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Abstract

We study Slavnov’s inner products for open Temperley-Lieb chains and their relations with the KP hi-
erarchy. We show that when s = 1/2 the quantum group invariant XXZ spin chain has Slavnov products 
given by the quotient of tau functions. The Schur polynomials expansion and a matrix construction for the 
Baker-Akhiezer functions are also briefly considered.
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1. Introduction

Classical and quantum integrable systems share an extensive set of mathematical common-
alities. The quantization of a classical integrable system is, at least in principle, the proper 
quantization of their defining integrable structures. Remarkably, a few different relations be-
tween classical and quantum integrable systems have been observed [1–7], but the underlying 
mechanisms (if any) governing these correspondences are not known yet.

The present work deals with the unexpected relations originally studied by Foda, Wheeler, 
and Zuparic in [6,7]. The authors prove that for the XXZ spin-1/2 chain with periodic boundary 
conditions, the Slavnov’s inner product [8] is (modulo multiplicative terms) a tau-function of the 
Kadomtsev-Petviashvili (KP) integrable hierarchy [9]. More specifically, using the Jacobi-Trudi 
identities and the Schur polynomials expansions – important components in their work – the 
authors have shown that the inner product between on-shell and off-shell Bethe states can be 
represented in terms of a solution of an integrable hierarchy.

This duality might allow us to study quantum spin chain from another perspective, but one 
might ask first whether the results of [6,7] are beautiful occurrences of the XXZ spin-1/2 chain 
with periodic boundary conditions, or if there is something more interesting behind the curtains. 
In particular, we would like to know if this duality holds for other boundary conditions, repre-
sentations s > 1/2, or other types of spin chains. These bold questions find two difficult obstacles.

First, Slavnov products are complex objects to construct, see [3], and there is no general 
protocol teaching us how to build them; it is safe to say that we are essentially confined to the 
case-by-case analysis at the time of writing. Despite these difficulties, some new results have 
recently appeared in the literature [10,11] allowing us to advance this program a bit further. 
These new results are the examples we address in the current work.

Furthermore, the tools used in [6,7] are very specific to their particular case, and hardly gen-
eralizable to other contexts. More specifically, the exceptional structure of the Slavnov product 
allowed the authors to use some Jacobi-Trudi-like identities in their study, but this feature is not 
expected in other cases, see the structure of [10,11]. In the current work, we also try to find 
some new ingredients and tools to study this duality between spin chains and classical integrable 
hierarchies.

In this work we argue that the Slavnov product for the spin-s Temperley-Lieb (TL) open 
chain [10,11] defines two KP tau functions. Section 2 starts with a short review on the TL spin-s
chain, and in sections 3 and 4, we show how a pair of KP tau functions emerges from the Slavnov 
product, and we study some of the most immediate consequences. We conclude in section 5 with 
further remarks, a comparison between our results and [6,7], and some open problems.

2. Temperley-Lieb spin chains

This section introduces the TL open spin-s chain following Nepomechie and Pimenta [10,11], 
see also [12]. The TL algebra AN(ε) is defined by the generators {Ui | i = 1, . . . , N − 1} and the 
relations

U2 = εUi , UiUi±1Ui = Ui , UiUj = UiUj |i − j | > 1 , (1)
i
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Fig. 1. Identity and operators Ui , i = 1, . . . ,N − 1, in AN .

where we write ε = − 
(
q + q−1

)
. The generators can be diagrammatically represented as in 

Fig. 1, in such a way that the algebraic relations can be elegantly represented as braiding opera-
tions, see [13,14] for reviews.

Despite its simplicity, this structure appears in a wide range of settings [13]; and we are 
particularly interested in spin chains defined by these generators.

2.1. Temperley-Lieb spin chains

The length N open TL spin chain [10,11] with free boundary conditions is defined by the 
Hamiltonian

H =
N−1∑
i=1

Ui . (2)

This spin chain is quantum integrable for any spin-s representation of Uq(sl(2)), and the case 
s = 1/2 reduces to the Uq(sl(2))-invariant spin chain [15]. The R-matrix is

R(v) = w(vq)P + w(v)PU , (3)

where P is the permutation operator in C2s+1 ⊗ C2s+1, U is related to the algebra generators 
via Ui = 1⊗(i−1) ⊗ U ⊗ 1⊗(N−i−1), and we have also used the notation

w(v) = v − v−1 . (4)

The transfer matrix is written as

t (v) := Tr0

(
K+

0 (v)T0(v)K−
0 (v)T̂0(v)

)
(5)

where T0(v) and T̂0(v) are the monodromy matrices, and K±(v) satisfy the boundary Yang-
Baxter equations. Explicitly, the matrices K±(v) are

K− = 1 K+ = diag
(
Q−2s ,Q−2(s−1), . . . ,Q2s

)
, (6)

with 
∑s

k=−s Q2k ≡ −(q + q−1).
The eigenvalues �(v) ≡ �(v, u) of t (v) are

�(v) = − 1

w(v2q)

⎛
⎝w(v2q2)w(vq)2N

M∏
j=1

w(vq−1/uj )w(vuj )

w(v/uj )w(vquj )

+w(v2)w(v)2N

M∏ w(vq/uj )w(vq2uj )

w(v/uj )w(vquj )

⎞
⎠ ,

(7)
j=1

3
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where u ≡ {uk | k = 1, . . . , M} are the Bethe roots in the M-magnon sector.

