysis due to ongoing C3b
deposition on RBCs [51, 52].

Further developments of eculizumab analogs with modifi-
cations of its Fc regions resulted in enhanced recycling [54].
This new C5-specific monoclonal antibody, ravulizumab, on-
ly very recently proved equally efficient as compared to
eculizumab, benefits from an approximately fourfold in-
creased half-life, and thereby a dosing interval of 8 rather than
2 weeks as compared to eculizumab [55].

Although eculizumab is effective in most patients, failure
to respond to eculizumab has been described. This is mostly
observed among Asian PNH patients bearing a C5 polymor-
phism, with a prevalence of approximately 3.2% among
Japanese and 1% among Chinese Han patients with PNH
[56]. This genetic variant of C5 prevents binding of
eculizumab and thus abrogates adequate complement inhibi-
tion. Another C5 variant interfering with the binding of
eculizumab was recently described in a Caucasian male pa-
tient. Upon treatment switch to coversin, a small recombinant
C5-inhibiting lipocalin protein with the additional advantage
of subcutaneous administration, hemolysis was halted and
clinical symptoms improved significantly [57]. The AK585
study (ClinicalTrials.gov, NCT03427060) will further
investigate if coversin may be a useful therapy for other
PNH patients who are resistant to eculizumab therapy due to
genetic variants of C5. Furthermore, C5 inhibition does not
prevent the continuous extravascular clearance of C3
fragment-opsonized RBCs by macrophages in the reticulo-
endothelial system, as first described by Risitano et al. [58].
This phenomenon results in low-level hemolysis persisting in
the majority of PNH patients treated with eculizumab [59].
Susceptibility to this phenomenon has been linked to CR1,
which can play a protective role against C3b opsonization.
CR1 has two co-dominant alleles, which lead to high (H) or
low (L) expression of CR1 on the RBC surface. This de-
creased expression on the RBC surfaces leads to reduced

C3b decay, which increases opsonization levels that induce
extravascular hemolysis. Thus, patients with an H/L or L/L
genotype have been shown to require more transfusions upon
eculizumab treatment than patients with the H/H genotype
[60]. This ongoing extravascular hemolysis may be overcome
by more upstream complement inhibition, at the C3 level, as
discussed in more detail subsequently [61].

Complement in AIHA

AIHA is a heterogeneous disease caused by autoantibody-
initiated destruction of RBCs, in which complement activa-
tion may play a role. It is a rare disease with an incidence of
10–30 cases per million individuals in adults and with an even
lower incidence in children [62]. AIHA can be classified as
primary (idiopathic) or secondary. The latter relates to under-
lying diseases or conditions which trigger the humoral im-
mune response, including lymphoproliferative malignancies,
autoimmune diseases, infections, immunodeficiencies, and
certain drugs [63, 64]. The diagnosis of AIHA is based on
the presence of hemolytic anemia and the serological detec-
tion of anti-RBC autoantibodies or complement on the RBCs
by the direct antiglobulin test (DAT). Autoantibodies in AIHA
can be of IgG, IgA, and IgM isotypes. According to the ther-
mal amplitude, defined as the highest temperature at which the
autoantibody can bind its antigen, and the isotype, AIHA can
be divided into warm (60–70% of cases) and cold (20–25% of
cases) AIHA [65]. Cold AIHA (cAIHA) is further classified as
primary cold agglutinin disease (CAD), typically associated
with a low-grade lymphoproliferative disorder producing a
(often low level) monoclonal IgM, while cold agglutinin syn-
drome (CAS) is secondary to an underlying disease [65, 66].
Less often, mixed or atypical forms of AIHA and paroxysmal
cold hemoglobinuria (PCH) are diagnosed [63]. The degree of
complement deposition on the RBC depends on the
isotype and even IgG subclass, thermal amplitude, the
recognized targets, and the number of bound autoanti-
bodies. Autoantibodies from IgM isotype (and to a less-
er extent, the IgG isotype subclasses 1 and 3) are strong
complement activators and able to bind C1q upon RBC
targeting. Thus, these are responsible for the activation
of the CP of the complement system [67]. IgM autoan-
tibodies are typically cold agglutinins associated with
cAIHA, while warm IgM autoantibodies are rare.

