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Abstract 

Objective: Prognostic models are key for benchmarking intensive care units (ICUs). They require up–to–date predictors and should 
report transportability properties for reliable predictions. We developed and validated an in–hospital mortality risk prediction model to 
facilitate benchmarking, quality assurance, and health economics evaluation. 

Study Design and Setting: We retrieved data from the database of an international (Finland, Estonia, Switzerland) multicenter 
ICU cohort study from 2015 to 2017. We used a hierarchical logistic regression model that included age, a modified Simplified Acute 
Physiology Score–II, admission type, premorbid functional status, and diagnosis as grouping variable. We used pooled and meta–analytic 
cross–validation approaches to assess temporal and geographical transportability. 

Results: We included 61,224 patients treated in the ICU (hospital mortality 10.6%). The developed prediction model had an area 
under the receiver operating characteristic curve 0.886, 95% confidence interval (CI) 0.882–0.890; a calibration slope 1.01, 95% CI 
(0.99–1.03); a mean calibration –0.004, 95% CI (–0.035 to 0.027). Although the model showed very good internal validity and geographic 
discrimination transportability, we found substantial heterogeneity of performance measures between ICUs ( I –squared: 53.4–84.7%). 

Conclusion: A novel framework evaluating the performance of our prediction model provided key information to judge the validity 
of our model and its adaptation for future use. © 2021 The Authors. Published by Elsevier Inc. This is an open access article under 
the CC BY license ( http:// creativecommons.org/ licenses/ by/ 4.0/ ) 
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What is new? 

Key findings 
• Our mortality prediction model—which combined 

established clinically relevant predictors with pre- 
morbid functional status and diagnoses as modeling 

variables—showed very good internal validity, ge- 
ographic discrimination and temporal transportabil- 
ity, with a substantial heterogeneity of performance 
measures between ICUs. 

What this adds to what is known? 

• Premorbid functional status and diagnosis are 
known predictors of ICU–relevant study outcomes, 
but are not regularly implemented in established 

scoring systems. The inclusion of this information 

showed increased predictive model performance 
compared to predictions from established risk scor- 
ing systems, while showing good internal validation 

and transportability properties. 

What is the implication, what should change 
now? 

• To the best of our knowledge, this is one of the first 
development and validation studies to investigate 
geographical and temporal transportability proper- 
ties of an ICU mortality prediction model. Trans- 
portability properties are key in the reliable mon- 
itoring and benchmarking of ICUs and for their 
planning. They provide an important piece of in- 
formation about the model validity in other study 

populations and settings, and should be quantified 

in future validation studies of ICU prediction mod- 
els. 

1. Introduction 

Scoring systems for prediction of mortality risk are
widely used to characterize severity of illness in inten-
sive care unit (ICU) patients in clinical trials, benchmark-
ing, quality assurance, and health economics evaluations
[1] . The two most widely used scoring systems—APACHE
(acute physiology and chronic health evaluation) [2] and
SAPS (simplified acute physiology score) [3] —were in-
troduced in the 1980s and repeatedly updated to preserve
and improve their predictive value in response to advances
in patient care, therapeutic options with prognostic rele-
vance, and changes in demographics. Despite the updates
(the most recent generations are APACHE–IV and SAPS–
3 [4–8] ) and recalibration, these models may lose their
validity over time, and have poor external validity when
applied in different health care systems. This may inter-
fere with benchmarking of ICUs, and ultimately impact
the decision–making of clinicians, health care providers
and regulatory bodies. ICU prediction models developed
in study populations from the United Kingdom (ICNARC),
Australia and New Zealand (ANZIC) and the Netherlands
have been updated to address poor validity and were ex-
tended with new clinical predictors like functional status
which were strongly associated with the study outcome
[9–12] . 