Consider the Temperley-Lieb spin chain (2) with s = 1/2, and the states

|�bethe(u)〉 =
M∏

k=1

B(uk)|0〉 |�(v)〉 =
M∏

k=1

B(vk)|0〉 (8)

where u satisfy the Bethe equations, and v are free parameters. It has been proved [16,17], and 
[10,11], that the Slavnov product [8] is given by

〈�bethe(u)|�(v)〉

= 2−MQ−2Ms
M∏

j=1

w(uj )
2Nujw(u2

j )

w(u2
j )w(v2

j q
2)

M∏
i,j=1
i>j

w(uiujq
2)

w(uiuj )

det
i,j

∂ui
�(vj ,u)

det
i,j

(
1

w(viu
−1
j )w(viuj q)

) . (9)

In [10,11], a conjecture concerning this inner product establishes that formula (9) is also valid 
for any spin-s representation of Uq(sl(2)). Although we will assume that this conjecture is true, 
it is important to make the distinction between the s = 1/2 and s > 1/2 cases.

The results just described are the ingredients we need to advance with this work, and we refer 
to [10,11] for further details.

3. Slavnov product and KP tau functions

In this section we show that the Slavnov product (9) can be written in terms of a quotient of 
KP tau functions. We also study some immediate consequences of this result, including a matrix 
integral representation for a normalized inner product.

3.1. KP tau functions and matrix integrals

Let us start with the main result of this work.

Theorem 1. The Slavnov product (9) for the Temperley-Lieb spin-1/2 chain is written as

〈�bethe(u)|�(v)〉 = G(v,u)
τ

(1)
u (v)

τ
(2)
u (v)

(10)

where τ (1)
u and τ (1)

u are KP hierarchy tau functions. Assuming that the conjecture [10,11] is true, 
the theorem is immediately extended to all s > 1/2.

Proof. As we mentioned before, Nepomechie and Pimenta [10,11] have conjectured that the 
Slavnov product is given by expression (9). Define the functions

G(u,v) = 2−MQ−2Ms
M∏

j=1

w(uj )
2Nujw(u2

j )

w(u2
j )

M∏
i,j=1
i>j

w(uiujq
2)

w(uiuj )w(v2
j q

2)
, (11a)

and
4
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K−1
u (v) =

det
i,j

∂ui
�(vj ,u)

det
i,j

(
1

w(viu
−1
j )w(viuj q)

) . (11b)

Observe that all interesting dependence on the free parameters v is contained in Ku(v). With 
these definitions, one has

〈�bethe(u)|�(v)〉 = G(v,u)K−1
u (v) . (12)

We may say that K−1
u (v) is the kernel of the Slavnov product.

Let us now write the kernel as

K−1
u (v) =

det
i,j

F
(1)
i (vj )

det
i,j

F
(2)
i (vj )

, (13)

where the set of functions F (a)(z), for a = 1, 2, are defined by their components

F (1)(z) = {F (1)
1 (z), . . . ,F

(1)
M (z)} : F

(1)
i (z) := ∂ui

�(z,u)

F (2)(z) = {F (2)
1 (z), . . . ,F

(2)
M (z)} : F

(2)
i (z) := 1

w(zu−1
i )w(zuiq)

. (14)

Using the Vandermonde determinant

�(v) ≡ det
i,j

(v
M−j
i ) =

∏
i<j

(xi − xj ) ,

it is well known that the functions

τ (a)(v) :=
det
i,j

F
(a)
i (vj )

�(v)
, a = 1,2 , (15)

satisfy the Hirota Bilinear Equations (HBE) of the KP hierarchy [18–21]∮
dz

2πi
eξ(t−s,z)τ (a)

(
t − [z−1]

)
τ (a)

(
s + [z−1]

)
= 0 , (16)

where [z] = (z, z2/2, z3/3, . . . ).
Consequently, the kernel

K−1
u (v) = τ

(1)
u (v)

τ
(2)
u (v)

(17)

is the quotient of two tau functions. �
Assuming the risk of being too repetitive, we need to stress that if s > 1/2, the result above 

depends on a conjecture [10,11].

Definition. Furthermore, observe that G(u, v) does not have any interesting structure in v, since 
it is just the product of w(vk) = vk − v−1

k , therefore, one may define the normalized Slavnov 
product as
5
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〈〈�bethe(u)|�(v)〉〉 ≡K−1
u (v) = 1

G(u,v)
〈�bethe(u)|�(v)〉 . (18)

Since the KP hierarchy is a particular case of the more general Toda lattice hierarchy, see [22], 
we can use those results in our case. From [23–25], we have the following lemma:

Lemma 1.1 (Zinn-Justin-Zuber [23–25]). The functions (15) have integral representations

τ (a)(t) = (−)M(M−1)/2 det
i,j

∮
dz

2πi
z−iF

(a)
j (z)eξ(t,z−1) , (19)

where tm = 1
m

∑M
i=1 vm

i are the Miwa coordinates and

ξ(t, z−1) = −
M∑
i=1

ln(1 − z−1vi) =
∞∑

m=1

tmz−m . (20)

Proof. The proof is straightforward from direct calculations. Write (19) as

τ (a)(v) = (−)M(M−1)/2 det
i,j

∮
dz

2πi
z−iF

(a)
j (z)

M∏
k=1

z

z − vk

, (21a)

integrating over the poles, we obtain

τ (a)(v) = (−)M(M−1)/2 det
i,j

M∑
k=1

vM−i
k∏

m �=k

(vk − vm)
F

(a)
j (vk)

= (−)M(M−1)/2 det
k,i

⎛
⎜⎝ vM−i

k∏
m �=v

(vk − vm)

⎞
⎟⎠det

k,j
F

(a)
j (vk)

= (−)M(M−1)/2 �(v)

