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Resummation of Super-Leading Logarithms
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced higher-
order corrections. In particular, so-called nonglobal logarithms emerge from soft radiation emitted off
energetic partons inside jets. While this is a single-logarithmic effect at lepton colliders, at hadron colliders
phase factors in the amplitudes lead to double-logarithmic corrections starting at four-loop order.
This effect was discovered a long time ago, but not much is known about the higher-order behavior
of these terms and their process dependence. We derive, for the first time, the all-order structure of these
“super-leading logarithms” for generic 2 → l scattering processes at hadron colliders and resum them in
closed form.

DOI: 10.1103/PhysRevLett.127.212002

If the radiation in a high-energy scattering process is
restricted by experimental cuts, higher-order terms in the
perturbative series are enhanced by large logarithms asso-
ciated with soft and collinear emissions. The simple
structure of these emissions often makes it possible to
resum the logarithmic terms to all orders, either analytically
or using parton-shower methods. For nonglobal observ-
ables, such as exclusive jet cross sections in which a veto on
radiation is imposed only in certain angular regions, even
the leading logarithms have a complicated structure due to
the fact that they are generated by secondary emissions
off the original hard partons [1].
The prototypical nonglobal observable is the interjet

energy flow, where a veto associated with a low scale Q0 is
imposed on radiation in a region away from the hard jets
with energy of the order of the collision energy Q. Being
sensitive only to large-angle soft radiation, one expects the
leading logarithms to this observable to scale as αnsLn,
where L ¼ lnðQ=Q0Þ. This is indeed the case for eþe−
colliders, but Forshaw, Kyrieleis, and Seymour [2] argued
that at hadron colliders double logarithms arise at four-loop
order, so that the leading logarithm at this order is α4sL5.
These so-called super-leading logarithms (SLLs) are a
subtle effect generated by complex phases in the ampli-
tudes, which spoil the real-virtual cancellations for

collinear emissions off the initial states [3–5]. The effect
is absent in the large-Nc limit and not captured by any of
the existing parton showers, which therefore do not account
for the leading-logarithmic corrections to nonglobal obser-
vables at hadron colliders.
Even 15 years after this effect was discovered, remark-

ably little is known about it. While the first SLL is known
for arbitrary 2 → 2 hard processes [6], the second
SLL (∼α5sL7) is known for some selected partonic channels
only [7]. The all-order structure of SLLs, their contribution
to other hard processes, and their large-order behavior are
completely unknown. One reason for this lack of under-
standing lies in the fact that one needs to perform
calculations in the full color space, whose dimension is
rapidly growing with the number of emitted partons.
In Refs. [8,9] we have derived factorization theorems for

nonglobal observables in soft-collinear effective theory
(SCET) [10–12] and found that nonglobal logarithms are
governed by a renormalization-group (RG) equation. Here
we apply this method to nonglobal logarithms at hadron
colliders and derive the all-order structure of the SLLs
α3sL3 × αnsL2n for arbitrary 2 → l processes. We further
show that the effect already arises for l ¼ 0, relevant, e.g.,
to Higgs production with a central jet veto.
As a concrete example, we consider the pp → 2 jet cross

section with a veto on hard radiation in a rapidity regionΔY
in between the two leading jets. This can be imposed by
requiring that any additional jet in the veto region has a
transverse momentum smaller than Q0. At leading loga-
rithmic accuracy, there is no sensitivity to how the radiation
is vetoed but only to the scale hierarchy betweenQ0 and the
transverse momentum of the hard jets, which is of order the
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partonic center-of-mass energy, Q ¼ ffiffiffî
s

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
x1x2s

p
. For

this “gap between jets” observable, the following factori-
zation formula holds [13]:

σðQ0Þ ¼
X

a1;a2¼q;q̄;g

Z
dx1dx2

X∞
m¼4

hHmðfng; Q; μÞ

⊗ Wmðfng; Q0; x1; x2; μÞi: ð1Þ
The hard functions Hm describe all possible m-parton
processes a1 þ a2 → a3 þ � � � þ am and are obtained after
imposing appropriate kinematic constraints, such as cuts on
the transverse momenta and rapidities of the leading jets.
One then integrates over the phase space but for fixed
directions fng ¼ fn1;…; nmg of the m partons, i.e.,

Hm ¼ 1

2ŝ

Ym
i¼3

Z
dEiEd−3

i

ð2πÞd−2 jMmðfpgÞihMmðfpgÞj

× ð2πÞdδð
ffiffiffî
s

p
− EtotÞδðd−1Þðp⃗totÞΘhardðfpgÞ; ð2Þ

where Etot and p⃗tot are the total energy and momentum of
the final-state particles in the partonic center-of-mass
frame. Note that the amplitude is squared in the sense of
a density matrix. We use the color-space formalism [14],
and the color indices of the amplitude jMmðfpgÞi and its
conjugate are not contracted. The color sum, indicated by
h…i in Eq. (1), is performed after the hard function is
combined with the function Wm, which encodes the soft
and collinear low-energy dynamics. Both quantities depend
on the directions fng of the hard partons, and after
combining them the integrals over these directions are
performed, as indicated by the symbol ⊗.
The function Θhard enforces the constraints on the hard

jets and ensures that no hard radiation enters the veto
region. For the validity of formula (1) it is important that
these constraints are compatible with factorization. The
low-energy matrix elements Wm consist of squared matrix
elements of m soft Wilson lines for the incoming and
outgoing partons together with two collinear fields for the
incoming particles. They need to be evaluated in SCET
with Glauber gluons [15], which can mediate nontrivial
interactions between soft and collinear partons. The func-
tions Wm contain rapidity logarithms, which induce a
logarithmic dependence on the scale ratio

ffiffiffî
s

p
=Q0 [16,17].

It would be interesting to analyze the structure of these
matrix elements in more detail in future work. Here we just
note that the additional dependence on the hard scale is
single logarithmic, while we focus on the leading double-
logarithmic corrections in this Letter.
To obtain the leading double logarithms, we solve the

RG equation for the hard function iteratively and evolve it
from the hard scale μh ∼

ffiffiffî
s

p
to the low scale μs ∼Q0. As

the starting point of the evolution we use the lowest-order
(Born level) hard function, which for a two-jet cross section
involves four partons. We thus evaluate

H4ðμhÞUðμh;μsÞ ¼H4ðμhÞP exp

�Z
μh

μs

dμ
μ
ΓHðμÞ

�

¼H4ðμhÞ þ
Z

μh

μs

dμ
μ
H4ðμhÞΓHðμÞ

þ
Z

μh

μs

dμ
μ

Z
μh

μ

dμ0

μ0
H4ðμhÞΓHðμ0ÞΓHðμÞ

þ… . ð3Þ

Below, we will identify the SLLs that arise in the products
of anomalous dimensions and solve a recursion relation for
them. As a final step, we compute the cross section in
Eq. (1) using the lowest-order expression for Wm at the
low scale μs ∼Q0. At this order the soft Wilson lines are
trivial and the collinear matrix elements reduce to the usual
parton distribution functions, i.e.,

Wmðfng; Q0; x1; x2; μsÞ ¼ fa1ðx1Þfa2ðx2Þ1: ð4Þ

The one-loop anomalous dimension matrix in Eq. (3) can
be split into two parts: ΓH ¼ ΓC1þ ΓS. The first part
concerns the purely collinear singularities and is present
also for inclusive cross sections. It is given by the usual
DGLAP kernels and involves a convolution over the
momentum fractions of the incoming partons. The second
part, ΓS, contains soft as well as softþ collinear terms. This
part is absent for inclusive cross sections, but present in our
case because of the restrictions on hard radiation in the veto
region. The softþ collinear piece generates the SLLs. The
soft part of the anomalous dimension takes the form [8,9]

ΓS ¼
αs
4π

0
BBBBBBBB@

V4 R4 0 0 � � �
0 V5 R5 0 � � �
0 0 V6 R6 � � �
0 0 0 V7 � � �
..
. ..

