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A B S T R A C T   

Background: Deep learning has revolutionized the field of computer vision, where convolutional neural networks 
(CNNs) extract complex patterns of information from large datasets. The use of deep networks in neuroscience is 
mainly focused to neuroimaging or brain computer interface -BCI- applications. In electroencephalography (EEG) 
research, multivariate pattern analysis (MVPA) mainly relies on linear algorithms, which require a homogeneous 
dataset and assume that discriminant features appear at consistent latencies and electrodes across trials. How
ever, neural responses may shift in time or space during an experiment, resulting in under-estimation of 
discriminant features. Here, we aimed at using CNNs to classify EEG responses to external stimuli, by taking 
advantage of time- and space- unlocked neural activity, and at examining how discriminant features change over 
the course of an experiment, on a trial by trial basis. 
New method: We present a novel pipeline, consisting of data augmentation, CNN training, and feature visuali
zation techniques, fine-tuned for MVPA on EEG data. 
Results: Our pipeline provides high classification performance and generalizes to new datasets. Additionally, we 
show that the features identified by the CNN for classification are electrophysiologically interpretable and can be 
reconstructed at the single-trial level to study trial-by-trial evolution of class-specific discriminant activity. 
Comparison with existing techniques: The developed pipeline was compared to commonly used MVPA algorithms 
like logistic regression and support vector machines, as well as to shallow and deep convolutional neural net
works. Our approach yielded significantly higher classification performance than existing MVPA techniques (p =
0.006) and comparable results to other CNNs for EEG data. 
Conclusion: In summary, we present a novel deep learning pipeline for MVPA of EEG data, that can extract trial- 
by-trial discriminative activity in a data-driven way.   

1. Introduction 

Multivariate pattern analysis (MVPA) is commonly used in the field 
of neuroscience to extract discriminative patterns of neural responses to 
external stimuli (Haynes and Rees, 2006). Although initially developed 
for functional magnetic resonance imaging (fMRI), MVPA techniques 
have been adapted for the field of magneto- and 
electro-encephalography (M/EEG) (Grootswagers et al., 2017). These 
are most commonly based on linear classifiers, which are applied on 
sensor-level topographic data, either aggregated across time (Tzovara 
et al., 2012) or on a time-point by time-point basis (King and Dehaene, 
2014). This latter approach is most commonly implemented by training 

and testing one classifier at a given time-point within a trial (Castegnetti 
et al., 2020; Demarchi et al., 2019) and identifying time-points for which 
classification is above chance levels. However, this approach suffers 
from several drawbacks, as it only allows detecting a fixed time-period 
of discriminant activity for all experimental conditions and trials. 
Most MVPA approaches are based on single-trial information, and are 
thought to be more sensitive than ’classical’ event-related potential 
(ERP) analyses. However, training and testing a classifier at single 
time-points makes the assumption that discriminant information ap
pears at the same latency and electrode locations across trials, in a time- 
and space- locked way. 

In the past few years, the field of computer vision has gained a 
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tremendous momentum with the introduction of deep learning algo
rithms (Goodfellow et al., 2016). Deep neural networks, typically 
relying on convolutional operations (convolutional neural networks 
-CNNs-) are commonly used to classify different types of images, ranging 
from everyday objects (He et al., 2016), to challenging medical images 
(Suzuki, 2017). Because the kernels of the convolutional layers share 
weights for the whole image, CNNs have the advantage that they are 
able to detect space unlocked patterns, a property called translational 
equivariance (Goodfellow et al., 2016, section 9.2). The position of the 
discriminant pattern across observations is therefore irrelevant, which 
often results in CNNs outperforming ‘traditional’ machine learning 
algorithms. 

CNNs have been increasingly applied to new fields. In the field of 
EEG research, deep learning algorithms have been introduced for clin
ical applications such as detection of epileptic seizures (Cho and Jang, 
2020; Burrello et al., 2020), automating sleep scoring (Fiorillo et al., 
2019), or predicting outcome of coma patients (Jonas et al., 2019). 
Applications in basic research mainly focus on brain computer in
terfaces, oftentimes on paradigms based on motor imagery (Schirr
meister et al. 2017; Zhang et al., 2019), and (Roy et al., 2019) for a 
review on deep learning and EEG. Apart from BCI applications, deep 
learning techniques for basic EEG research such as MVPA have been 
introduced but are not widely used in basic research yet. Deep neural 
networks predominantly profit from extracting features from minimally 
processed data, yet several algorithms for EEG are based on hand crafted 
features, such as classification of time frequency (Ghosh et al., 2018; An 
et al., 2014), or frequency transforms of EEG data within different fre
quency bands (Kuanar et al., 2018; Bashivan et al., 2016; Tan et al., 
2018) or differential entropy (Wang et al., 2018). While these hand 
crafted features often times have a physiological meaning, such as rep
resenting the energy spectrum in a given frequency band, they require 
making strong assumptions about the underlying task, are not easily 
translatable across experimental setups and might not fully exploit the 
features which are most discriminant across experimental conditions. 
Other deep learning algorithms for EEG use the raw EEG or a minimally 
processed signal (Schirrmeister et al., 2017; Lawhern et al., 2018; Tang 
et al., 2016; Nurse et al., 2016; Hajinoroozi et al., 2017), allowing the 
network to fine-tune its parameters and identify the most discriminant 
features in the data, by maximizing separability between conditions of 
interest. The learnt features here usually have not a physiological 
meaning and their interpretation is oftentimes very complex. 

One important aspect common to all MVPA approaches, for basic 
research and also for clinical or BCI applications, is that of obtaining 
interpretable features that have an electrophysiological meaning (Haufe 
et al., 2014). Existing techniques for interpreting results of decoding 
approaches for M/EEG data provide information about sensor-locked 
activity, such as the weights or activations of single electrodes or sen
sors (Haufe et al., 2014). These techniques provide information about 
the sensors that mostly contribute to an accurate classification, but are 
not informative about which of the experimental conditions are driving 
this classification. Other techniques for feature extraction consist of 
separating the EEG signal in subcomponents that can be then used to 
visualize condition-specific patterns, like common spatial patterns (CSP) 
(Koles et al.,1990), but have the limitation of poor temporal resolution, 
and of poor generalization over multiple participants (Lotte, 2014). 

In the case of CNNs, feature interpretability is its own subfield of 
research. One possibility for interpreting features is visualizing which 
dimensions of the input data are contributing to the final prediction of 
the network or what information the weights of the trained kernels 
contain (Zeiler and Fergus, 2013). This approach has the drawback that 
the extracted features are not trial nor condition specific. By contrast, 
gradient based methods, such as saliency maps, can detect discriminant 
patterns of activity in each individual data sample (Simonyan et al., 
2013). 

