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1 Introduction

The search for physics beyond the Standard Model (BSM) is one of the most pursued re-
search avenues in modern high-energy physics. Models of BSM physics can be constructed
from the top down by postulating a novel set of first principles, as e.g. in grand unified [1–
3] or supersymmetric [4–7] theories, or from the bottom up by augmenting the Standard
Model (SM) with new particles and interactions that address specific hints for BSM physics,
such as e.g. heavy neutral leptons (HNLs) generating neutrino masses [8–15], axions ad-
dressing the strong CP problem [16–20] or little Higgs models addressing the hierarchy
problem [21–24]. The new particles predicted in both approaches are constrained to be
relatively heavy or rather weakly coupled in order to be consistent with bounds from past
and current collider and intensity experiments, respectively.

Effective field theories (EFTs) describe physics at a specific energy scale, with the
impact of physics at other scales being contained within the free parameters of the the-
ory [25, 26]. They can be used to describe the impact of new physics (NP) at energy scales
well above the characteristic energy scale of the EFT while remaining agnostic about the
specific realisation of NP in nature. EFTs are constructed by identifying the relevant fields
and symmetries that determine the physics one intends to characterise. The theory then
contains all available operators constructed from these fields. In particular, EFTs typically
contain an infinite tower of higher dimensional, non-renormaliseable operators that capture
the impact of the heavy degrees of freedom (DOFs). At the electroweak (EW) scale, there
are two EFTs that encompass the entire SM and that are commonly used to include heavy
NP [27]: Standard Model effective field theory (SMEFT), which is composed of all the
SM fields including the Higgs doublet and restricted by the SM gauge group [28–32], and
Higgs effective field theory (HEFT), which lifts the restriction on the Higgs boson to be
part of a doublet [33–36]. EFTs at lower energies, which encompass only a part of the
SM, account for the impact of the heavy SM DOFs via their higher dimensional operators.
Examples include light effective field theory (LEFT), which describes the interactions of
the SM after integrating out its heavy particles [37–40], chiral perturbation theory (χPT),
which encompasses the interactions of light hadrons [41–47], heavy quark effective theory
(HQET) [48–53] and non-relativistic quantum chromodynamics (NRQCD) [54, 55], which
capture the interactions of the hadrons containing heavy quarks, and soft-collinear effec-
tive theory (SCET), which describes physics of highly energetic particles, appearing for
instance in jets [56–62].

These EFTs do not include the large class of SM extensions that feature new feebly
interacting particles, such as axion-like particles (ALPs), light scalar particles, dilatons,
HNLs, and novel gauge bosons, with masses at or below the energy scale of the EFT. In
this paper, we address this gap by developing a framework for constructing portal effective
theories (PETs), which couple SM DOFs to light hidden messenger particles. To satisfy
all existing experimental bounds, see e.g. [63–65], the latter can couple only very weakly
to the SM fields. Besides the high intensity data sets of CMS [66–68], ATLAS [69] and
LHCb [70–76], and the high luminosity runs of the Large Hadron Collider (LHC) [77], which
are optimised for such searches, these particles could be produced in large quantities via
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Figure 1. The PET framework extends a given EFT of the SM by combining its operators with
portal operators that couple the SM DOFs to messenger fields that are dynamic at the relevant
energy scale. The portal operators Oportal

nm can be collected into a set of portal currents Jportal
n that

allow for a spurion analysis and for e.g. model-independent bounds. Here n andm symbolically label
SM and hidden sector operators, respectively, so that Lportal = OSM

n Jportal
n . The PET framework

is independent from additional secluded particles that do not interact directly with the SM fields.

meson decays in fixed target experiments such as NA62 [78–84], KOTO [85], SeaQuest [86],
or SHiP [63]. If the messenger particles are unstable and decay predominantly into SM
particles via the suppressed portal interactions, they are long-lived and can also be searched
for in dedicated long-lived particle (LLP) experiments [87], such as MATHUSLA [88],
FASER [89] and CODEXb [90].