. ..
. ..

. . .
.

1
CCCCCCCCA

þ… . ð5Þ

The virtual contributions Vm leave the number of partons
unchanged, while the real-emission operators Rm add one
extra parton to a given hard function.
Because of the correspondence between UV and IR

singularities [18], the anomalous dimension ΓS can be
extracted by considering soft limits of hard-scattering
amplitudes [9,13]. For the present discussion, it is useful
to write it in the form [19]

Vm ¼ Vm þ VG þ
X
i¼1;2

Vc
i ln

μ2

ŝ
;

Rm ¼ Rm þ
X
i¼1;2

Rc
i ln

μ2

ŝ
; ð6Þ
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with

Vm ¼ 2
X
ðijÞ

ðTi;L · Tj;L þ Ti;R · Tj;RÞ
Z

dΩðnkÞ
4π

Wk
ij;

Vc
i ¼ 4Ci1;

VG ¼ −8iπðT1;L · T2;L − T1;R · T2;RÞ;
Rm ¼ −4

X
ðijÞ

Ti;L∘Tj;RW
mþ1
ij Θhardðnmþ1Þ;

Rc
i ¼ −4Ti;L∘Ti;Rδðnk − niÞ: ð7Þ

Before discussing the different parts in detail, let us explain
how they act on a generic hard function Hm. The color
generators Ti;L act on the amplitude and hence multiply
Hm from the left, while the generators Tj;R act on the
conjugate amplitude and stand on the right of Hm. The
color matrices in the virtual part act on the color indices of
them partons, Ti · Tj ¼

P
a T

a
i T

a
j , and Ti · Ti ¼ Ci1 is the

quadratic Casimir operator of parton i. This is the usual
color-space notation. The color matrices in the real-
emission terms Rm act differently. They take an amplitude
withm partons and associated color indices and map it to an
amplitude with (mþ 1) partons, see Fig. 1. Explicitly,
we have

HmTi;L∘Tj;R ¼ Ta
iHmTã

j ; ð8Þ

where the color indices a and ã refer to the emitted gluon.
We use the symbol ∘ to indicate the presence of the
additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on
these indices. In the simplest case of a single cut propagator
as in Fig. 1, the indices are contracted with δãa. On the
other hand, if an additional gluon with group index b is
attached to the emitted parton, the indices get contracted
with ð−ifbãaÞ.
The operators Vm and Rm encode soft singularities

arising when a virtual or real soft parton is exchanged
between two different legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg. The notation ðijÞ on the sums

in Eq. (6) indicates a pair of unordered indices
i; j ¼ 1;…; m. We use a bar to indicate that the colli-
near limits of the emissions are subtracted (see, e.g.,
Ref. [20]), i.e.,

Wk
ij ¼

ni · nj
ni · nknj · nk

−
δðnk − niÞ
ni · nk

−
δðnk − njÞ
nj · nk

: ð9Þ

The angular δ distributions only act on the test function.
The collinear singularities in the soft anomalous dimen-

sion are encoded in Rc
i and Vc

i , both of which are propor-
tional to the cusp anomalous dimension (as indicated by the
superscript). These operators multiply a logarithm of the
hard scale, which when inserted into Eq. (3) gives rise to
Sudakov double logarithms. We show below that all final-
state collinear singularities cancel between real and virtual
contributions, and for this reason only the initial-state
pieces (with i ¼ 1, 2) must be kept in Eq. (6). The
cancellation for the initial-state terms is spoiled by the
complex Glauber phases in VG, also referred to as Coulomb
phases [2]. These arise whenever soft partons are
exchanged between two final-state legs or two initial-state
legs. Using color conservation,