Warm AIHA (wAIHA) is characterized by polyclonal au-
toantibodies with an optimal binding temperature at 37°C.
The DAT is typically positive for autoantibodies of IgG and/
or to a lesser extent of IgA class (15–20%). The density of
warm autoantibodies of IgG or IgA type on the RBC mem-
brane is usually not sufficient to serve as a binding place of
C1q, and hemolysis in wAIHA is typically considered to be
complement independent. Despite that, complement deposi-
tion, mainly C3d, may be detected in the DAT.We previously
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showed that in these cases, IgM isotype autoantibodies are
often present and found indications that these are responsible
for C3 deposition [62, 68]. In wAIHA, the opsonized RBCs
are mostly cleared by FcR, but C3 deposition may add to the
level of extravascular hemolysis in the spleen and liver (Fig.
2B) [66]. Intravascular hemolysis is not often seen in wAIHA.

In patients with cAIHA, the DAT is positive for comple-
ment, and IgM binding may also be detected. However, as
IgM often has low affinity at body temperature, it may bind
at the extremities or body parts with low temperature and
detach from the RBC membrane at 37°C. Therefore, the de-
tection of C3 fragments in the DAT may be the only remnant
of the initial complement activity caused by an IgM autoanti-
body [68]. The involved IgM autoantibodies optimally bind to
the RBC antigens at 3–4°C. They are likely only pathogenic if
the thermal amplitude exceeds 30°C. Clinically, cAIHA is not
only characterized by hemolytic anemia but also by RBC
agglutination in the peripheral circulation, leading to
acrocyanosis [69]. Although in patients with all types of
AIHA, membrane-bound complement regulators are normally
expressed; in severe cases, complement activation can result
in the formation of the MAC, leading to intravascular hemo-
lysis [61, 69–72].

While the majority of AIHA is either wAIHA or cAIHA,
there are some rare variants. Mixed AIHA (10% of cases) is
defined as the combination of a warm type of IgG autoanti-
bodies and evidence of a cold type of autoantibody. The DAT
is positive for IgG and C3d [65]. PCH is a very rare AIHA
subtype. It occurs almost exclusively in young children in
reaction to a viral infection and, although it can be severe, is
a self-limiting disease. In adults, it is exceedingly rare and can
be associated with infections (tertiary syphilis). PCH is caused
by a strongly complement-activating polyclonal IgG autoan-
tibody predominantly directed against the P antigen on the
RBC. The IgG autoantibody binds only at low temperatures
but is able to initiate complement activation to such an
extent that it leads to the formation of the MAC and
subsequently intravascular hemolysis [66]. The DAT is
usually negative for IgG and frequently only positive
for C3 fragments [73]. Finally, (rare) atypical forms of
AIHA caused by warm IgM autoantibodies and AIHAs
with a negative DAT exist [63, 65].

Current management of AIHA

The AIHA subtype directs the choice of therapy. In secondary
AIHA, treatment of the underlying disease is an important part
of the therapy. Primary wAIHA is traditionally treated with
corticosteroids, which leads to a response in approximately
80% of patients [63, 64]. However, many of these responses
are temporary. Rituximab, an anti-CD20 antibody, is often
considered as a second line of treatment with an overall re-
sponse rate of around 80% [64, 65], although relapses are

frequently observed [65]. In refractory or relapsed patients,
splenectomy and alternative immunosuppressive drugs (such
as azathioprine, mycofenolate mofetil, cyclosporin, and
endoxan) can be considered [4, 64, 65]. The use of comple-
ment inhibitors has not been extensively studied in wAIHA
thus far [74]. However, as complement activation may be part
of the pathophysiology of wAIHA, complement inhibition
with pegcetacoplan (C3 inhibitor) is investigated in an ongo-
ing clinical trial. Also, a clinical trial with the C1q inhibitor
ANX005 is planned including wAIHA patients with evidence
of complement involvement (Cl inicalTrials .gov,
NCT03226678 and NCT04691570).