Here, we introduce a novel approach for decoding EEG responses to 
external stimuli based on CNNs. We present an MVPA pipeline, relying 

on a deep CNN that extracts time- and space- unlocked patterns of EEG 
activity; can be generalized to different datasets with minimal assump
tions; and has interpretable features in terms of spatio-temporal clusters 
that drive an accurate classification. We explore this pipeline using two 
different datasets: first, a dataset consisting of EEG responses to repeated 
(pure tones) and novel (naturalistic) sounds, with clear and sustained 
differences in EEG responses. Second, we used a more challenging 
dataset, consisting of EEG responses to repeated and novel images, 
whose presentation was mixed across participants, resulting in more 
subtle condition differences. Our goal is to use this pipeline in order to 
extract in a data-driven way trial by trial spatio-temporal patterns of 
discriminant electrophysiological responses, and explore how these 
change over the course of an experiment. 

2. Materials and methods 

2.1. Data 

We used two different EEG datasets to (a) build our pipeline, and (b) 
evaluate whether it generalizes across experimental settings. The first 
dataset (termed ’Auditory’) was used to develop the presented algo
rithm and fine tune its individual steps. The second dataset (termed 
’Visual’) was in turn used to examine whether the developed pipeline 
can also be used on new data and experimental conditions. Both datasets 
are openly available (Cavanagh et al., 2018; van Peer et al., 2017). 

2.1.1. Auditory dataset 
The first dataset was an auditory oddball paradigm, consisting of 

repeated presentations of Standard, Target and Novel sounds. The Stan
dard and Target sounds were sinusoidals at different frequencies, while 
the Novel ones were naturalistic sounds, varying with each presentation. 
Here, we considered the EEG data of 17 participants from the control 
group of this dataset, disregarding participants with persistent artifacts 
or noise in their recordings. For simplicity, we focused on a 2-class 
classification problem, and considered trials were participants were 
presented with either a Standard or Novel sound (Fig. 1 a and b for mean 
responses across participants, and Fig. S1 for a topographic represen
tation). The data was recorded with 64 electrodes in a standard 10/20 
configuration at a sampling frequency of 500 Hz, initially referenced to 
the CPz electrode. Four temporal electrodes were removed, as in the 
original publication of the data (Cavanagh et al., 2018), and the 
remaining electrodes were re-referenced to a common average refer
ence. Additionally eye blinks were removed with Independent Compo
nent Analysis (ICA) and single trials were extracted on a time window of 
0.6 s (− 0.1 to 0.5 s relative to stimuli onset). We additionally filtered the 
data between 0.1 and 20 Hz. This first dataset contained a mean of 
129.5 ± 2.7 Standard (mean ± standard error reported here and in the 
following) and 28.5 ± 1 Novel trials per participant. 

2.1.2. Visual dataset 
The second dataset was a visual oddball, consisting of a repeated 

presentation of different sets of images. Similar as in the auditory 
dataset, we considered two classes of Familiar and Novel images (Fig. 1 c 
and d for mean responses across participants, and Figure S1 for a 
topographic representation). We extracted data from 20 participants in 
total, disregarding participants with prominent artifacts or noise in their 
recordings. EEG data were recorded at 512 Hz (later down-sampled to 
256 Hz) with 64 electrodes in a standard 10/20 montage, referenced to 
an active common mode sense (CMS). EEG data were filtered between 
0.1 and 30 Hz and re-referenced to a common average reference. Eye 
blinks and movement were removed according to Gratton et al. (1983). 
Single trials were extracted on a time window of 1.5 s (0–1.5 s relative to 
stimuli onset). For the visual dataset we did not include any baseline, as 
the data that were publicly released were already epoched, without any 
baseline (van Peer et al., 2017). We additionally inspected single trials 
visually for artifacts. Noisy trials containing eye blinks or muscle activity 
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were rejected. This resulted in 506 ± 140 Familiar trials and 146 ± 40 
Novel trials per participant. 

In the following, for reasons of consistency, we refer to the two 
classes of both datasets as Repeated (replacing Standard and Familiar 
from the first and second dataset respectively) and Novel. We repre
sented the EEG data as a 2D signal throughout most of the rest of the 
paper, where the first dimension were the channels and the second the 
time (Fig. 1). 

2.1.3. Train, validation and test sets 
Each dataset (Auditory and Visual) was split into a train, validation 

and test set in a 10-fold procedure. We used these splits to train the 
neural network 10 times, in a cross validation way. The validation set 
was used for optimizing the network’s hyper-parameters and identifying 
the best fold. The test set was left aside until the very end, and was never 
used for tuning the neural network or its hyper-parameters. The test set 
was only used to evaluate, in an unbiased way, the network’s perfor
mance. The available data were split into 81% train, 9% validation and 
10% test trials. For the auditory dataset this resulted in 2176 trials for 
the train, 242 for the validation and 269 for the test dataset. As for the 
visual dataset there were 10570 trials in the train, 1306 in the validation 
and 1175 in the test set. 

2.2. Network architecture 

We built our MVPA pipeline around a residual neural network with 
50 layers (ResNet50) (He et al., 2016) (Fig. 2, red box on the left side). 
This network consists of a convolutional layer, batch normalization, 
ReLu activation and a MaxPooling layer, followed by four segments of 
3/4/6/4 convolutional blocks each. Each convolutional block has three 
convolutional layers followed by a batch normalization and ReLu acti
vation layer. After the last batch normalization layer, the original input 
to the convolutional block is added to the output from the batch 
normalization layer. This residual skip connection is the main novelty of 
the ResNet architectures compared to most convolutional neural net
works. The skip connections allow for deeper networks, which can 
extract more complex structures from the input data. For the first con
volutional block of all the four segments there is an additional con
volutional and batch normalization layer on the skip connection due to 
otherwise mismatched dimensions. All further technical information, 

such as kernel sizes and padding information can be found in (He et al., 
2016). In addition to the standard architecture of ResNet50, we addi
tionally included a fully connected layer with 128 nodes and a dropout 
layer (with 50% probability), to further restrict overfitting. EEG trials, 
represented as (Channels) × (Time) were given as input to the network. 
The network’s output was a probability value per trial, ranging between 
zero and one, describing the probability of this trial to belong to each of 
the two classes (the Repeated class was assigned the label 0). 

2.3. Data augmentation 

Data augmentation techniques are commonly used in the field of 
computer vision, to artificially increase the size of an existing dataset 
and avoid overfitting (see Shorten and Khoshgoftaar, 2019) for an 
overview of data augmentations used in computer vision). These tech
niques essentially distort parts of the input data in a minor but mean
ingful way before training a network. For example, in the field of 
computer vision, commonly used data augmentation techniques consist 
of flipping an input image horizontally, which is ecologically valid, as it 
is possible to observe object rotations in nature. In the case of EEG data, 
which are time series, flipping the time dimension would not make 
sense. 