P
m
i¼1HmTa

i ¼ 0, the phase
terms can be rewritten in the form of VG, which makes it
obvious that they are only relevant for processes involving
(at least) two colored partons in the initial state.
Three properties of the different components of the

anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emissions
off two collinear partons has the same effect as a single soft
emission off the parent parton, implies that

HmΓcΓ ¼ HmΓΓc; ð10Þ

where we have defined Γc ¼ P
2
i¼1ðRc

i þ Vc
i Þ and

HmΓ≡HmðRm þ VmÞ. Next, the cyclicity of the trace
ensures that

hHmΓc ⊗ 1i ¼ 0;

hHmVG ⊗ 1i ¼ 0: ð11Þ

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHmðRc
i þ Vc

i Þ ⊗ 1i ∝ hTa
iHmTa

i − CiHmi ¼ 0: ð12Þ

The three properties hold for an arbitrary hard functionHm,
which can be obtained from the tree-level hard function
after applying the one-loop anomalous dimension several
times.
We extract the leading contributions to Eq. (3) by

considering products of Γc, Γ, and VG, only the first of
which gives rise to double logarithms. In the absence of

FIG. 1. Action of the real-emission operator Rm and the virtual
piece Vm on a hard function Hm. Because of the emitted gluon
(blue), the product HmRm defines a hard function with (mþ 1)
external legs.
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VG, we could use relation (10) to move all occurrences of
Γc to the last step, where they give a vanishing contribution
due to Eq. (11). (Even in the presence of VG this can still be
done for all final-state partons, and for this reason we did
not include terms with i ≠ 1, 2 in the definition of Γc.) To
get the SLLs, we thus need two insertions of VG. A single
insertion gives zero, since the cross section is real. Because
of the two properties in Eq. (11) we also need one power of
Γ in the last step of the evolution. Therefore, the SLLs at
ð3þ nÞth order in perturbation theory are associated with
color traces of the form

Crn ¼ hH4ðΓcÞrVGðΓcÞn−rVGΓ ⊗ 1i; ð13Þ

where 0 ≤ r ≤ n. This explains why the SLLs first appear
at four-loop order. However, the three-loop term (n ¼ 0)
originates from the same color structures and is numerically
significant, even though it only involves the imaginary part
π ¼ j lnð−1Þj of the large logarithm.
To get the corresponding contribution to the partonic

cross section, we must combine the color traces Crn with
the associated ordered integrals in Eq. (3). Each factor of Γc

is multiplied by a logarithm of μ, see Eq. (6), which
produces a double logarithm upon integration. Neglecting
the running of the coupling αs, setting μ2h ¼ ŝ, and
evaluating the integrals, we find with L ¼ lnð ffiffiffî

s
p

=μsÞ

σ̂SLLn ¼
�
αs
4π

�
nþ3

L2nþ3
ð−4Þnn!
ð2nþ 3Þ!

Xn
r¼0

ð2rÞ!
4rðr!Þ2 Crn; ð14Þ

which makes it explicit that starting from four-loop order
two logarithms per loop arise.
The relations (11) imply that the color traces Crn can be

simplified by working out the commutators ½VG;Γ� and
½Γc; ½VG;Γ��. Under the trace, we find that both commu-
tators evaluate to the same structure apart from a factor
ð4NcÞ. We obtain

Crn ¼ −64πð4NcÞn−rfabc
X
j>2

hH4ðΓcÞrVGTa
1T

b
2T

c
ji

×
Z

dΩðnkÞ
4π

ðWk
1j −Wk

2jÞΘvetoðnkÞ: ð15Þ

The sum over j contains the final-state partons of the Born
process and the collinear gluons emitted from the r
remaining insertions of Γc, but not the initial-state partons
1 and 2. The contributions where j refers to one of the
collinear gluons emitted from the first (n − r) insertions of
Γc in Eq. (13) vanish. The gluon with label k originates
from the insertion of Γ and must be attached to one initial-
state and one final-state parton. The constraint ΘvetoðnkÞ ¼
1 − ΘhardðnkÞ restricts the emission to the veto region and
arises from the incomplete cancellation of real and virtual
terms in Γ. Since the direction nk in Eq. (15) is in the veto

region, it cannot be collinear to the directions n1, n2 or nj.
As a consequence, the collinear subtraction terms in Eq. (9)
vanish, and one can replace Wk

ij → Wk
ij in Eq. (15).

