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Simple Summary: Tumor hypoxia is considered a critical factor associated with the resistance of
conventional radiotherapy, where the X-ray-induced free radicals lead to DNA damage in a manner
that is strongly dependent on the tissue oxygenation. The emerging PSMA-directed radioligand
therapy (RLT) employs the α or β particles emitted by the radiopharmaceuticals to kill the tumor cells.
In contrast to conventional therapy, the induced DNA damage is less dependent on the oxygenation
status. Less attention has been paid to investigating whether tumor hypoxia will influence the
efficacy of PSMA-directed RLT. We propose a histology-driven in silico model to quantitatively
investigate the influence of tumor hypoxia on the treatment outcome for PSMA-directed RLT with
177Lu and 225Ac. Our finding suggests that hypoxia is a factor to be considered for the application of
PSMA-directed RLT.

Abstract: Radioligand therapy (RLT) targeting prostate specific-membrane antigen (PSMA) is an
emerging treatment for metastatic castration-resistant prostate cancer (mCRPC). It administrates
225Ac- or 177Lu-labeled ligands for the targeted killing of tumor cells. Differently from X- or γ-ray,
for the emitted α or β particles the ionization of the DNA molecule is less dependent on the tissue
oxygenation status. Furthermore, the diffusion range of electrons in a tumor is much larger than
the volume typically spanned by hypoxic regions. Therefore, hypoxia is less investigated as an
influential factor for PSMA-directed RLT, in particular with β emitters. This study proposes an in
silico approach to theoretically investigate the influence of tumor hypoxia on the PSMA-directed RLT.
Based on mice histology images, the distribution of the radiopharmaceuticals was simulated with an
in silico PBPK-based convection–reaction–diffusion model. Three anti-CD31 immunohistochemistry
slices were used to simulate the tumor microenvironment. Ten regions of interest with varying
hypoxia severity were analyzed. A kernel-based method was developed for dose calculation. The
cell survival probability was calculated according to the linear-quadratic model. The statistical
analysis performed on all the regions of interest (ROIs) shows more heterogeneous dose distributions
obtained with 225Ac compared to 177Lu. The higher homogeneity of 177Lu-PSMA-ligand treatment
is due to the larger range covered by the emitted β particles. The dose-to-tissue histogram (DTH)
metric shows that in poorly vascularized ROIs only 10% of radiobiological hypoxic tissue receives
the target dose using 177Lu-PSMA-ligand treatment. This percentage drops down to 5% using 225Ac.
In highly vascularized ROIs, the percentage of hypoxic tissue receiving the target dose increases to
more than 85% and 65% for the 177Lu and 225Ac-PSMA-ligands, respectively. The in silico study
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demonstrated that the reduced vascularization of the tumor strongly influences the dose delivered
by PSMA-directed RLT, especially in hypoxic regions and consequently the treatment outcome.

Keywords: hypoxia; radioligand therapy; tumor microenvironment; convection–reaction–diffusion
models; dosimetry; radiobiology

1. Introduction

Hypoxia is an oxygen deprivation state within a region of a tissue or an organ that
induces a complex systemic and cellular response [1]. In tumors, hypoxic regions arise from
abnormal tumor vessel structure and function, limiting perfusion to the tissue [2]. Chronic
hypoxia is a quasi-steady state condition principally due to the spatial disorganization
of tumor vessels that can create large inter-capillary distances surpassing the oxygen
diffusion range [3]. Tumor hypoxia is considered as one of the main resistance factors for
radiotherapy [4].

Radiation therapy (RT) is among the most important and common techniques that
are adopted for cancer treatment. The aim of radiotherapy consists in killing cancer cells
with the use of ionizing radiations that are able to spare the healthy tissue surrounding
the tumor volume. Ionizing radiation primarily affects the cell by breaking covalent bonds
within the genomic DNA. Strand breaks can be subdivided into single-strand breaks (SSB)
and double-strand breaks (DSB), where opposite strands are damaged in close proximity.
DNA double-strand breaks are widely accepted as the key driver of radiobiological effects
in cells. While the yield of DSBs is linear over a dose range spanning from 1 mGy to
100 Gy [5], another important role is played by the type of particles used for the treatment.
Indeed, heavy charged particles such as protons or α particles deposit their energy in a
dramatically lower range with respect to photons or electrons. The quantity that defines
the amount of energy delivered in a space unit is the linear energy transfer (LET). To a
higher LET corresponds a denser distribution of ionizations in DNA and thus a greater
level of biological damages [6,7]. A substantial secondary effect is the generation of reactive
oxygen species (ROS) that hinder normal cellular functions by oxidizing proteins, lipids,
and DNA. Cumulatively, the two different mechanisms cause cell lethality and mitotic
failure. In a hypoxic environment, there is a lack of substrate for ROS generation [8].
The enhancing effect of oxygen on radiation-induced damage can be quantified by the
oxygen-enhancement ratio (OER). The oxygen-enhancement ratio is defined as the ratio of
the doses needed to produce a given level of injury in the absence and presence of oxygen.
OER is particle dependent and it is an important factor to consider for the tumor control
probability [9].

