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SUMMARY
Canonical fatty acid metabolism describes specific enzyme-substrate interactions that result in products
with well-defined chain lengths, degree(s), and positions of unsaturation. Deep profiling of lipids across a
range of prostate cancer cell lines reveals a variety of fatty acids with unusual site(s) of unsaturation that
are not described by canonical pathways. The structure and abundance of these unusual lipids correlate
with changes in desaturase expression and are strong indicators of cellular phenotype. Gene silencing
and stable isotope tracing demonstrate that direct D6 and D8 desaturation of 14:0 (myristic), 16:0 (palmitic),
and 18:0 (stearic) acids by FADS2 generate new families of unsaturated fatty acids (including n-8, n-10, and
n-12) that have rarely—if ever—been reported in human-derived cells. Isomer-resolved lipidomics reveals
the selective incorporation of these unusual fatty acids into complex structural lipids and identifies their
presence in cancer tissues, indicating functional roles in membrane structure and signaling.
INTRODUCTION

Fatty acid (FA) metabolism is significantly altered within cancer

cells, with increased FA unsaturation being pivotal in cell trans-

formation, accelerated rates of proliferation, and augmented

invasiveness (Beloribi-Djefaflia et al., 2016; Biswas et al.,

2012; Currie et al., 2013; Röhrig and Schulze, 2016; Schulze

and Harris, 2012; Zadra et al., 2013). The introduction of car-

bon-carbon double bonds (DBs) to specific sites along the FA

chain is catalyzed by three distinct desaturase enzymes and re-

sults in structures with distinct physical properties and cellular

functions (Renne and de Kroon, 2018). Alongside desaturation,

elongation—a process that facilitates a two-carbon-unit chain

extension through the elongase isoforms 1–7 (ELOVL1–7)—

can also have profound effects on FA properties and function

(Guillou et al., 2010). These now-modified FAs are usually

incorporated into various complex lipids, such as phospho-

lipids, whereby molecular properties are imparted to the

functional role of the lipid, e.g., structural membrane packing

(Lorent et al., 2020), fluidity (Scanferlato et al., 2019), and inter-

leaflet interactions (Zhang and Lin, 2019), or specific signal
This is an open access article under the CC BY-N
transduction (Bratton et al., 1997; Epand, 2017; Hsu et al.,

2013).

Previously, human prostate cancer (PCa) was shown to be

characterized by increased ratios of monosaturated to saturated

FAs relative to normal prostate tissue (Fritz et al., 2010). These

metabolic expressions were supported by transcriptomics

showing elevated mRNA levels for both stearoyl-coenzyme A

(CoA) desaturase-1 (SCD-1) and ELOVL7 (Fritz et al., 2010; Ta-

mura et al., 2009). Others have then focused on discerning the

position of the DB in monounsaturated FAs and found that within

malignant PCa cells, the abundance of FA 18:1n-9 (i.e., an

18-carbon monounsaturated FA with the DB in the 9th position

from the methyl terminus) increases relative to the FA 18:1n-7

isomer compared with non-cancerous prostate cells (Ma et al.,

2016b). Notably, it was recently shown that a secondary desatu-

ration mechanism can be activated to meet the metabolic needs

of cancer (Vriens et al., 2019). The canonical mechanism by

which FAs undergo primary desaturation is through the oxy-

gen-dependent SCD-1 enzyme introducing a DB at the D9 posi-

tion (i.e., the 9th carbon from the FA carboxylate terminus). How-

ever, under cellular stress, fatty acyl desaturase 2 (FADS2)—aD6
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desaturase—was also shown to possess primary desaturation

capabilities, catalyzing n-10 DB formation in palmitic acid, which

is a phenomenon usually observed only within lipids from hair

and skin (Nicolaides, 1974). Having two independent mecha-

nisms for primary desaturation creates the opportunity for plas-

ticity in cancer cells, which carries potential functional conse-

quences for membrane structure and signaling.

In order to elucidate if changes in unsaturation are widespread

or confined to specific cellular functions, it is imperative to iden-

tify the unsaturation profiles of complex lipids and not just the FA

building blocks. Unfortunately, technological limitations within

conventional analysis, most notably gas chromatography, first

require FAs to be released from complex lipids by hydrolysis.

The resulting analysis provides a FA profile integrated across

the entire lipid pool, leading to a reduction of molecular-level in-

formation of the lipidome and, moreover, dilution of low abun-

dant FAs that may have a particular association with a specific

lipid class or composition. To overcome these limitations,

next-generation technologies for isomer-resolved lipidomics,

such as Paternò-B€uchi derivatization (Ma et al., 2016a) and

ozone-induced dissociation (OzID); (Paine et al., 2018; Poad

et al., 2010; Thomas et al., 2008), are instead able to discern

DB positions within complex lipids. Such analyses not only pro-

vide links between unsaturation profiles and subcellular location

or function but also create a platform in which lipid DBs can be

imaged directly within a cellular-tissue matrix, revealing spatial

distinctions between enzyme activities.

Here, we use isomer-resolved lipidomics in combination with

small interfering RNA (siRNA) experiments and stable isotope

tracing to reveal substrate promiscuity of the human FA desatur-

ase FADS2. In combination with newly ascribed activity of the

elongase ELOVL2, FADS2 gives rise to multiple FA families,

namely n-8, n-10, and n-12 that have rarely—if ever—been re-

ported in human-derived cells. These experiments also provide

evidence for hitherto apocryphal activity of SCD-1 on 14:0 (myr-

istic acid) and FADS1 modification of 18:0 (stearic acid), giving

the cells access to an expanded repertoire of unsaturated FAs

with n-5 and n-13 DBs. Furthermore, monounsaturated FAs

within these de-novo-synthesized families are revealed as sub-

strates for further desaturation and elongation, yielding a wide

array of polyunsaturated FAs, including an isomer of FA 20:4n-

6 (arachidonic acid), FA 20:4n-7.We demonstrate that theseme-

tabolites display selective and differential incorporation across

different phospholipid classes related to membrane structure

and signaling, which in turn can be used to uncover unique

cellular phenotypes. Moreover, observing the distribution of

these lipids through mass spectrometric tissue imaging im-

proves our understanding of lipidmetabolism in the tumormicro-

environment by revealing distinct enzyme-substrate interactions

in regions of tumor formation.

RESULTS

Widespread remodeling of unsaturation in cellular
lipidomes
In order to explore the impact desaturase and elongase enzymes

have on cellular FAmetabolism, four PCa cell lines frommetasta-

tic deposits (PC-3, LNCaP, DU145, and VCaP; hereinafter
2 Cell Reports 34, 108738, February 9, 2021
referred to as cancer cells) and two benign immortalized prostate

epithelial cell lines (BPH-1 and RWPE-1; hereafter referred to as

normal prostate cells) were cultured under identical conditions.

Representing the most in-depth lipidomic study of prostate cells

to date, the cells were comprehensively characterized as fol-

lows: by conventional lipidomics to obtain full profiles of molec-

ular phospholipids and neutral lipids (Table S2), allowing com-

parison between phospholipid classes (Figure 1A) and sum

compositions, as shown for the dominant phosphatidylcholine

(PC) class in Figure 1B; by isomer-resolved lipidomics (OzID)

to reveal the contributions of isomers to the populations of

monounsaturated lipid isomers (Tables S4 and S5), as shown

for the most abundant lipid (PC 34:1, Figure 1C); by gas chroma-

tography-mass spectrometry of the saponified extracts yielding

the FA profile integrated over the lipid pool (Table S3); and by

transcriptomics for fatty acyl desaturase expression (Figure 1D).

Data represented in Figures 1A–1C were summarized using an

unsupervised multivariate analysis in the form of principal-

component analysis (PCA) (Figures 1E–1G) to differentiate cell

line profiles.

PCA of the phospholipid profiles (Figure 1E) and the abun-

dance of major PC lipids (Figure 1F) both reveal poor sample

cluster separation, including cluster intermingling, andmixed ad-

equacy in terms of the explanation of variance. This finding is

seen where the phospholipid profile data (Figure 1E) can be

reasonably explained by the first two principal components

(�77%), whereas the variation in PC sumcomposition (Figure 1F)

is weakly explained (�47%). Combined, these results indicate

that conventional lipidomics contains unexplained factors of

variation that contribute to an inability to distinguish cancer

and normal prostate cell lines. Conversely, PCA of the DB isomer

profiles from major monounsaturated PC species (Figure 1G)

presents independent sample clustering, with the variation being

well captured by the first two principal components (�81%). The

clustering of PC-3, LNCaP, and VCaP cancer cell lines also dis-

plays strong negative association across both principal dimen-

sion axes against the normal prostate cell line BPH-1. Overall,

multivariate analysis based on DB profiles clearly distinguishes

between cancer and normal prostate cell lines (Figure 1G),

whereas analogous analyses based on conventional lipidomics

data are unable to do so (Figures 1E and 1F). Differentiation of

cell lines based upon PCA of DB isomers is influenced strongly

by the presence of unusual n-10 lipids. As evidenced in Fig-

ure 1C, PC 34:1n-10 contributions range from being absent in

BPH-1 and VCaP cells to 50% of the isomer fraction in PC-3—

remarkably representing up to 8.5 mol% of total phospholipid

without impacting cell viability.

The high proportion of PC 34:1n-10 in some cell lines (Fig-

ure 1C, green) combined with the significant variation between

unsaturation profiles (Figure 1G) implies change in the SCD-1

and FADS2 enzyme system. Although the delta-delta cycle

threshold (DDCT) mRNA measurements undertaken here inform

of changes to enzyme mRNA transcription (Schmittgen and Li-

vak, 2008), translation to proteins was not measured, and thus,

changes in enzyme activity cannot be distinguished from

enzyme abundance variation. Noting the absence of n-10, the

BPH-1 normal prostate cell line was used as a reference to

compare the transcription of SCD-1 and FADS2 mRNA across
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Figure 1. Lipid composition and targeted transcripts of normal prostate (BPH-1 and RWPE-1) and cancer (PC-3, LNCaP, DU145, and VCaP)

cell lines
(A) Phospholipid profiles across 6 major classes (PC, sphingomyelin [SM], PE, PS, PG, and PI).

(B) Normalized abundance of major PC lipids quantified at the sum composition level.

(C) Normalized OzID signal intensity from PC 34:1 isomers with double bonds at n-7, n-9, and n-10.

(D) qRT-PCR-derived transcript expression of two desaturases (SCD-1 and FADS2) as a fold-change relative to normal prostate cell (BPH-1) mRNA expression.

(E–G) PCA dimensionality reduction for cell line differentiation based on 6 phospholipid classes (E), sum composition of 10 PCs (F), and double bond isomer

distributions (G) from PC 32:1, 34:1, and 36:1. Ellipses display 95%confidence intervals, with the percentage of data represented by the dimensionality reduction

being displayed as axes.

