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Studying PAR-Dependent Chromatin
Remodeling to Tackle PARPi Resistance
Highlights
Despite the success of PARP inhibitors
(PARPis) in targeting BRCA-deficient
tumors, the emerging PARPi resistance
remains a major clinical hurdle.

Various PARPi resistance mechanisms
have been unraveled to date, but their
clinical relevance remains to be deter-
mined and they do not seem to explain
all cases.

PARP1 mediates variable cellular pro-
cesses through chromatin remodeling,
which is crucial for replication, transcrip-
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Histone eviction and chromatin relaxation are important processes for efficient
DNA repair. Poly(ADP) ribose (PAR) polymerase 1 (PARP1) is a key mediator of
this process, and disruption of PARP1 activity has a direct impact on chromatin
structure. PARP inhibitors (PARPis) have been established as a treatment for
BRCA1- or BRCA2-deficient tumors. Unfortunately, PARPi resistance occurs in
many patients and the underlying mechanisms are not fully understood. In
particular, it remains unclear how chromatin remodelers and histone chaperones
compensate for the loss of the PARylation signal. In this Opinion article, we
summarize currently known mechanisms of PARPi resistance. We discuss
how the study of PARP1-mediated chromatin remodeling may help in further
understanding PARPi resistance and finding new therapeutic approaches to
overcome it.
tion, and the response to DNA-targeting
chemotherapy.

It is important to study inmore detail how
PARP inhibition and subsequent PARPi
resistance affect histone eviction and
chromatin remodeling.

Targeting of PAR-regulated chromatin
modifiers like ALC1, APLF, or the FACT
complex may open a new route to un-
derstand and tackle PARPi resistance.
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PARP1 Is an Important Player in the DDR
PARPs comprise a group of proteins with a key role in essential cellular processes [1]. Therefore,
they have received great attention both for unraveling newmolecular pathways and as therapeutic
targets. PARPs participate in a plethora of cellular functions, such as theDNA damage response
(DDR) (see Glossary), transcription, chromatin organization, and cell death [1]. PARP1 is the
leading member of this superfamily of 17 proteins, which have been identified based on their
homology to PARP1 [1]. PARP1 performs its function by catalyzing the formation of PAR chains
on target proteins, using NAD+ as a substrate [1]. Not all of the PARP family members are enzymat-
ically active and some show mono(ADP-ribose) transferase activity only. Since they possess a
conserved ADP-ribosyltransferase (ART) domain, they are also referred to as ARTs with diphtheria
toxin homology (ARTDs). Reportedly, only four ARTDs, PARP1 (ARTD1), PARP2 (ARTD2),
tankyrase PARP5a (ARTD5), and tankyrase PARP5b (ARTD6), possess intrinsic polymerase
activity [2].

PARP1 is present throughout the nucleus, being the most abundant nuclear protein after
histones [3]. Inactive PARP1 is associated with compact chromatin. Following DNA damage it
becomes rapidly activated and catalyzes the formation of PAR chains on itself and on other
proteins such as histones (PARylation) [4,5]. The catalytic function of PARP1 is important for
the initiation of double-strand break (DSB) repair by both homologous recombination (HR)
and nonhomologous end joining (NHEJ). The auto-PARylated PARP1 and PARylated
proteins at DSBs or single-strand DNA breaks (SSBs) serve as a platform for the recruitment of
DDR proteins, which contain PAR-binding domains such as PAR-binding consensus motifs
(PBMs), PAR-binding zinc-finger motifs (PBZs), macrodomain folds, or WWE domains [6]. The
synthesized PAR molecules can attract a variety of proteins and serve as the glue between
DNA repair and other molecular processes such as replication and transcription. PARP1 is
also present in regulatory regions of actively transcribed genes as well as at Okazaki fragment
maturation sites, emphasizing its multifaceted roles in cell biology [7,8]. Because it has such an
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Glossary
Chromatin remodelers: a set of
proteins that catalyze various
chromatin-changing reactions including
nucleosome sliding, conformational
changes in the DNA, and histone variant
exchange. To execute these functions,
they commonly obtain energy from ATP
hydrolysis; therefore, they are mostly
characterized by a conserved ATPase
domain.
DNA damage response (DDR): a set
of signaling pathways for the detection
and repair of DNA lesions. It comprises
the activation of cell cycle checkpoints
andDNA repair pathways, to prevent the
generation of deleterious mutations.
Homologous recombination (HR): a
DNA repair pathway that utilizes the
sister chromatin of the homologous
chromosome as a repair template to
promote high-fidelity and error-free
repair of DSBs. It occurs only in late S to
G2 phase. BRCA1 and BRCA2 are
critical members of this pathway and
mutations in either of these genes lead to
HR deficiency and increased levels of
genomic alteration that can lead to
cancer development.
Nonhomologous end joining
(NHEJ): an error-prone DNA repair
pathway that repairs DSBs throughout
the cell cycle, including in S and G2
phase, without the need for a template. It
can directly re-ligate the DNA ends
without end resection, which can lead to
small deletions.
Nucleosome: a section of DNA
wrapped around a core of proteins, the
fundamental subunit of chromatin. It
comprises approximately 1.7 turns of
DNA wrapped around a set of eight
histones, the histone octamer. Each
histone octamer comprises two copies
of each of the H2A, H2B, H3, and H4
proteins. The cells need to use
mechanisms to open the chromatin
fibers and transiently remove these
histones to permit DNA repair,
replication, and transcription to proceed.
Synthetic lethality: occurs when the
inactivation of either of two genes
individually has little effect on cell viability
whereas the loss of both genes
simultaneously leads to cell death. In
cancer, it is usedwhen the inactivation of
one gene by deletion or mutation and
pharmacological inhibition of the other
one leads to the death of cancer cells,
whereas the normal, non-mutated cells
remain intact.
important role in the orchestration of the molecular processes of the cell, PAR formation is tightly
regulated. PAR is rapidly hydrolyzed in the cell, mainly by PAR glycohydrolase (PARG) and by the
PAR hydrolase ARH3 [9,10].