The performance of prediction models depends on their
validity and transportability, and can be classified into
different frameworks [13–15] . Geographical and tempo-
ral transportability indicate performance outside the study
population used for the development of the prediction
model, for example, in other hospitals or time periods
[ 14 , 15 ]. Lack of transportability, case mix differences,
changes in mortality between ICUs and over time, drive
the need to recalibrate existing prediction models or to
develop new ones [ 14 , 16 ]. Reporting their validation and
transportability is important to avoid biased outcome pre-
dictions and to support the planning of ICU benchmarking
programs where new ICUs might be included or a com-
parison with ICUs outside an existing benchmark system
might evolve. 

The aim of this study is to develop and validate an
in-hospital mortality risk prediction model by adding sim-
ple indicators of premorbid functional status to established
outcome predictors (age, severity of illness, diagnosis, ad-
mission type) to quantify the validity and transportabil-
ity properties of the prediction model and to interpret
their impact using a proposed framework for validation
[ 14 , 15 ]. 

2. Methods 

The manuscript has been written in accordance with the
transparent reporting of a multivariable prediction model
for individual prognosis or diagnosis (TRIPOD) statement
[17] . The TRIPOD checklist is provided in Supplemental
Table 1. 

2.1. Study design and population 

We conducted a retrospective multicenter study, with
prospectively collected data from the international Finnish
Intensive Care Consortium benchmarking database (FICC)
that includes ICUs from Finland, Estonia and Switzerland.
We used all intensive care admissions of the years 2015 to
2017. We excluded readmissions, admissions after cardiac
surgery, and admissions with care restricted to evaluation
for potential organ donation. Cardiac surgery admissions
were excluded due to their specific pre– and perioperative
risk profiles. 

2.2. Data source 

We used data from 2015 to 2017 in the FICC database.
The FICC consists of 22 ICUs in Finland, and the ICUs
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of one university hospital in Estonia (100% of university
ICU admissions and 16% all ICU admissions in Estonia)
and one in Switzerland (33% of all university hospital ICU
admissions and 11% of all ICU admissions in Switzerland).
All except two ICUs were multidisciplinary. 

Data related to clinical diagnosis, severity of illness
scoring systems, care interventions, physiologic, admin-
istrative, and in–hospital mortality are prospectively col-
lected during the ICU and hospital stay into local patient
health care records (electronic in Finland and Switzerland,
paper in Estonia) [18] . Each admission is validated by
trained ICU nurse data managers or intensivists using log-
ical rules, median filtering and graphic displays to ensure
data quality, before transfer to the FICC database. 

2.3. Ethical approval 

The model was developed in conjunction with a
health economic analysis, whose study protocol, database
contents and data management process were approved
by the National Institute of Health and Welfare, Fin-
land (Decision numbers THL/1524/5.05.00/2017 and
THL/1173/05.00/2018). According to the regulations in
Finland, Estonia, and Switzerland, no ethics committee
approval was needed for retrospective use of anonymized
data. 

2.4. Study outcomes 

Prediction of in–hospital mortality. Data on in–hospital
mortality was prospectively collected for each admission
from the hospital record. 

2.5. Predictors 

Based on the literature and discussions among clinical
experts we used the following predictors: age, a modified
SAPS–II score which excludes age and admission type (see
Supplemental Text 1), surgical vs nonsurgical admission,
emergency vs elective admission, diagnosis (APACHE–
III diagnoses [ 19 , 20 ], Supplemental Table 2) and func-
tional status based on the WHO ECOG classification [21] ,
with the two best categories combined into one (cate-
gory 0: Normal functional status or able to perform light
work, 1: Light limitations: Unable to work but capable
of all self–care, 2: Moderate limitations: Need for some
help in self–care, 3: Severe limitations: Fully dependent
on help). 