Data in (A)–(C) are displayed in relative totals for inter-cell line normalization. n = 3, mean ± SEM 95% confidence interval displayed.
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all cell lines. Figure 1D shows a 10-fold increase in the transcrip-

tion of FADS2 for the cancer cell lines PC-3, LNCaP, and DU145,

where the contribution of n-10 unsaturation is most pronounced

(Figure 1C, green). In contrast, RWPE-1 and VCaP cell lines pre-

sent lower transcription of FADS2 (relative to BHP-1) and are

characterized by a decreased abundance and complete

absence, respectively, of the n-10 lipid isomer. Interestingly,

these two cell lines also share a similar transcript expression of

SCD-1 and FADS2 despite the clear difference in PC 34:1 DB

isomer profiles (notably the absence of n-10 in VCaP). This

apparent discrepancy between desaturase transcript expres-

sion and resulting metabolites points to competition between

desaturase enzymes for common substrates with the potential

for additional competition through substrate elongation. Such

competition is also evident across the cell lines in the association

between increased PC 34:1n-10 (Figure 1C, green) and

decreased abundance of PC 34:1n-7 (Figure 1C, purple). Both

isomers share 16:0 as a common substrate, and thus, competi-

tion between the independent SCD-1 or FADS2 reactions is

apparent (Enoch et al., 1976; Ge et al., 2003). Similarly, observing

the VCaP unsaturation profile relative to BPH-1 (Figure 1C), the
decreased presence of PC 34:1n-7 (Figure 1C, purple) is

matched by an increased abundance of PC 34:1n-9 (Figure 1C,

red). As SCD-1 desaturation can yield either n-7 or n-9 FAs de-

pending on the substrate (16:0 or 18:0, respectively), and

ELOVL6 is known to elongate 16:0 to 18:0 (Jakobsson et al.,

2006; Moon et al., 2001), the relative increase of VCaP PC

34:1n-9 suggests competitive 16:0 metabolism by either direct

desaturation or a combination of elongation/desaturation

reactions.

Given the potential for competition between desaturation and

elongation pathways, the association between sites of unsatura-

tion and specific fatty acyl chain length(s) becomes critical for

mapping metabolism. Fatty acyl compositional analysis, based

on collision-induced dissociation (CID) combined with OzID, re-

veals that cell line PC 34:1 is comprised of >95% PC 16:0_18:1

(Table S5), inferring that the vast majority of the n-7, n-9, and

n-10 shown in Figure 1C are carried by 18:1 fatty acyl chains.

Although somewhat varied, fatty acyl compositional analysis

(based on negative polarity CID) of other lipid classes also

revealed a majority contribution of 16:0_18:1 to the 34:1

species of phosphatidylinositol (PI), phosphatidylserine (PS),
Cell Reports 34, 108738, February 9, 2021 3



Figure 2. Variation of DBs across the hydrolyzed fatty acyl pool (GC-

MS) and PC, PI, and PG (OzID) complex lipids for normal prostate

BPH-1 cells and PC-3 and LNCaP cancer cells

The 16:0_18:1 fatty acyl composition comprises 95%, 78%, and 96% of total

PC, PI, and PG 34:1 species, respectively. Increased n-10 can be observed

within the cancer cell lines and, in some cases, represents over 50% of the

phospholipid species. Mean values displayed (n = 3).
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phosphatidylethanolamine (PE), and phosphatidylglycerol (PG),

with average contributions of 78%, 58%, 77%, and 96%,

respectively (Table S5). When exploring the DB positions tenta-

tively assigned to the 18:1 chain of these phospholipids, howev-

er, the results show a large perturbation between cancer and

normal prostate cells. Figure 2 displays the fractional contribu-

tions of DB isomers within three lipid subclasses across BPH-1

cells and PC-3 and LNCaP cancer cells. Because the majority

of these monounsaturated lipids carry the 18:1 acyl chain, the

isomer distribution of FA 18:1 from the hydrolyzed lipid pool

was also derived from GC-MS (representative chromatograms

shown in Figure S2).

The results summarized in Figure 2 highlight a significant

contribution of FA 18:1n-10 to the total FA 18:1 pool in PC-3

(32%) and LNCaP (15%) cancer cell lines, whereas it is

completely absent in the BPH-1 normal prostate cells. Any

contribution of FA 18:1n-10 (or FA 16:1n-10; sapienic acid)

from exogenous sources was explicitly excluded by rigorous

analysis of cell culturemedia and other controls (Figure S2; Table

S3). Comparing the isomer factions of FA 18:1 with the major

18:1-bearing lipids (i.e., PC 34:1, PI 34:1, and PG 34:1), two

things become acutely apparent: (1) DB isomer proportions

vary between phospholipid class (i.e., Figure 2, PC versus PI

versus PG), and (2) the PG 34:1 of BPH-1 and PC-3 carries an

additional n-8 isomer. These observations, which would be over-

looked by pooled FA analysis alone, indicate a degree of speci-

ficity in the unsaturation profile across different phospholipid

classes and the potential for greater diversity in lipid unsaturation

than previously considered. Moreover, exploration of the DBs of

triacylglycerols (TGs) and cholesteryl esters (CEs) reveals that

this variation carries into the neutral lipid classes (Table S4).

Remarkably, unusual fatty acyl DB isomers, such as 18:1n-10,
4 Cell Reports 34, 108738, February 9, 2021
are carried by neutral lipids in cell lines where the same acyl

chain isomers are absent within phospholipid fractions. Consis-

tent with the findings of previous research (Guijas et al., 2016),

the signaling molecule and b-oxidation product of oleic acid

16:1n-9 was also identified in the neutral lipid fractions.

Expanded substrate accommodation of elongase and
desaturase enzymes
Although amajor contributor to the lipid pool for cancer cell lines,

the biosynthetic origin of the FA 18:1n-10 building block remains

to be clarified. The association of 18:1n-10 with the FADS2 desa-

turase is apparent (cf. Figure 1), and the canonical pathway

would proceed by D6-desaturation of 16:0 to 16:1n-10 with sub-

sequent elongation by a hitherto unassigned enzyme. To identify

this elongase (hereinafter referred to as ELOVLx) alongwith other

mechanisms for cancer cell plasticity, the LNCaP cancer cell line

was chosen as a model based on its high expression of FADS2

and n-10 abundance. Cells were subject to gene silencing

by siRNA and enzyme inhibition (Western blot, qRT-PCR, cell

confluence and cell assay titrations in Figure S3) beforemonoun-

saturated phospholipids were characterized by OzID.

Relative to the untreated LNCaP control, the heatmap of Fig-

ure 3A displays DB assignments for 29 monounsaturated phos-

pholipids and their abundance shift in response to treatment with

desaturase gene silencing (siSCD-1 and siFADS2); elongase

gene silencing (siELOVL3, siELOVL6, and siELOVL2); and a

FADS2 inhibitor (SC26196—a potent FADS2 inhibitor that was

found to prevent the conversion of linoleic acid to arachidonic

acid by R95%) (Obukowicz et al., 1998). ELOVL3, ELOVL6,

and ELOVL2 were chosen as they broadly represent canonical

elongation activity for saturated, monounsaturated, and polyun-

saturated fatty acyl substrates, respectively (Green et al., 2010;

Guillou et al., 2010; Jakobsson et al., 2006). Based on previously

established FA modification pathways, Figure S4 lays out the

conceptual implications of preventing enzyme activities. Hori-

zontal cluster grouping in Figure 3A reveals that desaturase

treatments have a similar impact on phospholipids, whereas

elongase treatments are separately grouped. Notably, the

impact siELOVL2 treatment has on phospholipids is distinctive

from that of siELOVL3 and siELOVL6, representing that ELOVL2

has a unique impact on the desaturation and elongation of phos-

pholipid FAs.

Observing the vertical cluster analysis of Figure 3A identifies

two main groups that correspond to SCD-1-related (i.e., pre-

dominately n-7 and n-9) and FADS2-related (i.e., predominately

n-10) lipid products, e.g., PG 32:1n-7 and PG 32:1n-10 display

inverse abundance shifts with the silencing of SCD-1 and

FADS2 and hence are clustered separately. It is important to

note that gene silencing restrict new FA progeny from being

formed but do not remove prior-formed FAs from the cellular

pool. Exchange of FAs between complex lipids, such as between

phospholipids and neutral lipids, could account for the non-intu-

itive responses of some individual phospholipids to silencing

treatments, e.g., increased PG 34:1n-10 abundance with si-

FADS2 and SC26196 treatments and no change in PE 36:1n-9

despite silencing SCD-1. For this reason, trends in unsaturation

and FA chain elongation need to be assessed across the lipid

pool and not restricted to individual species.
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Figure 3. Enzyme/metabolite correlations and increased enzyme plasticity

(A) Heatmap of treated LNCaP cells showing change in monounsaturated phospholipid DB isomers relative to control (untreated LNCaP). Scale bar indicates fold

change relative to untreated LNCaP control.

(B) Correlation matrix using numeric data from (A) to show positive (blue) and negative (red) correlations (n = 29).

(C) Bivariate analysis, histograms, and correlation matrices for treated LNCaP lipid sum compositional analysis compared with those of control (n = 60). Scale bar

indicates positve/negative correlation coefficient values.

(D) PC 34:1 double bond fractional distribution profile from de novo lipogenisis (left andmid-left),13C16-palmitate tracing with de novo 12C-acyl-CoAmodifications

(mid-right), and 13C18-stearate tracing (right). Lipid structures are displayed above, with 13C-carbons in blue (n = 2, mean ± SEM 95% confidence interval error

bars). Pearson’s correlation with two-tailed t test used for displayed correlation coefficients; *p % 0.05, **p % 0.01, ***p % 0.001.
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To observe statistical correlations between the monounsatu-

rated lipid profiles generated in response to treatments (Fig-

ure 3A), Pearson’s correlation was implemented, and the result-

ing correlation matrix is presented in Figure 3B. Notably, the

inverse relationship between siFADS2 and siSCD-1 identified

previously in Figure 3A is observed in Figure 3B to have statisti-

cally significant negative correlations (p < 0.05 and p < 0.01,

respectively). Similar to the horizontal hierarchical clusters of

Figure 3A, the desaturase and elongase treatments group sepa-

rately at the top and bottom matrix vertices, indicating similarity

in response to like-enzyme treatments. Given the increased

FADS2-related products with siSCD-1 treatment (cf. Figure 3A),

to identify ELOVLx, correlations between siSCD-1 and an

siELOVL treatment are required. Within the matrix region corre-

sponding to the correlation of desaturase treatment profiles

to elongase enzyme treatment profiles, only two statistically

significant positive correlations can be observed between

desaturases and elongases, namely, siSCD-1/siELOVL2 and

SC26196/siELOVL6.
As previously mentioned, a canonical activity of ELOVL6 is

elongation of 16:0 to 18:0 (Jakobsson et al., 2006); therefore,

downregulation of this activity by siELOVL6 treatment would

cause accumulation of 16:0, palmitic acid. To prevent palmitic

acid lipotoxicity, canonical activity of SCD-1 would drive desatu-

ration to FA 16:1n-7 (Collins et al., 2010). Likewise, inhibition

of the FADS2 enzyme by SC26196 would prevent palmitic acid

from undergoing FADS2 desaturation to FA 16:1n-10 and

instead consolidate desaturation activity through SCD-1,

creating increases in FA 16:1n-7. These two paths leading to

increased FA 16:1n-7 abundance would in turn present a

positive correlation between siELOVL6 and FADS2 inhibition

(SC26196). The silencing of SCD-1 desaturation (and hence

increased abundance of monounsaturated FADS2 related lipid

products), however, has no reported reason to display positive

correlation to siELOVL2, as ELOVL2 has only been implicated

in polyunsaturated FA elongation. Given that the silencing of

ELOVLx would prevent the elongation of FA 16:1n-10 to FA

18:1n-10, the accumulation FA 16:1n-10 would display positive
Cell Reports 34, 108738, February 9, 2021 5
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correlation with a profile dominated by FADS2-related products,

such aswith siSCD-1. Consistently, this decreased 18:1n-10 for-

mation can be observed within targeted PC 32:1 and PC 34:1 DB

and FA compositions analyses (cf. Figure S6). Therefore, it is

suggested that ELOVL2 is indeed ELOVLx and is responsible

for the elongation of FA 16:1n-10 to FA 18:1n-10.