Here, taking into account the nature of EEG, we augmented the 
available trials in three different ways: (a) time shifts; (b) Gaussian noise 
and (c) sub-averaging single trials (Fig. 3). First, in order to account for 
inter-individual differences in the timing of EEG responses, the available 
single trials were shifted in time with a random interval of up to 5 time- 
points in either the positive or negative direction. Second, to account for 
different levels of noise across participants, we additionally augmented 
the data by adding Gaussian noise, with a mean of zero and a random 
standard deviation of 0.1, 0.2 or 0.3 per trial. Third, considering the 
noisy nature of single-trial scalp EEG responses, we averaged the input 
data over multiple trials. More specifically, per trial we chose a random 
number nk (k ∈ (1, b)) (where b is the batch size) from a triangular 
distribution (centered around 1) between 1 and 21 (which corresponds 
to 1/3 of the trials with the same labels in the current batch). For each 
trial we then chose nk − 1 samples from that batch with the same labels 
and took the mean over the original and the additional trials. This last 
technique of averaging single trials is commonly used in classification of 
EEG responses, in order to improve signal-to-noise ratio (Tzovara et al., 

Fig. 1. Mean evoked responses for the auditory (top) and visual (bottom) dataset, represented as time by electrodes. Panels a and c show the mean of all Repeated 
trials and panels b and d the mean of all Novel trials. The y-axis displays the recorded EEG channels, grouped in regions of interest for illustration purposes. 
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2012). 

2.4. Optimization and training 

In the two datasets used here, the number of trials in the two classes 
was imbalanced, with a ratio of Repeated to Novel trials of roughly 4–1. 
To account for this imbalance, we over-sampled the underrepresented 
(Novel) class during training, by drawing an equal number (b∕2) of trials 
from two pots containing all trials from the training set of each of the 
two classes. 

In the training pipeline, a batch of size b of data, containing (b∕2) 
trials from each condition went trough the data augmentation step 
before training. To account for the imbalance during validation and test, 
we measured the area under the Receiver Operator Characteristic curve 

(AUC) (Macmillan and Creelman, 2004), which consists of the true 
positive vs. false positive rate with respect to multiple thresholds. 

The network was optimized with an Adam optimizer, using the 
standard parameters proposed in its original implementation (Kingma 
and Ba, 2014), to minimize the binary cross-entropy loss (Eq. 1) between 
the real labels y of the data and the network’s predictions ŷ. 

L = − (y log(ŷ) + (1 − y) log (1 − ŷ)) (1) 

During training we employed early stopping, so that if the validation 
loss would not further decrease within ten training epochs the training 
would stop (Goodfellow et al., 2016) section 7.8). The network was 
trained for maximally 50 epochs. As a final step, we retained the 
network with the smallest validation loss. In the Results section 3.1 we 
report the mean train, validation and test AUC score, accuracy and 

Fig. 2. Schematic representation of the architecture of the neural network. The main network has four sections of each 3/4/6/4 convolutional blocks. Each con
volutional block then contains three convolutional layers. We added a fully connected and dropout layer on top of the ResNet architecture. The network outputs 
either 0 or 1, for the labels Repeated or Novel. 
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binary cross-entropy loss at that best epoch for all trained networks. 
The network layers were initialised with imagenet weights (Fchollet, 

2016) and the batch size b was chosen to be of 64 samples, because of 
GPU size limitations. We used the python library tensorflow (2.1.0) with 
cuda (10.1.168), cudnn (5.1.5) and python (3.6.8). The full training 
pipeline with the two classes, data augmentation and the CNN is illus
trated in Fig. 3. 

2.5. Estimation of network performance 

To evaluate the network’s performance, we computed chance levels 
in a data-driven way, through random permutations. We randomly 
shuffled the labels of the training dataset 50 times. For each random 
shuffle we retrained the networks in the 10-folds of the cross-validation, 
resulting in 500 ’random’ networks. Similar as for the networks trained 
on true labels, we retained the test scores at the epochs of smallest 
validation loss. We then used these ’random’ networks to classify trials 
from the Test and Validation dataset. Each of the permutations resulted 
in one chance level classification performance. The actual performance 
of the network, trained with true labels, was compared to the distribu
tion of AUC values obtained with random permutations with a Wilcoxon 
signed-rank test. Due to the heavy computational cost of training CNNs, 
and due to the overwhelmingly low chance-level classification results 
that we obtained for the first dataset when permuting the true labels, we 
only computed chance levels via random permutations for the first 
dataset. For the second dataset (Visual) we compared instead the per
formance of the CNN with a ’classical’ MVPA approach (see section 
2.8.1). 

2.6. Discriminant features 

To visualize features from the EEG data that mostly contribute to the 
network’s output, we used a gradient-based technique termed saliency 
maps (Simonyan et al., 2013). This technique consists of back
propagating the input label of a given trial through the network, to 
obtain the gradient, i.e. a value per time point and electrode marking the 
strength of the contribution of that input point to the decision of the 
network. For a given input I0, output class c and a score function Sc(I0) 
(here binary cross entropy loss), the gradient w of Sc with respect to an 
input I at the point I0 is given as 

w =
∂Sc

∂I
∣I0 . (2) 

The absolute value of w then gives the saliency map. To calculate 
saliency maps (in the following called activation maps), we used the 
implementation from Kotikalapudi and contributors (2017). For each 
fold of the 10-fold cross validation, we trained four networks, resulting 
in a total of 40 networks. This follows feature visualization approaches 

that are commonly used in the biomedical field, where physiological 
data are more noisy and complex compared to natural images Fauw 
et al. (2018). Typically, multiple networks are trained per fold and their 
outputs are averaged to obtain stable features that are consistently 
identified by all networks (Fauw et al., 2018; Mehrer et al., 2020). Here, 
we calculated activation maps for each of the 40 networks separately, 
and then averaged the mean of the obtained maps. This resulted in one 
activation map per input data point, which were either average ERPs for 
the two experimental conditions (section 3.4) or single trial ERPs (sec
tion 3.6). 

2.7. Trial by trial representation of discriminant features 

As activation maps can be computed at the single-trial level, they can 
be used to study changes in trial-by-trial neural responses throughout an 
experiment. Instead of considering all single-trial EEG responses, as in 
most ERP or MVPA analyses, with single-trial activation maps it is 
possible to retain the temporal order of trials and compare their evolu
tion from the first, the second, up to the last presentation of the stimuli. 
Such an approach could allow to assess for instance effects of learning, 
where neural responses to a given stimulus change from one trial to the 
next as a function of presentation. 