Hence, PARylation, particularly autoPARylation of PARP1, is crucial among several post-
translational modifications affecting the DDR. Surprisingly, the precise mechanism of how
PARP1 is removed from the DNA has not been determined unambiguously. It was long be-
lieved that autoPARylation is necessary for the release of PARP1 from the DNA and it was
suggested that the increased negative charge of PARylated PARP1 is responsible for its
dissociation [11,12]. However, more recent observations have shown that PARylated
PARP1 remains associated with chromatin after DNA damage induction using H2O2 [13].
It is possible that PARP1 recycling and reassociation with the DNA is so rapid that it does
not allow the detection of PARP1-free chromatin. Still, PARylation alone may not be suffi-
cient for PARP1 release [14]. Instead, evidence suggests that it requires the recruitment
of the E3 ubiquitin ligase CHFR, which ubiquitinates PARylated but not un-PARylated
PARP1 [14]. The CHFR-mediated ubiquitination of PARP1 seems to be important in the
first wave of chromatin release, and more factors must have a role in this process [14].
These findings suggest further examination of CHFR function in the context of PARP or
PARG inhibition.

PARPis and the Hurdle of PARPi Resistance
As a core component of the DDR process, PARP1 has gained increasing attention as a target
for the treatment of tumors with defects in their HR machinery. PARP inhibition has become a
prime example of adapting the concept of synthetic lethality to cancer therapy: tumors that
have lost HR rely more heavily on PARP function, while normal tissues still have all DDR path-
ways available [15]. Inhibition of PARP in the HR-deficient cells will then cause lethality in tumor
cells whereas the normal cells are not harmed. This resulted in the approval of several PARPis
in breast (olaparib and talazoparib), ovarian (olaparib, niraparib, and rucaparib either alone or
following platinum chemotherapy as maintenance therapy), and metastatic prostate cancer
patients (olaparib) with a defect in homology-directed DNA repair [16,17]. This effect was ini-
tially discovered as a vulnerability of BRCA1- or BRCA2-deficient cells to PARPis. BRCA1/2
are key players in HR and cells lacking this DNA repair pathway are dependent on other
PARP1-mediated repair pathways [18,19]. With PARPis, the catalytic activity of PARP1 is
inhibited and PARP1 is also trapped on the chromatin. This leads to the stalling of replication
forks and, if the forks collapse, DSBs will form, which cannot be fixed without HR, resulting
in cell death [18,19]. PARP2 is also trapped by these inhibitors and both PARP1 and PARP2
will not be released from the DNA until the inhibitor comes off the active site allowing the utili-
zation of NAD+ [20].

Despite the efficacy and the clinical success of PARPis, BRCA1/2-mutated cancer patients are
developing drug resistance [15]. Hence, intensive research has been performed in the past
decade to unravel the nature of this resistance [15]. Multiple mechanisms have been identified
to date; these are reviewed extensively [22–24] and the five major types are presented, in brief,
in Table 1.