M∏
k,m=1
m �=k

(vk − vm)

det
i,j

F
(a)
j (vi)

(21b)

where in the first line, the summation denotes a matrices product. Moreover, using

M∏
k,m=1
m �=k

(vk − vm) = (−)M(M−1)/2�(v)2

we obtain

τ (a)(v) =
det
i,j

F
(a)
j (vi)

�(v)
,

that proves the equivalence of the two expressions. �
Corollary 1.1. The Slavnov product 〈 〈�bethe(u)|�(v)〉 〉, as a function of the Miwa coordinates, 
can be represented as the normalized (matrix) expectation value
6
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〈〈�bethe(u)|�(t)〉〉 = 1

Z(t)

∮ M∏
j=1

dzj

2πi
e−MV (t,z)�2(z)K−1

u (z) , (22a)

where the potential is given by

V (t,z) = − 1

M

M∑
j=1

(
ξ(t, z−1

j ) − M ln zj

)
− 1

M
ln τ (2)(z) . (22b)

Proof. Using an integral representation (19) and the Andreev identity

det
ij

(∫
dμ(z)fi(z)gj (z)

)
= 1

M!
∫ N∏

l=1

dμ(zl)det
jk

(fj (zk))det
jk

(gj (zk)) , (23)

we have

τ (1)
u (t) = (−)M(M−1)/2

M!
∮ M∏

j=1

dzj

2πi
e

∑M
j=1

(
ξ(t,z−1

j )−M ln zj

)
�(z)2τ (1)

u (z) , (24a)

where we use the measure dμ(z) = e
ξ(t,z−1

j )
z−Mdz. Expression (17) gives

τ (1)
u (t) = (−)M(M−1)/2

M!
∮ M∏

j=1

dzj

2πi
e

∑M
j=1

(
ξ(t,z−1

j )−M ln zj

)
�(z)2K−1

u (z)τ (2)
u (z)

= (−)M(M−1)/2

M!
∮ M∏

j=1

dzj

2πi
e

∑M
j=1

(
ξ(t,z−1

j )−M lnvj

)
+ln τ (2)(z)

�(z)2K−1
u (z)

= (−)M(M−1)/2

M!
∮ M∏

j=1

dzj

2πi
e−MV (t,z)�(z)2K−1

u (z)

(24b)

where we have defined the effective potential V (t, z) as

−MV (t,z) =
M∑

j=1

(
ξ(t, z−1

j ) − M ln zj

)
+ ln τ (2)(z) . (24c)

Defining the partition function Z(t) via

(−)M(M−1)/2

M! Z(t) ≡ τ (2)(t) =
∮ M∏

j=1

dzj

2πi
e−MV (t,z)�(z)2 , (24d)

we see that the kernel K−1
u (t), in Miwa coordinates, is given by

〈〈�bethe(u)|�(t)〉〉 ≡ 〈K−1
t (v)〉 = 1

Z(t)

∮ M∏ dzj

2πi
e−MV (t,z)�(z)2K−1

u (z) . � (24e)

j=1

7
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3.2. Consistency conditions

It is well known in the theory of classical integrable systems [22] that the HBE (16) are 
equivalent to

∞∑
j=0

hj (−2x)hj+1(D̃)e
∑∞

k=1 xkDk �τ (a) (t) , τ (a) (t)� , (25)

where h(x) are symmetric polynomials defined by

exp

⎛
⎝∑

k≥0

xkz
k

⎞
⎠=

∑
j≥0

hj (x)zj . (26)

Moreover, D ≡ {Dk | k ∈ N∗} are the Hirota derivatives defined by the conditions

P(D)�f (t), g(t)� := P(∂x) (f (t − x)g(t + x))
∣∣
x=0 = 0 , (27)

where P(x) is a generic polynomial, and the operators D̃ are Hirota derivatives defined with 
respect to ∂̃x = {k−1∂xk

| k ∈ N∗}. From these expressions, it is obvious that the kernel of the 
Slavnov product K−1

u (t) satisfies the following hierarchy of differential equations

∞∑
j=0

hj (−2x)hj+1(D̃)e
∑∞

k=1 xkDk �K−1
u (t)τ (2)(t),K−1

u (t)τ (2)
u (t)� = 0

∞∑
j=0

hj (−2x)hj+1(D̃)e
∑∞

k=1 xkDk �τ (1)
u (t),K−1

u (t)τ (2)(t)� = 0

∞∑
j=0

hj (−2x)hj+1(D̃)e
∑∞

k=1 xkDk �τ (a)
u (t), τ (a)

u (t)� = 0 , a = 1,2

. (28)

The first two equations are, naturally, equivalent to the third one for a = 2, therefore the hierarchy 
of equations above is satisfied by the Slavnov product.

Remark. It might be interesting to think of (28) in the opposite direction: Assume the existence 
of a tau function τ (2)

u (t), we would like to find a function Kt (t) such that K−1
u (t)τ

(2)
u (t) ≡ τ

(1)
u (t)

is another tau function. Solving equation (28), one might build such a function.

The first coefficients in x1 are

D1�f (t), g(t)� = 0

D2�f (t), g(t)� = 0(
D3

1 − 4D3

)
�f (t), g(t)� = 0(

D4
1 + 3D2

2 − 4D1D3 + 3D2
1D2 − 6D4

)
�f (t), g(t)� = 0

(29)

As usual, when f (t) = g(t), as in the case of the KP tau functions, the first three equations are
trivial, and the last is exactly the KP equation. For f (t) = τ

(2)
u (t) and g(t) = K−1

u (t)τ
(2)
u (t), the 

first three equations define further conditions on K−1(t).
u

8
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3.3. Plücker relation

For the sake of completeness, we finish this section with a simple corollary that follows from 
the results in [23–25] originally obtained for the Toda lattice.