Here, to explore the potential of single-trial feature extraction, as an 
exemplar test case, we extracted a sequence of single-trials keeping the 
order of exposure of the participants to the stimuli of each experimental 
condition. We then averaged single-trial responses over participants for 
each consecutive stimulus presentation, and calculated the activation 
maps for each of these responses. This resulted in a sequence of acti
vation maps, which reflect patterns of discriminant EEG activity across 
consecutive presentations of the experimental stimuli. To quantify 
changes in activation maps over the course of the experiment, at every 
trial and time point we summed up the values of activation maps over all 
electrodes (Figure S4 in the Supplemental Material), resulting in one 
value per trial and time-point. We then fitted a linear regression at every 
time point to test whether the overall discriminant EEG activity changed 
significantly from zero as a function of trial repetitions throughout the 
experiment. To correct for multiple comparisons across time, 1000 
cluster-based permutations were used (Maris and Oostenveld, 2007). 
With this analysis we identified time points with a significant change in 
the activation of the network over the course of the experiment. 

As a control, we performed the same analysis on the EEG data. 
Instead of the activation maps we used EEG activity at every time point 
recorded across electrodes, and tested whether there were any latencies 
where changes in EEG responses during the experiment were signifi
cantly different from zero as a function of trial repetitions. 

Fig. 3. Pipeline for data augmentation and training. The pipeline starts with selection of samples in the current batch (left panel), proceeds with data augmentation 
(central panel) and last inputs the trials into the network for training. 
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2.8. Comparison with existing techniques 

2.8.1. Comparison to logistic regression and support vector machines 
The performance of the CNN was compared to two baseline algo

rithms, using exemplar MVPA techniques. For this comparison, we chose 
logistic regression and support vector machines (SVM with ’rbf’ kernel), 
as they are commonly used in the field of M/EEG research (Tomioka 
et al., 2006; Castegnetti et al., 2020; Philiastides et al., 2010). For this 
comparison, we kept the same splits of train/test/validation and the 
same cross-validation procedure as for training and testing the CNN. To 
estimate the hyper-parameters of the logistic regression, we pooled all 
observations from the Training set together, and optimized the param
eters of penalty (l1 or l2 norm) and inverse regularizer (0.01–100, with 
logarithmic spacing). The optimized parameters were then used to train 
and test one classifier for every time point, resulting in one classification 
score per time-point. This resulted in one time course of training and test 
AUC values averaged over the 10-fold cross-validation. For SVM, we use 
the same approach for optimizing the hyper-parameters gamma (‘scale’ 
or ‘auto’) and regularization parameter (0.01–100 with logarithmic 
spacing). To compare the performance of the logistic regression and 
SVM with the CNN, we retained the best performance of these two al
gorithms, at the point of the maximum validation AUC score, and con
trasted this with the overall performance of the CNN. Same as for the 
CNN, chance levels for logistic regression were evaluated by shuffling 
the labels of the training dataset, and by retraining the classifier of each 
time-point 50 times. The performance of the real classifier was 
compared with the distribution of the performance of chance classifiers 
using Wilcoxon signed-rank tests and was cluster-based corrected for 
multiple comparisons over time (Maris and Oostenveld, 2007). 

2.8.2. Comparison with other CNN architectures 
We also compared the performance of the ResNet-based CNN to two 

other CNNs that are commonly used for decoding EEG signals (Zhang 
et al., 2019; Ghosh et al., 2018; Williams et al.,2020; Jonas et al., 2019). 

We used a Shallow and Deep CNN, first introduced in Schirrmeister et al. 
(2017). These consist of 2 and 5 convolutional layers, for the Shallow and 
Deep networks respectively, with additional batch normalization, acti
vation, pooling and dropout layers in between. They don’t have any 
residual skip connections and are therefore shallower than the 50 
layered ResNet. For a fair comparison across all CNN architectures 
(ResNet, Shallow and Deep networks), we always used the same training 
and data augmentation pipeline as described in section 2.4. 

Additionally, we evaluated the effect of some of the choices made in 
the training pipeline introduced here in classification performance 
(S.2.1, S.2.3, S.2.2). More specifically, we compared a CNN trained with 
filtered vs. with unfiltered data, a CNN where the underrepresented class 
was oversampled to a CNN where a weighted binary crossentropy loss 
was used, and lastly a CNN where we omitted the fully connected layer 
with 128 nodes before the dropout layer. Details for these control ana
lyses can be found in the Supplemental Material. 

3. Results 

3.1. Training and classification performance of the CNN pipeline 

First, we trained CNNs to classify EEG responses to Repeated vs. Novel 
stimuli, using the training, validation and test folds as described in 
section 2.1. For the auditory dataset, decoding performance, measured 
through the AUC, increased for both train and validation sets already 
within the first 10 epochs of training, and reached a plateau approxi
mately from epoch 20 on (Fig. 4, panel a). At the same time, the binary 
cross-entropy loss decreased and reached a plateau already after the first 
10 epochs of training (Fig. 4 panel c). We report an AUC score of 
0.89 ± 0.04 on the train, 0.75 ± 0.04 on the validation and 0.72 ± 0.04 
on the test set (see Table 1). On average across folds, these scores were 
reached on epoch 28.7 ± 13.7. The high classification performance in 
the test set suggests that the trained networks could extract discriminant 
features of EEG responses to Repeated vs. Novel sounds, and generalize to 

Fig. 4. Training performance of the CNN on the two datasets. In each plot, the bold line illustrates the mean AUC (panels a and b) or binary cross-entropy loss (panels 
c and d) over the 40 trained networks and the shaded area the standard error. Blue lines correspond to the scores of the train and red lines to the scores of the 
validation set, respectively. Panels a and b show the results for the auditory dataset and panels c and d for the visual dataset. 
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new, previously unseen trials. 
As a next step, we evaluated whether the training pipeline also 

generalized to a different dataset and modality. The network training for 
the visual dataset proceeded in a very similar way as for the auditory. 
The AUC and the binary cross-entropy loss reached a plateau at around 
epoch 20 (Fig. 4, panels b and d). The maximum AUC score was 
0.82 ± 0.03 on the train, 0.69 ± 0.02 on the validation and 0.67 ± 0.04 
on the test set (see Table 1), and corresponded to epoch 17.1 ± 10.4. 
This result suggests that the training pipeline, even though developed 
for the auditory dataset, can be applied to a different dataset. 

3.2. Comparison of the network performance to chance levels 

The network’s performance was contrasted to chance levels, 
computed by re-training the CNN on data with randomly shuffled labels 
(Fig. 5). During training, the AUC score in the training set slightly 
increased with training. However, the AUC in the validation set 
remained around the baseline values of 0.5 (Fig. 5, panel a). A similar 
tendency was observed for the binary cross-entropy loss, which 
decreased over the first few epochs of training, but remained around 
0.69 (log(2), corresponding to theoretical chance levels) for all valida
tion epochs (Fig. 5, panel b). Importantly, networks trained on real data 
achieved a consistently higher AUC compared to networks trained on 
data with shuffled labels, across all folds of the cross-validation (Fig. 5, 
panel c) (Wilcoxon signed-rank test, p = 1.2e-83). 