Studies in genetically engineered mouse models of BRCA1/2-mutated breast cancer indicate
that there are more PARPi resistance mechanisms. In about half of the PARPi-resistant tumors,
the mechanisms remain unclear [23,25]. Many of the unknown PARPi resistance mechanisms
could potentially involve the restoration of PARP1 downstream pathways, circumventing the
effect of PARP trapping and reinstalling a functional DDR. One of the most important regulatory
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Table 1. PARPi Resistance Mechanisms

Effect Resistance mechanism Refs

HR restoration • Secondary BRCA1/2 mutations which give rise to a wild-type or
hypomorphic functional protein

[93,94]

• Loss of 53BP1 or its downstream REV7–RIF1–shieldin complex in
BRCA1-deficient cells

[61,62,63,95–97]

Upregulation of drug
efflux

• Overexpression of the drug efflux transporter MDR1/P-glycoprotein
(P-gp), specific to some PARPis (e.g., olaparib)

[98,99]

Drug target
alterations

• Downregulation of PARP1 expression in BRCA1/2-proficient cells [100]

• Point mutations in PARP1 that affect PARP1 trapping [101]

Replication fork
stabilization

• Impaired recruitment of MRE11 to stalled replication forks, which restores
the BRCA1/2-mediated fork protection

[102]

• Loss of EZH2/MUS81 axis of fork degradation [103]

• Loss of the histone acetyltransferase PCAF [104]

Partial restoration of
PARP1 signaling

• Loss of the PARP1 antagonist PARG, which restores PARylation and the
subsequent recruitment of DDR proteins like XRCC1

[25]
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functions of PARP1 is the rearrangement of chromatin structure. The PAR-dependent changes in
chromatin structure are critical for the replication and transcription processes of the cell and are
crucial for the initiation of DDR pathways, such as HR or NHEJ. It is evident that PARPi-
resistant cells are able to rewire their DDR even in the absence of a functional PARP, but how
these cells are able to restore the required chromatin remodeling is not exactly clear. Investigation
of how PAR-dependent chromatin remodeling can affect the PARPi response of the cell may yield
new insights into the mechanisms of PARPi resistance or the vulnerabilities of PARPi-resistant
tumors.

Here, we briefly review the role of PARP1 in the regulation of chromatin structure and highlight
some unresolved questions regarding the potential significance of PAR-mediated chromatin
remodeling for the understanding and tackling of PARPi resistance.

PARylation of Histones Is a Critical Step in Response to DNA Damage
PARP1 in its inactive form is present in the nucleus and it is mainly associated with
nucleosomes, where it contributes to the formation of inactive, condensed chromatin
structures [26]. The association of PARP1 and PARP2 with the chromatin is important
for the formation of heterochromatic regions in telomeres, centromeres, and silenced ri-
bosomal DNA (rDNA) [3]. Although under normal conditions PARP1 also associates with
active histone marks, it is mainly found in heterochromatic regions following DNA dam-
age [7].

Following DNA damage, chromatin needs to be dynamically reorganized to orchestrate the DDR.
It becomes evident that, in the presence of a DSB, the chromatin initially expands rapidly, followed
by local compaction, which signals for HR or NHEJ. This is followed by chromatin relaxation,
which is necessary for DDR protein accessibility at the DNA damage site [27,28]. Therefore, an
efficient DDR requires a dynamic shift between decondensation and condensation events,
which rely strongly on PARylation events [28,29].

Increased PARylation (i.e., the formation of PAR chains on PARP itself, histones, and other
chromatin-associated factors) subsequently leads to changes in the chromatin structure that
632 Trends in Molecular Medicine, July 2021, Vol. 27, No. 7
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allow or prevent the access of specific proteins [3]. On histones, serine residues are the main
PARylation targets of PARP1, whereas PARP1 itself is PARylated on its aspartate and gluta-
mate residues [30,31]. An important regulator of PARylation is histone PARylation factor 1
(HPF1), which was recently identified to be required as a cofactor for histone PARylation in
the DDR [32–35]. PARylation of core histones, like H1, can then serve as a signal for their re-
moval. Moreover, because of the negatively charged PAR, this modification can induce the nu-
cleosomal disassembly and subsequent chromatin relaxation [4]. This loosened chromatin
structure is then accessible for DNA repair, transcription, and replication factors [36]. It was
suggested that PARP1 remains active for a longer period when attached to histone H4,
resulting in larger amounts of PAR and the maintenance of an active, relaxed chromatin [37].
By contrast, when interacting with damaged DNA, PARP1 has short periods of activation
since it is required to leave the chromatin to allow the access of DNA repair factors [37]. This
PAR-mediated chromatin relaxation effect has been shown to be fully reversible following deg-
radation of the PAR molecules with exogenous PARG administration, indicating that it is de-
pendent on PARP activity [39]. Apparently, PARylation of histones creates a first wave of
decondensation, which then facilitates the recruitment of additional mediators to enhance
this process.