Corollary. For tau functions of the form (15), the HBE are equivalent to the Plücker relation

M+1∑
i=1

(−)i det
i,j

F
(a)
j (X \ {xi})det

i,j
F

(a)
j (Y ∪ {xi}) = 0 , (30)

where

X = (x1, . . . , xM+1)

Y = (y1, . . . , yM−1)
. (31)

Proof. Let us consider the vectors (31), and the Miwa variables t = {tp} and s = {sq} with 
components

tp = 1

p

M+1∑
j=1

x
p
j sq = 1

q

M−1∑
j=1

y
q
j . (32)

Let us start a proof with some identities.

§.1 For a generic point i, we have

t − [xi] =
{

tp − x
p
i

p

}
=
⎧⎨
⎩ 1

p

M+1∑
j=1

x
p
j − x

p
i

p

⎫⎬
⎭=

⎧⎪⎪⎨
⎪⎪⎩

1

p

M+1∑
j=1
j �=i

x
p
j

⎫⎪⎪⎬
⎪⎪⎭

s + [xi] =
{

sp + a
p
i

p

}
=
⎧⎨
⎩ 1

p

M−1∑
j=1

y
p
j + x

p
i

p

⎫⎬
⎭=

⎧⎨
⎩ 1

p

M∑
j=1

y
p
j

⎫⎬
⎭ , with yM ≡ xi

. (33)

Therefore

τ (a)(t − [xi]) ≡ τ (a)(X \ {xi})
τ (a)(s + [xi]) ≡ τ (a)(Y ∪ {xi})

, (34)

where Card.(X \ {xi}) = Card.(Y ∪ {xi}) = M .

§.2 We want to write the Vandermonde determinant �(X \ {xi}) in terms of �(X). For i ∈
[1, . . . , M + 1], we have

�(X) =
M+1∏
j,k=1
j<k

(xj − xk) =
i−1∏
j=1

(xj − xi)

M+1∏
k=i+1

(xi − xk)

M+1∏
j<k
j,k �=i

(xj − xk)

= (−1)M+1−i�(X \ {xi})
M+1∏
j=1

(xj − xi) .

(35)
j �=i

9
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§.3 Similarly, we want to write the Vandermonde determinant �(y ∪ {xi}) in terms of �(y). For 
i ∈ [1, . . . , M + 1], we write yM ≡ xi ; therefore

�(Y ∪ {xi}) =
M∏

j,k=1
j<k

(yj − yk) =
M−1∏
j=1

(yj − xi)

M−1∏
j,k=1
j<k

(yj − yk)

= �(Y )

M−1∏
j=1

(yj − xi) .

(36)

§.4 With these definitions, it is easy to show that

eξ(t−s,z) =
M+1∏
j=1

1

1 − zxj

M−1∏
k=1

(1 − zyk) , (37)

and inserting it back into the HBE (16), we have

0 =
∮

dz

2πi

M+1∏
j=1

1

1 − zxj

M−1∏
k=1

(1 − zyk)τ
(a)
(
t − [z−1]

)
τ (a)

(
s + [z−1]

)

=
∮

dz

2πi

(−x−1
i )

z − x−1
i

M+1∏
j=1
j �=i

1

1 − zxj

M−1∏
k=1

(1 − zyk)τ
(a)
(
t − [z−1]

)
τ (a)

(
s + [z−1]

)

=
M+1∑
i=1

(−)

M+1∏
j=1
j �=i

1

xi − xj

M−1∏
k=1

(xi − yk)τ
(a) (t − [xi]) τ (a) (s + [xi]) .

(38)

Using the expressions derived in §.1, §.2 and §.3, we find

0 =
M+1∑
i=1

(−)M+i−1 �(X \ {xi})
�(X)

�(Y ∪ {xi})
�(Y )

τ (X \ {xi}) τ (Y ∪ {xi}) (39)

and from the form (15) for the tau functions, we conclude that the HBE become the Plücker 
relation

M+1∑
i=1

(−)i det
i,j

F
(a)
j (X \ {xi})det

i,j
F

(a)
j (Y ∪ {xi}) = 0 . (40)

Observe that although we have used the indices a to keep the notation consistent in this work, 
this identity is a general statement. Moreover, observe that in [23–25] the formula for the Toda 
lattice (that can be obtained using the same strategy discussed above) does not have the factors 
(−)i , and it spoils the relations (unless, of course, these signs are implicit). �
4. Schur functions expansion & Baker-Akhiezer function

This section discusses some properties of the Schur polynomials expansion of the tau-
functions and Slavnov product described above. Let us summarize a few facts about the Schur 
polynomials expansion of the tau function (41). Here we use the notation [26], see also [9],
10
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Tau functions of the KP hierarchy, with Miwa coordinates t = {t1, t2, t3, . . . }, can be repre-
sented in terms of free fermions as

τ (a)
u (t) = 〈0|eJ+(t)G(a)|0〉 , (41)

where J+(t) = ∑
k>0 tkJk , where the components {Jk | k ∈ Z} satisfy the Heisenberg algebra 

û(1)

[Jm,Jn] = mδm+n,0 .