The last decades have witnessed rapid acceleration in the impact of tumor-targeted
radioligand therapy (RLT). Promising results have been obtained in the treatment of
metastatic castration-resistant prostate cancer (mCRPC), known for its high morbidity
and mortality [10]. Prostate carcinoma is characterized by the increased expression of the
specific type II transmembrane glycoprotein named prostate-specific membrane antigen
(PSMA) [11]. Several studies have demonstrated the efficacy and safety of RLT for the
treatment of mCRPC performed with Lutetium-177 (177Lu-PSMA-ligands) [12,13]. A recent
meta-analysis shows biochemical and radiological responses in 46% and 37% of the patients,
respectively [14]. Despite the early success, due to the relatively low linear energy transfer
(LET) the β particle emitted by 177Lu causes mostly single-strained DNA breaks leading to
treatment resistance. A more potent alternative is represented by the α-emitter Actinium-
225 (225Ac-PSMA-ligands). The α particles emitted by 225Ac , with LET (∼100 keV/µm)
500 times higher compared to the β particle emitted by 177Lu, induces with a higher
probability a double-strand break of the DNA [15,16]. A recent meta-analysis on 225Ac-
PSMA-ligands therapy indicates a remarkable efficacy of this targeted approach, with a
response rates that exceed those published for 177Lu-PSMA RLT [17]. Coherently with other



Cancers 2021, 13, 3429 3 of 17

solid tumors, hypoxic regions exist in prostate cancer, with a degree comparable to other
malignancies [18–21]. Furthermore, hypoxia in prostate cancer has been demonstrated to
correlate with increased tumor invasiveness, metastasis, and resistance to chemotherapy
and radiotherapy [21]. In addition to factors common for all radiation-based treatments,
the efficacy of radioligand therapy also depends on the ability of the radiopharmaceutical
to reach and bind its target. The irregular spatial distribution of the vessels within the
tumor makes certain regions difficult for the therapeutic to reach the cancer cells. While
not directly a consequence of hypoxia, the lack of oxygen in a region is highly correlated
to the inability of other molecules to reach it and could be considered an indirect effect
on the treatment outcome [3]. Due to above-mentioned effects of hypoxia, a treatment
plan should ideally consider the hypoxia severity of the tumor and optimize the treatment
accordingly. Indeed, the reduced range of α particles in human tissues, i.e., ∼50 µm for α
particles emitted by 225Ac with respect to ∼1.6 mm for β particles emitted by 177Lu, can
strongly reduce the cross-fire effect in large tumors with poorly vascularized regions.

The complementary advantages of α and β-emitting RLTs lead to the concept of “cock-
tail treatment” to maximize the antitumoral effect. However, determining the local oxygen
and drug distribution within a clinical setting is challenging and it remains unclear how
such a cocktail treatment should be formulated and the potential treatment outcome. In
the past decades, systems medicine has emerged as a tool to facilitate hypothesis gener-
ation, data integration, and patient-specific therapeutic development. Systems medicine
has already been applied for the development of multi-modal imaging strategies [22].
Numerical investigations have been conducted to model the distribution of hypoxia in
tumor microenvironment [23–29]. In these studies hypoxia is indirectly estimated by es-
tablishing the computational model on the microvascular distribution [23–25]. The results
have been reported to be consistent with experimental measurements [26–29] and this
strategy is often used in theoretical investigation of phenomena related to tumor hypoxia
(e.g., imaging) [26–29]. However, the underlying assumption that hypoxia is induced
by the limited oxygen diffusion in poorly vascularized tumor micro-areas constrains the
microvasculature-based modeling mainly to chronic hypoxia [26–29]. In this work we pro-
pose an in silico modeling based on physiologically-based pharmaco-kinetic (PBPK) models
to study the effect of chronic hypoxia on the treatment outcome in RLT for prostate cancer.
The effect of chronic hypoxia is also examined in the context of radiobiological efficacy.