PARylation-Mediated Chromatin Remodeling in the Context of the DDR and
PARPis
Following PARylation, chromatin relaxation is expanded by the recruitment of chromatin
remodelers. PARylation of histones and PARP1 serves as a scaffold for the recruitment of chro-
matin remodelers carrying a PAR-binding domain [40]. The function of chromatin remodelers and
chaperones is important for the disassembly and reassembly of the chromatin around the DNA
damage sites. As a result, DDR proteins can gain access to the chromatin and transcription is
stopped until the DNA damage is fixed [41]. Therefore, the PAR binding of chromatin remodelers
and/or their PARylation by PARP1 can modify the chromatin structure and mediate the subse-
quent DDR. Some of the most important PAR-dependent chromatin remodelers are discussed
here and listed in Table 2.

ALC1 May Act as a PARPi Resistance Mediator through PAR Chain Protection
ALC1/chromodomain-helicase-DNA-binding protein (CHD) 1-like (CHD1L) is an SNF2-like
ATPase that promotes DDR-related nucleosome rearrangements for chromatin relaxation to
Table 2. Chromatin Remodeling Mediators with a PAR-Binding Domain

Name Domain Function Refs

ALC1 /CHD1L Macrodomain
fold

DNA helicase: catalyzes nucleosome sliding in an ATP-dependent
manner

[43]

SSRP1-FACT
complex

CTR Subunit of the histone chaperone: catalyzes dissociation of the
H2A–H2B histone dimer from the nucleosome

[67]

CHD4-NuRD
complex

HMG-box-like
domain

Helicase/ATPase domain of the NuRD complex: facilitates the
deacetylation of histone in controlling chromatin reorganization
and transcriptional repression

[68,70]

macroH2A1.1 Macrodomain
fold

Variant histone H2A: replaces H2A in nucleosomes to repress
transcription

[52]

APLF PBZ Histone chaperone: chaperone activity for both the H2A–H2B
dimer and the H3–H4 tetramer

[50,105]

CHD2 C terminus Chromatin remodeler that acts as an ATPase to catalyze the
assembly of chromatin into periodic nucleosome arrays

[57]
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occur [43,83]. On DNA damage, ALC1 is rapidly recruited to SSBs or DSBs by PAR and it
binds to PARylated PARP1 [42–44]. This PAR binding of ALC1 orchestrates bidirectional
regulation. On the one hand, it abolishes the autoinhibitory state of ALC1 to become an ac-
tive chromatin remodeler, and on the other hand it protects PAR from PARG hydrolysis
[43–45]. Recent findings have shown that loss of ALC1 causes sensitivity to PARP inhibi-
tion by mediating enhanced trapping of PARP1 or PARP2 at the DNA damage sites
[46–48]. The synthetic lethal interaction of ALC1 loss and PARP inhibition was also
shown to be reversed by increased PARylation (i.e., by the inhibition of PARG) [47,48].
Based on these findings, we hypothesize that this synthetic lethality relies on ALC1-
mediated PAR protection. In the absence of ALC1, PARG then removes the PAR chains
from PARP1 and in this fashion the unPARylated PARP1 cannot be released from the
chromatin.

When recruited to chromatin, ALC1 forms a complex that comprises XRCC1, core histone
components, and the histone chaperone aprataxin-PNK-like factor (APLF) in addition to
PARP1 [49,50]. APLF carries a PBZ domain and when binding to PAR, it serves as a regula-
tory link between PARylation and chromatin modulation. It has been shown to regulate ALC1
binding to histones and it is required for macroH2A1.1 recruitment and PAR binding at the
DNA damage site [50]. This shows how PARP1 activity can build a recruitment cascade of
chromatin remodelers, which will interact with each other, presumably to maintain an equilib-
rium between PARylation and chromatin rearrangements to define the choice of the DDR
pathway.