2.6. Statistical methods 

We describe the study population using frequencies ( n ),
percentages (%), median, and interquartile range (IQR).
For the prediction model development we followed the rec-
ommendations by Steyerberg and Harrell [ 22 , 23 ]. In brief,
Steyerberg and Harrell recommend not to use data–splitting
approaches for validation and that heterogeneity of perfor-
mance measures should be assessed. We used hierarchi-
cal multivariable logistic regression models accounting for
nested admissions within APACHE–III diagnostic groups
to develop the prediction model ( M developed ). A second pre-
diction model excluded premorbid functional status as pre-
dictor ( M developed2 ). We modeled the continuous variables
age and modified SAPS–II score as restricted cubic splines
with three knots chosen at the 10th, 50th, and 90th per-
centiles [ 13 , 24 ]. A priori we included an interaction effect
between age and the modified SAPS-II score. We report
predictor effects as odds ratios (OR) with 95% confidence
intervals (CI). We assessed the overall association of vari-
ables and model fit using χ2 (k)–statistics with k degrees
of freedom from a deviance test. For parsimony of the risk
score, we set varying intercept estimates for APACHE–III
diagnoses to zero if the 95% CI overlapped by an OR of
1. We calculated the probability of hospital death from the
original SAPS–II score to compare predictions from de-
rived models [4] . We assessed discrimination ability with
the area under the receiver operating characteristics curve
(AUC), mean calibration (calibration–in–the–large), weak
calibration (calibration slope) and moderate calibration per-
formance using a fitted calibration curve from locally es-
timated scatterplot smoother (LOESS), the Integrated Cal-
ibration Index (ICI), the maximum, median and 90th per-
centile of the absolute difference between the LOESS cal-
ibration and the diagonal line (Emax, E50, E90), and the
Brier score [25–27] . We used a second-degree polyno-
mial with a smoothing parameter set to 0.75 for LOESS.
We used a modified large sample Hosmer–Lemeshow test,
which was devised from a model attaining a P value of
the traditional Hosmer–Lemeshow test of 0.05 in a sam-
ple of one million observations [28] . We used a bootstrap
approach for internal model validation based on 100 repli-
cates [ 13 , 24 ]. We assessed temporal and/or geographical
transportability, that is, to what extent predictions perform
as well in other study populations (in time and/or at dif-
ferent hospitals) and used a proposed framework for inter-
pretation [ 13 , 14 ]. For that purpose, we defined two time
periods: Time period one covers the years 2015 and 2016,
whereas time period two covers the year 2017. 

In brief, we first assessed to what extent the devel-
opment and validation samples were related (ie, to what
extent case mix differed between hospitals and time pe-
riods). For that purpose, we derived AUC from hierar-
chical logistic membership models (including the predic-
tors used for the mortality prediction model and the out-
come variable) and reported standardized standard devia-
tions (SDs) of linear predictors (ie, SDs from validation
samples are divided by the SD of the development sam-
ple) [14] . Development and validation samples were de-
fined by a "leave–one–unit–out" or a "leave–one–period–
out" approach (“internal–external” validation) [15] . Each
model performance measure is estimated from the left-out
validation samples. We reported pooled estimates and es-
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timates from random effects meta-analyses of AUC and
calibration performance measures with 95% CI and pre-
diction intervals (PI) [15] . Results from the meta-analyses
include DerSimonian–Laird estimators for between–study
standard deviation, I –squared and Cochran’s Q–statistic for
heterogeneity. Because of the small number of time periods
no meta-analytic approach was used for assessing temporal
transportability. 

We performed several sensitivity analyses. First, we de-
rived a prediction model which used the same predictors as
M developed but did not account for APACHE–III diagnosis
groups ( M sensitivity ), by using an ordinary logistic regres-
sion model. We compared M developed with M sensitivity using
analysis of deviance. We further calculated the probabil-
ity of hospital death from M developed , M developed2 (same as
M developed but without predictor premorbid functional sta-
tus), M sensitivity , and the original SAPS–II score, and plotted
receiver operating characteristic curves. Second, we used
(non-–hierarchical) ordinary and penalized logistic regres-
sion and least absolute shrinkage and selection operator
(LASSO) with APACHE–III diagnostic groups as fixed ef-
fects. Penalized estimates were optimized with a modified
Akaike Information Criterion [24] . The minimum penaliz-
ing factor for LASSO was derived from 30 cross-validation
samples. Third, we compared discrimination and calibra-
tion performance of the shrunken risk score with its non-
–shrunken version, that is, when the varying intercept es-
timates of APACHE–III diagnoses were not set to zero.
All analyses were complete case analyses and excluded
patients with missing predictor information and were per-
formed in R version 4.0.2. 