Moreover, we also need the group element G ∈ GL(∞). Therefore

τ (a)
u (t) = 〈0|eJ+(t)G(a)|0〉 =

∑
λ

(−)�(λ)〈0|eJ+(t)|λ〉〈λ|G(a)|0〉

=
∑
λ

(−)�(λ)〈λ|G(a)|0〉sλ(t) ,
(42)

where the integer partitions in Frobenius coordinates are denoted as λ = (α1, . . . , αd |β1, . . . , βd), 
and we have used that �(λ) =∑d

j=1(βj + 1).
Now, it is easy to pass from Miwa coordinates t to the configuration space v

τ (a)
u (v) =

∑
λ

(−)�(λ)〈λ|G(a)|0〉sλ(v) , (43)

and using the orthonormality of Schur polynomials [27], we have

〈λ|G(a)|0〉 = (−)�(λ)(sλ(v), τ (a)
u (v)) . (44)

Remark. Observe that although the Miwa coordinates t have infinitely many components 
{tk | k ∈ N∗}, the vectors v = {v1, v2, . . . , vM} are limited by the dimension of the Magnon 
sector M . Therefore, the coordinates {tm | m > M}, do not carry any new information. It also 
means that it would be enough to consider G ∈ GL(M, ∞) [9,26].

4.1. Slavnov product in terms of Schur functions

We want to write the series expansion for the functions F (a)
j (z). From the eigenvalue expres-

sion (7), it is easy to show that

�(z,u) = −1 + q2(N−2M+1)

q2(N−M)+1z2N
+

∞∑
n=−N+1

f̃2nz
2n , (45)

where the coefficients f̃2j depend on the Bethe roots u. Therefore,

F
(1)
j (z) = ∂uj

�(z,u) =
∞∑

n=−N+1

f̃
(1)
j,2nz

2n (46)

where f̃ (1)
j,2n ≡ ∂uj

f̃
(1)
2n . Let us write these functions as

F
(1)
j (z) = 1

z2N−2

∞∑
f

(1)
j,2n z2n , f

(1)
j,2n ≡ f̃

(1)
j,2(n−N+1) . (47)
n=0

11
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Additionally, the function F (2)
j (z) has an expansion of the form

F
(2)
j (z) = z2

∞∑
n=0

f
(2)
j,2n z2n . (48)

At this point we can simply consider the transformation z → ±√
y and write the expansions 

above in terms of y. The ambiguity in the definition of z is harmless since the function �(z) is 
even; this means that the physical results are the same regardless of the square root branch we 
use. Therefore

F
(1)
j (y) = 1

yN−1

∞∑
n=0

f̂
(1)
j,n yn , f̂

(1)
j,2n ≡ f

(1)
j,2n , (49a)

and

F
(2)
j (y) = y

∞∑
n=0

f̂
(2)
j,n yn , f̂

(2)
j,n ≡ f

(2)
j,2n . (49b)

As a simple consequence of the calculations above, the definition v = {√wi | i = 1, . . . , M}
yields

det
ij

F
(a)
j (wi) = P(a)(w)det

ij

∞∑
n=0

f̂
(a)
j,2n w2n

i , (50a)

where

P(a)(w) =
⎧⎨
⎩
∏M

j=1 w1−N
j if a = 1∏M

j=1 wj if a = 2
. (50b)

From these expressions, one can find the Schur polynomials expansion using the standard 
algorithm [6,7], see also [28]. The Cauchy-Binet theorem gives

det
ij

∞∑
n=0

f̂
(a)
j,n wn

i =
∑

0≤�M<...�1≤∞
det
ij

(f
(a)
i,�j

)det
ij

(v
�j

i ) . (51)

Now, we use the transformation �j = λj − j + M , then

det
ij

∞∑
n=0

f̂
(a)
j,2n w2n

i =
∑

0≤λM≤···≤λ1≤∞
det
ij

(f̂
(a)
i,λj −j+M)det

ij
(w

λj −j+M

i ) , (52)

where the sum is over the Young diagrams λ = (λ1, . . . , λM). Here, c(a)
λ (u) ≡ det(f (a)

i,λj −j+M)

are Plücker coordinates in Sato Grassmannian. Finally, one concludes that

τ (a)
u (w) =

det
ij

F
(a)
j (wi)

�(w)
= P(a)(w)

∑
λ

c
(a)
λ (u)sλ(w) . (53)

All in all, the normalized Slavnov product becomes

〈〈�bethe(u)|�(w)〉〉 =
M∏ 1

wN
j

∑
λ c

(1)
λ (u)sλ(w)∑

c
(2)

(u)sλ(w)
. (54a)
j=1 λ λ

12
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Writing this expression in terms of a new set of Miwa coordinates t ′m = 1
m

∑M
j=1 wm

j , we find

〈〈�bethe(u)|�(t ′)〉〉 =
M∏

j=1

1

wN
j (t ′)

∑
λ c

(1)
λ (u)sλ(t

′)∑
λ c

(2)
λ (u)sλ(t ′)

. (54b)

Since there is no ambiguity in our discussion, in the remainder of this work we drop the primes 
in t ′m. Using some elementary properties of the Schur polynomials [29], it is easy to see that∑

λ

c
(2)
λ (u)sλ(t) = c

(2)

∅ (u) +
∑
λ>∅

c
(2)
λ (u)sλ(t)

= c
(2)

∅ (u)

(
1 + 1

c
(2)

∅ (u)

∑
λ>∅

c
(2)
λ (u)sλ(t)

) (55a)

where we have used that s∅(t) = 1. Then, we have the formal series

∑
λ

c
(2)
λ (u)sλ(t) ≡ c

(2)

∅ (u)

(
1 −

∑
k

c̄k(u) �T k

)
, (55b)

where �T k are monomials tk1
1 t

k2
2 t

k3
3 · · · and the sum is over all possible (infinite) vectors k =

(k1, k2, . . . , kj , 0, 0, 0, . . . ), ki ∈ N ∀ i ∈ N and j < ∞. Additionally, the formal series