macroH2A1 Loss May Indicate PARPi Sensitivity
Independent studies have shown that both splice variants of macroH2A1, macroH2A1.1
and macroH2A1.2, are recruited to DSBs and replication stress sites [28,51]. The
macroH2A1.1 variant, which binds to PAR, was also implicated in the regulation of
PAR metabolism and the underlying NAD+ turnover [52]. Following DNA damage, binding
of macroH2A1.1 to autoPARylated PARP1 inhibits PARP1 activity and prevents PAR hy-
drolysis. Hence, this interaction can promote chromatin recondensation events, affecting
DDR and transcriptional processes [53]. In addition, macroH2A1.1 was shown to retain
the 53BP1 recruitment at the DNA damage site [28]. In line with these findings, the alter-
native variant, macroH2A1.2, interacts with methyl transferase enzymes like PRDM2 to
induce chromatin recondensation by the generation of repressive H3K9 methylation
marks [28,54,55]. The compact chromatin marks were found to attract selectively
BRCA1, possibly through the function of the H3K9me3 reader HP1, shifting the choice
of the DDR pathway towards HR instead of NHEJ [28,54,55]. macroH2A1.1 is lost in
many cancers [52] and this might lead to imbalances in PAR metabolism and BRCA1 re-
cruitment to the DNA damage sites in these tumor cells. Therefore, there is a possibility
that tumors lacking a functional macroH2A1 might also show increased sensitivity to
PARP inhibition.

CHD2 and CHD7 Expression Changes May Promote HR Restoration
In contrast to macroH2A1, chromatin remodelers such as CHD2 and CHD7 stimulate chromatin
changes that initiate NHEJ rather than HR [57,58]. On DNA damage, CHD2 is recruited to DSB by
PARP1, where it binds PARwith its C terminus. CHD2 then interacts with the histone variant H3.3
and it incorporates it at DNA damage sites [57]. This creates an expanded chromatin structure,
which supports the recruitment of NHEJ factors [57]. By contrast, the recruitment of CHD7
to the DNA damage site is not mediated by direct binding to PAR, but it seems to require a
PAR-mediated, relaxed chromatin state resulting from the performance of other remodelers like
634 Trends in Molecular Medicine, July 2021, Vol. 27, No. 7
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ALC1 or CHD2 [58]. Following localization at the DNA damage site, CHD7 participates in two
important steps of chromatin reorganization. Initially, CHD7 contributes to the expansion of
chromatin relaxation, supporting the recruitment of NHEJ repair factors. A re-compaction
process mediated by CHD7 interaction with the deacetylase HDAC1/2 follows this [59].
The condensed chromatin formed from the deacetylation of H3 and H4 residues will then
prevent further recruitment of NHEJ factors, putting a threshold on the process [58,59].
CHD7 activity also curtails 53BP1 accumulation at the DNA damage sites, which is known
to restrain DNA end resection [60,61]. Loss of 53BP1 or its effector, the shieldin complex,
is known to cause PARPi resistance by partially restoring HR in BRCA1-deficient tumor
cells [61–63]. CHD7 overexpression is observed in various tumor types [64], which could
have an effect on the ability of 53BP1 to be recruited to the DNA damage sites. Such a down-
stream effect, in a BRCA1-deficient context, might support the development of PARPi
resistance.

Transcriptional Repression by Chromatin Remodeling Complexes as Key Targeting Event
Another important player in PARP1-mediated chromatin remodeling is the facilitates chro-
matin transcription (FACT) complex, which is a heterodimer of the hSpt16 and SSRP1 pro-
teins. FACT binds and reorganizes the nucleosome to facilitate transcription. The hSpt16
subunit of the FACT complex is PARylated by PARP1 in response to DNA damage. This pro-
vokes the dissociation of the FACT complex from chromatin, inhibiting transcription at the
DNA damaged sites [65,66]. In parallel, SSRP1 is proposed to recognize PARylated histones
with its CTR domain and in that way mediate the early phase of histone eviction on DNA dam-
age [67].

Another transcriptional repression complex, recruited to the DNA damage site by PAR, is the
nucleosome remodeling and deacetylase (NuRD) complex [68]. The NuRD complex comprises
histone deacetylase proteins HDAC1/2, CHD4, and metastasis associated 1 (MTA1), among
others, which participate in chromatin rearrangements to halt transcription and favor DNA repair
[68,69]. The CHD4 subunit was found to bind PAR with a high-mobility group (HMG) box-like
domain located on its N-terminal region [70]. In the absence of CHD4, cells fail to recruit the
HR proteins BRIT1, BRCA1, and replication protein A (RPA) at the DNA damage site and are
therefore sensitive to PARPi [71].

