Dual-Phase β-Amyloid PET Captures Neuronal Injury and Amyloidosis in Corticobasal Syndrome.

Schmitt, Julia; Palleis, Carla; Sauerbeck, Julia; Unterrainer, Marcus; Harris, Stefanie; Prix, Catharina; Weidinger, Endy; Katzdobler, Sabrina; Wagemann, Olivia; Danek, Adrian; Beyer, Leonie; Rauchmann, Boris-Stephan; Rominger, Axel; Simons, Mikael; Bartenstein, Peter; Perneczky, Robert; Haass, Christian; Levin, Johannes; Höglinger, Günter U and Brendel, Matthias (2021). Dual-Phase β-Amyloid PET Captures Neuronal Injury and Amyloidosis in Corticobasal Syndrome. Frontiers in aging neuroscience, 13, p. 661284. Frontiers Research Foundation 10.3389/fnagi.2021.661284

[img]
Preview
Text
fnagi-13-661284.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (2MB) | Preview

Objectives: In recent years several 18F-labeled amyloid PET (Aβ-PET) tracers have been developed and have obtained clinical approval. There is evidence that Aβ-PET perfusion can provide surrogate information about neuronal injury in neurodegenerative diseases when compared to conventional blood flow and glucose metabolism assessment. However, this paradigm has not yet been tested in neurodegenerative disorders with cortical and subcortical affection. Therefore, we investigated the performance of early acquisition 18F-flutemetamol Aβ-PET in comparison to 18F-fluorodeoxyglucose (FDG)-PET in corticobasal syndrome (CBS). Methods: Subjects with clinically possible or probable CBS were recruited within the prospective Activity of Cerebral Networks, Amyloid and Microglia in Aging and Alzheimer's Disease (ActiGliA) observational study and all CBS cases with an available FDG-PET prior to Aβ-PET were selected. Aβ-PET was acquired 0-10 min p.i. (early-phase) and 90-110 min p.i. (late-phase) whereas FDG-PET was recorded statically from 30 to 50 min p.i. Semiquantitative regional values and asymmetry indices (AI) were compared between early-phase Aβ-PET and FDG-PET. Visual assessments of hypoperfusion and hypometabolism were compared between both methods. Late-phase Aβ-PET was evaluated visually for assessment of Aβ-positivity. Results: Among 20 evaluated patients with CBS, 5 were Aβ-positive. Early-phase Aβ-PET and FDG-PET SUVr correlated highly in cortical (mean R = 0.86, range 0.77-0.92) and subcortical brain regions (mean R = 0.84, range 0.79-0.90). Strong asymmetry was observed in FDG-PET for the motor cortex (mean |AI| = 2.9%), the parietal cortex (mean |AI| = 2.9%), and the thalamus (mean |AI| = 5.5%), correlating well with AI of early-phase Aβ-PET (mean R = 0.87, range 0.62-0.98). Visual assessments of hypoperfusion and hypometabolism were highly congruent. Conclusion: Early-phase Aβ-PET facilitates assessment of neuronal injury in CBS for cortical and subcortical areas. Known asymmetries in CBS are captured by this method, enabling assessment of Aβ-status and neuronal injury with a single radiation exposure at a single visit.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Department of Radiology, Neuroradiology and Nuclear Medicine (DRNN) > Clinic of Nuclear Medicine

UniBE Contributor:

Rominger, Axel Oliver

Subjects:

600 Technology > 610 Medicine & health

ISSN:

1663-4365

Publisher:

Frontiers Research Foundation

Language:

English

Submitter:

Daria Vogelsang

Date Deposited:

05 Jan 2022 17:09

Last Modified:

09 Jan 2022 01:51

Publisher DOI:

10.3389/fnagi.2021.661284

PubMed ID:

34054506

Uncontrolled Keywords:

PET amyloid corticobasal syndrome dual phase neuronal injury

BORIS DOI:

10.48350/161777

URI:

https://boris.unibe.ch/id/eprint/161777

Actions (login required)

Edit item Edit item
Provide Feedback