Akin to themajor role of the FADS2 enzyme in polyunsaturated

lipid synthesis, ELOVL2 has only previously been implicated in

polyunsaturated fatty acyl elongation but never in the elongation

of monounsaturated FAs (Jakobsson et al., 2006; Pauter et al.,

2014). In order to validate the finding that ELOVL2 catalyzes elon-

gation of FA 16:1n-10 to FA 18:1n-10, exploration into the impact

of treatment on thewider lipidomewasconducted.Relative to the

control, Figure 3Cdisplays the correlations between the lipid pro-

files of treatments, consisting of 60 saturated, monounsaturated,

and polyunsaturated sum composition phospholipids (PC, PE,

PS, and PG). As before in Figure 3B, the siELOVL2 and siELOVL6

treatments of Figure 3C display statistically significant positive

correlations to desaturase silencing and inhibition, informing of

moderate-to-high degrees of lipid profile similarity (0.65, p %

0.001 and 0.27, p % 0.05, respectively). Additionally, the profile

from siELOVL6 also shows correlation with the siSCD-1 treat-

ment profile (0.68, p % 0.001). Similar to the logic used previ-

ously, accumulation of 16:0 (palmitic acid) by way of silencing

ELOVL6 would lead to an increase in shorter-chain monounsatu-

rated lipids,which as substrates for further desaturation,would in

turn increase the abundance of polyunsaturated lipids. Compa-

rably, silencing SCD-1 would increase FADS2 activity, which

would increase polyunsaturated lipid abundance due to its major

canonical role in polyunsaturated lipid synthesis. Hence, the pro-

files of siELOVL6 and siSCD-1 would present similarly.

Although slight skewing can be observed, all histograms in

Figure 3C present a normal distribution of the data, with the

exception of siELOVL2. This bimodal distribution suggests that

silencing of ELOVL2 has two distinctive impacts on the lipidome,

which given its known role in the elongation of polyunsaturated

lipids, provides further indication for an additional metabolic

role by ELOVL2. Therefore, the combined data from Figures

3B, 3C, and S6 suggest that ELOVL2 is the most likely candidate

for the unassigned elongase responsible for apocryphal elonga-

tion of 16:1n-10.

To explore the sequence of elongation and desaturation

events, LNCaPcancer cellswere supplementedwith 13C-labeled

FAs. Incorporation of 13C16-palmitate and 13C18-stearate tracers

into PC 13C16-18:1_16:0 (m/z 798) and PC 13C18-18:1_16:0 (m/z

800), respectively, was confirmed by high-resolution tandem

MS (see data archive). The presence of PC 13C16-18:1_16:0

(m/z 798) arising from 13C16-palmitate supplementation indicates

intracellular elongation with installation of two unlabeled carbons

(cf. chemical structures, Figure 3Dii). This conclusion is sup-

ported by OzID of the mass-selected isotopologue that assigns

the location of the two unlabeled methylene units between the

site of unsaturation and the carboxylate moiety (cf. Table S6).

ThePC13C16-18:1_16:0metabolite is also characterizedbyadis-

tribution of sites of unsaturation in the labeled 18:1 chain showing

contributions from n-7, n-9, and n-10 isomers (Figure 3Dii, left). In

contrast, the fully labeledPC13C18-18:1_16:0derived from
13C18-

stearate is characterized by near-exclusive n-9 unsaturation in
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the labeled chain (Figure 3Diii, left). These tracer results infer

direct desaturation of stearate giving rise to 18:1n-9, whereas

18:1n-10 follows a desaturation-elongation sequence analogous

to the canonical formation of 18:1n-7. Within the same experi-

mental system, the suppression of n-10 unsaturation in PC
13C16-18:1_16:0 was observed upon the inhibition of FADS2

(SC26196), further demonstrating D6-desaturation of palmitate

prior to elongation (Figure 3Dii, mid). In contrast, inhibition of

the same enzyme in the presence of the 13C18-stearate tracer

yields no observable change to the unsaturation profile of PC
13C18-18:1_16:0 relative to vehicle (Figure 3Diii, mid) and corrob-

orates direct desaturation bySCD-1 to form n-9. For comparison,

the inhibition of SCD-1 (TOFA, originally an ACC1 inhibitor found

to have potent SCD-1 inhibition) (Mason et al., 2012) in the pres-

ence of the 13C16-palmitate tracer led to complete depletion of n-

7 and a significant reduction of n-9 within PC 13C16-18:1_16:0,

indicating the cessation of D9-desaturation of palmitate and

stearate, respectively—an effect that appears to trigger compen-

sation through desaturation by FADS2, yielding an unsaturation

profile dominated by n-10 (Figure 3Dii, right). Such compensation

is also observed when inhibiting SCD-1 in the presence of the
13C18-stearate tracer, which noticeably reduces n-9 unsaturation

within PC 13C18-18:1_16:0 and promotes formation of an unusual

suite of n-13, n-12, and n-10 isomers indicative of directD5-,D6-,

and D8-desaturation of the tracer, respectively (Figure 3Diii,

right).

Given thewell-describedD9-fidelity of SCD-1 (Bai et al., 2015),

these results represent evidence for direct desaturation of stea-

rate by desaturases other than SCD-1. Specifically, the findings

demonstrate that 18:1n-10 can be synthesized directly from

stearate by the hitherto apocryphal D8-desaturation activity of

FADS2. AlthoughD8 desaturases do occur naturally in somema-

rine micro algae (Wallis and Browse, 1999), mammalian D8-de-

saturation of saturated FAs has only been observed exogenously

on skin (Nicolaides, 1974). From the isotope labeling experi-

ments above, the presence of n-12 accompanying n-10 mono-

unsaturation within PC 13C18-18:1_16:0 reveals that FADS2

may also be able to simultaneously exhibit D8-desaturation ac-

tivity alongside canonical D6 activity. This result could indicate

differential activities of the FADS2 enzyme arising from intracel-

lular compartmentalization, local macrostructural environment,

or substrates (i.e., carrier of the stearates). The proclivity of

FADS1 (a third mammalian desaturase) toward D5 activity within

polyunsaturated FAsmay help explain the curious observation of

the n-13 monounsaturated PC 13C18-18:1_16:0. In this instance,

however, the desaturase would require exertion of apocryphal

metabolic behavior to instead act upon saturated substrates

at the D5 position to initiate primary desaturation. This same

D5 motif is observable in Figure 3A, wherein gene silencing of

SCD-1 or FADS2 causes respective amplification or elimination

of an unusual PC 34:1n-11. This variable presence may be

explainable byD5-desaturation of 16:0 (palmitic acid) substrates

by FADS1 during times of lesser competition for substrate by

SCD-1.

Evidence for alternate pathways in lipid desaturation
An analysis of monounsaturated phospholipids within PCa

cell lines revealed an unexpected diversity of lipid isomers
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Figure 4. Pooled fatty acyl quantitation and

double bond analysis of normal prostate cells

(BPH-1), cancer cells (PC-3), and gene

silencing of desaturases in cancer cells

(LNCaP)

(A) Cell-count-normalized quantitative sum compo-

sition fatty acyl analysis with magnification insert

(n = 3; mean ± SEM 95% confidence interval error;

two-tailedWelch’s t test used for p values: *p% 0.05,

**p% 0.01, ***p% 0.005).

(B) Fractional distribution profiles for 15 mono- and

polyunsaturated fatty acids from the hydrolyzed

lipid pool (n = 3; mean fractional distribution dis-

played).

(C) Heatmap of treated LNCaP cells showing

change in mono- and polyunsaturated fatty acid

isomers from the hydrolyzed lipid pool (relative to

LNCaP control). Scale bar indicates fold change

relative to untreated LNCaP control. Annotated

mass spectra of the unusual AMPP 20:4 species

observed can be found alongside raw data files in

the data archive.
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(vide supra). To visualize this diversity across the entire fatty acyl

pool, cell line extracts were hydrolyzed, derivatized with 1-[4-

(aminomethyl)phenyl] pyridinium (AMPP+), and subjected to

OzID. This direct-infusion MS approach was found to be more

sensitive to low-abundant FAs and enabled unambiguous

assignment of positions in the absence of reference standards

(Poad et al., 2019). Comparison of AMPP+ against GC-MS re-

sults can be found in Figure S2. Figure 4A displays molar abun-

dance of sum composition FAs for the two representative cell

lines PC-3 (cancer) and BPH-1 (normal prostate) across three or-

ders of magnitude. When isomeric contributions are ignored, the

abundance of the saturated and monounsaturated FAs are well

conserved between cell lines. In contrast, several low-abundant

polyunsaturated FAs show significant changes in cellular abun-

dances, e.g., FA 20:3, FA 20:4, and FA 22:6 are more abundant

in PC-3 than in BPH-1.

As was observed within phospholipids, ostensibly similar sum

composition profiles can mask significant isomeric differences

(cf. Figure 1; Table S2). Fatty acyl isomer profiles were thus ex-

tracted from OzID analysis and are presented in Figure 4B.

Among themonounsaturated even-chain FAs of PC-3, the apoc-

ryphal elongation of FA 16:1n-10 to FA 18:1n-10 that has been

shown throughout appears not to be a terminal step in the elon-

gation of the n-10 family. Instead, this family includes longer-
chain FAs, such as 20:1, 22:1, and 24:1,

representing successive chain elongation

(vide infra Figure 5vi). Alongside further

elongation of FA 18:1n-10 substrates, the

presence of FA 18:2n-10, the skin lipid se-

baleic acid, indicates the possibility for

additional desaturation using this same

FA 18:1 substrate and demonstrates a

point of divergence in enzymatic activity

surrounding the FA 18:1n-10. Further com-

binations of elongation and desaturation of

FA 18:2n-10 subsequently lead to addi-
tional n-10 polyunsaturated fatty acyl species observed within

FA 20:2, FA 22:2, and FA 22:3 (Figure 4B; vide infra Figure 5vii).

A similar enzyme branch point can be observed with FA 18:1n-

7, whereby the presence of n-7 isomers within FA 20:1, FA

22:1, and FA 24:1 (vide infra Figure 5iv) indicates elongation,

whereas n-7 contributions to polyunsaturated FA 18:2, FA

20:2, FA 20:3, FA 20:4, and FA 22:4 demonstrate competitive

elongation and desaturation (Figure 4B; vide infra Figure 5iv).

These polyunsaturated FAs identified in PC-3 (and LNCaP; cf.

Table S4) are remarkable not only because their biosynthetic or-

igins and DB modifications are achieved solely through cellular

mechanisms but also because they bear structural similarity to

dietary-derived, biologically active FAs, such as arachidonic

acid and adrenic acid.