3. Results 

3.1. Study population 

The eligible study population included 61,385 patients.
We excluded 161 patients (0.3%) because of missing val-
ues in age ( n = 14), admission type ( n = 126), SAPS-
II score ( n = 15), and APACHE–III diagnosis ( n = 6).
Thus, the final analysis included 61,224 patients with 6,463
(10.6%) in-hospital deaths ( Table 1 ). The median age was
63 years (IQR 24), the median SAPS–II score was 31
points (IQR 22) and the median modified SAPS–II was
15 points (IQR 19) and 40% were female. Eighty percent
of the admissions were emergency admissions and 40%
were surgical. Around 30% of all patients had a premor-
bid functional limitation. The number of admissions and
number of deaths per each unit and year is shown in Sup-
plemental Table 3. 

3.2. Prediction model 

The prediction model ( M developed ) developed for the
risk score included five variables (age, modified SAPS–
II score, admission type, premorbid functional status, and
APACHE–III diagnostic group) with 15 parameters (one
parameter for intercept, two parameters for nonlinear age,
two parameters for nonlinear modified SAPS–II score, four
parameters for interaction effect, two parameters for ad-
mission type (surgical, emergency), three parameters for
functional status, one parameter for APACHE–III diag-
noses grouping variable). Fig. 1 shows the joint predictor
effects of the categorical variables from the hierarchical lo-
gistic regression model. Surgical patients had lower odds of
dying than nonsurgical patients [OR 0.79, 95% CI (0.64–
0.98)]; emergency admissions had higher odds of dying
than elective admissions [OR 2.85, 95% CI (2.36–3.45)].
Patients with premorbid functional limitations showed
higher odds of dying than patients with normal premorbid
functional status. Premorbid functional status was strongly
associated with mortality (deviance( M developed ) = 27,891,
deviance( M developed2 ) = 28,052; χ2 (3) = 161.0, P < 0.001).
Age and the modified SAPS–II score showed strong evi-
dence for a nonlinear relationship (for age: χ2 (1) = 8.07, P
= 0.004; for modified SAPS–II score χ2 (1) = 86.18, P <
0.001; Fig. 2 ). There was strong evidence for an interaction
effect of the nonlinear modeled variables ( χ2 (4) = 67.22,
P < 0.001). Fig. 3 shows the varying intercept estimates
for the APACHE–III diagnoses. The estimated between-
diagnoses standard deviation was 0.63; that is, 95% of
the ORs of the APACHE–III diagnosis estimates lie be-
tween 0.29 (2.5% OR) and 3.43 (97.5% OR). Estimates
with 95% CIs overlapping an OR of 1 are shown in or-
ange. These estimates were set to zero in the final risk
score for model parsimony. APACHE–III code = 0 covers
“other postoperative” admissions ( n = 560, 61% various
emergencies). Due to the clinical heterogeneity, their esti-
mate was also set to zero. The final prediction model in-
cludes 40 APACHE–III diagnoses (calculation formula in
Supplemental Text 2). Supplemental Fig s . 1 and 2 show
crude predictor effects. The effect of emergency admis-
sions decreased from a crude model [OR = 5.97, 95% CI
(5.01–7.10)] to OR = 2.85 (reported above) in an adjusted
model. 