2. Materials and Methods
2.1. Animal Experiments

The PSMA-positive prostate carcinoma cell line LNCaP (purchased from the ATCC)
was cultivated at 37 ◦C in a humidified 5% CO2 atmosphere using RPMI 1640 medium
supplemented with 10% (v/v) FBS and Pen-Strep [30,31]. Animal experiments were con-
ducted with permission from the District Government of Upper Bavaria (application No.:
55.2-1-54-2532-216-15) according to the guidelines for the welfare and use of animals in
cancer research. Male CB17-SCID mice at an age of 6 weeks were purchased from Charles
River Laboratories (Wilmington, MA, USA) and held under specific pathogen free (SPF)
conditions. Tumor inoculation was performed by mixing a cell suspension containing
5 × 106 LNCaP cells 1:1 (v/v) with Matrigel (Corning, NY, USA) and subsequent subcuta-
neous injection above the shoulder. When tumors had reached ∼1 cm in size, the animals
were sacrificed, xenograft tumors were excised and fixed in 10% (v/v) neutral-buffered
formalin solution (Otto Fischar, Saarbrücken, Germany).

2.2. Stained Tumor Sections

The formalin-fixed, paraffin-embedded (FFPE) tissue was used to prepare consecutive
2 µm sections using a microtome (Microm). The immunohistochemistry (IHC) for CD31
(vessel endothelium) was performed with a primary rabbit anti-CD31 antibody (Abcam
ab28364, 1:50) processed and detected on a Bond RXm system (Leica) with a polymer
detection kit (without post primary antibody). The tissue was deparaffinized, pretreated
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with hydrogen-peroxide, incubated with the primary antibody for 15 min at room tem-
perature, and the detection was performed with an anti-rabbit HRP polymer and DAB.
Counterstaining was performed with hematoxylin. The slides were then dehydrated and
coverslipped. Positive staining occurred as a dark-brown precipitate.

2.3. Computational Domain and Vessel Map Generation

The computational domain is based on xenografts. The following steps were used
for processing three different images of tissue slices that were immunohistochemically
stained for vessel endothelium. As a first step, ten different regions of interest (ROIs) of
1.6× 1.6 mm2 have been identified on the stained histology slices (Figure 1a). The ROIs
have been selected in order to simulate the radiopharmaceuticals distribution in domains
with different degrees of vascularisation. The selected ROIs have been binarized with the
use of the automated Huang threshold method implemented in ImageJ (V.2.1.0) [32]. The
threshold parameters have been adjusted in order to obtain the best vessels to background
ratio. As a second step a specifically coded Python program has been used to clean the
residual noise keeping only the vessels contours. The Python script can be downloaded
by the reader (https://www.dropbox.com/sh/fy5ud6f7vovh4ty/AABPbDhbONdqus4
OAJEFNUmGa?dl=0, accessed date 13 June 2021). The resulting image shown in Figure 1b
is used as the computational domain. For each ROI a visual comparison of the obtained
vessel contours with respect to the original image has been performed in order to assure
the robustness of the algorithm. The vascular fraction of the domains spans between 1.0%
and 3.2% with a mean value of 2.1%. The vascular fraction in the ROIs are comparable
with other published values [33,34].

(a)

Figure 1. Cont.

https://www.dropbox.com/sh/fy5ud6f7vovh4ty/AABPbDhbONdqus4OAJEFNUmGa?dl=0
https://www.dropbox.com/sh/fy5ud6f7vovh4ty/AABPbDhbONdqus4OAJEFNUmGa?dl=0
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(b) (c)
Figure 1. (a) Example of the used tissue microsection immunohistochemically stained for CD31
(vessel endothelium). The red square represents one of the regions of interest used for simulations.
(b) Region of interest after binarization. (c) Zoom image of the ROI.

2.4. Multi-Scale Spatial-Temporal Models of PSMA-Ligands Dynamics

As shown in Section 2.3, the computational domain consists of extravascular space
interspersed by vessels, which constitute holes in the mesh. The tumor tissue, i.e., the
extravascular space, is assumed to be homogeneously divided into two sub-compartments:
The interstitial compartment where the labelled PSMA-ligands can move and bind to the
cells surface and the cellular compartment. The radiopharmaceutical enters the tumour
interstitium from the vasculature. It is then transported through the interstitial volume
by diffusion down concentration gradients and convection from regions of high to low
interstitial fluid pressure (IFP). Finally, it exits via cellular uptake and backflow into the
vasculature. The flux density of PSMA-ligands across vessel walls, Jv (nmol s−1 cm−2), is
assumed to be proportional to the difference between the concentrations on the vascular
Cv (nmol ml−1) and the interstitium Ci side:

Jv = Lv(Cv − Ci) (1)

where Lv (cm s−1) represents the vessel wall permeability to PSMA-ligands. The spatio-
temporal evolution of the interstitial PSMA-ligands concentration can be described by a
convection–reaction–diffusion (CRD) equation as:

∂tCi = ∇ · (DPSMA∇Ci)−∇ · (~v R f Ci)− konCi(R0 − Cb) + koffCb − λdecCi (2)

where DPSMA is the diffusivity of PSMA-ligands, R f is the movement coefficient be-
tween the molecule and its carrier, the terms ∇ · (DPSMA∇Ci) and ∇ · (~v R f Ci) describe
changes in interstitial radiopharmaceutical concentration due to diffusion and convection,
kon (cm3 nmol−1 s−1) and koff (s−1) are, respectively, the association and dissociation rates,
Cb is the bounded radiopharmaceutical concentration (nmol ml−1) , R0 (nmol ml−1) is the
PSMA binding sites density and λdec (s−1) is the radionuclide decay constant. The labelled
molecule has a high-binding affinity for PSMA expressed on the prostate cancer cell surface.
Moreover, PSMA undergoes an internalisation process that allows the radionuclide to be
concentrated within the cell [35]. Demanding mass conservation and assuming first-order
kinetics, the rates of change of bounded and internalized PSMA-ligands concentrations,
Cint, can be written as

∂tCb = konCi(R0 − Cb)− koffCb − kintCb − λdecCb, (3)

∂tCint = kintCbFVi/FVc − krelCint − λdecCint, (4)
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where kint (s−1) and krel (s−1) are the internalization and the release rates, respectively,
and FVi and FVc are the fractional volumes of tumour interstitium and cells within a
voxel, respectively. The radiopharmaceutical flux across the vessel walls is modelled via
Neumann boundary conditions imposed on the vessel boundaries as

~n · (DPSMA∇Ci) = Jv (5)

where ~n is the normal unit vector to the respective boundary segment. No-flux bound-
ary conditions were applied to the edges of the vessel map. Table 1 lists the parameter
estimates deduced from the literature [36–38]. The 177Lu-PSMA-ligands and 225Ac-PSMA-
ligands distributions in tumor microenvironment have been calculated by numerically
solving the model presented above with a finite element method (FEM) implemented in
FreeFem++ [39].

Table 1. Model parameter values used in PSMA-ligands dynamics simulations.

Symbol Parameter Value Reference

Lv Vessel wall permeability 3.3× 10−4 cm s−1 [37]
DPSMA Diffusivity 8.7× 10−7 cm2 s−1 [36]
R f Molecule/Carrier movement coefficient 1 [36]
R0 Receptor density 4.089× 10−2 nmol ml−1 fitted
kon Association rate 7.7× 10−1 ml nmol−1 s−1 [38]
koff Dissociation rate 7.7× 10−4 s−1 [38]
kint Internalization rate 1.67× 10−5 s−1 [38]
krel Release rate 2.67× 10−6 s−1 [38]
FVi Fractional interstitial volume 39% [38]
FVc Fractional cellular volume 61% [38]
λdec

177Lu decay constant 1.197× 10−6 s−1

λdec
225Ac decay constant 8.087× 10−7 s−1

2.5. Tissue Oxygenation Models and Oxygen Dependent Tissue Segmentation

To study the effect of the presence of hypoxic tissue on the treatment outcome, we
simulated the tissue oxygenation. Accordingly to the published literature, the oxygen
transport is modelled as a purely diffusive process that is in equilibrium with cellular
oxygen consumption [25–27,29]. The cellular oxygen consumption has been modelled
considering Michaelis–Menten kinetics [25]. The reaction-diffusion equation for tissue
oxygenation reads:

∂tP = ∇ · (DO2∇P)− M0P
P + P0

(6)

where P (mmHg) is the oxygen tension, DO2 (cm2 s−1) is the diffusion constant,
M0 (mmHg s−1) is the consumption rate at maximum oxygen levels and P0 (mmHg) is the
Michaelis-Menten coefficient of oxygen consumption. Accordingly to Mönnich et al. [27],
the oxygen flux density across the vessel walls is considered to be proportional to the dif-
ference between the oxygen tension in erythrocytes Pie (mmHg) and on the extravascular
side of the wall P:

JO2 = LO2(Pie − P). (7)

Similarly the model presented in Section 2.4, the oxygen flux across the vessel walls is
modelled via Neumann boundary conditions imposed on the vessel frontiers as

~n · (DO2∇P) = JO2 . (8)

No-flux boundary conditions were applied to the edges of the vessel map. The
parameters used in the oxygenation reaction-diffusion model have been derived by liter-
ature [27,29] and are listed in Table 2. The quasi-static oxygen distribution in the tumor
microenvironment has been calculated by numerically solving Equation (6) with a FEM
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implemented in FreeFem++ [39]. The stationary approximation is reached by imposing a
threshold of 0.1% (s−1) to the temporal variations of the solution.