The multiple isomeric species observed within the FA 20:4

profile of PC-3 in Figure 4B, including FA 20:4n-7, an isomer

also seen within PI 38:4n-7 of PCa tissues and cell lines (cf. Fig-

ure 6C), and their absence from normal prostate BPH-1 cells

represent an overall increase in the isomer diversity of polyunsat-

urated FAs in PC-3 and other cancer cell lines (cf. Table S4). This

increased isomeric complexity of polyunsaturated fatty acyl pro-

files appears to correspondwith an increase in isomer speciation

created during the primary desaturation of shorter-chain satu-

rated FAs (i.e., FA 14:0, FA 16:0, and FA 18:0) and can be clearly
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Figure 5. Fatty acyl desaturase and elongase pathways rationalizing the fatty acyl species observed within this study

Gray shading shows previously defined pathways (Guillou et al., 2010), and colored pathways show unusual FA species found in human prostate cell lines. Gray

text represents known possibilities for mammalian enzyme activity, green text shows confirmed enzyme results for human prostate cell lines, and orange text

displays enzymes requiring further confirmation.
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observed with desaturase gene silencing (Figure 4C). Relative to

the untreated LNCaP control, gene silencing of cellular FADS2

decreases the isomeric complexity of monounsaturated FA

14:1, FA 16:1, and FA 18:1 by heavily reducing the presence of

n-8, n-10, and n-12 isomers while simultaneously eliminating of

FA 20:4n-7 and consolidating the FA 20:4 profile in FA 20:4n-6,

arachidonic acid. Conversely, the FA profile from SCD-1 gene

silencing appears to have greater isomeric speciation within FA

14:1, FA 16:1, and FA 18:1, which in turn has no impact on poly-

unsaturated FA 20:4 isomer complexity, as both FA 20:4n-7 and

FA 20:4n-6 are found to be present.

The expanded isomeric complexity afforded by apocryphal

primary desaturation also creates an array of unusual monoun-

saturated FAs, which individually infer explicit enzyme-substrate

activity that can be organized into a network of metabolites (Fig-

ure 5). For example, FA 24:1n-5, which is present in the FAs of

PC-3 in Figure 4B, is consistent with canonical SCD-1 D9-desa-

turation of FA 14:0 to initially yield FA 14:1n-5 along with

other chain length intermediates in this n-5 family (Figure 5i;

Table S4). In another example of divergent enzyme action, this

same FA 14:0 substrate is seen to undergo D6-desaturation by

FADS2 to form FA 14:1n-8, a product that is observed within

PC-3 (Figure 4B) and is highly sensitive to gene silencing of

FADS2 (Figure 4C). The presence of this DB position in various

chain lengths (see Table S4) indicates that this family of FAs

has the ability to extend to at least FA 24:1 (Figure 5ii) and has
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the potential for incorporation into intact phospholipids (cf. Fig-

ure 2). Shifting to FA 18:0 as a substrate, FADS2D6-desaturation

yields FA 18:1n-12, which along with the 20:1, 22:1, and 24:1, is a

FA family that can be observed in the FAs of PC-3 (Figures 4B

and 5iix). The 18:1n-12, is also seen to form under SCD-1 inhibi-

tion of intact lipids with incorporated heavy-labeled FAs (cf. Fig-

ure 3D) and shows sensitivity to FADS2 gene silencing with

apparent decreases relative to the control (Figure 4C).

Seemingly beyond the reportedD9 andD6 positional activities

for primary desaturation by SCD-1 or FADS2, two additional

monounsaturated FA families can be observed in Figures 4B

and 4C, namely, n-11 and n-13 (cf. Figures 3A and 3D). The

emergence of both of these families is consistent withD5 primary

desaturation of either FA 16:0 or FA 18:0 substrates to initially

yield FA 16:1n-11 and FA 18:1n-13, respectively, before chain

elongation with intermediates observed out to FA 24:1 (cf. Table

S4; Figures 5iii and 5ix). Although no mammalian desaturase

has been reported to facilitate D5 primary desaturation for

the synthesis of monounsaturated FAs, D5-desaturation is

commonplace during the synthesis of polyunsaturated FAs

and undertaken by FADS1. Notably, both FADS1 and FADS2

are genetically coded by the same region on chromosome

11q12-q13.1 and share remarkable similarity in their exon/intron

structure and nucleotide position for boundary disruption and a

high degree of polypeptide sequence identity (Marquardt et al.,

2000). This same region has been associated with single-
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Figure 6. Metabolic differentiation of tumor in human prostate tissue

(A) Two separate patient prostate lobe sections showing (left to right) MALDI-MSI-OzID distribution of PC 34:1n-9 (yellow), PC 34:1n-7 (magenta), and PC 36:4n-6

(cyan); a composite image of these lipids; and the adjacent tissue section H&E stained. Magnification of tumor regions is shown; full images and spectral

comparisons are found in Figure S1.

(B) False-positive n-10 signal arising from n-9 standards (gray) compared with tissue lipid extracts from both prostate lobes of 8 patients (n = 16); comparisons

include PS 36:1n-10 (red), PE 34:1n-10 (blue), PE 36:1n-10 (orange), and PC 34:1n-10 (green).

(C) n-7 Signal arising from PI 38:4n-6 standard (gray/red line marker), four PCa cell lines (white), and tissue lipid extracts from both prostate lobes of 8 patients

(n = 16; gold). The p values compare biologically occurring PI 38:4n-7 against false-positive n-7 signal from synthetic PI 38:4n-6 standard (red line marker). Scale

bar: 2.60 mm. nR 3 (standards), n = 3 (cell lines), and n = 16 (tissues); one-tailed Welch’s t-test used for p values: **p% 0.01, ***p% 0.005, and ****p% 0.0001.
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nucleotide polymorphisms, DNA methylation, and alternate

splicing—features that are known to alter the expression and

translation of DNA (He et al., 2018; Park et al., 2012). Given the

evidence (1) that FADS2 has the ability to exhibit high degrees

of plasticity, (2) that the DNA within chromosome 11q12-q13.1

has the propensity to undergo changes, (3) of the gene sequence

similarity between FADS1 and FASDS2, and (iv) of prior estab-

lished changes to FADS1 activity (Park et al., 2018), it is specu-

lated that, similar to FADS2, FADS1 is exhibiting plasticity by

apocryphal D5 primary desaturation to form both n-11 and n-

13 FA families.

Lipid unsaturation profiles in human prostate tissue
Lipid unsaturation distributions in human prostate sections were

mapped using OzID coupled with matrix-assisted laser desorp-

tion ionisation MS imaging (MALDI-MSI). Figure 6A presents a

spatial distribution between the monounsaturated phosphatidyl-

choline isomers PC 34:1n-9 (yellow) and PC 34:1n-7 (magenta),

which are both metabolites of SCD-1, and the polyunsaturated

PC 36:4n-6 (cyan), a metabolite formed through dietary FA sub-

strates and FADS2 interactions. Comparison to the hematoxylin

and eosin (H&E) stains of adjacent tissue sections reveals an in-
crease of PC 34:1n-9 and a corresponding decrease of PC

36:4n-6 specific to the tumorous regions of the tissue. As these

two metabolites are representative of two different desaturase

enzyme activities, they are indicative of a change in substrate-

enzyme interactions between tumor and adjacent non-tumor

cells. The twoPC34:1 isomers are also found to have distinct dis-

tributions (Figure 6A). In this instance, however, both n-7 and n-9

forms arise from SCD-1 activity but differ by starting substrate,

requiring either FA 16:0 or FA 18:0, respectively. In some regions

across the tissue, signals consistent with a third DB isomer, the

FADS2metabolite PC 34:1n-10, were detected, but abundances

were insufficient tomapdistribution.Challenges in characterizing

less abundant metabolites are inherent to the MALDI-MSI tech-

nique (due to small sampling volumes), and therefore, to increase

the signal, lipids were extracted from homogenized PCa tissues

and subjected to direct infusion electrospray ionisation (ESI)-

OzID analysis. Examination of lipid standards under identical

conditions provided benchmarks for false-positive signals, thus

confirming the presence of PC 34:1n-10 at low abundance in

PCa tissues (Figure 6B, green). Analogous DB analysis of

selected monounsaturated PS and PE lipids also unveiled them

as carriers of the unusual n-10 isomer within PS 36:1 and PE
Cell Reports 34, 108738, February 9, 2021 9
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36:1 (Figure 6B, red and orange). Interestingly, signals arising

from PE 34:1n-10 (blue) were insignificantly differentiated from

background, indicating that incorporation of the n-10 FA may

vary between lipid class and composition.

Examination of profiles from polyunsaturated lipids in PCa tis-

sue extracts revealed that a previously unreported n-7 isomer

was present alongside the highly active signaling lipid, PI

38:4n-6 (Epand, 2017). The use of high-resolution MS and

OzID allowed for the unambiguous assignment of PI 38:4n-7

(cf. Figure S5; Table S6). The ratio of signals arising from this lipid

and the canonical PI 38:4n-6 are displayed in Figure 6C, which

reveals that tissue and PCa cell line extracts display PI 38:4n-7

around 10%–15% above any background signal arising from

the n-6 synthetic standard. Further evidence for apocryphal de-

saturation in PI 38:4 was obtained by comparison to (and be-

tween) PCa cell line lipid extracts (Figure 6C) and PCa cell line

fatty acyl DB analysis (Figure 4B). These findings present the ex-

istence of the n-10 monounsaturated FAs and n-7 polyunsatu-

rated FA within human primary prostate tumors. This finding

implies changes to desaturase enzyme activity or expression

across tumor tissues, which, in turn, impacts lipids associated

with intracellular membrane structures and signals (Bratton

et al., 1997; Cocco et al., 2015; Williams et al., 2011).

DISCUSSION

Origin and consequence of desaturation plasticity
Exploration of FA DBs within cancer cell lipids in combination

with gene silencing and isotope tracing experiments has re-

vealed that mammalian cellular fatty acyl modification is far

more dynamic than previously considered. It is important to

note that the flow chart represented in Figure 5 presents the

metabolic capabilities of mammalian cells, with some FA fam-

ilies arising due to extreme metabolic stress (e.g., SCD-1

gene silencing allowing FADS1 n-13 formation). Because can-

cer is known to be severely disruptive to cellular fatty acyl

metabolism, however, it stands to reason that this expanded

network of possibilities for FA modification provides plasticity

for changes to lipid uptake or FA enzyme expression in PCa

cells and tumor tissue.

Although SCD-1 and FADS2 largely show preference for ca-

nonical D9 and D6 sites during primary desaturation, a change

in substrate availability and/or enzyme expression can coax a

plastic response from the FADS2 enzyme—potentially yielding

a much wider array of mono- and polyunsaturated FA isomers.

For example, relative to the normal prostate BPH-1 cells, PC-3

cancer cells display a significant change in expression of

SCD-1 and FADS2 (cf. Figure 1D), which in turn has a large

downstream effect on the isomeric complexity expressed within

the mono- and polyunsaturated FAs of PC-3 compared with that

of BPH-1 (cf. Figure 4B). Furthermore, if substrate availability is

altered in combination with these enzyme expression/activity

differences, FADS2 (and possibly FADS1) plasticity allows for

substrate acceptance usually observed in sebocytes (e.g.,

FADS2 D6-desaturation of 14:0, 16:0, and 18:0 to yield n-8,

n-10, and n-12, respectively) or even changes to the enzyme-

substrate complex to result in an alternative site of desaturation

(e.g., FADS2 D8-desaturation of 18:0 to yield 18:1n-10). The
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metabolic similarity to sebum is an interesting point to ponder;

sebum only contains these unusual FADS2 metabolites because

sebocytes lack the expression of SCD-1 (Ge et al., 2003). One

reason for this may be because SCD-1 desaturation is an oxy-

gen-dependent reaction, meaning the oxygen-independent

FADS2 can more finely regulate desaturation reactions for lipid

homeostasis in the oxygen-rich environment of the skin. Given

the hypoxic conditions of some tumorous tissues, it is logical

to think that the SCD-1 reaction would become limited (Röhrig

and Schulze, 2016) and thereby cause the upregulation of

FADS2 to allow adoption of primary desaturation behaviors

alongside its role in polyunsaturation events. This would account

for the increase in FADS2 expression seen in the transcripts of

cancer cell lines (Figure 1D), the unusual desaturation products

observed (Figures 1C and 4B), and the increase in polyunsatu-

rated FA products observed (Figure 4A). Similarly, under meta-

bolic stress, SCD-1 and FADS1 also displayed plasticity toward

substrate preference to allow for the formation of n-5, n-11, and

n-13 FA families, further demonstrating cancer’s propensity to

adapt.