3.3. Discrimination and calibration 

Fig. 4 shows the internal discrimination and calibra-
tion properties of the developed model ( M developed ): AUC
0.886, 95% CI (0.882–0.890), mean calibration –0.004,
95% CI (–0.035 to 0.027), calibration slope 1.01, 95%
CI (0.99–1.03), ICI 0.134, E50 0.032, E90 0.463, Emax
1.000, and a Brier score 0.067. The Hosmer–Lemeshow
test for large samples resulted in P = 0.05. The pre-
diction model without the predictor premorbid functional
( M developed2 ) had an AUC 0.885, 95% CI (0.881–0.889),
mean calibration 0.001 (–0.030 to 0.031), and calibration
slope 1.01, 95% CI (0.99–1.03). Predictions from the orig-
inal SAPS–II score revealed only slightly lower discrimi-
nation ability [AUC = 0.864, 95% CI (0.860–0.869)], but
poor calibration (Supplemental Fig . 3). Supplemental Fig .
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Table 1. Patient characteristics 

Characteristic 2015 2016 2017 All years 

n /Median (%/IQR) n /Median (%/IQR) n /Median (%/IQR) n /Median (%/IQR) 

Age (years) 63 (24) 63 (24) 64 (23) 63 (24) 

Gender (male) 11,882 (60) 12,335 (60) 12,757 (61) 36,974 (60) 

SAPS–II score 31 (22) 31 (23) 31 (22) 31 (22) 

Modified SAPS–II score 15 (20) 15 (20) 15 (19) 15 (19) 

Surgical admission 7,931 (40) 7,880 (39) 8,460 (40) 24,271 (40) 

Emergency admission 15,730 (80) 16,365 (80) 16,643 (79) 48,738 (80) 

Functional status 

Normal 14,128 (72) 14,650 (72) 15,002 (71) 43,780 (72) 

Light limitation 3,484 (18) 3,656 (18) 3,803 (18) 10,943 (18) 

Moderate limitation 1,609 (8) 1,667 (8) 1,695 (8) 4,971 (8) 

Severe limitation 521 (3) 502 (3) 507 (2) 1,530 (3) 

Nonsurvivor 2,094 (11) 2,156 (11) 2,213 (11) 6,463 (11) 

Abbreviation : IQR, interquartile range. 

Fig. 1. Joint predictor effects of categorical variables. 
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Fig. 2. Predictor effects of nonlinear modeled interaction effect between age and modified SAPS-II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 shows receiver operating characteristic curves from mor-
tality predictions from M developed , M developed2 , M sensitivity and
from the original SAPS–II score. Discrimination ability
was best for the developed prediction model. 

3.4. Validation and interpretation 

We assessed the relevance of case mix differences. Sup-
plemental Fig . 5 shows AUC estimates from member-
ship models. For geographical validation samples, AUC
ranged from 0.65 to 0.96, indicating a substantial hetero-
geneity between the development and validation samples.
Two units with AUC > 0.9 are specialized ICUs. The de-
velopment and validation samples between time periods
were similar in terms of the used predictor variables and
the outcome (AUC = 0.54). Supplemental Fig . 6 shows
results from standardized SDs of linear predictors (range
0.74 to 1.11), indicating moderate to large case-mix differ-
ences between hospitals. The interpretation of results from
linear predictors is comparable to the ones from member-
ship models. One hospital was left out of the membership
modeling and the geographical transportability assessment
because of a low number of admissions ( n = 14). 

Table 2 shows results from internal and internal–
external validation and transportability investigations. We
observed very good internal model reproducibility (for ex-
ample, the AUC from the bootstrap samples was 0.888
compared to 0.886 from the development sample). Al-
though the overall internal–external calibration was very
good, with 95% CIs and PIs overlapping a calibration slope
of 1 or a mean calibration value of 0 for all validation ap-
proaches (except for the pooled geographical–temporal cal-
ibration slope, which was 0.978, 95% CI [0.963–0.993]),
we found a moderate to high heterogeneity between ICUs
for AUC, calibration slope and mean calibration ( I –squared
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Fig. 3. Varying intercept estimates of APACHE-III diagnosis groups from a hierarchical logistic regression model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ranging from 53.4–84.7%). Supplemental Figs. 7–15 show
the in–depth results for transportability based on pooled
estimates and random–effects meta–analyses. 