Table 2. Model parameter values used in tissue oxygenation simulations

Symbol Parameter Value Reference

LO2 Vessel wall permeability to O2 4.1× 10−2 cm s−1 [27,29]
DO2 Oxygen diffusivity 2.0× 10−5 cm2 s−1 [27,29]
Pie Intraerythrocyte pO2 in tumors 40 mmHg [27,29]
M0 Maximum O2 consumption rate 15 mmHg s−1 [27,29]

P0
Michaelis-Menten coefficient of
oxygen consumption 2.0 mmHg [27,29]

According to Mckeown [40], we defined physoxia (the oxygen tension between
40 mmHg and 15 mmHg), physiological hypoxia (the oxygen tension between 15 mmHg
and 8 mmHg), pathological hypoxia (the oxygen tension between 8 mmHg and 3 mmHg),
and radiobiological hypoxia (the oxygen tension below 3 mmHg). The extravascular matrix
has been segmented into the previously defined regions accordingly to the solution of
Equation (6) as shown in Figure 2.

2.6. Physiologically Based Pharmacokinetic Model

Physiologically based pharmacokinetic (PBPK) models are compartment-based mod-
els used to simulate the absorption, distribution, metabolism, and excretion of the injected
compound in the human body [41]. An existing and validated PBPK model [38] for RLT
studies has been adopted to calculate the arterial input function (AIF), i.e., the time de-
pendant vascular concentration of PSMA-ligands Cv, used in our CRD model. The PBPK
model for PSMA-ligands was adapted to be compatible with mouse physiology. Mouse
physiological variables were either based on rescaling human parameters or derived from
literature [42–46]. The tumor tissue was treated as a xenograft; therefore, parameters such
as vascular and interstitial fraction, receptor density, PSMA-ligands binding constants,
degradation and internalization rates were assumed to be the same as in humans [38]. The
injected amount of radiopharmaceutical was chosen to obtain a mean deposited dose in
the prostate tumor model of 10 Gy twenty days post-injection.

2.7. Absorbed Dose and Cell Survival Probability

The absorbed dose in each voxel of the domain has been calculated accordingly to the
MIRD formalism [47]. The mean absorbed dose D(rT , TD) (Gy) to target voxel rT over a
defined period TD is defined as

D(rT , TD) = ∑
rs

Ã(rS, TD)S(rT ← rS) (9)

where Ã(rS, TD) (Bq) is the time-integrated activity in source voxel rS over the period
TD and S(rT ← rS) is the radionuclide-specific quantity representing the mean absorbed
dose to the target voxel rT per unit activity present in the source voxel rS. In this work the
S values for each radionuclide are calculated with the use of MIRD-cell (V2.0) [48]. The
probability that a cell survives is calculated accordingly to the linear quadratic model

PS = e−αD−βD2
(10)

where α and β are the linear quadratic parameters that characterize the cellular response to
the ionizing radiation and D (Gy) is the absorbed dose [49]. The linear quadratic parameters
depend on the tissue oxygenation: The higher is the oxygenation, the more radiosensitive
are the cells. In this work, the oxygen level within a pixel is used to fit the linear quadratic
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parameters. The cell survival curve for α particle radiation is log-linear at low as well as
high absorbed doses. Equation (10) can be consequently simplified as

PS = e−D/D0 (11)

where D0 is the absorbed dose required to yield a survival fraction of 37% [50]. The
parameters used to calculate the cells survival probability are resumed in Table 3.

Table 3. Parameters used for the cells survival probability calculations.

Parameter Physoxia Radiobiological Hypoxia Ref.

α 0.15 Gy−1 0.107 Gy−1 [51]
β 0.048 Gy−2 0.024 Gy−2 [51]
D0 0.7 Gy 1.18 Gy [52]