By extending the existing EFTs of the SM, the PETs encompass all portal operators
that conform with the symmetries of the relevant EFT, and can be used to constrain
the coupling of the SM to light hidden sectors while remaining largely agnostic about
the internal structure of the hidden sector. The hidden sector can in general contain
an arbitrary number of secluded fields that do not couple directly to the SM but interact
among themselves and with the messenger fields. This setup, which is illustrated in figure 1,
describes both heavy and light new particles, since heavy particles with masses well above
the characteristic energy of the EFT are captured by infinite towers of SM, portal, and
hidden operators. Our comprehensive approach builds on previous works, in which SM
particles are coupled to specific hidden particles, see e.g. [91–95], and is closely related to
EFTs describing non-relativistic dark matter (DM) interactions [96–104].

To demonstrate the power of the PET framework, we construct a number of PETs
and highlight the connections between them. Extending SMEFT, we first construct EW
scale PETs that couple the SM to a light messenger field of spin 0, 1

2 , or 1 and encompass
all available non-redundant portal operators up to dimension five. To connect these portal
SMEFTs to PETs that describe the interactions of hidden fields at the strong scale, where

– 4 –
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many high intensity experiments search for feebly interacting particles, we subsequently
construct portal LEFTs, which additionally encompass quark-flavour violating portal op-
erators up to dimension seven. These additional operators capture leading order (LO)
contributions to hidden sector induced, strangeness-violating kaon decays. Since the per-
turbative description of quantum chromodynamics (QCD) breaks down at low energies, it
is not possible to compute transition amplitudes for meson decays using standard pertur-
bative methods in QCD, however, χPT provides an appropriate framework. In order to
supply a complete toolkit for the computation of hidden sector induced meson transitions,
we construct portal χPTs, which couple the light pseudoscalar mesons to a messenger of
spin 0, 1

2 , or 1, and match them to the corresponding portal LEFTs. For this matching,
we adapt to our framework a number of well-established non-perturbative techniques used
to match χPT to QCD in the SM, as in e.g. [105–112].

Throughout this work, we encode the coupling to hidden sectors in terms of external
currents, as depicted in figure 1. We use these currents to derive the coupling of χPT with
the messenger particles via a spurion analysis, where we require that the χPT path integral
changes like the QCD path integral under transformations of the external currents. Besides
simplifying the spurion analysis, the external current approach has two advantages: first, it
clarifies the discussion, as most of our work is independent of the specific content of the ex-
ternal currents. Second, this formulation makes it easier to generalise our framework. For
instance, inclusive amplitudes do not encode any detailed information about the individual
hidden sector particles. Therefore, we expect that, when computing such amplitudes, it
is possible to integrate out the hidden fields entirely. In the resulting effective theory, the
impact of hidden sectors would be encoded via an infinite tower of external current interac-
tions, where the currents are space-time dependent functions of hidden sector parameters
rather than being functionals of the hidden fields. These currents can then serve as a source
or drain of energy, angular momentum, or other conserved quantum numbers, which, after
matching the effective theory to the full theory, should exactly mimic the impact of the
hidden sector fields on inclusive scattering amplitudes.1 This means that the currents could
be used to efficiently parameterise and therefore constrain the coupling to arbitrary hidden
sectors in an extremely model independent way.

Organisation and novel contributions. Figure 2 visualises the structure of this paper,
which is organised as follows. In section 2, we summarise aspects of QCD at low energies
that are pertinent to the discussion in the remainder of this work. In particular, we focus on
the axial anomaly, the large nc expansion, and the impact of higher dimensional operators
that result from integrating out the heavy SM particles. We use the readers familiarity
with the topic to introduce a notation that lends itself to the transition from QCD to
χPT. In section 3, we construct portal SMEFTs and LEFTs that couple the SM to a single
messenger field. Furthermore, we construct the corresponding hidden currents and specify
the interaction Lagrangian that couples the currents to the SM fields. In section 4, we use

1This approach is inspired by a technique from non-equilibrium quantum field theory, where the impact
of an external bath is captured by the von Neumann density matrix in the path integral, see e.g. [section
3.2 in 113], and this density matrix can be recast as an infinite tower of external current interactions.