In primary cAIHA or CAD, the anemia is often mild to
moderate, and many patients can be managed conservatively
with the advice to avoid cold exposure. Some patients, how-
ever, suffer from significant hemolytic anemia or acrocyanosis
despite thermal protection. In these cases, rituximab is the first
line of treatment; however, the overall response rate is only
50%, and the median duration of response is less than 12
months [65, 66]. Cytotoxic combinations such as rituximab
with bendamustine or fludarabine induce higher response
rates (70–75%) andmore sustained remissions (several years).
However, these therapies are associated with short-term (in-
fections, cytopenia) and long-term (secondary malignancies,
stem cell toxicity) adverse events. In addition, time to re-
sponse can be weeks to months, and over 25% of patients with
CAD do not respond to chemotherapy [75, 76].

Recently, complement inhibition has become the focus of
clinical studies in cAIHA. The first study of complement in-
hibition in CAD was a phase 2 prospective clinical trial with
the C5 inhibitor eculizumab (DECADE) [77]. In twelve pa-
tients with chronic CAD, and one with acute CAS,
eculizumab significantly reduced intravascular hemolysis
and transfusion requirements. However, it did not normalize
Hb levels and did not improve quality of life [77]. The lack of
effect of this terminal complement inhibitor is probably relat-
ed to ongoing extravascular hemolysis via phagocytosis in the
liver. To date, the use of eculizumab has been discussed for
the treatment of rare cases of severe intravascular hemolysis in
exacerbations or refractory cAIHA [78].

Considering most of the hemolysis in cAIHA takes place
via phagocytosis of C3b-opsonized RBCs in the liver, inhibi-
tion at a more proximal level of the complement cascade may
be a more effective approach. Sutimlimab, a humanized C1s
monoclonal antibody, was studied in phase 3 clinical trial for
transfusion-dependent cAIHA patients (CARDINAL study,
ClinicalTrials.gov, NCT03347396). It induced a rapid and
sustained effect in patients with CAD with a resolution of
hemolysis and a resolution of transfusion independency in
70% of the patients, together with an improvement in quality
of life. These clinical improvements correlated with the
normalization of complement factor C4 levels and decreased
CP activity [79]. Results are awaited for the CADENZA
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study, where sutimilimab is investigated in the (more
prevalent) transfusion-independent CAD population
(ClinicalTrials.gov, NCT03347422). BIVV020, a
monoclonal antibody targeting activated C1s, is currently
studied in a phase 1b clinical trial. An ongoing phase 2 trial
investigates the C3a/b inhibitor pegcetacoplan in CAD
(ClinicalTrials.gov, NCT03226678). In line with upstream
complement inhibition at the C1 level, the use of plasma-
derived C1-INH, since long approved and available for the
treatment of hereditary angioedema, has been reported in a
single patient with cAIHA. Here, C1-INH was effective and
safe in controlling complement-mediated AIHA [80, 81].
Currently, we are performing a phase 2 open-label study that
examines the effect of co-administration of C1-INH and blood
transfusion in severe cAIHA on the recovery of allogeneic
RBCs (ClinicalTrialsRegister.eu: 2012-003710-13).

PCH is often transient, and treatment for PCH is mainly
supportive of maintaining warm temperatures and blood trans-
fusions if required [66, 73, 82]. As the hemolytic anemia in
PCH is fully complement mediated, there is a rationale for the
use of complement inhibitors in severe cases of PCH. There
are some case reports describing the effect of eculizumab on
intravascular hemolysis in patients with PCH with varying
results [83, 84].