3. Results
3.1. Tissue Oxygenation and Oxygen Dependent Tissue Segmentation

As a benchmark on the consistency of the oxygenation simulations with respect to the
existing literature, for each ROI the median pO2 has been calculated. The resulting pO2
median calculated for each ROI spans in the range between 0.5 mmHg and 7.65 mmHg
depending on the vascularization degree of the domain. These values are in agreement
with the reported literature values for prostate tumors [40]. The main characteristic of the
simulated oxygen distribution is the sharp gradient in the proximity of vessels and an
asymptotic behavior approaching zero at large distances, which is consistent with previous
investigations [25,27,29]. Consequently, the vascular fraction and the vessel distribution
have a strong influence on the spatial distribution of each of the defined oxygen levels.
Figure 2 shows the classification of the microenvironment tissue in three different ROIs,
according to the definition given by Mckeown [40]. These ROIs have been selected as
representative cases for a poorly vascularized tumor microenvironment (ROI A, vascular
fraction of 1%), a vascularization degree comparable with published values for prostate
cancers (ROI B, vascular fraction of 2.34%) and a highly vascularized prostate tumor
microenvironment (ROI C, vascular fraction of 3.2%). The fraction of physoxia in the
microenvironment goes from 8.9% in ROI A to 31.3% in ROI C showing a proportional
behavior with respect to the vascular fraction. On the other hand, the fraction of tissue
classified as radiobiological hypoxia is 36.3% in ROI C and increases up to 72.7% in ROI
A, demonstrating an inverse correlation with the degree of vascularization. Regions of
physiological hypoxia seem to be primarily dependent on the local vessel density, and
inter-vessel distance.

(a) (b)
Figure 2. Cont.
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(c)
Figure 2. Tissue segmentation of the three representative ROIs based on the oxygenation level.
Physoxia is labeled with red color, physiological hypoxia is labeled with green color, pathological
hypoxia is labeled with blue color, and radiobiological hypoxia is labeled with black color. (a) Tissue
segmentation for ROI A with a vascular fraction of 1%. (b) Tissue segmentation for ROI B with a
vascular fraction of 2.34%. (c) Tissue segmentation for ROI C with a vascular fraction of 3.2%.

3.2. Dose Distribution in Tumor Microenvironment

Once the activity distribution was recovered, the Equation (9) was solved to calculate
the dose distribution in the ROI. Figure 3 shows the cumulative dose to tissue histograms
(DTH) calculated for the three ROIs and for each radionuclide at twenty days post injection.
The DTH metric, similarly to the cumulative dose to volume histograms (DVH) commonly
used in clinical practice, has been established in order to analyse the dose delivered to any
defined tissue in the tumor microenvironment.

In all cases a more homogeneous dose distribution is produced by 177Lu. The higher
homogeneity of the dose distribution is highlighted by the steep shoulders of the DTHs
for all the considered tissues. This is due to the higher “cross-fire” induced by the higher
range covered by the β particles with respect to the α particles emitted by 225Ac. Moreover,
the DTH metric shows that in the poorly vascularized tissues (ROI A) only the 10% of
radiobiological hypoxic tissue receives the target dose using 177Lu-PSMA-ligand treatment.
This percentage drops down to 5% using 225Ac. In highly vascularized tissues (ROI C) the
percentage of hypoxic tissue receiving the target dose increases to more than 85% and 65%
for the 177Lu and 225Ac-PSMA-ligands, respectively.

(a) (b)
Figure 3. Cont.
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(c) (d)

(e) (f)
Figure 3. (a,c,e) Cumulative dose to tissue histogram of deposited dose in ROI A, ROI B and ROI C,
respectively, within each tissue segment with 177Lu-PSMA treatment at twenty days post-injection.
(b,d,f) Cumulative dose to tissue histogram of deposited dose in ROI A, ROI B and ROI C, respectively,
within each tissue segment with 225Ac-PSMA treatment at twenty days post-injection.

The statistical analysis performed in all the ROIs shows an overall higher standard
deviation in the dose distributions obtained with 225Ac with respect to 177Lu. A linear
model was fitted to explore the relationship between the mean deposited dose and the
Log10 median tissue oxygenation (Figure 4). For both 177Lu-PSMA and 225Ac-PSMA a high
coefficient of determination (R2 = 0.97 and 0.98, respectively) was calculated, indicating a
good model fit. A steeper slope was calculated in the case of 225Ac-PSMA with respect to
177Lu-PSMA (1.24 and 0.86, respectively).

(a) (b)
Figure 4. Relationship between the mean absorbed dose and the median oxygenation for 177Lu-
PSMA treatment (a) and 225Ac-PSMA treatment (b). The vertical lines represent the dose standard
deviation within each examined ROI.
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3.3. Radiobiological Efficacy Analysis

Applying the linear-quadratic model described in Section 2.7 to the dose maps, the
cell survival probability for both 225Ac-PSMA-ligands and 177Lu-PSMA-ligand treatments
has been calculated. The statistical analysis performed in all the ROIs shows an overall
higher survival probability of tumor cells when the radiopharmaceutical is labelled with
177Lu instead of 225Ac (Figure 5). While the mean irradiation dose is comparable for both
radiopharmaceuticals, the 225Ac-PSMA-ligand has a overall significantly higher cell-killing
potency. This finding is consistent with the reported higher probability of double-stranded
break induction by the α particles, which are more difficult for the cell to repair.