1∑
λ c

(2)
λ (u)sλ(t)

=
∑
k

ĉk(u) �T k (55c)

is a symmetric function in t , since the {sλ(t)} form a basis for the space of symmetric functions. 
It also means that function (55c) can also be expanded in terms of Schur functions. Finally, 
inserting (55c) into (54b) and using the Littlewood–Richardson rules sμ(t)sν(t) =∑

λ Nλ
μνsλ(t), 

one can see that

〈〈�bethe(u)|�(t)〉〉 =
M∏

j=1

1

wN
j (t)

∑
λ

Aλ(u)sλ(w) (56)

where the coefficients {Aλ(u)} are written in terms of {c(1)
λ (u)}, {c(2)

λ (u)} and of the Littlewood–
Richardson coefficients {Nλ

μν}. Observe that the expansion in (56) does not define a tau function, 
since the coefficients {Aλ(u)} are not Plücker coordinates.

4.2. Baker-Akhiezer functions

We already know that the series expansions 
∑

λ c
(a)
λ (u)sλ(w) are, by themselves, tau functions

τ̃ (a)
u (v) =

∑
λ

c
(a)
λ (u)sλ(w) . (57)

Additionally,

M∏ 1

wN
j

= exp

⎛
⎝−N

∞∑ M∑ 1

p
(1 − wj)

p

⎞
⎠ . (58)
j=1 p=1 j=1

13
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These results imply that the normalized Slavnov product (54a) can be represented as

〈〈�bethe(u)|�(w)〉〉 = exp

⎛
⎝−N

∞∑
p=1

M∑
j=1

1

p
(1 − wj)

p

⎞
⎠ τ̃

(1)
u (w)

τ̃
(2)
u (w)

, (59)

that resembles the Baker-Akhiezer functions for the KP hierarchy. Inspired by this similarity, one 
may fell compelled to define the matrix �(t) in Miwa coordinates as

�(t, z) = eξ(t,z)

(
ψ11(t, z) ψ12(t, z)

ψ21(t, z) ψ22(t, z)

)
, ψab(t, z) = τ̃

(a)
u (t − [z−1])

τ̃
(b)
u (t)

, a, b = 1,2 .

(60)

The diagonal elements are Baker-Akhiezer tau functions, while anti-diagonal terms give the 
Slavnov product

〈〈�bethe(u)|�(t)〉〉 =
M∏

j=1

1

wN
j (t)

ψ12(t,∞) , (61)

where ψ12(t, ∞) = ψ21(t, ∞)−1 = τ̃
(1)
u (t)/τ̃

(2)
u (t). Obviously, this latter condition does not nec-

essarily mean that ψ12(t, z) = ψ21(t, z)−1.
We can study the compatibility conditions for the linear problem

Dm�(t, z) = Am�(t, z) (62)

where Dm are differential operators depending on the Miwa coordinates t . The simplest choice 
for the operator Dm is Dm = 1∂m, but this condition means that �(t, z) is itself a Baker-Akhiezer
function. Obviously, it imposes further undesirable constrains on ψ21(t, z). Another possibility 
is the ansatz

Dm =
(

∂m Mm

Mm ∂m

)
≡ 1∂m + σ 1Mm . (63)

From DmDn�(t, z) = DnDm�(t, z) and the zero curvature equation for the KP hierarchy, it is 
easy to write the conditions for Mm and Am. The consequences of these definitions, on the other 
hand, are not clear yet. This structure is currently under investigation, and we expect to report 
some results in a separate work.

5. Final remarks and conclusions

We have studied the relations between open Temperley-Lieb spin chains and tau functions 
of the KP hierarchy. This analysis is a logical continuation of the works of Foda, Wheeler and 
Zuparic [6,7] for the spin-1/2-XXZ spin chain with periodic boundary conditions. In this brief 
section we would like to summarize the main results we have obtained and compare them with [6,
7]. In the sequence, we discuss some open problems.

First of all, let us briefly review the work [6,7], using – in part – the language discussed above. 
Kitanine, Maillet and Terras [30] have shown that given the Bethe roots λ = {λi | i = 1, . . . , M}, 
and a set of free variables μ = {μi | i = 1, . . . , M}, the Slavnov products [8] of the XXZ spin 
chain with periodic boundary conditions can be written as
14
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Table 1
Relation between the type of spin chain and the KP tau functions.

Spin chain Slavnov product/τ -functions Ref.

XXZ - periodic s = 1/2 ∝ τ(t) FWZ: [6,7]
XXZ - Uq(sl(2)) s = 1/2 ∝ τ (1)(t)/τ (2)(t) Here: Theorem (10)
Temperley-Lieb s > 1/2 ∝ τ (1)(t)/τ (2)(t) Here: Conjecture

〈�(μ)|�bethe(λ)〉 = detT

detV
(64)

where T and V are matrices with components

Tij ≡ Ti (μj ,λ) = ∂

∂λi

�(μj ,λ) and Vij = 1

sinh(μj − λi)
(65)

respectively. Additionally, �(μ, λ) denotes the eigenvalues of the transfer matrix – whose ex-
plicit form can be found in [30].