3.5. Sensitivity analyses 

In sensitivity analyses, we compared M developed with
a prediction model ( M sensitivity ) which did not account
for APACHE–III diagnosis groups but used the same
predictors as model M developed . M sensitivity is an ordi-
nary logistic regression model with 14 parameters. We
found evidence for a better model fit of M developed

compared to M sensitivity (deviance( M developed ) = 27,891,
deviance( M sensitivity ) = 28,864; χ2 (1) = 973.3, P < 0.001).
Supplemental Figs. 16 and 17 show the sensitivity analysis
results from different modeling strategies. In general, ef-
fect estimates from the investigated model approaches were
similar. Supplemental Fig. 18 shows the discrimination and
calibration properties of the nonshrunken model; that is,
when the estimated varying intercepts of the APACHE–III
diagnosis groups were not set to zero. The results were
similar to the implemented risk score from M developed . 
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Fig. 4. Discrimination and calibration properties of developed prediction model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion 

Based on data of 61,224 patients in a large international
multicenter ICU database, we created a new in-hospital
mortality prediction model by adding premorbid functional
status to well–established predictors of in–hospital mor-
tality (age, severity of acute illness, diagnosis, admission
type). Premorbid functional status was strongly associated
with mortality and increased the predictive performance of
the model, while the inclusion of diagnosis accounted for
the large heterogeneity between diagnosis groups. Over-
all, the prediction model showed excellent discrimination
and calibration performance. We used a proposed frame-
work for interpreting validation results which investigated
case mix differences and transportability properties. We
concluded that while a large heterogeneity between ICUs
due to case mix differences exists, our prediction model
 

might provide reliable predictions for future monitoring
and benchmarking of key performance indicators. 

Valid mortality predictions are essential for use of stan-
dardized mortality ratios (SMRs) to assess ICU perfor-
mance, both for within–ICU evolution and for comparisons
between ICUs in benchmarking programs [ 29 , 30 ]. How-
ever their use has been criticized for susceptibility to case
mix differences [1] . By using different analyses approaches
(membership model approach and internal–external valida-
tion) we found substantial differences in case mix among
hospitals in our study population. Although our findings
from internal validation and cross–validated pooled esti-
mates showed very good discrimination and calibration
properties, we found a moderate to high variation of pre-
diction model performance measures between ICUs us-
ing meta–analytic approaches. Predictions intervals from
meta–analytic approaches (that is, the uncertainty inter-



238 A. Moser et al. / Journal of Clinical Epidemiology 142 (2022) 230–241 

Table 2. Validation and transportability properties 

Measure Validation Transportability Overall estimate (95% CI/PI ∗) I -squared (95% CI) 

AUC Internal: Bootstrap ∗∗ Reproducibility 0.888 (0.884–0.892) 

Internal–external: Pooled Geographical 0.884 (0.880–0.887) 

Internal–external: Meta-analysis ∗ Geographical 0.881 (0.847–0.914) 70.8% (55.5–80.9%) 

Internal–external: Pooled Temporal 0.886 (0.879–0.893) 

Internal–external: Meta-analysis ∗ Temporal Not reported Not reported 

Internal–external: Pooled Geographical–temporal 0.885 (0.880–0.890) 

Internal–external: Meta-analysis ∗ Geographical–temporal 0.889 (0.850–0.928) 53.4% (24.3–71.3%) 

Calibration slope Internal: Bootstrap ∗∗ Reproducibility 1.00718 (1.00691–1.00745) 

Internal–external: Pooled Geographical 0.980 (0.958–1.002) 