As has been shown in previous studies into cancer and

normal prostate cell lines, a strong distinction is created when

observing the differences of FA 18:1 DB isomers from the hy-

drolyzed FA pool (Ma et al., 2016b). These differences pertain

to a change in either substrate availability or substrate prefer-

ence by the SCD-1 enzyme, which in turn causes a statistically

significant increase of the FA 18:1n-9 isomeric fraction (relative

to the FA 18:1n-7) within cancer cells. More recently, in a study

of human breast cancer and adjacent non-tumorous tissues, it

was shown that a small number of sum composition phospho-

lipids displayed a minor but statistically significant change in

abundance (Wenpeng et al., 2019). The authors were then

able to show that (1) discerning the DB location greatly

increased the significance of the phenotypic distinction and

(2) the phospholipids from cancer tissues contained a much

higher proportion of the 18:1n-9 fatty acyl chain than the

18:1n-7. Here, we were able to show that the elucidation of

DB positions in the context of complex lipids served to further

improve phenotypic distinction while simultaneously providing

a rich fingerprint for metabolic activity in PCa tissues. Further-

more, similar to the findings in breast cancer tissue, we were

able to show that epithelial cancer cells in prostate tissue also

contained higher proportions of n-9 in PC 34:1 (cf. Figure 6A).

This feature of aberrant SCD-1 behavior, however, was also

marked by the absence of usual FADS2 polyunsaturated FA

metabolites and perhaps indicates FADS2 plasticity with a

change toward primary desaturation. The n-10 FA metabolites

associated with this enzyme plasticity were not observed in

the imaging of PC 34:1 but instead were found in other phos-

pholipid classes, suggesting that, similar to PCa cell lines, these

unusual FAs are unevenly distributed among phospholipid sub-

classes. n-10 Phospholipids and other metabolites generated

by FADS2 plasticity were detected in all clinical prostate spec-

imens; however, no linear relationship was observed between

the presence of n-10 phospholipids and percentage tumor con-

tent. As all tissues examined (Figures 6A and 6C) were derived

from radical prostatectomy specimens containing PCa, it is not

possible to disentangle if unusual FADS2 activity is a general
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feature of prostate epithelial cells or specific to unhealthy (i.e.,

cancer, field-cancerization, or premalignant aberrations in his-

tologically benign tissue) prostate cell function. Further experi-

mentation and comparison to tumor-free prostate tissue derived

from healthy prostate (obtained at cystoprostatectomy) and

benign prostatic hyperplasia will provide further insight into

this distinction and hence clinical utility.

From cell line studies, we were able to reveal that all FA me-

tabolites formed from apocryphal desaturation activity were

active substrates for elongation, and ELOVL2 was shown as a

candidate in further diversifying the n-10 family. This finding is

perhaps an ode to the canonical role of ELOVL2 in elongating

FADS2-modified dietary fatty acyl metabolites (Guillou et al.,

2010), which may suggest co-localization or co-activity between

enzymes. Instead of these unusual FA metabolites being re-

garded by cellular machinery as malformed or unusable, they

are functionalized through incorporation into known membrane

and signaling phospholipid classes. As further indication toward

a functional role, these unusual FA metabolites are found to be

unevenly associated with certain phospholipid subclasses

compared to others (cf. Figure 2; Table S4). Given that DB loca-

tion will modulate inter-molecular forces and thus membrane

properties (Lorent et al., 2020; Renne and de Kroon, 2018;

Scanferlato et al., 2019), here it is speculated that the different

isomer profiles of each phospholipid class will promote distinc-

tive membrane fluidities among the organelles. Interestingly,

activation of mTOR promotes FADS2 expression (Triki et al.,

2020), opening the possibility that these systems may work

together to tune lipid isomer populations to assist proliferation

and resist apoptosis. For example, changes in membrane

fluidity could promote mitosis for cancer cell stemness (Li

et al., 2017) or hinder apoptosis triggered by PS outer-leaflet

exposure (Bratton et al., 1997) or ferroptosis (Tousignant et al.,

2020). Similarly, the synthesis of entirely de-novo-synthesized

polyunsaturated FAs, such as FA 20:4n-7, bear remarkable sim-

ilarity to biologically active FA metabolites and are being incor-

porated into known signaling phospholipids. Consequently,

this may disrupt homeostatic lipid signaling or, indeed, fulfill

usual signaling roles in the absence of dietary FA uptake or

other chemical environment changes. Although further work is

required to specify the biological impact that unusual lipid unsa-

turation has on cells, the experimental workflows and findings

presented throughout this body of work serve as a roadmap

toward future discovery.
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Antibodies

Rabbit / IgG polyclonal anti-FADS2 Invitrogen Cat. # PA5-87765; RRID: AB_2804393

Biological samples

Right and left prostate lobes obtained from the

radical prostatectomy of 8 male adult human patients

This paper N/A

Chemicals, peptides, and recombinant proteins

Methanol (LC-MS grade) Fischer Scientific Cat. # A456-500

Acetonitrile (ACN; Optima�) Fischer Scientific Cat. # A955-500

Water (Optima�) Fischer Scientific Cat. # W6500

N,N-dimethyl formamide (DMF) Fischer Scientific Cat. # D119-500

Methyl tert-butyl ether (MTBE; HPLC grade) Fischer Scientific Cat. # E127-4

Hydrochloric acid (HCl; 37% in water) Sigma-Aldrich Cat. # 320331

Anhydrous sodium acetate (NaOAc) Sigma-Aldrich Cat. # W302406

Ammonium acetate (NH4OAc) Sigma-Aldrich Cat. # 431311

Trimethylsulfonium hydroxide (TMSH; LiChropure�) Sigma-Aldrich Cat. # 92732

Tetrabutylammonium hydroxide (TBAOH;

40 wt. % in water)

Sigma-Aldrich Cat. # 178780

Dibutylhydroxytoluene (BHT) Sigma-Aldrich Cat. # B1378

Chloroform (HPLC grade) Sigma-Aldrich Cat. # 650498

Methanol (LC-MS grade; solely for MALDI-MS

based experiments)

Sigma-Aldrich Cat. #106035

2,5-dihydroxyacetophenone (DHA; R 99.5%,

Ultra pure)

Sigma-Aldrich Cat. # D3638

Harris Haematoxylin Australian Biostain P/L Cat. # AHHPAH

Ethanol 100% AR Chem Supply Australia Cat. # EA043

0.25% Eosin Y (certified C.C. # 45380) ProSciTech Cat. # C0975

Xylene mix of iosomer AnalaR Point Of Care Diagnostics Cat. # VWRC28975.325

Roswell Park Memorial Institute (RPMI) 1640 medium Thermo Fisher Cat. # 11875101

Foetal bovine serum (FBS) Invitrogen Cat. # F9665

RNAiMAX lipofectamine reagent Thermo Fisher Cat. # 13778030

SC26196 (FADS2D6 inhibitor) 98% Sigma-Aldrich Cat. # PZ0176

TOFA (combination SCD-1D9/ACC1 inhibitor) 98% Sigma-Aldrich Cat. # T6575

SPLASH Lipid-o-mix� Avanti Polar Lipids Cat. # 330707

Nonadecanoic acid 98% Sigma-Aldrich Cat. # N5252

PS 16:0/18:1n-9 Avanti Polar Lipids Cat. # 840034

PE 18:0/18:1n-9 Avanti Polar Lipids Cat. # 850758

PC 16:0/18:1n-9 Avanti Polar Lipids Cat. # 792453

PI 18:0/20:4n-6 Avanti Polar Lipids Cat. # 850144
13C16-palmitic acid 99% Sigma-Aldrich Cat. # 605573
13C18-stearic acid 99% Sigma-Aldrich Cat. # 605581

DNase/RNase-free distilled water Thermo Fisher Cat. # 10977015

SYBR-Green Master Mix Thermo Fisher Cat. # A46109

Tris-Hydrochloride (Tris-HCl) Sigma-Aldrich Cat. # RES3098T-B7

Sodium Chloride Sigma-Aldrich Cat. # S3014
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Triton X-100 Sigma-Aldrich Cat. # T8787

Sodium deoxycholate Sigma-Aldrich Cat. # 30970

cOmplete EDTA-free protease inhibitor Roche Cat. # COEDTAF-RO

Sodium fluoride 99% Sigma-Aldrich Cat. # S6776

Sodium orthovanadate 99.99% Sigma-Aldrich Cat. # 450243

Sodium pyrophosphate 99% (BioUltra) Sigma-Aldrich Cat. # 71501

b-glycerophosphate Sigma-Aldrich Cat. # G9422

NuPAGETM 4-12% Bis-Tris SDS-PAGE Protein Gels Thermo Fisher Cat. # NP0329BOX

n-Hexane, 95%, Optima Fisher Scientific Cat. # H306-1

AMP+ Mass Spectrometry Kit Cayman Chemical Cat. # 710000

37 FAMES mix Restek Cat. # 35077

Methyl-nonadecanoate Sigma-Aldrich Cat. # 74208

Critical commercial assays

Pierce BCA Protein Assay kit Thermo Fisher Cat. # BCA1

RNEasy mini kit QIAGEN Cat. # 74104

SensiFast cDNA synthesis kit Bioline Cat. # BIO-65053

Deposited data

Raw and analyzed data This paper Deposited to QUT Research Data Finder

https://doi.org/10.25912/RDF_1611708145189

Experimental models: cell lines

Human prostate cancer cells (lymph metastasis):

LNCaP clone FGC (RRID:CVCL_0395)

American Type Cell Culture

Collection (ATCC�)

ATCC� CRL-1740

Human prostate cancer cells (vertebral metastasis):

VCaP (RRID:CVCL_2235)

American Type Cell Culture

Collection (ATCC�)

ATCC� CRL-2876

Human prostate cancer cells (bone metastasis):

PC-3 (RRID:CVCL_0035)

American Type Cell Culture

Collection (ATCC�)

ATCC� CRL-1435

Human prostate cancer cells (CNS metastasis):

DU145 (RRID:CVCL_0105)

American Type Cell Culture

Collection (ATCC�)

ATCC� HTB-81

Human primary prostate cells (immortalized by

HPV RNA transfection): RWPE-1 (RRID:CVCL_3791)

American Type Cell Culture

Collection (ATCC�)

ATCC� CRL-11609

Human primary prostate cells (benign hyperplasia):

BPH-1 (RRID:CVCL_1091)

Gifted by P. J. Russell and

J. Clements (Australian Prostate

Cancer Centre-Queensland,

Australia)

N/A

Oligonucleotides

FADS2 Sigma-Aldrich SASI_Hs01_00029610, SASI_Hs01_00029612,

SASI_Hs01_00029608FADS2fwd: CCCGGCACAACTTACACA

FADS2rev: CCATGCTTGGCACATAGACACTT

SCD1 Sigma-Aldrich SASI_Hs01_00029617, SASI_Hs01_00181377,

SASI_Hs01_00181371SCD1fwdexon4: CCAGCTGTCAAAGAGAAGG

SCD1frevexon5: AAATACCAGGGCACAAGC

ELOVL2 Sigma-Aldrich SASI_Hs01_00018935

ELOVL2fwdexon5: GTGTGTCTTGAACTGGATACC

ELOVL2revexon6: TCCACCAAAGATACTTGTGC

ELOVL3 Sigma-Aldrich SASI_Hs01_00086480

ELOVL3fwdexon2: CTACATGAAGGAACGCAAGG

ELOVL3revexon3: ACACGGTTTGCTTTAGGC

(Continued on next page)
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ELOVL6 Sigma-Aldrich SASI_Hs01_00242071