Both the FACT and NuRD complexes are good examples of how PARP1 can indirectly alter the
chromatin structure to prevent interference between DNA repair and transcription. The cell must
require accurate coordination between these two processes; therefore, alterations in the subunits
of either the FACT or the NuRD complexmight lead to impaired HR initiation, which can determine
the response of the cells to PARPi.

The PARP1 Cofactor HPF1 May Be Useful to Indicate PARPi Efficacy
Interestingly, the activity of the PARP1 cofactor HPF1 contributes to the recruitment of chromatin
remodelers and DNA repair proteins and thereby regulates the subsequent pathway choice.
HPF1 binds to PARP1 and this interaction shifts the PARP1 activity from autoPARylation to
histone PARylation and the formation of shorter PAR chains [34,72]. In the absence of HPF1
activity, hyperautomodification of PARP1 results in an extended interaction with ALC1, while
reducing the recruitment of proteins that require hypo-ADP-ribosylated PARP1, such as
MacroD2 [34]. Based on these observations, changes in the expression of HPF1 in tumor cells
may affect their PAR signature, result in chromatin alterations, and subsequently influence the
PARPi response. Still, our understanding of the role of HPF1 in the PARPi response is limited:
HPF1 increases the trapping effect of PARPis [73] and should thereby contribute to PARPi
Trends in Molecular Medicine, July 2021, Vol. 27, No. 7 635
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efficacy. Surprisingly, HPF1-deficient cells are not resistant but even more sensitive to PARPis
[34]. These reports point out the need for further investigations of HPF1 as a mediator of specific
PAR signatures or a predictive biomarker of PARPi response.

Other Histone Modifications That May Determine PARP1 Activity and PARPi
Resistance
PARPi treatment impairs the timing of the DDR, possibly as a consequence of its effect on histone
eviction and the subsequent chromatin remodeling [74]. Phosphorylation and ubiquitination are
modifications that are also critical for the regulation of chromatin remodeling. The most distinct
histone modification relating to the DDR is the phosphorylation of H2AX (γΗ2ΑΧ) at Ser139,
which serves as a platform for the recruitment of DNA repair factors at DSBs [75,76]. H2A is
also ubiquitinated by RNF8 or RNF168, which are recruited to the DSBs by γH2AX [77,78]. How-
ever, compared with PARylation, these modifications occur at a later stage of the DDR and the
expansion of the ubiquitin ligases on chromatin was shown to rely on PARP1 activity [67,79].
Other modifications like the acetylation of H3K9, which are also important for the spreading
of γH2AX and the recruitment of SWI/SNF chromatin remodeling complexes, are mutually
exclusive to PARylation [80–82]. These acetylation marks prevent the PARylation of their
neighbor serine residues and the subsequent DNA repair protein recruitment. In parallel,
DNA damage seems to provoke the deacetylation of these residues, which is reversed on
PARPi treatment, indicating that PARylation takes over when it is needed. Similar observa-
tions were made for the phosphorylation mark H3S10, which is also associated with active
transcription [81].

Together, these observations imply that PARylation has various roles in orchestrating chromatin
alterations together with other post-translational modifications. The cell uses PARylation to
rapidly rearrange the chromatin; for example, to shift from DNA replication/transcription to DNA
repair or from NHEJ to HR. The initial PARylation appears to activate a chromatin remodeling
cascade, where chromatin modifiers are activated or inhibited to produce a balanced and
dynamic chromatin structure. Hence, if the PARylation status of the cell is altered by a PARPi
or by PARPi resistance mechanisms such as loss of PARG, the subsequent changes in chroma-
tin structure should have an impact on the downstream DDR pathways.

The Importance of Alterations of Chromatin Remodeling for PARPi Efficacy
Treatment of cells with PARPi abolishes the recruitment of chromatin remodelers like ALC1 or the
FACT complex to the sites of DNA damage [67,83]. This indicates that the effects of these factors
on chromatin structure are strongly controlled by PARP1 activity. Nevertheless, in PARPi-
resistant cells in which PARP1 or PARP2 function is still substantially inhibited, the cells are
able to bypass the PARPi effects through (partial) HR restoration or DNA repair protein recruit-
ment. However, how PAR-mediated chromatin rearrangements are restored in these cells to
allow these processes to restart has been overlooked. Currently, there are neither in vitro nor
in vivo data showing how this critical step of chromatin remodeling is recovered or bypassed in
PARPi-resistant tumors.