The change of coordinates vi = eμi/2 and ui = eλi/2 yields

Tij ≡ Ti (vj ,u) = 1

2

∂

∂ logui

�(vj ,u) and Vij = 2u
1/2
i v

1/2
j

vj − ui

. (66)

Finally, using the Cauchy’s determinant

det
i,j

(
1

ui − vj

)
= �(u)�(v)∏

i,j

(ui − vj )
, (67)

we immediately see that the Slavnov product is proportional to a KP tau function

〈�(v)|�bethe(u)〉 = G(v,u)

det
i,j

Ti (vj ,u)

�(v)
, (68)

where we have collected the unimportant multiplicative terms in the function G(v, u). Finally, 
using the ideas reviewed in [28] – and in our previous section –, one can recover the Schur 
polynomials expansion of [6,7].

Moving to the results discussed in this paper, it well known that the Hamiltonian (2) for the 
spin-1/2 is equivalent to the XXZ spin chain with Uq(sl(2)) invariant boundary conditions [15], 
see [14] and references therein for a review on this topic. Theorem (10) states that the Slavnov 
product for TL open spin chain (2) is proportional to a quotient of KP hierarchy tau functions, 
and as we have repeatedly stressed, conjecture [10,11] implies that this result is also true for 
spins s > 1/2. All these results can be summarized in Table 1.

There are many questions left unanswered, starting with the list given in the conclusions 
of [6,7]. Those problems have not been properly addressed, and their study might lead to new 
breakthroughs in the field of integrable systems. One particularly interesting question is to under-
stand how we can use this classical/quantum relation more pragmatically, since up to this point, 
we have just the description of a duality. There are also different connections between quantum 
spin chains and KP tau functions [5], and it is not clear if there is any relation between the latter 
results and the structures we studied here.

There are also some immediate problems that follow from our analysis. First of all, the conjec-
ture of [10,11] needs to be completely proved (or disproved) to settle down part of the questions 
15
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raised in this work. Additionally, it is interesting to address this classical/quantum relation for 
other spin chains, representations and other boundary conditions.

Two problems currently under investigation are the following. In section 3 we briefly de-
scribed how the Slavnov product appears as a expectation value of a matrix model. Furthermore, 
we have also seen in section 4 that we can collect the same Slavnov product in terms of a matrix 
whose diagonal components are Baker-Akhiezer functions. We have not discussed any conse-
quence of these two features, and hopefully we will be able to report some results in the future. 
Let us hope that nature does not disappoint us.
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Appendix A. Strict Young diagrams

In section 4 we have considered a transformation z → √
w to simplify the sums (47) and (48). 

In this appendix, we tried to answer if the expansions in even powers could lead to new insights. 
Although the answer is negative, we show that this expansion gives, at least, some interesting 
combinatorial results. This section may be regarded as a mathematical curiosity.

We discuss some simple consequences of the Schur polynomials expansions of the form

det
ij

F
(a)
j (vi) = P(a)(v)det

ij

∞∑
n=0

f
(a)
j,2n v2n

i , (69a)

where

P(a)(v) =
⎧⎨
⎩
∏M

j=1 v2−2N
j if a = 1∏M

j=1 v2
j if a = 2

. (69b)

The Cauchy-Binet theorem gives

det
ij

∞∑
n=0

f
(a)
j,2n v2n

i =
∑

0≤�M<...�1≤∞
�j ∈2N ,∀j∈[1,M]

det
ij

(f
(a)
i,�j

)det
ij

(v
�j

i ) . (70)

Now, we use the transformation �j = λj − j + M ∈ 2N , then

det
ij

∞∑
n=0

f
(a)
j,2n v2n

i =
∑

0≤λM<...λ1≤∞
det
ij

(f
(a)
i,λj −j+M)det

ij
(v

λj −j+M

i ) , (71)
λ∈C
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where C is the set of Young diagrams λ = (λ1, . . . , λM) satisfying the constraints λj − j + M ∈
2N . Here, c(a)

λ (u) ≡ det(f (a)
i,λj −j+M) are Plücker coordinates in Sato Grassmannian. Therefore, 

we conclude that

τ (a)
u (v) =

det
ij

F
(a)
j (vi)

�(v)
= P(a)(v)

∑
λ∈C

c
(a)
λ (u)sλ(v) . (72)

Observe that the constraints in C give interesting classes of diagrams. In particular, let us 
denote Z2 = {[0], [1]}, then

M ∈ [0] ⇒
{

λj ∈ [0] if j ∈ [0]
λj ∈ [1] if j ∈ [1]

M ∈ [1] ⇒
{

λj ∈ [1] if j ∈ [0]
λj ∈ [0] if j ∈ [1]

. (73)

These conditions also mean that the tau functions τ (1)
u (v) and τ (2)

u (v) are summed over strict
Young diagrams

λ = (λ1, λ2, . . . , λM) with λ1 > λ2 > · · · > λM ≥ 0 . (74)

Remark. From these conditions, we conclude that the when written in terms of the coordinates 
v, the Slavnov product for the spin-s Temperley-Lieb algebra is the quotient of two tau functions 
with an expansion over Schur polynomials satisfying the conditions (73) and (74).

We can study some particular cases:

• M=1: The vacuum Young diagram ∅ is admissible if and only if M = 1. In fact, for this 
case, the tau functions τ (a)

u (t) have 1-row Young diagrams with an even number boxes, that is

τ (a)
u (t) ∝ c

(a)

∅ ∅ + c
(a)
(2) + c

(a)
(4) + · · · (75)

where we have represented the Schur function by its corresponding Young diagram.
Assuming that there exists a number λmax

1 ∈ 2N such that c(a)
(λ1)

≈ 0 ∀ λ1 > λmax
1 . Then, there 

will be (λmax
1 +2)/2 nonzero components c(a)

(λ1)
(Young diagrams) contributing to the tau function 

τ
(a)
u (t). Evidently, there is, a priori, no reason to believe that such a maximal value exists; and 

this comment is just a simple exercise.