ELOVL6fwdexon2: GAAGCCATTAGTGCTCTGG

ELOVL6revexon3: ACAAACTGACTGCTTCAGG

MISSION� siRNA Universal Negative Control #1 Sigma-Aldrich Cat# SIC001

Software and algorithms

Image Studio Lite LI-COR� Biotechnology N/A

Xcalibur (v 3.0.63) Thermo Scientific N/A

MassLynx 4.2 MS software Waters N/A

Analyst� software Sciex N/A

GCMSsolution (postrun analysis) Software Shimadzu N/A

Lipidview software Sciex N/A

High Definition Imaging (HDI; v 1.4) Waters N/A

Python peak fitting script This paper N/A

R x64 3.6.1 The R Foundation N/A

Other

CM 1950 Cryostat Leica Biosystems N/A

Glass slides (SuperFrost� plus) Menzel-Gläser Thermo Scientific Cat. # 4951PLUS4

Coverslips (Tissue-Tek� Glas) Sakura Finetek Cat. # 9580

Tissue-Tek Prisma slide scanner Sakura Finetek N/A

Pannoramic Digital slide scanner 3DHistech N/A

TC20 Automated Cell Counter Bio-Rad N/A

NanoDrop ND-1000 Spectrophotometer Thermo Scientific N/A

ViiA-7 Real-Time PCR system Applied Biosystems N/A

Bolt Mini Blot Module Thermo Scientific N/A

Li-Cor� Odyssey imaging system LI-COR� Biotechnology N/A

TQ8040 GC/MS Shimadzu N/A

RTX-2330 capillary column Restek

HTX TM-Sprayer HTXImaging N/A

Sublimator HTXImaging N/A

prototype mMALDI source Barré et al., 2019 N/A

Synapt G2-Si HDMS mass spectrometer Waters N/A

Ozone generator (solely for MALDI-MS experiments) Ozone Solutions TG-40 gen 2

Ozone monitor 2B Technologies 106-H

Orbitrap Elite high-resolution mass spectrometer Thermo Scientific N/A

Ozone generator Absolute Ozone Titan-30UHC

Triversa Nanomate Advion N/A

High pressure liquid chromatograph Shimadzu LC-20A HPLC

QTRAP 6500 hybrid triple quadrupole/LIT mass

spectrometer

Sciex N/A
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Stephen

Blanksby (stephen.blanksby@qut.edu.au).

Materials availability
All reagents generated in this study are available from the Lead Contact with a completed Materials Transfer Agreement.
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Data and code availability
The datasets generated during and/or analyzed during the current study are available as a data archive from QUT Research Data

Finder using the following DOI: https://doi.org/10.25912/RDF_1611708145189

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human tissues
Prostate tissues were collected with ethical approval of the St. Vincent’s Hospital Human Ethics Committee and in accordance with

Australian National Health and Medical Research Council Guidelines. Tissues samples were collected from radical prostatectomy

specimens by a pathologist, immediately snap frozen in liquid nitrogen, and stored at�80�C. Both right and left lobes were collected

from adult human-males. Age is not reported as samples were deidentified and are not linked to any donor information.

Cell culturing
LNCaP (RRID: CVCL_0395), VCaP (RRID: CVCL_2235), PC-3 (RRID: CVCL_0035), DU145 (RRID: CVCL_0105) and RWPE-1 (RRID:

CVCL_3791) cells were obtained from the American Type Cell Culture Collection (ATCC; Manassas, Virginia, USA), while BPH-1

(RRID: CVCL_1091) was gifted by P. J. Russell and J. Clements (Australian Prostate Cancer Centre-Queensland, Australia). All

cell lines were cultured in Roswell Park Memorial Institute (RPMI) medium (Thermo Fisher, Waltham, MA, USA) supplemented

with 5% fetal bovine serum (FBS, Invitrogen, Waltham, MA, USA) and incubated at 37�C in 5% CO2. Medium was changed every

3 days, and cells were passaged at approximately 80% confluency by trypsinisation. Cell lines were authenticated using genotyping

in March 2018 by Genomics Research Centre (Brisbane, Australia) and routinely tested to exclude mycoplasma infection. Cell num-

ber and viability was determined by trypan blue staining and using a TC20 Automated Cell Counter (Bio-Rad).

METHOD DETAILS

Lipid nomenclature
Lipid nomenclature was based on previously defined shorthand naming systems that only state the level of molecular detail that is

known (Fahy et al., 2009; Liebisch et al., 2013). In short, the lipid category is defined by a two-letter abbreviation (e.g., PC; phospha-

tidylcholine) followed by the number of carbons andDBs in the fatty acids separated by a colon (e.g., a PCwith 34 carbons and 2DBs;

PC 34:2). If further analysis has been undertaken to reveal individual fatty acid composition but not the stereospecific number on the

glycerol backbone (i.e., sn-position), this can be indicated with an underscore (i.e., PC 16:0_18:2). Instead, if sn-position is known

fatty acids can be separated by a forward-slash (i.e., sn-1/sn-2; PC 16:0/18:2). For established positions, the digit indicating the num-

ber of DBs is directly followed by the n-number when referencing the number of carbons distal to the methyl terminus (i.e., PC 16:0/

18:2n-6) or the bracketed D-number when referencing the carboxylate terminus (i.e., PC 16:0/18:2(D9)). It should be noted that a sin-

gle position given in polyunsaturated series impliesmethylene interruption of subsequent DBs (i.e., PC 16:0/18:2n-6 = PC 16:0/18:2n-

6,9). A table of fatty acyl common names and shorthand nomenclature equivalents is provided in Table S1.

Tissue sectioning and mounting
Using a CM 1950 Cryostat (Leica Biosystems, Nussloch, Germany), tissue biopsies were sectioned at 10 mm thickness using a blade

that was free from optimal cutting temperature (OCT) compound and fixed on standard glass slides (SuperFrost +, Menzel-Gläser,

Braunschweig, Germany) using 10% neutral buffered formalin for 30 s prior toMALDI-MS imaging protocol (refer to method ‘‘MALDI-

MSI OzID for lipid double bond imaging’’) and the hematoxylin and eosin (H&E) staining protocol (refer to method ‘‘Haematoxylin and

Eosin Staining’’). Tissue slides for MALDI-MSI were placed into a sealed slide holder and purged with nitrogen gas before being

stored on dry ice for inter-laboratory shipping.

Haematoxylin and Eosin Staining
Tissue H&E staining took place after sectioning/mounting using an autostainer (Tissue-Tek Prisma, Sakura Finetek, Torrance, CA,

USA) according to the following sequence: tissues were washed with water for 2 minutes before being exposed to hematoxylin

(Harris Haematoxylin (PAH), Australian Biostain P/L, Traralgon, Australia) for 5 minutes. ‘‘Bluing’’ was achieved with water rinsing

for 4 minutes and exposed for 10 s to ethanol (Chem Supply Gilman, Australia) acidified with 1% HCl before 5 minutes of further

rinsing with water. Eosin staining (0.25% Eosin Y; certified C.C. # 45380, ProSciTech, Kirwan, Australia) took place for 2 minutes

before 40 s of water rinsing. One 80% ethanol rinse followed by two 100% ethanol rinses then took place for 45 s, 30 s and 45 s,

respectively. Triplicate xylene (Point Of Care Diagnostics, North Rock, Australia) washes were then conducted for 1 minute each.

Coverslips (Tissue-Tek Glas, Sakura Finetek, Torrance, CA, USA) were then applied before imaging using a Pannoramic Digital slide

scanner (3DHistech, Hungary) for histopathological analyses.

Gene silencing by siRNA and enzyme inhibition
LNCaP cells were seeded at 1.2x105 cells/well in 6-well plates. After 48 hours, cells were transfected with 10 nM siRNAs (Sigma-

Aldrich) targeting SCD-1 (SASI_Hs01_00029617, SASI_Hs01_00181377, SASI_Hs01_00181371), FADS2 (SASI_Hs01_00029610,
Cell Reports 34, 108738, February 9, 2021 e4
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SASI_Hs01_00029612, SASI_Hs01_00029608), ELOV2 (SASI_Hs01_00018935), ELOVL3 (SASI_Hs01_00086480), and ELOVL6

(SASI_Hs01_00242071). Off-target effects were controlled using a scrambled siRNA control sequence (SIC001, Sigma-Aldrich)

at 10 nM. Before forward transfection, growth medium was replaced with 1 mL serum free medium (RPMI 1640), and transfection

solution using RNAiMAX lipofectamine reagent was prepared according to the manufacturer’s instructions (Thermo Fisher).

Following six hours of transfection, FBS was added to the medium to a final concentration of 5%, and cells were grown for 72 hours.

For direct inhibition of enzyme activity, 2 million cells were treated for 72 hours with the indicated concentrations of SC26196

(FADS2D6 inhibitor, 30 mM in DMSO, Sigma-Aldrich) and 5-tetradecyloxy-2-furoic acid (TOFA; combination SCD-1D9 /ACC1 inhib-

itor, 5 mM in DMSO, Sigma-Aldrich). Cell assay titrations for inhibitor concentrations can be found in Figure S3.

13Carbon tracing
For 13C tracing studies, LNCaP cells were chosen due to their heightened FADS2 expression. Cells were seeded and cultured under

the conditions mentioned previously (refer to experimental model ‘‘Cell culturing’’). After 48 hours of seeding, cells were switched to

fresh media supplemented with either unlabeled (i.e., 12C16-palmitic acid) or labeled (i.e., 13C16-palmitic acid or 13C18-stearic acid)

fatty acids conjugated to bovine serum albumin (BSA) at a final concentration of 20 mM. All fatty acids were purchased from Sigma

Aldrich, Castle Hill, Australia. Cells were grown for a further 72 hours andwashed twice with ice-cold phosphate buffered saline (PBS)

before lipid extraction.

RNA extraction and quantitative real-time polymerase chain reaction (qRT-PCR)
Cells seeded in 6 well plates were grown in 5% FBS to a confluency of 70% before RNA extraction using the RNEasy mini kit

(QIAGEN, Hilden, Germany) following the manufacturer’s instructions. RNA concentration was measured using a NanoDrop ND-

1000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA). 2 mg of total RNA was used to prepare cDNA with SensiFast

cDNA synthesis kit (Bioline) according to the manufacturer’s instructions and diluted 1:6 with DNase/RNase-free water (Thermo

Fisher, Waltham, MA, USA). qRT-PCR was performed with SYBR-Green Master Mix (Thermo Fisher Scientific, Waltham, MA,

USA) using the ViiA-7 Real-Time PCR system (Applied Biosystems, Forster City, CA, USA). Determination of relative mRNA levels

was calculated using the comparative DDCt method (Schmittgen and Livak, 2008), where expression levels were normalized relative

to that of the housekeeping gene receptor-like protein 32 (RPL32) for each treatment and calculated as fold change relative to

the expression levels of BPH-1 cells. All experiments were performed in triplicate and analysis and statistics were performed with

Microsoft Excel. Primer sequences can be found in in the Key resources table).