In the example of PARG loss-mediated PARPi resistance, PARylation is partially restored resulting
in the recruitment of DNA repair factors [25]. In this case, we can assume that the PARylation
signal also restores the recruitment of chromatin remodelers that are required for the regulation
of the DDR. This raises the question of whether targeting PAR-dependent chromatin modifiers
re-sensitizes these tumors to PARPi treatment. In addition, ALC1 and macroH2A1.1 have been
reported to protect PAR from PARG hydrolysis [44,52]. This function might be important for
the maintenance of the PAR signal required for an open chromatin structure but also for the
636 Trends in Molecular Medicine, July 2021, Vol. 27, No. 7



Table 3. Expression Levels of PBM-Containing Chromatin Remodelers in Cancer

Gene Protein Cancer type Low/high level Refs

CHD1L ALC1 Hepatocellular carcinoma High [106]

Intrahepatic cholangiocarcinoma High [107]

Ovarian cancer High [108]

Colorectal cancer High [109]

Breast cancer High [110,111]

Multiple myeloma High [112]

Lung adenocarcinoma High [113]

APLF APFL Breast cancer High [114]

CHD4 NuRD complex Non-small cell lung cancer High [115]

Colorectal cancer Low [116]

Gastric cancer Low [116]

Endometrial cancer Low [117]

SSRP1 SSRP1: FACT
complex subunit

Non-small-cell lung cancer High [118]

Renal cell carcinoma High [87]

Pancreatic ductal adenocarcinoma High [87]

Breast cancer High [87]

Colorectal adenocarcinoma High [87]

Hepatocellular carcinoma High [119,120]

Glioma High [121]

CHD2 CHD2 Chronic lymphocytic leukemia (CLL) Low [122]

Breast implant-associated anaplastic large
cell lymphoma

Low [123]

Gastric cancer Low [116]

Colorectal cancer Low [116,124]

CHD7 CHD7 T cell lymphoma High [125]

Breast cancer High [64]

Colorectal carcinoma High [116,126]

H2AFY macroH2A1 Lung cancer Low [86]

Melanoma Low [127]

TNBC High [128]

Colon cancer Low [129]

Prostate cancer Low [130]
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Clinician’s Corner
PARPi resistance represents a major
hurdle for the treatment of BRCA-
deficient tumors in the clinic.

Studying the genetic composition of
tumors and how that may influence
PARylation in response to DNA dam-
age can be useful to further personalize
PARPi treatment.

PAR-dependent chromatin relaxation
is important in mediating the DDR,
but it is unknown how the tumor is
able to overcome the absence of this
regulation in a PARPi-resistant setting.

Many PARPi resistance mechanisms
remain to be discovered. Expression
alterations of PAR-regulated chromatin
remodelers can potentially predispose
for resistance.

Understanding the intricacies of
chromatin remodeling in PARPi-
resistant tumors may help in finding
new vulnerabilities to be targeted to
overcome resistance.
recruitment of ubiquitin ligases, like CHFR, which will target PARP1 for degradation [14]. If such a
hypothesis were true, one would assume that if PARP1 is trapped on chromatin, the protection of
PAR chains might be advantageous for the development of PARPi resistance. In line with this and
the recently identified role of ALC1 in PARP chromatin release [46–48], it is likely that overexpres-
sion of ALC1 results in PARPi resistance by reversing the toxic trapping effect of PARP inhibition.
Such a hypothesis is also supported by the finding that loss of ALC1 sensitizes BRCA-mutated
breast and ovarian tumor cells to PARPi [84].

Overall, overexpression or reduced expression of PAR-regulated chromatin modifiers is
frequently observed in various kinds of tumors and it is possible to determine their response to
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Outstanding Questions
How do PARPi-resistant tumor cells, in
which the inhibitor still blocks PARP
function, compensate for the loss of
PAR-mediated chromatin changes?

Does this compensation provide a new
vulnerability that can be explored to
treat PARPi-resistant tumors?

What is the chromatin remodeling
landscape of PARPi-sensitive versus
PARPi-resistant tumors?