All information about the phase-space restrictions on the
direction of parton k are contained in the angular integrals

Jj ¼
Z

dΩðnkÞ
4π

ðWk
1j −Wk

2jÞΘvetoðnkÞ: ð16Þ

The parton j can either move along the directions n1 and n2,
when it is attached to one of the collinear gluons emitted by
the insertions of Rc

i , or it is one of the final-state partons.
Since Wk

ii vanishes we have J1 ¼ −J2. There are thus
(lþ 1) independent kinematic structures for a 2 → l jet
process. For the gap between jets case, we find that
Jj ¼ þΔY if the rapidities of particles j and 1 have
opposite signs, and Jj ¼ −ΔY otherwise.
A more complicated structure arises when one commutes

the remaining insertion of VG in Eq. (15) all the way to the
right. This leads to an expression involving anticommuta-
tors of color generators, which in general cannot be
simplified using the Lie algebra of SUðNcÞ. Here we
consider the important special case where particles 1 and 2
transform in the fundamental representation. We can then
use the relation

fTa
i ;T

b
i g ¼ 1

Nc
δab1þ σidabcTc

i ; i ¼ 1; 2; ð17Þ

where the color-space formalism implies that σi ¼ 1 for an
initial-state antiquark and σi ¼ −1 for an initial-state quark.
In this case a closed expression for the color traces Crn can
be obtained, which involves only three nontrivial color
structures:

Crn ¼ 28−rπ2ð4NcÞn
�X

j>2

JjhH4½ðT2 − T1Þ · Tj

þ 2r−1Ncðσ1 − σ2ÞdabcTa
1T

b
2T

c
j �i

þ 2ð1 − δr0ÞJ2hH4½CF þ ð2r − 1ÞT1 · T2�i
�
: ð18Þ

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [19].
As a first application of the general result (18) we

consider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange
between the quarks. For the two cases, we get

CðOÞ
rn ¼ σ̂B2

8−rπ2ð4NcÞn
�
CFJ43

þ J2
Nc

ðN2
c − 2rþ1 þ 1Þð1 − δr0Þ

�
;

CðSÞ
rn ¼ σ̂B2

8−rπ2ð4NcÞnCF½−J43 þ 2J2ð1 − δr0Þ�; ð19Þ
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with J43 ¼ J4 − J3, and σ̂B ¼ hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
Ref. [2], the angular integrals evaluate to J2 ¼ J43=2 ¼
ΔY. Using these expressions in Eq. (14) and setting n ¼ 1,
we recover the results of Ref. [2]. Repeating the calculation
for n ¼ 2 we confirm the findings of Ref. [7]. As a further
check of Eq. (18), we have written a computer code based
on COLORMATH [21] to directly evaluate the color structures
Crn for fixed values of r and n. Using this code, we have
checked the general formula for qq → qq, qq̄ → qq̄ and
qq̄ → gg scattering up to eight-loop order.
The dependence of Crn in Eq. (18) on n and r is

powerlike, and it is possible to perform the sum over the
infinite tower of SLLs in closed form:

Δσ̂ ¼
X∞
n¼0

σ̂SLLn ¼ σ̂B

�
αs
4π

�
3

L3fðwÞ; ð20Þ

where w ¼ ðNcαs=πÞL2 encodes the double-logarithmic
dependence. The function fðwÞ can be expressed in terms
of hypergeometric and related functions [19]. For the
singlet case, we get for forward scattering