Western blot confirmation method
Cell seeding and gene silencing of FADS2 was carried out as described above. Protein extracts for western blotting were generated

from whole cell lysates prepared in lysis buffer [50 mM Tris, HCl pH 7.6, 150 mM sodium chloride, 1% Triton X-100, 0.5% sodium

deoxycholate, 0.1% SDS, one cOmplete EDTA-free Protease Inhibitor Cocktail tablet (Roche) per 10 mL, phosphatase inhibitors so-

dium fluoride (30 mM), sodium pyrophosphate (20 mM), b-glycerophosphate (10 mM), and sodium orthovanadate (1 mM)]. Before

lysis in 250 mL buffer on ice for 5 minutes, cells were washed twice with ice-cold PBS. Protein extracts were cleared by centrifugation

for 10 minutes at 20,000 x g at 4�C and transferred into fresh tube. Protein concentration was measured using Pierce BCA Protein

Assay kit according to manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA, USA). 20 mg of total protein/lane were

separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) using NuPAGE 4%–12% Bis-Tris SDS-PAGE Protein Gels

(Thermo Fisher Scientific), and western blot was completed using the Bolt Mini Blot Module (Thermo Fisher Scientific) according

to the manufacturer’s instructions. After transfer and blocking of polyvinylidene fluoride (PVDF) membranes (Immobilon) in 5%

BSA TBS Tween-20 buffer (Thermo Fisher Scientific), primary antibody directed against FADS2 (PA5-87765; RRID: AB_2804393,

Thermo Fisher Scientific) was applied overnight at 4�C at a dilution of 1:1000 followed by probing with the appropriate Odyssey fluo-

rophore-labeled secondary antibody and visualization on the Li-Cor�Odyssey imaging system (LI-COR� Biotechnology, NE, USA).

Protein expression levels were quantified using Image Studio Lite (LI-COR� Biotechnology), normalized relative to the indicated

housekeeping protein, and expressed as fold-changes relative to the control treatment.

Lipid extraction
Cell and homogenized tissue lipids were extracted using methods similar to those described by Matyash et al., 2008 and were quan-

tifiable through the use of internal standards in the form of deuterated lipids (SPLASH Lipid-o-mix, Avanti Polar Lipids, Alabaster,

USA) and an odd-chain fatty acid found to be not present within the samples (nonadecanoic acid, Sigma Aldrich, Munich, Germany).

To minimize pipetting error, a stock internal standard solution was made in bulk using 720 mL MTBE (0.01% BHT), 40 mL SPLASH

Lipid-o-mix� and 20 mL nonadecanoic acid in MTBE (3.35 mM) per 2 M cells. Cell pellets in 2 mL clear glass vials (�2M cells)

were twice washed with PBS solution, before adding 220 mL of methanol and 780 mL of the prepared internal standard stock solution.

Capped vials were vortexed for 20 s, before 1.5 h bench-top agitation. Phase separation was induced by adding 200 mL of aqueous

ammonium acetate (150 mM) before samples were vortexed for 20 s and centrifuged for 5 min at 2,000 x g. The organic supernatant

was pipetted off to a clean labeled 2 mL glass vial and stored at �20�C before analyses.
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AMPP derivatisation
100 mL of the lipid extract was dried under nitrogen gas in 4 mL glass vials. Fatty acids were hydrolysed from lipids using 1:1 meth-

anol:tetrabutylammonium hydroxide (40 wt. % in water) and heating at 85�C for 2 h before allowing to cool to room temperature.

1.5 mL of water (Optima�) was added to each of the vials and acidified with 120 mL of 5 M aqueous hydrochloric acid to achieve

a pH of 2. Biphasic extraction of the supernatant was then undertaken using two separate aliquots (1 mL) of n-hexane to optimize

the recovery of fatty acids. The individual sample supernatant fractions were combined and dried under nitrogen to yield fatty acids.

The obtained fatty acids were then functionalisedwith AMPP+ using an AMP+Mass Spectrometry Kit (CaymanChemical, Ann Arbor,

MI) and following a similar method discussed by Bollinger et al. (2010). Briefly, 150 mL of 4:1 ACN:DMF was added to the hydrolysed

lipid samples prepared above, followed by 10 mL of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCdHCl; 1 M in water), 20 mL

of 1-hydroxybenzotriazole (5 mM in 99:1 ACN:DMF), and 20 mL of AMPP+ coupling reagent (15 mM in ACN). The resulting solution

was sealed, vortexed for 1 min and heated at 65�C for 30 min. After cooling to room temperature, the reaction mixtures were diluted

with water (1 mL) and saturated aqueous NH4Cl (50 mL); mixtures were then twice extracted using MTBE (2 3 1 mL). The MTBE

supernatants were combined and stored in sealed 2 mL vials at �20�C before MS analysis. 5 mL of the Restek 37 mix of FAMEs

and blanks were also derivatised through the above method and were used as experimental quality-controls.

Gas chromatography – pooled fatty acyl analysis
A reference standard of 38 fatty acid methyl ester standards was prepared by mixing a purchased 37 fatty acid methyl ester (FAME)

standard (Restek, Bellefonte, PA, USA) and 450 mM methyl-nonadecanoate in MTBE (Sigma Aldrich) at a 1:9 ratio. Samples were

prepared for analysis by mixing sample extracted lipids 5:1 with TMSH. Pooled batch quality controls (PBQC) and blanks were

used throughout for quality control and data reliability.

Samples were analyzed using a TQ8040 GC/MS (Shimadzu, Kyoto, Japan) with chromatographic separation being carried out

through an RTX-2330 capillary column (cyanopropyl stationary phase, 60 m x 0.25 mm, 0.20 mm film thickness; Restek). GC/MS in-

strument conditions were then optimized for FAME separation (He carrier gas, column flow of 2.6mL/min, 22:1 split ratio, 1 mL sample

injections, injector temperature of 220�C, interface and ion source temperature of 250�C). To shorten the total experiment duration

and assist with chromatographic separation, a 30-minute column oven temperature gradient was used (150�C initial temperaturewith

a 10�C/min increase to 170�C, followed by a 2�C/min increase to 200�C and a further 1.3�C/min increase to 211�C where the tem-

perature was held for the remaining 5 minutes of the experiment). Column eluents were then subject to 70 eV of source energy for

electron ionisation and ions were detected by Q3 scan mode over a m/z 50-650 range.

MALDI-MSI OzID for lipid double bond imaging
10 mm tissue sections mounted on standard glass slides were first thinly coated with 12 passes (45 mm spray height, 30�C,
10 psi, 2 mm track spacing) of 100 mM sodium acetate (2:1 methanol/chloroform) via an HTX TM-Sprayer (HTXImaging, Chapel

Hill, NC, USA). Sample slides were then coated with 2,5-DHA via sublimation (40 mg, 160�C, 4 minutes) using a sublimator

(HTXImaging, Chapel Hill, NC, USA). Coated sample slides were then loaded into a prototype mMALDI source (Barré et al.,

2019) (Nd:YAG laser operating at 1.5 kHz, producing 25 nJ pulses at 355 nm; Waters, Wilmslow, England) for sample desorption

and ionisation. 50 mm2 pixels were sampled at a velocity of 2.0 mm/s with a 1.62 A laser diode current. Samples were analyzed

using a Synapt G2-Si HDMS mass spectrometer (Waters, Wilmslow, England) modified with a closed loop ozone generation sys-

tem to deliver ozone (up to 18% w/w in oxygen) to the ion mobility gas inlet of the instrument, as described previously (Poad

et al., 2017). Ozone was generated from oxygen feed gas (99.999% purity, Linde Gas Benelux BV, the Netherlands) using a

high concentration ozone generator (TG-40 gen 2, Ozone Solutions, Hull, IA, USA) and the concentration measured online using

a UV-absorption based ozone monitor (106-H, 2B Technologies, Boulder, CO). The mass spectrometer was operated in ion-

mobility mode, resulting in a reaction time with ozone of �15 ms, corresponding to the ion-mobility drift time. The quadrupole

mass filter was set to transmit m/z 782 (i.e., [PC 34:1+Na]+ and [PC 36:4+H]+) which was subsequently allowed to react with

ozone in the ion mobility cell to yield OzID fragmentation. The resulting monoisotopic ions (precursors and products) were

then mass analyzed by time of flight (nominal resolution 15,000).

Direct infusion ESI-OzID of lipid double bonds
The DBs of intact glycerophospholipids were determined viamass spectrometry using amodified Orbitrap Elite high-resolutionmass

spectrometer (Thermo Scientific, Bremen, Germany) capable of ozone-induced dissociation. Briefly, ozone was produced via a high-

concentration generator (Titan-30UHC Absolute Ozone, Edmonton, Canada) and was introduced into the helium buffer gas flow

before conduction through to the high-pressure region of the linear ion trap (LIT) (Paine et al., 2018). Similarly, a diverter valve

was placed on the nitrogen gas inlet to the higher collisional dissociation (HCD) cell, and nitrogen was replaced with generated ozone

gas (Marshall et al., 2019).

Operating in positive-ion mode for PC lipid OzID, cell line lipid extract samples were mixed 1:1 (v/v) with 500 mM methanolic

sodium acetate solution and introduced to the mass spectrometer via a chip-based nano-electrospray source (TriVersa Nano-

mate, Advion, Ithaca, NY, USA) using 1.35 kV/0.35 psi spray parameters. Using the Thermo Xcalibur software package, a data

independent acquisition sequence was created to perform sequential OzID (activation time (AT) = 2 s (HCD), collision energy

(CE) = 1 V) and CID/OzID (MS2: AT = 30 ms (LIT), normalized collision energy (NCE) = 40; MS3: AT = 1 s, NCE = 0) for 9 sodiated
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phosphatidylcholine precursor ion masses with a maximum injection time of 100 ms, isolation window of ± 0.5 Da across a

175-1000 Da scan range. Included sodiated precursor ion m/z values were: 754.6, 780.6, 782.6, 804.6, 806.6, 808.6, 810.6,

830.6 and 832.6. This method was also used to assign DBs within lipids that were labeled with stable-isotope fatty acids, with

the only method modification being the precursor ion masses that were selected. For PCs labeled with heavy-palmitate or

heavy-stearate three labeled and three unlabeled lipids were submitted for OzID and CID/OzID analysis (m/z 754, 770, 782,

798, 810 and 826; and m/z 754, 772, 782, 800, 810 and 826, respectively). The product ions from all fragmentation experiments

were detected using the orbitrap mass analyzer for high resolution and accurate mass, allowing for unambiguous assignment of

characteristic fragments to specific lipids and not isobaric lipids or isotopes. Intensity values obtained from OzID and CID/OzID

mass spectrometric experiments were the average of 24 and 39 scans, respectively. Adapting the work of Marshall et al.

(2016) and Hancock et al. (2019) and the aforementioned positive-ion mode experiments, MS3 experiments were created for

TG and CE related scans, respectively (cf. Table S4). In brief, for TGs, sodiated precursor ions were mass selected and underwent

activated OzID in the linear ion trap (MS2: NCE = 27, AT = 2 s), with subsequent monounsaturated fatty acid related product ions

undergoing OzID in the HCD cell (MS3: CE = 1 V, AT = 5 s) before high resolution detection. For CEs, precursor ions first underwent

activated OzID in the linear ion trap (MS2: NCE = 2, AT = 500 ms) before the [M+Na+16]+ product ion was mass selected to un-

dergo further activated OzID and detection in the linear ion trap (MS3: NCE = 1, AT = 5 s).