Is the chromatin remodeling activity useful
to predict the response to PARPis?
PARPi treatment. Table 3 depicts changes in the expression levels of chromatin modifiers,
based on immunohistochemistry or RNA expression, in different types of cancers. Overex-
pression of ALC1, for example, has been shown to promote cancer progression and metas-
tasis, whereas reduced expression of macroH2A is associated with poor lung cancer
prognosis [85,86]. It is possible that tumors, where chromatin remodeling is not reliant on
PARP1 activity, are more resistant to PARP inhibition. Therefore, checking whether this is
valid for tumors with overexpressing chromatin remodeling genes may allow the already
evaluated cytotoxic compounds against these tumors to be clinically exploited. For in-
stance, the curaxin class of anticancer agents have already been characterized to eliminate
aggressive tumors with high expression of the chromatin remodeling complex FACT
[87–89]. Hence, in addition to PARP1, PARP2, and PARG, monitoring the activity of
PARP-associated chromatin modifiers in tumor biopsies may also be useful to better predict
the PARPi response of individual patients and to improve personalized treatments.
Moreover, in line with the competitive relation between acetylation and PARylation, histone
deacetylase inhibitors (HDACis) show a synergistic killing effect in combination with PARPi
in triple-negative breast cancer (TNBC) in vitro and in vivo [90]. Six different HDACis have
been FDA approved and it would be interesting to test whether they can reverse PARPi
resistance.

Concluding Remarks
Changes in chromatin structure are critical for the accomplishment of a DDR response and
PARP1 is a major player mediating this link. PARP1 knockout mice are viable and PARP1 is
not essential for most cell lines (https://depmap.org). This can obviously be explained by the
redundant activity of PARP2. The current PARPis used in the clinic usually block both
PARP1 and PARP2, with different efficacies. Although PAR-mediated chromatin remodel-
ing is being extensively studied in the PARP biology field, little is known about the relevance
of chromatin remodeling for the success of PARPi treatment and its implication in PARPi re-
sistance (Figure 1). Chromatin remodelers might have a key role in the development of
PARPi resistance and their targeting may be useful to re-sensitize resistant tumors.
Certainly, we have to bear in mind that histone removal and chromatin remodeling do not
rely only on PARylation. Other modifications including phosphorylation, acetylation, and
ubiquitination also signal for the recruitment of histone chaperones and this might compen-
sate for the loss of PARylation [80,91,92]. Nevertheless, DDR-related chromatin rearrange-
ments largely rely on PARP1 activity and they serve as an important recycling regulator for
PARP1 itself. Changes in the expression of PAR-regulated chromatin remodeling proteins
is a common characteristic of many tumor types, indicating their significance in tumor devel-
opment. Therefore, unraveling the chromatin remodeling landscape of PARPi-treated or
-resistant tumors (see Outstanding Questions) might reveal hidden mechanisms that will
help us obtain a complete understanding of PARPi resistance and find approaches to over-
come it.
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Figure 1. Chromatin Remodeling Following DNA Damage Is Poorly Characterized in Poly(ADP) Ribose (PAR) Polymerase Inhibitor (PARPi)-Sensitive
versus -Resistant Tumors. (A,B) PARPi-sensitive tumors. In the presence of active PARP1, a PAR-mediated chromatin remodeling cascade begins and the various
PAR-regulated chromatin modifiers are recruited to the DNA damage site to initiate the required relaxation and re-compaction events for DNA repair. These chromatin
changes will eventually contribute to the chromatin release and recycling of PARP1 so that another DNA damage response cascade will follow. Following PARP
inhibition, PARP1 is trapped on the chromatin and its inactivation leads to insufficient PARylation for the recruitment of chromatin remodelers and the initiation of
chromatin changes. Under these conditions, PARP1 cannot be released and recycled. (C,D) PARPi-resistant tumors. It is unclear whether the PAR-mediated
chromatin remodeling and accessibility and the following PARP1 recycling are restored in PARP1-resistant tumors. This may happen as a result of partial PAR signaling
restoration on PAR glycohydrolase (PARG) loss or through the enhancement of another PARP-independent chromatin remodeling cascade, which will compensate for
the absence of PARylation. Abbreviations: ALC1, amplified in liver cancer 1; APLF, aprataxin and PNK-like factor; CHD2/4/7, chromodomain helicase DNA binding
protein 2/4/7; HPF1, histone PARylation factor 1; PAR, poly (ADP-ribose); PARP1, poly (ADP- ribose) polymerase 1; SPT16, suppressor of Ty 16 (facilitates chromatin
remodeling-FACT subunit); SSRP1, structure specific recognition protein 1 (facilitates chromatin remodeling-FACT subunit).
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