While there are currently no approved complement-
directed therapies for cAIHA, complement inhibitors are ex-
pected to change the therapeutic landscape for this disease.
But despite these promising results, it is important to realize
that complement inhibition does not halt autoantibody pro-
duction, and its binding to RBC epitopes as the underlying
antibody-producing clone is not targeted. This is especially
relevant in IgM-mediated AIHA with both symptomatic he-
molysis and agglutination disease, as complement inhibition
only targets the first but not the latter. Thus, complement
inhibition at any level in the complement cascade does not
benefit the patient suffering from acrocyanosis [77]. In these
cases , a c lone-d i rec t ed approach , tha t i s , wi th
immunochemotherapy or possibly novel B cell-directed ther-
apies such as BTK inhibition, may be more suited.

Complement inhibition nowadays
and in the future

Disadvantages of the use of complement inhibitors

The development of terminal complement inhibitors has rev-
olutionized the treatment of PNH, and the arrival of more
proximal complement inhibitors potentially will have a dra-
matic impact on the treatment of complement-mediated
AIHA. However, these treatments come with several limita-
tions. First, as complement inhibition does neither cures nor
affects the underlying disease, continuous treatment is needed

to maintain response. In the case of eculizumab, this involves
lifelong intravenous infusions at a bimonthly frequency, com-
ing with immense expenses, limited patient compliance, and
impairment of patients’ quality of life [45]. Especially in PNH,
it is essential to strictly adhere to dosing schemes as any delay
in infusion risks loss of C5 inhibition with subsequent massive
hemolysis and secondary life-threatening (thrombotic) events.
The increased half-life of ravulizumab in this respect over-
comes some of these logistic aspects. Similarly, in cAIHA,
the second-generation C1s inhibitor BIVV020 is expected to
have a prolonged half-life compared to sutimlimab due to
selectively inhibiting the activated form of C1s rather than
total C1s. Currently, this agent is being evaluated in an ex-
tended phase 1b study (ClinicalTrials.gov, NCT04269551).

Second, complement is an important part of the host de-
fense mechanism, especially against virulent encapsulated
bacteria. Chronic inhibition warrants proper antimicrobial
protection by a comprehensive vaccination schedule, while
some also advise long-term antibiotics [85]. So far, real-
world data concerning the use of eculizumab demonstrated
an annual incidence of meningococcal disease of 0.5% per
year. Importantly, 95% of meningococcal infections originat-
ed in patients not vaccinated against all serotypes. However,
even with complete serotype vaccination, ex vivo data have
shown increased baseline risks due to an eculizumab-induced
inhibition of the pro-inflammatory peptide C5a, which is es-
sential for upregulation of microbial phagocytosis [76].
Theoretically, the risk of such infections in patients treated
with a more upstream inhibitor specific for C3, thereby both
blocking bacterial opsonization and bacterial killing via
MAC, may be even higher. Substantial clinical data are cur-
rently lacking, although small ongoing trials so far supported a
favorable safety profile [86, 87].

Third, complement inhibition upstream of C5 may opti-
mize achievement of treatment goals in the patients with on-
going hemolysis due to C3 deposition or for patients with C5
variation, rendering C5-targeted therapy ineffective [56, 57].
Finally, but only theoretically thus far, based on the function
of the CP and the role of the C1 complex in immune complex
clearance, inhibition of the proximal part of the CP could
increase the risk of symptoms found in immune complex dis-
eases, as is observed in patients with congenital CP deficien-
cies (C1q, C1r, C1s, C2, and C4) [88]. To date, there are no
clinical data that support this hypothesis, but this should be
closely monitored.

Altogether, these arguments have nourished the search for
additional therapeutics, which may target complement inhibi-
tion upstream of C5 at a target that is specific for the disease,
facilitate more convenient non-intravenous routes of adminis-
tration, and/or facilitate prolonged dose intervals due to in-
creased half-life. To conclude this review, we will discuss
novel potential targets, provide an overview of the comple-
ment therapeutics currently in the pipeline, and discuss their
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potential for the treatment of AIHA and PNH (for a full over-
view of agents in the pipeline, see Table 2 and Fig. 3).