3.3. Comparison with existing techniques 

3.3.1. Logistic regression and support vector machine 
To compare the results obtained with the CNN with existing tech

niques, we trained linear and non linear ’classical’ MVPA algorithms to 
discriminate Repeated vs. Novel stimuli in both datasets. For every time 
point, we trained and tested classifiers based on logistic regression 
(linear classifier), and SVM with ’rbf’ kernel (for a non linear classifier), 
which resulted in a time course of AUC values, computed on a train and 
test set (Fig. 6 panel a for the auditory and b for the visual datasets). 

Using logistic regression in the auditory dataset, the classification 
score of the test set was around 0.5 during the 0.1 s before stimulus onset 
(Fig. 6 panel a − 0.1 to 0.0 s), and increased after the stimulus onset, 
reaching a maximum AUC score of 0.63 ± 0.01 on the test set, across 
folds, at 0.323 ± 0.01 s post-stimulus onset. 

In the visual dataset, there was no baseline in the available data (van 
Peer et al., 2017). Decoding performance started to increase around 
0.1 s post-stimulus onset (Fig. 6 panel b). The maximal decoding per
formance on the test set was 0.62 ± 0.01, and was reached at 
0.70 ± 0.10 s post stimulus onset. 

Chance levels, estimated through random permutations, were on 
average 0.5 throughout the entire trial interval (Fig. 6, panels a and b, 
green lines) for both datasets. Decoding performance was significantly 
above chance levels from 0.032 to 0.5 s post stimulus onset for the 
auditory, and from 0.0 to 1.5 s post stimulus onset for the visual datasets 
(Fig. 6, panels a and b, marked in gray lines). 

Table 1 
Results of training the Shallow, Deep convolutional neural network and the ResNet for both datasets. We report the binary cross-entropy loss, the AUC score and the 
accuracy for the train, validation and test sets. The reported results correspond to the mean scores ± standard error at the epoch with the lowest binary cross-entropy 
loss on the validation set.   

Binary cross-entropy loss AUC-score Accuracy  

Train Validation Test Train Validation Test Train Validation Test 

Auditory dataset          
ResNet 0.26 ± 0.08 0.43 ± 0.05 1.16 ± 2.33 0.89 ± 0.04 0.75 ± 0.04 0.72 ± 0.04 0.82 ± 0.12 0.79 ± 0.11 0.77 ± 0.10 
Shallow Net 0.38 ± 0.01 0.37 ± 0.03 0.44 ± 0.04 0.83 ± 0.01 0.78 ± 0.04 0.75 ± 0.03 0.86 ± 0.01 0.85 ± 0.02 0.82 ± 0.02 
Deep Net 0.39 ± 0.03 0.379 ± 0.03 0.47 ± 0.04 0.83 ± 0.01 0.77 ± 0.03 0.73 ± 0.03 0.85 ± 0.01 0.85 ± 0.02 0.82 ± 0.03 
Visual dataset          
ResNet 0.40 ± 0.06 0.54 ± 0.03 0.61 ± 0.06 2.82 ± 0.03 0.69 ± 0.02 0.67 ± 0.04 0.76 ± 0.04 0.75 ± 0.03 0.75 ± 0.04 
Shallow Net 0.52 ± 0.01 0.48 ± 0.01 0.52 ± 0.04 0.74 ± 0.01 0.67 ± 0.03 0.68 ± 0.02 0.79 ± 0.02 0.78 ± 0.01 0.78 ± 0.02 
Deep Net 0.54 ± 0.02 0.49 ± 0.01 0.58 ± 0.06 0.73 ± 0.01 0.63 ± 0.02 0.68 ± 0.01 0.76 ± 0.02 0.76 ± 0.02 0.76 ± 0.02  

Fig. 5. Comparison of the CNN classification 
performance with chance level results of the 
shuffled CNNs on the auditory dataset. The bold 
lines illustrate the mean AUC score (panel a) or 
loss (panel b) over the networks trained with 
random permutations, and the shaded area the 
standard error. The blue line shows the scores 
of the train and the red line the scores of the 
validation set. Panel c shows the comparison of 
true and chance level classification perfor
mance on the test set. For each fold we show the 
mean performance of the real network 
(magenta) vs. the distribution of the perfor
mance of the 500 shuffled networks (green 
violin plots).   
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We also trained and tested a SVM, with the same procedure as for 
logistic regression. The maximum AUC score reached on the test set was 
on average 0.58 ± 0.01 at 0.352 ± 0.02 s post-stimulus onset for the 
auditory and 0.60 ± 0.004 at 0.59 ± 0.06 s post-stimulus onset for the 
visual dataset. 

Next, we contrasted the performance of the CNN with the two 
baseline MVPA algorithms. For this comparison, we contrasted the 
maximum classification performance obtained across time with logistic 
regression and SVM, to the overall performance obtained with the CNN. 
This approach is rather conservative, and might penalize the CNN. 
Nevertheless, in each of the 10 folds of the cross validation, the CNN 
provided higher classification performance than both the logistic 
regression and the SVM (Fig. 7). For both the auditory and visual 
datasets, the AUC of the CNN was significantly higher than the AUC of 
logistic regression (Wilcoxon signed-rank test, p = 0.006 for both 
datasets, corrected for multiple comparisons), and than the AUC of SVM 
(Wilcoxon signed-rank test, p = 0.006 for both datasets, corrected for 
multiple comparisons, Fig. 7). 

3.3.2. Comparing different CNN architectures 
Additionally, we compared the ResNet50-based pipeline that we 

developed to other existing CNNs that have been previously used on EEG 
data, including Shallow and Deep CNNs. The AUC score obtained on the 
test set with the Shallow CNN was 0.75 ± 0.03 for the auditory and 
0.68 ± 0.02 for the visual dataset. The Deep CNN resulted in an AUC of 
0.73 ± 0.03 and 0.68 ± 0.01 for the auditory and visual datasets, 
respectively (Table 1 and Fig. 8). There was no significant difference in 
AUC values for ResNet vs. Shallow, ResNet vs. Deep, or Shallow vs. Deep 

networks (Wilcoxon signed-rank test, p > 0.08, corrected for multiple 
comparisons). These results suggest that the developed pipeline can 
classify EEG data under different network architectures. 

Last, we evaluated the robustness of the developed pipeline under 
slight modifications in the pipeline architecture or input data (Supple
mental material S.2). Notably, the classification performance remained 
at similar levels for filtered and unfiltered data (S.2.1), or when omitting 
the final fully connected layer with 128 nodes before the dropout layer 
of the CNN (S.2.3). Oversampling of the underrepresented class yielded 
a higher classification performance than using a weighted binary 
crossentropy loss (S.2.2). 