Figure 5. Cell survival probability depending on the ROI median oxygen tension for 177Lu-PSMA
and 225Ac-PSMA treatments.

Figure 6 depicts the cell survival probability distribution for the examined ROIs. The
cell survival probability can be four order of magnitude higher for 177Lu with respect to
225Ac in vessels neighborhood. This difference can decrease by two orders of magnitude at
large distances from vessels. While the 177Lu-PSMA-ligand is overall less lethal, the longer
range of β particles enables the 177Lu based treatment to be less dependent on the degree
of domain vascularization. This can be also seen by the smaller standard deviation in the
mean cell survival probability for all the examined ROIs.

(a) (b)
Figure 6. Cont.
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(c) (d)

(e) (f)
Figure 6. (a,c,e) 2D distribution of cell survival probabilities in ROI A, ROI B and ROI C, respectively,
within each tissue segment with 177Lu-PSMA treatment at twenty days post-injection. (b,d,f) 2D
distribution of cell survival probabilities in ROI A, ROI B and ROI C, respectively, within each tissue
segment with 225Ac-PSMA treatment at twenty days post-injection.

4. Discussion

In this work the influence of tumor hypoxia on the treatment outcome for PSMA-
directed RLT with 177Lu and 225Ac has been investigated. The established hybrid histology-
driven in silico model allowed to describe the dynamics of PSMA-ligands, the dose distri-
bution and the radio-biological efficacy at the tumor microenvironment scale. The platform
presented in this work is composed of four main models: a tissue oxygenation model based
on the solution of a reaction-diffusion partial differential equation, a three compartment
convection–reaction–diffusion model to simulate the propagation of radiopharmaceuticals
in the tumor microenvironment, a kernel-based method for the dose calculation and a
linear-quadratic model used to estimate the cell survival probability depending on the
type of particle and the region oxygenation. The model parameters were derived from the
existing literature and a validated PBPK model has been adopted to calculate the AIF.

In tumors, hypoxia occurs in regions with low vascular density [53]. On the contrary
to the existing literature, our findings suggest that the dose distribution for both α and
β emitters in poorly vascularized domains is heterogeneous. The low vascularization
and the limited penetration of the radiopharmaceutical into the tumor microenvironment
due to the high affinity of PSMA-ligands to the receptors, result in an overall low mean
dose of radiation and a very low percentage of hypoxic tissue receiving the prescribed
dose. Indeed, for the same mean irradiation dose 20 days p.i., the DTH metric shows that
in poorly vascularized ROIs, the dose delivered to the radiobiological hypoxic tissues is
suboptimal for both 177Lu-PSMA-ligands and 225Ac-PSMA-ligands. While the range of
the β particles is high compared to the size of hypoxic regions, the “cross-fire” effect is not
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sufficient to completely homogenize the dose distribution within tissues. This could have
an important effect on the treatment efficacy. On the other hand, a more homogeneous
PSMA-ligands distribution is achieved in highly vascularized domains leading to a higher
mean dose and a homogeneous dose distribution for both types of radiopharmaceuticals.
In these ROIs, the percentage of radiobiological hypoxic tissue receiving the target dose is
more than 85% and 65% for the 177Lu and 225Ac-PSMA-ligands, respectively.

Tumor hypoxia is also considered a critical factor associated with the resistance to
conventional radiotherapy [4], where the X-ray-induced free radicals lead to DNA damage
in a manner that is strongly dependent on the tissue oxygenation. While the lack of oxygen
is less impactful on the treatment outcome compared to therapies with X- or γ-ray, for the
emitted α and β particles the effect still exists. This, in combination with a lower deposited
dose due to a limited penetration of the radiopharmaceutical and a low vascular density,
leads to a significantly lower cell killing potency and hence treatment efficacy. Our findings
suggests that for both α and β emitters, to a higher degree of oxygenation of the ROIs
corresponds a lower cell survival probability. The previous findings on the significantly
higher efficacy of the 225Ac-PSMA-ligands therapy are confirmed. This is consistent with
the higher probability of DSB induction by the α particles. However, our model suggests a
lower dependency of the treatment outcome on the median oxygenation of the tissue for
the treatment delivered with 177Lu with respect to 225Ac as shown in Figure 5.