• M=2: Now we have diagrams satisfying the conditions

λ = (λ1, λ2) with λ1 > λ2 , λ1 ∈ 2N + 1 , λ2 ∈ 2N . (76)

The minimal diagram in this configuration is λmin = (1, 0). All in all, the tau functions have the 
structure

τ (a)
u (t) ∝ c

(a)
(1,0) + c

(a)
(3,0) + c

(a)
(5,0) + · · ·

+ c
(a)
(3,2) + c

(a)
(5,2) + c

(a)
(7,0) + · · ·

(77)

Observe that this case M = 2 is defined Young diagrams with an odd number of boxes.
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Fig. 2. Array structure for the spin chain in the M = 2 magnon sector.

Assuming, once again, a maximal number λmax
1 ∈ 2N+1 of boxes in the first row, it is easy to 

see that there are (λmax
1 +1)/2 diagrams in the first row. Furthermore, since the maximal number 

of boxes in the second row is λmax
2 = λmax

1 − 1, there are (λmax
2 + 2)/2 = (λmax

1 + 1)/2 diagrams 
for fixed λmax

1 . Repeating this idea to all cases 1 ≤ λ1 < λmax
1 , it is easy to conclude that the total 

number of diagrams for fixed λmax
1 is

#Diagrams =
λmax

1∑
k=1

k∈2N+1

k + 1

2
=

(λmax
1 +1)/2∑

j=1

j

= 1

8
(λmax

1 + 1)(λmax
1 + 3)

, (78)

where we have written the sum as an arithmetic progression.
Observe that we can organize the M = 2 case in the matrix structure⎛
⎜⎜⎜⎜⎜⎝

s(1,0) s(3,0) s(5,0) s(7,0) · · ·
s(3,2) s(5,2) s(7,2) s(9,2) · · ·
s(5,4) s(7,4) s(9,4) s(11,4) · · ·
s(7,6) s(9,6) s(11,6) s(13,6) · · ·

... · · · . . .

⎞
⎟⎟⎟⎟⎟⎠ (79)

where s(λ1,λ2) denotes the Schur polynomial for the partition λ = (λ1, λ2). Therefore, expres-

sion (78) gives the number of elements in and above the 
(λmax

1 +1)

2
th anti-diagonal, see Fig. 2.

• M=3: We have the diagrams

λ = (λ1, λ2, λ3) with λ1 > λ2 > λ3 , λ1 ∈ 2N , λ2 ∈ 2N + 1 , λ3 ∈ 2N .

(80)

The minimal diagram in this configuration is λmin = (2, 1, 0). The tau functions have the form

τ (a)
u (t) ∝ c

(a)
(2,1,0)

+ c
(a)
(4,1,0)

+ c
(a)
(6,1,0)

+ · · ·
c
(a)
(4,3,0) + c

(a)
(6,1,0) + c

(a)
(8,3,0) + · · ·

c
(a)
(4,3,2) + c

(a)
(6,3,2) + c

(a)
(8,3,2) + · · ·

(81)
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Fig. 3. Array structure for the spin chain in the M = 3 magnon sector.

Using our condition of a maximal λmax
1 ∈ 2N once again, it is easy to see that there are 

λmax
1 /2 diagrams of the form (λ1, 1, 0), with 2 ≤ λ1 ≤ λmax

1 . Using the same argument, the 
maximal number of boxes in the second row is λmax

2 = λmax
1 − 1, and it implies the existence of 

(λmax
2 + 1)/2 = λmax

1 /2 diagrams of the form (λmax
1 , λ2, 0) for fixed λmax

1 and λ2 ≥ 1. Finally, 
if we fix the length of the second row λmax

2 , there are (λmax
3 + 2)/2 = (λmax

2 + 1)/2 diagrams 
of the form (λ1, λmax

2 , λ3) for 0 ≤ λ3 ≤ λ2 − 1. For a maximal λmax
1 , the total number of Young 

diagrams is

#Diagrams =
λmax

1∑
k=2

k∈2N

k−1∑
j=1

j + 1

2
=

λmax
1∑

k=2
k∈2N

k/2∑
j=1

j

= 1

8

λmax
1∑

k=2
k∈2N

k(k + 2) = 1

48
λmax

1 ((λmax
1 )2 + 6λmax

1 + 8)

. (82)

We also have an array structure⎛
⎜⎜⎜⎜⎜⎝

s(2,1,λ3) s(2,1,λ3) s(4,1,λ3) s(6,1,λ3) · · ·
s(4,3,λ3) s(6,3,λ3) s(8,3,λ3) s(10,3,λ3) · · ·
s(6,5,λ3) s(8,5,λ3) s(10,5,λ3) s(12,5,λ3) · · ·
s(8,7,λ3) s(10,7,λ3) s(12,7,λ3) s(14,7,λ3) · · ·

... · · · . . .

⎞
⎟⎟⎟⎟⎟⎠ for λ3 = 0,2,4, . . . (83)

Finally, we can also represent this structure diagrammatically as Fig. 3.

• M: For general M , the minimal Young diagram is given by

λmin = (M − 1,M − 2,M − 3, . . . ,2,1,0) . (84)

Using the arguments above, we can delineate the argument for the number of boxes for configu-
rations limited by λmax

1 in the M-magnon sector as

#Diagrams =
λmax

1∑
k1=M−1

k1∑
k2=M−2

· · ·
kM−2∑

kM−1=1

kM−1 + 1

2
, (85)

where we have use initial condition k0 = 1.
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