Developments in the complement field

In order to reduce extravascular hemolysis, an obvious direc-
tion for drug discovery lies in targeting the complement sys-
tem at the level of C3. By targeting at this level, the
opsonization of RBCs and subsequent phagocytosis can be
prevented. Targeting complement at the C3 level has a clear
benefit in that it allows for the targeting of all different acti-
vation pathways simultaneously, as these come together at the
C3 level. Thus, complete inhibition of complement activity
would be possible, if desired [136]. The main therapeutic can-
didates for the inhibition of C3 are compstatin and its analogs.
Compstatin is a cyclic tridecapeptide, originally found in a
random peptide library upon screening for C3b binding,
which showed to have direct C3 inhibiting properties [137].
Ever since, several analogs of compstatin have been devel-
oped in order to optimize production, pharmacokinetics, and
delivery of the drug [136, 138]. Compstatin analog Cp40 has
been shown to prevent hemolysis and opsonization of PNH
RBCs and inhibition of intravascular and extravascular hemo-
lysis in AIHA serum in vitro [139, 140]. Up to date,
pegcetacoplan (formerly APL-2), a pegylated compstatin an-
alog suitable for subcutaneous administration, has been
deemed safe in phase I clinical trial. Currently, a phase II trial
is on its way for the usage of pegcetacoplan in AIHA
(ClinicalTrials.gov: NCT03226678), as well as a phase III
trial for PNH (ClinicalTrials.gov: NCT04085601). The
subcutaneous administration likely implicates a significant
reduction in patient burden. However, it may come at the
cost of infectious complications, as C3 blocking both halts
opsonization and terminal complement activation. C3
deficient patients suffer from recurring bacterial infections,
but to what extent this corresponds to a pharmacologically
induced C3 deficiency remains to be determined [141].

There are certain therapeutics in development that target
the CP and/or LP specifically. Since in AIHA the CP is the
main route of complement activation, blocking the CP is an
appealing alternative to blocking C5. The first drug used to
target the CP/LP is recombinant or plasma-purified C1-INH,
which is approved for usage in hereditary and acquired angio-
edema, where patients suffer from C1-INH deficiency [142].
As described previously, C1-INH was successful in a patient
with refractory AIHA based on a single-case report [80].
Currently, a phase II clinical study is underway in AIHA pa-
tients (ClinicalTrialsRegister.eu: 2012-003710-13/NL). The
CP can also be targeted at other levels, using sutimlimab and
BIVV020 to inhibit C1s and thus prevent C2 cleavage as
described previously, or by using an mAb against C2 directly
[86, 87, 97]. C2 especially is a promising target to block the
CP and LP, as it has the lowest concentration of the CP and LP

components and would therefore potentially require low-
er and/or less frequent dosage of inhibitors [8]. A recent
study described ARGX-117 as an inhibiting mAb
against C2, which successfully inhibited CP activity in
cynomolgus monkeys [97].

Next to specific targeting of the CP, several therapeutics
are in development to specifically inhibit the AP. This seems
especially of interest for PNH, which is mainly a disorder of
the AP. A benefit of targeting the AP is that an infection can
still be cleared with the help of the complement system via the
LP or CP, thus potentially reducing infection risk [143].
Furthermore, C3b opsonization could potentially be slowed
down by inhibiting the AP, which would reduce extravascular
hemolysis. Interestingly, there are a few therapeutics in the
pipeline that can be administered orally and target FB, FD,
or properdin. FD can be targeted in two ways: either by
inhibiting FD directly or by inhibiting MASP3, which cleaves
pro-factor D into FD. Properdin stabilizes the AP C3
convertase and thereby extends its activity [8]. Conversely,
inhibiting properdin does not completely block C3 convertase
formation but rather shortens its activity [144]. Inhibition of the
AP as a mechanism of action has been demonstrated to be effec-
tive in animal models of antibody-induced arthritis and membra-
nous nephropathy, and several clinical trials in PNH are currently
in progress [126]. Especially, LNP023 (ClinicalTrials.gov:
NCT03439839) , ACH-5228 (Cl in icalTr ia ls .gov:
NCT03439839) , danicopan (Cl in ica lTr ia l s .gov:
NCT04170023), and BCX9930 (ClinicalTrials.gov:
NCT04469645) are of particular interest as these can be
administered orally (Table 2). If successful, these oral adminis-
tration routes could open up novel possibilities of complement-
targeting treatment with a limited patient burden.