3.4. Extraction of discriminant features 

After establishing that the networks can accurately classify Repeated 
from Novel stimuli, we next visualized the discriminant features that 
were driving this classification. Fig. 9 shows the activation maps of the 
mean EEG responses to Repeated and Novel auditory (panels a and b) and 
visual (panels c and d) stimuli (Fig. 1). In the representation of activa
tion maps, stronger colors denote that a given electrode and time in
terval were more relevant in the network’s output than lighter ones. For 
the auditory dataset (Fig. 9, panels a and b), almost all of the non zero 
activations appeared after stimulus onset. The highest activation values 
occurred at different latencies for each experimental condition, ranging 
from 0.2 to 0.3 s for the Repeated and from 0.3 to 0.5 s for the Novel 
trials. For the visual dataset (Fig. 9, panels c and d), the two experi
mental conditions (Repeated and Novel) had a more similar distribution 
of activations. Most of the non-zero activations for the visual dataset 

Fig. 6. Classification performance for a logistic regression classifier trained and tested at every time point separately. We report the AUC scores of the train (blue) 
and test set (red), averaged over 10-folds of cross-validation, and the scores of the test set, in the case where the classifier was trained on shuffled data (green). Bold 
lines show the mean scores over the 10-fold validation and the faded colored regions show the standard error. Horizontal gray lines show the time-periods where 
classification was significantly above chance levels in the two datasets. 

Fig. 7. Comparison of the performance of logistic regression vs. CNN vs. SVM for the auditory dataset (panel a) and comparison of logistic regression vs. CNN vs. 
SVM for the visual dataset (panel b). Each dot corresponds to the test sets of one of the 10 folds of the cross validation. For the CNN we report the mean AUC score 
over the 4 trained networks per fold. 
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occurred between 0.25 and 0.7 s, at similar latencies for both experi
mental conditions. 

3.5. Topographic representation of discriminant features 

As an alternative representation, the activations of the CNN were 
additionally visualized as topographic maps, by reassigning the elec
trodes to their original location on the scalp. Fig. 10 shows the activation 
maps for each dataset and condition as a topographic map, to give a 
more interpretable visualization of the networks’ features. For reasons 
of consistency, Fig. 10 provides similar latencies for both datasets. Each 
topographic map displayed the sum of activations in steps of 0.1 s, as 
described above the map (Fig. 10). This topographic representation 
revealed that the discriminant information for the Repeated auditory 
condition started appearing at 0.2–0.3 s post stimulus onset, mainly at 
fronto-occipital electrodes (Fig. 10, panel a). By contrast, for the Novel 
auditory condition, discriminant information was more strongly 
appearing at centro-parietal electrodes, between 0.3 and 0.4 s post- 
stimulus onset (Fig. 10, panel b), matching closely the actual topo
graphic maps of the data (Fig. S1). For the visual dataset, activations 

were stronger at similar latencies for Repeated and Novel conditions, 
starting mainly after 0.2 s post-stimulus onset, and occurring predom
inantely at central and occipital electrodes (Fig. 10, panels c and d), 
closely following the topographic maps of the average data (Fig. S1). 

3.6. Trial by trial changes in discriminant features 

As the features of activation maps can be computed at the single-trial 
level, we performed an exploratory analysis, evaluating trial by trial 
changes in the activation maps throughout the experiment. Fig. 11 il
lustrates the time-course of a linear regression analysis, quantifying trial 
by trial changes on the activation maps (panel a). The slope of the linear 
regression was significantly different from zero from 0.106 to 0.272 s for 
the Repeated condition (p < 0.05, corrected with cluster-based permu
tations) (Fig. 11, orange horizontal line). For the Novel condition, there 
was no period of significant change in the slope of the linear regression 
throughout the experiment (Fig. 11, green line). 

The same analysis was performed on the EEG data (section 2.7). For 
the EEG data, the slope of the linear regression was close to zero for both 
conditions throughout the entire temporal interval (Fig. 11 panel b), and 

Fig. 8. Comparison of the performance of the Shallow, Deep convolutional neural networks and ResNet50. The difference in performance was not significant for all 
comparisons after correcting for multiple comparisons (Wilcoxon signed-rank test, p > 0.08, corrected for multiple comparisons). 

Fig. 9. The activation maps of the mean trials of the auditory (top) and visual (bottom) dataset for Repeated (panels a and c) and Novel (panels b and d) trials.  
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did not have any periods of significant difference. As an illustration, the 
trial by trial activations extracted with activation maps and with the raw 
EEG data at the point of maximum regression (0.206 s post stimulus 
onset), are displayed in Fig. 11, panels c and d respectively. 

4. Discussion 

We presented a novel MVPA pipeline for decoding single trial EEG 
responses to external stimuli and used this pipeline to extract discrimi
nant features at the single trial level. We showed, in two different 
datasets, that the developed pipeline significantly outperformed 
commonly used existing MVPA techniques, and that it could detect class- 
specific discriminant features that are readily interpretable. Our 
approach resulted in an accurate decoding performance, demonstrated 
in several ways: (a) generalization of classification to data that the 

network has not seen during training (test set), (b) generalization of the 
training pipeline to a different dataset (visual dataset), (c) significantly 
better classification performance for the original data vs. data with 
shuffled labels, (d) significantly higher classification performance for 
the network compared to exemplar baseline machine learning algo
rithms, and (e) comparable decoding performance to existing CNN- 
based algorithms for EEG data. Additionally, we used feature visuali
zation techniques to characterise the electrodes and time-periods of EEG 
responses that mostly contribute to an accurate classification. Although 
several multivariate decoding techniques allow the extraction of 
discriminant features (Tzovara et al., 2012; Grootswagers et al., 2017), 
these are typically identified at an across trial level and are shared across 
experimental conditions. By contrast, our approach allows recovering 
class- and trial- specific discriminant features, which are informative of 
the distinct contributions of different experimental conditions to the 

Fig. 10. Activation maps from figure 9 represented as topographic maps, across datasets and experimental conditions. For reasons of consistency, the topographic 
activation maps are displayed at the subset of commonly available latencies across the two datasets (i.e. 0–0.5 s post-stimulus onset). Every map corresponds to the 
sum of activations over intervals of 0.1 s. 
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final classification. 