Δσ̂ðSÞ ¼ −σ̂B
4CF

3π
α3sL3ΔY2F2

�
1; 1; 2;

5

2
;−w

�
: ð21Þ

While the explicit form is not particularly illuminating, it is
interesting to study the asymptotic behavior for w → ∞.
Ordinary Sudakov double logarithms are resummed to the
form e−cw and are thus strongly suppressed in this limit,
while the function fðwÞ ∼ ðlnwÞ=w falls off much slower.
In Fig. 2, we evaluate the partonic qq → qq scattering

cross sections for the octet and singlet channels. In order to
only show the effect of SLLs, we plot the partial sumsP

N
n¼1 σ̂

SLL
n for different values of N. This omits the three-

loop contribution from Δσ̂, but note that also this term is
due to complex phases not captured in conventional parton

showers, see, e.g., Ref. [22]. Because of the high power of
αs, the SLLs are only significant if the logarithms are
sizable, and their effect is quite sensitive to the choice of
scale in αsðμÞ. In the plot we set μ ¼ Q0.
So far we have discussed the case of 2 → 2 scattering,

but an analogous relation with H4 replaced by H2þl holds
for a (anti-)quark-initiated 2 → l jet process with l ≥ 0. In
particular, we find that SLLs also arise for processes with
less than two final-state jets, a fact that has not been
appreciated in the literature. For 2 → 0 processes such as
qq̄ → V, where V ¼ γ, Z0, W� is a colorless boson, the
sum over j in Eq. (18) is absent, and color conservation
implies that

Crn ¼ −σ̂B29−rπ2CFð4NcÞnð2r − 2Þð1 − δr0ÞJ2; ð22Þ
which vanishes for n ¼ 1. The SLLs therefore start at
5-loop order, one order higher than in the general case. For
2 → 1 scattering processes such as qq̄ → V þ jet, the only
term in the sum has j ¼ 3, and one can use color
conservation to obtain

Crn ¼ σ̂B2
10−rπ2ð4NcÞn−1ðN2

c þ 2r − 2Þð1 − δr0ÞJ2: ð23Þ
These contributions start at four-loop order. In the literature
[2,7], it has been stated that SLLs only arise when there are
at least two colored partons in the final state, but as we have
shown the emission into the gap originating from Γ
supplies the necessary additional parton for the 2 → 1
case. For 2 → 0 scattering the second final-state parton
arises from a collinear emission in Γc, which explains why
the effect is delayed by one order.
In this Letter we have solved the outstanding open

problem of resumming SLLs for a large class of nonglobal
observables at hadron colliders, thereby accounting for the
leading logarithmic corrections to such processes for the
first time. Our RG-based approach provides a transparent
understanding of the underlying physics, and our analytical
results should be useful in the ongoing effort to generalize
parton showers to finite Nc, see, e.g., Refs. [23–26]. It will
be interesting to perform a detailed analysis of SLLs for an
observable such as the gap fraction, including the full set of
partonic channels and accounting for running-coupling
effects. Our findings indicate that SLLs could have an
appreciable effect on precision observables, in particular in
Higgs production, where higher-order effects are generally
large. Indeed, we find that the perturbative coefficients in
gluon-induced 2 → 0 processes are an order of magnitude
larger than in the quark case studied here [19].

The research of T. B. is supported by the Swiss
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by the Cluster of Excellence PRISMA+ (EXC 2118/1)
within the German Excellence Strategy (project ID
39083149). The research of D. Y. S. is supported by the
Shanghai Natural Science Foundation under Grant
No. 21ZR1406100.

FIG. 2. Super-leading logarithms in quark-quark scattering
summed up to four-loop (red), five-loop (blue), and infinite
order (black). The solid and dashed lines refer to the color octet
and singlet channel, respectively.
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