Another way of inhibiting complement activity while min-
imizing the infection risk is by utilizing mechanisms of com-
plement regulators, which guard against dysregulated comple-
ment activation. Several recombinant proteins that mimic
(parts of) complement regulators are in development [141].
An example is TT30, a FH and CR2 fusion protein designed
to inhibit the AP at sites of complement activation. The CR2
domains bind to the C3b fragments at sites of complement
activation, where the FH domains can then fulfill their regu-
latory function [102]. In vitro, TT30 inhibited complement-
mediated hemolysis and C3b opsonization of PNH RBCs,
while in vivo studies inmonkeys have shown almost complete
inhibition of the AP and partial inhibition of the CP upon
subcutaneous TT30 administration [102, 103]. A phase I trial
for TT30 in PNH however was recently terminated, as the
enrollment criteria could not be met (ClinicalTrials.gov,
NCT01335165). Another interesting approach is the
potentiation or suppletion of fluid-phase complement regula-
tors, such as FH and FI, which could seriously reduce AP
activity and thus aid in the reduction of both intravascular
and extravascular hemolysis [135]. An interesting example
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is a potentiating antibody, anti-FH.07, that has been devel-
oped for FH [129]. As this is an AP regulator, potentiating
FH would mainly be of interest in PNH. Anti-FH.07 has al-
ready been shown to be able to enhance the function of mu-
tated FH in vitro on RBCs [130].

Finally, several novel treatments that target the terminal com-
plement pathway, similar to eculizumab and ravulizumab, are in
development. Although their clinical effect and application are
probably similar to that of the currently approved therapeutics,
these new therapeutics are designed to simplify the administra-
tion, which will increase convenience and compliance to therapy
and may reduce costs. Coversin, crovalimab, zilucoplan, and
cemdisiran (all in phase II trials) are all C5 inhibitors that can
be administered subcutaneously [57, 116, 118, 119]. Lastly,
aurintricarboxylic acid is a C9 small molecule inhibitor that can
be taken orally and was effective in inhibiting hemolysis of PNH
RBCs in vitro [123, 145].

Concluding remarks

The success stories of eculizumab and ravulizumab have
shown that there is a need for drugs that specifically

target activated complement components that can be
subcutaneously or orally administered in diseases in
which the RBC is a target of the complement system.
For almost all complement components, there is current-
ly a specific drug available or in development, which
will have an immense impact on the therapeutic ap-
proach to rare complement-mediated diseases, including
those of the RBC such as PNH and AIHA. Optimizing
complement-targeting therapies in terms of safety and
convenience will further improve therapeutic options
and will have an immense impact on the therapeutic
approach of rare complement-mediated hemolysis.

Abbreviations AP, alternative pathway; AIHA, autoimmune hemolytic
anemia; CAD, cold agglutinin disease; CAS, cold agglutinin syndrome;
CP, classical pathway; DAT, direct antiglobulin test; FB, factor B; FH,
factor H; FI, factor I; LP, lectin pathway; MAC, membrane attack com-
plex;PCH, paroxysmal cold hemoglobinuria;PIGA, phosphatidylinositol
glycan-A; PNH, paroxysmal nocturnal hemoglobinuria; RBC, red blood
cell
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