Internal–external: Meta-analysis ∗ Geographical 1.033 (0.839–1.227) 71.5% (56.6–81.2%) 

Internal–external: Pooled Temporal 1.010 (0.972–1.049) 

Internal–external: Meta-analysis Temporal Not reported Not reported 

Internal–external: Pooled Geographical–temporal 1.002 (0.975–1.029) 

Internal–external: Meta-analysis ∗ Geographical–temporal 1.066 (0.813–1.319) 58.2% (33.0–73.9%) 

Mean calibration Internal: Bootstrap ∗∗ Reproducibility 0.00632 (0.000582–0.000680) 

Internal–external: Pooled Geographical –0.008 (–0.039 to 0.022) 

Internal–external: Meta-analysis ∗ Geographical 0.065 (–0.322 to 0.452) 84.7% (78.3–89.3%) 

Internal–external: Pooled Temporal 0.011 (–0.042 to 0.063) 

Internal–external: Meta-analysis Temporal Not reported Not reported 

Internal–external: Pooled Geographical–temporal –0.006 (–0.043 to 0.031) 

Internal–external: Meta-analysis ∗ Geographical–temporal 0.039 (–0.348 to 0.427) 65.8% (46.4–78.2%) 

Abbreviations : CI, confidence interval; PI, prediction interval. 
∗PI reported. 
∗∗From 100 bootstrap replicates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

val in which a performance measure of a potentially new
ICU will be expected to lie) indicated that the discrimi-
native ability was very good (lowest lower 95% PI: 0.85),
while the prediction uncertainties of the mean calibration
and calibration slope indicated a potentially not optimal
performing prediction model for new ICUs. Heterogeneity
between ICUs was mostly expected, given that our data
includes admissions from different hospital categories and
from different health care systems, and can be explained
by difference in case mix, in resource use or in quality of
care. Our joint geographical–temporal transportability re-
sults require a careful interpretation because they are prone
to potential model overfitting and biased performance mea-
sures because of the small event size of certain hospitals
using only admissions from the year 2017 for validation. 

The “customization,” modernization, and development
of new prediction models should offer clear benefits
[ 16 , 31–34 ]. The inclusion of diagnoses should help clus-
ter patients into homogenous groups, with similar treat-
ment procedures, resource utilization and patient outcomes
[ 9 , 35 , 36 ]. Nevertheless, it is conceivable that the pre-
morbid functional status may have a relevant impact on
risk of in–hospital death and consequently on the perfor-
mance of mortality prediction models [ 12 , 34 , 37 ]. Approx-
imately 30% of our study patients had premorbid func-
tional limitation, which was strongly associated with mor-
tality. Ferrando–Vivas et al. found that including the level
of assistance needed in daily activities (none, some, to-
tal) improved the predictive performance of the ICNARC
model [12] . The more detailed WHO ECOG classification
we used also improved the performance, emphasizing the
need to include premorbid functional status in ICU scoring
systems. Demographic changes with an increasing propor-
tion of older people will likely increase the ICU admis-
sions of elderly. Muscedere et al. showed in a systematic
review that frailty is an important factor of mortality in
elderly treated in the ICU [38] . Dólera–Moreno et al. de-
veloped and validated a risk prediction model which uses
frailty measures as predictors for all–cause mortality [34] .
The implementation of geriatric assessments in ICUs might
foster the use of specific predictors for older persons in fu-
ture prediction models [39–41] . 