4.1. Convolutional neural networks for MVPA on EEG data 

MVPA algorithms have been used to extract patterns of discriminant 
activity at the single trial level (Lemm et al., 2011; Haufe et al., 2014). 
The vast majority of these algorithms require a homogeneous dataset as 
they assume that the discriminant EEG responses appear at consistent 
latencies and electrode locations across trials (Grootswagers et al., 
2017). However, often the discriminant information can be found at 
different temporal and spatial points over a group of participants or it 
may shift in time or space over the course of an experiment. The rather 
conservative approach of most multivariate decoding techniques can 
result in under-estimation of discriminant features, therefore limiting 
their interpretability. As CNNs convolve the entire input signal with 
multiple kernels per layer, they can extract patterns of neural activity 
which are time- and space- unlocked. Here, we chose a ResNet50 ar
chitecture, which is well known for its breakthrough performance in 
image classification in computer vision He et al. (2016). The depth of the 
network allows it to learn features and find structure in bigger patches of 
the input data than more shallow convolutional networks (Zeiler and 
Fergus, 2013). Even tough the network was originally developed for 
classifying images, here we adapted it for the specific case of EEG data. 

One main concern of implementing deep learning algorithms for the 
field of EEG research is that of overfitting the data (Williams et al., 
2020). Deep learning architectures typically comprise of hundreds to 
thousands of hyperparameters, which are prone to overfitting (Srivas
tava et al., 2014). Data augmentation techniques have been widely used 

in the field of computer vision (Shorten and Khoshgoftaar, 2019) to 
overcome this problem. This is a major concern for MVPA, as due to the 
nature of EEG recordings, it is practically impossible to collect the 
amounts of data that are often available in computer vision. Here, we 
overcame this limitation by using data augmentation techniques, which 
artificially augment the available EEG data and at the same time add 
variance to them, which makes the network less prone to overfitting to 
the available data samples. We could exclude that the trained networks 
were overfitted by showing that they generalize to new data (validation 
and test datasets). By contrast, the networks trained on randomly 
shuffled labels did not generalize to test and validation datasets. 

The neural networks were trained for a maximum of 50 epochs 
(Fig. 4) and the training performance reached a plateau around epoch 15 
with a mean score of 0.89 and 0.82 for the auditory and visual datasets 
respectively. The lower classification performance for the visual dataset 
was likely due to the nature of the visual Event Related Potentials that 
resulted in subtle differences between the two experimental conditions 
(van Peer et al., 2017). The Repeated and Novel visual stimuli were 
counter-balanced across participants, and therefore resulted in similar 
visual features at the average level, where the only difference would be a 
very subtle difference of the effect of repetition (see also Fig. 1). By 
contrast, in the auditory dataset (Cavanagh et al., 2018), repeated and 
novel sounds were always the same across participants and had very 
different acoustic characteristics (pure tones vs natural sounds). 
Therefore, for the auditory dataset, EEG responses were well distinct 
(Fig. 1), which resulted in a high classification performance. 

When randomly shuffling the labels of the data to estimate a data- 
driven distribution of chance, the network accuracy could not 

Fig. 11. Linear regression results quantifying trial by trial changes in the activation maps (panels a and c) and the raw data (panels b and d). The plotted lines 
correspond to the t-values testing whether the slope of a linear regression was significantly different from zero, for repeated (orange) and novel (green) stimuli. 
Horizontal lines show periods of significant difference. Panels c and d show trial by trial activations (panel c) or EEG responses (panel d) and regression fit, for the 
time point (0.206s) with the minimal p-value (0.002) for the Repeated condition. 
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overcome 0.7 on average for the train data and remained at 0.5 for the 
test set (Fig. 7). Taken together, these results suggest that the network 
was able to learn class-specific features at an above-chance level without 
overfitting the data. 

4.2. Comparison with existing techniques 

Deep learning techniques have been introduced in the field of EEG 
research since a few years, but existing techniques predominantly focus 
on clinical or brain computer interface applications (Roy et al., 2019). 
Although deep learning techniques for basic EEG research exist (Kuanar 
et al., 2018; Bashivan et al., 2016; Wang et al., 2018), these are still at a 
validation stage, and are seldom used to answer basic research ques
tions. Here, we aimed at examining how deep learning architectures 
perform in classification tasks that are commonly faced in basic neuro
science, i.e. decoding differences between experimental conditions, and 
evaluating the stability of decoding features over the course of an 
experiment. Indeed, the techniques that are readily available for clas
sifying EEG data oftentimes give little to no emphasis on feature inter
pretability, but rather focus on classification performance (Williams 
et al., 2020). Although optimizing classification performance is certainly 
beneficial in basic research, clinical and BCI applications of MVPA al
gorithms can also profit from interpretable features. Importantly, our 
approach gave comparable results to other CNN-based architectures for 
classifying EEG data, based on a Shallow and Deep CNN (Schirrmeister 
et al., 2017). 

Previous studies examining features of CNNs have extracted spectral 
EEG features (Schirrmeister et al., 2017), which do not contain temporal 
information, but are collapsed over time and trials. Such an approach is 
particularly suited for the field of brain computer interfaces, where 
emphasis is given on classification performance, but it is limited for 
MVPA applications, where emphasis is given on identifying spatial and 
temporal features that drive an accurate classification (Grootswagers 
et al., 2017). Other attempts to extract class-specific features based on 
gradient methods have either reported features at an average level 
(Farahat et al., 2019; Vahid et al., 2020), or for exemplar trials (Lawhern 
et al., 2018), without examining how these generalize over time, or how 
representative they are of the entire dataset. In Fig. 9 we also show the 
features on an average level, but additionally we examined how these 
change over the course of an experiment. Farahat et al. (2019) and 
Lawhern et al. (2018) both explore the features in the context of BCI and 
Vahid et al. (2020) and Lawhern et al. (2018) impose to the used 
network to start by temporal convolutions followed by spatial ones. 
Here, instead we consider the EEG data as a spatio-temporal continuum, 
as it is commonly done in the field of EEG research Maris and Oostenveld 
(2007). 

4.3. Extraction of class-specific discriminant features 

In computer vision, there is a dedicated research area focusing on 
visualising which features of the input data are learned by a neural 
network. Some commonly used techniques consist of visualising the 
kernels of the network (which provide only general features for the 
entire dataset that was used for training), or of gradient-based methods, 
which backpropagate the input signal trough the network (which can 
reveal class-specific features for each data-point). In neuroscience, there 
have recently been some studies focusing on feature interpretability 
(Ghosh et al., 2018; Lawhern et al., 2018; Schirrmeister et al., 2017; 
Zubarev et al., 2019). Here, we visualise discriminant features with a 
gradient-based method. The mean activation maps across participants 
(Figs. 9 and 10) showed similar spatio-temporal patterns of differential 
activity as the mean event-related potentials (Figs. 1 and S1). 