Operating in negative-ion mode for PE, PS, PG and PI lipid OzID, cell line lipid extract samples were mixed 1:1 (v/v) with 5 mM

methanolic ammonium acetate solution and introduced to the mass spectrometer via a TriVersa Nanomate, set to use

�1.35 kV/0.35 psi spray parameters. Using the Thermo Xcalibur software package, 4 separate data independent acquisition

sequences were created for each of the phospholipid subclasses. For each method, sequential OzID (AT = 2.5 s (HCD), CE =

1 V) and CID (MS2: AT = 5 ms (LIT), NCE = 33-39) was performed for 9 deprotonated lipid precursor masses (totalling 36 phos-

pholipids) with a maximum injection time of 100 ms, isolation window of ± 0.5 Da across a scan range of 200-1000 Da. Included

deprotonated precursor ion m/z values were: (for PE) 688.5, 716.5, 742.5, 744.5, 782.5,766.5, 768.5, 770.5 and 772.5; (for PS)

732.5, 760.5, 786.5, 788.5, 806.5, 810.5, 812.5, 814.5 and 816.5; (for PG) 719.5, 747.5, 773.5, 775.5, 793.5, 797.5, 799.5,

801.5 and 803.5; and (for PI) 807.5, 835.5, 861.5, 863.5, 885.5, 887.5, 889.5, 891.5 and 915.5. The product ions from all fragmen-

tation experiments were detected using the orbitrap mass analyzer for high-resolution mass accuracy (120,000 FWHM at 400 m/z),

allowing for unambiguous assignment of characteristic fragments to specific lipids and not isobaric lipids or isotopes. Intensity

values obtained from OzID and CID mass spectrometric experiments were averaged across 16 and 77 scans individual scans,

respectively.

Usingmethods similar to those developed for cell line extracts, OzIDwas also performed on homogenized tissue lipid extracts. Due

to the small quantity of tissue from which lipids were extracted, extracts were first dried under nitrogen gas and reconstituted to one

quarter the volume (4-fold increase in concentration). Samples were reconstituted in either methanolic sodium acetate (500 mM) for

positive-ion mode or methanolic ammonium acetate (5 mM) for negative-ion mode. Using the parameters described previously for

positive-ion mode PC acquisitions, OzID and CID/OzID was performed on three PC lipids (m/z 754.5, 782.6 and 810.6). Resulting

OzID and CID/OzID data was detected using the orbitrap mass analyzer (120,000 FWHM at 400 m/z) and ion intensity values

were averaged across 11 and 23 scans, respectively. Given the low sample concentration and the decrease in ion detection effi-

ciency inherent to negative-ion mode mass spectrometry, the aforementioned method to obtain OzID DB data for PE, PS, PG

and PI lipids was modified. A data independent method was created to sequentially acquire OzID (AT = 10 s; NCE = 19-23) for

the 32:1, 34:1 and 36:1 phospholipid compositions (12 total phospholipids) using a maximum injection time of 100 ms, isolation win-

dow of ± 0.5 Da across a scan range of 200-1000 Da. Included m/z values were: 688.5, 716.5, 719.5, 732.5, 744.5, 747.5, 760.5,

775.5, 788.5, 807.5, 835.5 and 863.5. To further improve detection of low intensity signals, product ion fragments were analyzed

in the high-pressure region of the dual linear ion trap. Low resolution ion fragments were compared against standards run under

the same conditions to improve reliability of assignments. Intensity values obtained from OzID experiments were averaged across

9 scans.

Direct infusion ESI-OzID of pooled fatty acid double bonds (AMPP+ derivatization)
Hydrolysed lipid extracts (including cell line lipids, LNCaP siRNA experiments and the fatty acid methyl ester standard mix) were de-

rivatised with AMPP+ as described above (refer to method ‘‘AMPP derivatisation’’) and introduced via chip-based nano-electrospray

using 1.90 kV/0.5 psi spray parameters. Using the Thermo Xcalibur software package, data independent acquisition sequences were

created to perform ozonolysis within the linear ion trap (AT = 5 s, NCE = 25) for 24 fatty acid precursor ion masses with a maximum

injection time of 100 ms, isolation window of ± 0.5 Da and scan range between 105-600 Da. Included precursor ion masses

for AMPP+ derivatised FAs were: 14:1 (m/z 393.5), 14:2 (m/z 391.5), 15:1 (m/z 407.5), 16:1 (m/z 421.5), 16:2 (m/z 419.5), 16:3

(m/z 417.5), 17:1 (m/z 435.5), 18:1 (m/z 449.5), 18:2 (m/z 447.5), 18:3 (m/z 445.5), 19:1 (m/z 463.5), 20:1 (m/z 477.5), 20:2

(m/z 475.5), 20:3 (m/z 473.5), 20:4 (m/z 471.5), 20:5 (m/z 469.5), 20:6 (m/z 467.5), 22:1 (m/z 505.5), 22:2 (m/z 503.5),

22:3 (m/z 501.5), 22:4 (m/z 499.5), 22:5 (m/z 497.5), 22:6 (m/z 495.5) and 24:1 (m/z 533.5). Subsequent OzID product ions were

then transferred through to the orbitrap mass analyzer for unambiguous assignment by high-resolution mass detection (mass res-

olution 120,000 (FWHM) at m/z 400). Ion abundance values were averaged across 11 scans.
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Conventional lipidomics for phospholipid profiles
Lipid extracts from cell lines were run through an automated lipidomics workflow using an LC-20A HPLC (Shimadzu, Kyoto, Japan)

set to deliver 100 mL sample loop-injections into a mobile phase of 5 mM methanolic ammonium acetate flowing at 15 mL/min. The

sample column and column oven were bypassed with Viper PEEKsil (50 mm, Thermo Fisher, Waltham, MA, USA) to maintain instru-

ment back pressure limits. Sample lipids were then directly infused through the electrospray ionisation source of a QTRAP 6500

hybrid triple quadrupole/LIT mass spectrometer (SCIEX, Concord, ON, Canada) using a spray voltage of 5 kV, a source temperature

of 150�C and both source gasses set to 15 (arb.). Various precursor ion and neutral loss scans were employed to confirm lipid head

group, with the detectedm/z being indicative of summed-fatty-acyl composition. (PC: PISm/z 184.2, CE: 39V; PE: NLm/z 141.1, CE:

29V; PS: NL m/z 185.1, CE: 29V; PG: NL m/z 189.1, CE: 29V; PI: NL m/z 275.1, CE: 29V; ChE: NL m/z 259.1, CE: 29V). Instrument

blanks were run through-out to ensure no sample carry-over and pooled batch quality controls (PBQC) were used to gauge instru-

ment performance over the duration of the experiment.

QUANTIFICATION AND STATISTICAL ANALYSIS

Gas chromatography – pooled fatty acyl analysis
Tabulated ion intensity data from the m/z 55 extracted ion chromatogram (XIC) was extracted from the data files using the native

Shimadzu Post-run analysis software. The m/z 55 XIC was chosen due to the enhanced detection of monounsaturated fatty acids.

To ensure detection biasing was minimal, 3-point calibration curved were created with the reference standard to obtain molar

correction factors for all fatty acid species. Using a Python script that was developed inhouse, chromatographic peaks were

compared with a temporal tolerance of 0.013 min against the reference standard for fatty acyl species assignment. For quantifi-

cation, the slope of the peak and the maximum height (min. threshold: 0.01% of total ions) was used to fit a Gaussian distribution,

which was subsequently integrated and normalized to the methyl-nonadecanoate internal standard. Previous analysis of the sam-

ples without an included internal standard revealed no detectable methyl-nonadecanoate and hence all integrated chromato-

graphic signal was attributed to the internal standard. Pandas DataFrames were then created and exported to .csv format where

Microsoft Excel was then used for the remaining cell count normalization, internal standard concentration factoring, statistical

analysis, and graphing.

MALDI-MSI OzID for lipid double bond imaging
HDI software (Version 1.4, Waters, Wilmslow, England) was used for data processing and image creation by integrating positional

files obtained from the mMALDI source with theWaters .raw files from the Synapt G2-Si. The top 200most intense fragment ion peaks

were extracted from the raw/un-normalized spectra across a mass range of 200-1000 m/z with an isolation window of 0.02 Da and

mass resolution set to maximum (20,000). Characteristic ions for the OzID aldehyde and Criegee ions were identified and summed to

show isomeric distribution of PC 34:1. Similarly for PC 36:4n-6, aldehyde and Criegee ions from each double bond position were

summed to show the distribution across tissue. Because quantitation was not the focus of the imaging analysis, maximum gradient

intensity values were individually set to assist visualization and contrast of lipid distributions. Hence, the maximum gradient values

vary for each lipid species and can be observed in the linear color scale bars of Figure S1. Images were smoothed using linear inter-

polation and composite images were created using the in-built ‘‘Add’’ data blending mode, which blends co-localized colors

together.

Direct infusion ESI-OzID of lipid double bonds and pooled fatty acid double bonds (AMPP+)
Averagedmass spectral datawere extracted from the Thermo .raw files using Thermo Xcalibur Qual Browser (Version 3.0.63, Thermo

Scientific, Bremen, Germany). Data tables were imported to Microsoft Excel where the data was normalized to the total ion count

(TIC) before product ions were located and quantified. For high resolution mass spectrometry, a minimum peak intensity threshold

of 0.013% of the TIC (�10:1 signal-to-noise) was put in place, and am/z Dppm of 6 was used for product ion assignment validation.

Translation to assignments was made according to previously published tables for OzID aldehyde and Criegee product ion neutral

loss masses (Paine et al., 2018) OzID aldehyde and Criegee ion abundances were summed and represented as a fraction of the all

isomer related OzID product ion signals (i.e., fractional distribution). This method of representation provides a further degree of

normalization for comparison, making the fractions reflective of changes in the molar concentration of isomers.

Conventional lipidomics for phospholipid profiles
Lipidview (Version 1.3 beta, SCIEX, Concord, ON, Canada) was used for data processing of SCIEX data files obtained from the

QTRAP 6500. Lipid assignments were based on the software lipid tables and shortlisted to include even-chain lipids with 0-6 s.

Odd-chain/ether-lipid data was obtained but was not included in this study due to the ambiguity in assigning isobars in low resolution

mass spectrometry. Isotope correction factors were applied, and MS peaks were ratioed to the isotope corrected internal standard

included in each scan type. The inclusion of deuterated and odd chain fatty acids within the internal standard lipids sufficiently mass

shifted internal standards away from any biological lipids, therefore allowing accurate and reliable peak intensity measurements to be

discerned. Data tables were extracted from Lipidview and imported to Microsoft Excel for cell count normalization, internal standard

concentration factoring, statistical analysis, and graphing.
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Statistics and error analysis
The mean with 95% confidence intervals was used for error analysis on column-charts throughout and was calculated using Micro-

soft Excel and conventional equations. Box and whisker plots display conventionally accepted quartile values for the data minimum,

1st quartile, median, 3rd quartile andmaximum. For Figures 1B and 1C, the mean and variance were calculated using Microsoft Excel

to establish an independent one-tailed Welsh’s t test and t-values were translated to statistical significance via relevant degrees of

freedom and critical t-value tables. Remaining principal component analyses, heatmaps, and correlation matrices, including statis-

tical significance and correlation coefficients, were calculated using R x64 3.6.1 packages and built-in functions using a Pearson

product-moment correlation (i.e., PerformanceAnalytics, prcomp(), Hmisc() and corrplot()). With the exception of Figure 6, all

population values (i.e., ‘‘n=’’) refer to cell culture replicates. The population values of Figure 6 instead refer to either the number of

cell culture replicates, or the number of patient tissues used to conduct the statistical test, as indicated in the figure caption. Specific

statistical details for each of the figures (including number of replicates, p value representation and error model), can be found within

the respective figure captions.
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