The statistical approach used for the development and
validation of a prediction model should be critically ad-
dressed [13] . Due to the a priori decision to include di-
agnoses, we used a hierarchical regression model to ac-
count for grouping of intensive care admissions and dis-
cussed its advantages and disadvantages with clinical ex-
perts and statisticians [42] . The multicenter study design
allowed in–depth validation of the developed risk model
and we used the framework proposed by Debray et al. as
a guide in interpreting our validation results [ 14 , 15 ]. The
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internal, geographical, and temporal transportability vali-
dation methods provide important key measures for valid-
ity and for generalizability for broader study populations.
Austin et al. used different admission eligibility criteria for
different time periods to assess temporal and methodolog-
ical portability [15] . Changes in the structural composition
of ICUs in a benchmarking program (for example by the
inclusion of specialized ICUs) inherently serve as a new
set of admissions of an ICU which allows for the investiga-
tion of transportability properties. The FICC, for example,
was extended by a neurosurgical ICU in 2017 and was
included in the geographical transportability investigation.
Our findings from the membership model and the used
internal–external validation approaches will be included in
regular reports of the FICC benchmarking program and
might support the future planning of this program. Fur-
ther, with the interpretation of measures of heterogeneity
from the membership model or the used internal–external
validation approaches we have a tool which supports the
decision whether a recalibration of the prediction model
might be required [14] . 

4.1. Strengths 

First, the large sample size from different hospitals,
years, and health care systems, and use of advanced statis-
tical approaches, allows an in–depth investigation of the
heterogeneity of performance measures and should en-
hance the generalizability of the model. For the valida-
tion of prediction models an event size of at least 100
events have been recommended [ 22 , 43 ]. Most hospitals in
our data have a larger event size when data is combined
for all years (ie, for the assessment of geographical trans-
portability). Second, data validation by trained data man-
agers, use of logical rules, median filtering, and graphic
displays should enhance data quality. Third, the FICC co-
hort study collects relevant patient and clinical information
which allows almost unbiased predictions, by using appro-
priate predictor and grouping information. 

4.2. Limitations 

All prediction models tend to deteriorate over time as
medical care evolves, demographics change, and new dis-
eases appear. Although our model was stable over the re-
cent three years, its predictive ability is likely to change
over time. Therefore, regular evaluation of the predictive
value of the model should be foreseen and recalibration
performed as necessary. The methodology we used will fa-
cilitate such a recalibration. Further, future prediction mod-
els for intensive care could be improved by using quality
of life measures and other study endpoints or hospital in-
formation (like, hospital category, staffing information, or
hospital volume) to possibly improve the performance and
transportability of the prediction model for benchmarking
programs [ 16 , 31 ]. Such information was not used for the
prediction model development. 

4.3. Implications 

Our study has important implications for clinicians,
health care providers, and health system evaluations. First,
the inclusion of premorbid functional status in addition to
established clinical predictors in our prediction model im-
proved the performance of the prediction model. Second,
the quantification of validation and transportability proper-
ties provides important information for future benchmark-
ing programs. As proposed by Debray et al. [14] , we en-
courage in the development of future ICU prediction mod-
els to report the transportability properties due to their rel-
evance to changes in case mix, advances in medical tech-
nologies or changes in mortality. Third, this modeling strat-
egy might help clinicians, health care providers, guideline
developers and regulatory bodies to enhance evaluation of
ICU care and finally to improve population health. 

5. Conclusions 

Premorbid functional status is an important predictor
of hospital outcome and improved the predictive perfor-
mance of our prediction model. Our model showed very
good internal validity but a substantial heterogeneity of
performance measures between ICUs, providing key infor-
mation to judge the validity of our model and its adap-
tation for future use. We used a proposed framework for
interpreting model validation findings, which proved help-
ful in the process of validating our prediction model. We
encourage clinicians, health care providers, guideline de-
velopers and health service researchers to carefully address
the multidimensional aspects of developing ICU predic-
tion models. This includes discussions about the selection
of relevant predictors, the interpretation of statistical find-
ings and approaches used, as well as the reporting of key
indicators to interpret the model performance and the po-
tential consequences, like transportability to other study
settings. We believe that a structured development process
improves nonexperts’ trust in the methodology, supports
targeted communication of key performance indicators, and
helps assess the reliability of a prediction model in selected
settings. 
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