This model is subject to some limitations. Two main types of hypoxia can be defined:
Acute and chronic hypoxia. While chronic hypoxia is a quasi-steady state condition,
acute hypoxia occurs due to fluctuations in red cell flux or hemoglobin saturation over
minutes to hours [54,55]. In this study the morphological organization of the microvessels
and the vessel wall permeability to oxygen (LO2) and PSMA-ligands (Lv) was modelled
as being constant. Therefore, as for previous theoretical studies, only chronic hypoxia
was modeled [23,24,26–29]. While the perfusion of oxygen and pharmaceuticals can be
highly heterogeneous especially in tumors [34], chronic hypoxia is the dominant type
in tumor microenvironment (>70% [56]). The levels of median pO2 calculated with our
model in each ROI are in agreement with the existing in silico and in-vivo published
studies [40] suggesting that the results of this work may still be meaningful. The vessel
map generation could neglect some small vessels. This could bring to an inaccurate
estimation of oxygen or radiopharmaceuticals supply. However, the visual comparison
performed for all the ROIs confirmed the very good accuracy of the method. Moreover,
the time activity curves (TACs) calculated in the ROIs with the PSMA-ligands dynamics
models share the same characteristics of the PBPK-derived TACs [38]. This suggests that
the model developed in this work is consistent with its macroscopical approximation giving
at the same time a highly detailed description at a microscopical scale. Another source
of inaccuracy is the use of the two-dimensional approximation. This limits the diffusion
of the molecules only radially and neglects the contribution of the molecules moving in
and out of the simulation plane [27]. Moreover, the vessel maps do not take into account
vessels that are nearby but outside its thickness. In the actual tissue, these vessels can
supply drugs and oxygen to the ROI. Therefore, the use of a 2D model systematically
overestimates distances from tissue points to the nearest vessel, which could affect the
predicted distribution of solutes. Nevertheless, the overall 3D inflow and outflow effect
may be cancelled and the 2D based simulation was found to match the experimental results
without large errors [29]. The same limitation can be referred to in the calculation of the
dose distribution. The multi-compartment approach is very common in pharmacokinetic
and in tumor microenvironment modelling where binding and internalization processes
have to be described [57–59]. However, the assumptions of homogeneous cell density,
of systematic division of the simulation space into sub-compartments and of constant
diffusion coefficients are affected by the high tumour heterogeneity. A more realistic
alternative would consist of a more detailed morphological segmentation of the tumour
microenvironment. The S-values calculated for kernel construction were based on MIRD-
cell (V2.0) that assumes uniform cell size and intercellular distance as well as spherical cell
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and nucleus geometry, which are all factors that have been shown to influence the deposited
dose. The overall contribution of each of these factors to the dose accuracy is typically
small [48]. However, deviations might occur for cells whose diameter substantially differs
from the used value. Dose overestimation is also plausible in regions with small cellular
density as the kernel assumes that each pixel in the domain is populated by a predefined
fraction of a cell.

Radiation therapy has been linked with vascular remodeling [60]. In this model the
vessel map derived from staining represents a “snapshot” of the tumor at a given time.
For this reason, the dynamics of abnormal vessel growth that arise in tumor tissue due to
angiogenesis [61] are not taken into account. Furthermore, it has been shown that radiation
therapy can cause hypoxia [62] or upregulate HIF-1 expression [63], which in turn leads to
a development and selection of more resistant cells [64,65]. Moreover, the biological effects
induced by other pharmaceuticals, e.g., the effect of androgen-deprivation therapy with
bicalutamide in selecting more resistant cells to the treatment [66], are not considered at
this stage. We intend to consider these factors as potential model development.

The theoretical predictions of this paper should be further investigated experimentally.
Autoradiography has been used in RLT research to characterize the radiopharmaceutical
distribution in salivary glands [67,68]. Additionally, animals can be scanned with dynamic
PET to obtain individual AIF for the simulation. The simulation results with the individual
AIF can be compared with the obtained autoradiography images. The verification of the
radiobiological effects will be performed by following the treatment effects in different
groups of animals transplanted with the same type of tumor.

5. Conclusions

In this paper has been presented a hybrid in silico model to study the role of chronic
hypoxia on the treatment outcome for PSMA-directed RLT. The incorporation of histology-
derived microvascular networks in PBPK-integrated convection-reaction-diffusion model
allows the investigation of the microdosimetry of 177Lu and 225Ac PSMA-directed radioli-
gand therapy in the heterogeneous tumor microenvironment.

Although the higher homogeneity of the dose distribution delivered by 177Lu with
respect to 225Ac is confirmed, the DTH metric shows that in poorly vascularized ROIs, i.e.
hypoxic areas, the dose delivered to the radiobiological hypoxic tissues can be suboptimal
for both 177Lu-PSMA-ligands and 225Ac-PSMA-ligands. Nevertheless, for the same mean
irradiation dose 20 days p.i., the 225Ac-PSMA-ligand has an overall significantly higher
cell-killing potency. The development of advanced in silico modeling may assist the
personalization of RLT.
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