The advantage of the presented pipeline for MVPA applications is 
that it allows to identify discriminant features at the single class level. 
Most existing univariate or multivariate analysis techniques can only 
identify condition differences, and are agnostic to which experimental 

condition is driving these differences. Other approaches, like common 
spatial patterns (CSP), allow the extraction of class specific patterns of 
EEG activity. However, the CSP components are calculated over a time 
window and therefore have a poor temporal resolution. Additionally, 
CSP have the limitation of poor generalization over new participants 
(Reuderink and Poel, 2008). 

With our approach, in the auditory dataset, the strongest activation 
values were most prominent around 0.2 s post-stimulus onset for the 
Repeated condition and at later latencies, after 0.3 s post-stimulus onset 
for the Novel condition (Fig. 9 panels a and b). This difference in 
discriminant intervals for the two conditions is justified by the nature of 
the auditory stimuli, as Repeated sounds were pure tones with a sharp 
onset time, while Novel sounds were naturalistic sounds, which typically 
have a slower onset, and thus are expected to evoke an EEG response at 
later latencies (Cavanagh et al., 2018). This information cannot be 
revealed by existing MVPA techniques, which can only identify at which 
latency multiple conditions differ. Indeed, our analysis on the same data 
with an exemplar MVPA approach showed that classification was 
significantly higher than chance starting after 0.1 s post-stimulus onset, 
with a prominent peak after 0.3 s (Fig. 6). However, it is impossible to 
infer which of the two conditions drives this sustained differential ac
tivity. For the visual dataset, the peak in discriminant activity between 
Repeated and Novel stimuli appeared at latencies which were qualita
tively similar between the two experimental conditions (Fig. 9 panels c 
and d). Indeed, in this dataset, the Novel and Repeated stimuli were all 
naturalistic images, and were counterbalanced across participants, 
therefore resulting in similar sensory responses (van Peer et al., 2014). 
In accordance to previous reports using this dataset, we found that the 
most prominent differences occurred after 0.1 s post-stimulus onset, and 
were sustained mostly up to 0.75 s, but also throughout the trial (Fig. 9 
panels c and d). Importantly, when visualized in the form of topographic 
maps, the discriminant features that were identified through the CNNs 
match previous reports of this dataset, showing that topographic dif
ferences in response to novelty are mainly localized in frontal electrodes 
(van Peer et al., 2014). For the auditory dataset, the most prominent 
discriminant features at the topographic level were captured between 
0.3 and 0.4 post-stimulus onset for the novel condition (Fig. 10). This 
latency and electrode locations are in accordance with previous reports 
of this dataset and could reflect a P3a component in response to novelty 
(Cavanagh et al., 2018). 

To highlight the importance of studying discriminant features, we 
show that activation maps significantly change over the course of the 
experiment (subsection 2.7, Fig. 11). The positive t-values suggest that 
there was an increase in network activations over the course of the 
experiment, consistently observed between 0.106 and 0.272 s, sug
gesting that EEG responses at this latency activate neurons of the CNN 
more in later trials of the experiment compared to earlier ones. This 
could not have been caused by a global change in the strength of neural 
activity itself as our control analyses on raw EEG data did not find any 
significant trial by trial changes. Instead, our findings suggest that this 
increase might be caused by changes in the activation patterns in 
response to repeated stimuli, which become more distinct across con
ditions as the experiment unfolds. This interpretation is further sup
ported by the fact that activations increase over the course of the 
experiment, as participants are increasingly exposed to the presented 
stimuli, and the two classes (Repeated vs. Novel) start acquiring a more 
distinct neural representation. Indeed, the observed latency for changes 
in activation maps is in accordance to the latency of a typical N100 
response to auditory stimuli, which is known to habituate with repeated 
stimuli presentations (Rentzsch et al., 2008). 

Studying changes of discriminant features can be relevant not only 
for basic EEG research, but also for BCI or clinical applications. In BCI 
applications it is highly relevant to investigate feature interpretability 
and how these features may manifest or change over long experimental 
sessions, as this may be relevant to participants’ capacity to control an 
external device (Friedrich et al., 2013). Similarly, studying feature 
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interpretability in clinical applications is particularly important, in 
order to advance our understanding of which features may underlie 
algorithmic decisions, which in turn can contribute in gaining novel 
insights into neurological disorders. 

4.4. Future directions and limitations 

Currently, in the field of EEG research there is a lack of data-driven 
approaches that can provide information about trial-by-trial changes in 
EEG responses to external stimuli. Previous studies investigating, for 
example, learning of new sensory rules, have defined a priori a specific 
electrode locations and latencies of a response of interest and have 
examined how these change across trials (Lieder et al., 2013). Here, we 
refer to an alternative approach, that is ’data-driven’ in the sense that 
features are identified automatically from the data, via means of maxi
mizing discrimination between conditions of interest (i.e. supervised 
learning), as opposed to a hand-crafted feature selection that relies on a 
priori hypotheses (Haynes and Rees, 2006). Although the latter 
approach has been widely used in the literature of basic EEG research, it 
assumes that the response of interest stays at the same electrode location 
and latency across all trials, which in cases of changing processes, may 
not be true. Here, we propose a data-driven approach for identifying 
discriminant patterns of activity at the single-trial level and show that it 
is more sensitive than considering raw EEG activity (Fig. 11). Future 
studies can apply this approach in experiments involving learning in 
order to couple changes in discriminant EEG activity with participants’ 
behavior and test learning theories. 

One main limitation in the extraction of discriminant features is that 
they only reveal changes in network activations, but not the cause of 
these changes. Future experiments could evaluate changes of the 
network activation within spatial clusters (as identified in figure S3), 
possibly combining those with inverse solutions (He et al., 2006), in 
order to evaluate the contribution of specific brain regions in significant 
network activation changes over the course of an experiment (Lracitano 
et al., 2021). 

Another future direction of research is that of choosing a network 
architecture. Here, we chose ResNet50 as an exemplar residual CNN, 
which has been widely tested in the field of computer vision (He et al., 
2016) and biomedical data analysis (Guo and Yang, 2018). This choice is 
meant as a proof of principle, that demonstrates the feasibility of 
applying CNNs on MVPA applications for EEG data. Indeed, when 
changing the network architecture with other CNNs that have been 
developed for EEG research, classification performance remained at 
similar levels. Future studies can test different network implementa
tions, to optimize the architecture and range of parameters for specific 
experimental setups. Additionally, here we chose to focus on a binary 
classification problem, for reasons of simplicity. Our present pipeline, as 
well as future attempts, could be easily expanded for multiple classes. 

5. Conclusions 

In summary, we used deep learning techniques to develop a novel 
MVPA pipeline for EEG data. We showed, in two different datasets, that 
our pipeline can accurately classify single-trial EEG responses, out
performing existing MVPA approaches, and performing at comparable 
levels with other deep learning approaches for EEG. Moreover, the 
neural networks can detect class specific information and discriminant 
features at the single trial level, a direction that can be used in the future 
to test theories of learning in a data driven way. 
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