– 5 –
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Portal SMEFTs
(d ≤ 5)

Portal LEFTs
(d ≤ 7)

EWSB

Integrating out heavy fields

Portal χPTs
(NLO)

Spurion analysis

Coefficient
matching

Feynman rules

Expansion

Golden processes
K± → π±s
K± → l±ξa
π0 → γv

Figure 2. Overview of our procedure to derive the PET Lagrangian that couples the light mesons
to messengers of spin 0, 1

2 , or 1. In the final step, we apply the Feynman rules extracted from the
portal Lagrangian to compute universal amplitudes for the three golden processes.

the external current approach to derive the coupling of χPT to hidden sectors captured
by the portal LEFTs. In section 5, we list the χPT portal interactions in terms of mesons
and hidden fields, starting from the χPT Lagrangian derived in section 4. In section 6,
we use the interactions derived in the previous section to compute smoking gun processes
for meson decays into hidden fields, which are relevant for intensity experiments such as
NA62 and KOTO. We additionally connect our results to characteristic BSM models, such
as ALPs, scalar portal models, HNLs and dark photons. Section 7 concludes the paper
with a discussion of the results and an outlook to prospective future work. Further details
about the derivation of the main results of this paper are given in appendices A to D.

In the following list we summarise the main new results that we present throughout
this paper.

Section 2

• We generalise the standard large nc counting formula to also capture diagrams that
contain higher-dimensional four-quark operators generated by virtual W -boson ex-
changes at the EW scale.

• We construct an alternative basis for the four-quark operators that contains four
independent octet operators and one 27-plet operator. Compared to the standard
basis, cf. (2.36), which consists of six operators, this basis simplifies the matching
between χPT and QCD.

Section 3

• We develop the PET framework and define the procedure for constructing general
PETs.

• We construct EW scale PETs that couple SMEFT to a light messenger particle
with spin 0, 1

2 , or 1, which is neutral under the unbroken SM gauge group GSM =
SU(3)c × SU(2)L × U(1)Y . These PETs encompass all available portal operators
up to dimension five, and are embedded into 21 portal currents. We further derive
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the shape of the EW portal Lagrangian after EWSB in the unitary gauge, which is
sufficient for computations at tree level.

• We construct strong scale PETs that couple LEFT to a light messenger particle
with spin 0, 1

2 , or 1 that is neutral with respect to the broken SM gauge group
Gsm = SU(3)c × U(1)EM. These PETs contain all available portal operators up
to dimension five and additionally encompass all LO quark-flavour violating portal
operators up to dimension seven.

• We embed the portal LEFTs into ten external portal currents J ∈ {Sω, Θ, M , Lµ,
Rµ, Tµν , Γ, Hs, Hl, Hr} that parameterise the coupling of the messenger particles to
QCD.

Section 4
• We derive the coupling of χPT to the scalar current Sω. The SM does not contain

an external current that couples to QCD like Sω, and hence this term is usually not
included in SM χPT. Our result generalises the χPT Lagrangian in [106], where the
authors derived the coupling of a light Higgs boson to χPT, which interacts with
QCD via an operator hGµνGµν that is encompassed in Sω.

• Using the spurion technique, we derive the coupling of χPT to the four external
currents Γ, Hl, Hr and Hs. The coupling of χPT to constant currents Γ and Hx
is well-understood [42, 114–117]. Here, we generalise the description to account for
spacetime dependent external currents.

• The EW sector of the portal χPT Lagrangian contains 27 coefficients κ, 21 of which
are not fixed completely by SM observations. We estimate the two coefficients κΓ and
κMΓ +κM ′Γ , that measure the strength of the chromomagnetic current interactions, the
seven coefficients κxω, which measure the strength of the scalar current interactions,
and the 13 coefficients κxy , that measure the coupling of χPT to the hidden currents
Hx and Hx. The authors of [106] have estimated four out of the seven coefficients
κxω. Here, we adapt their strategy to also estimate the remaining three coefficients.
Similarly, the coefficients κxy are known in the large nc limit [107, 108, 110–112]. Here,
we adapt the strategies used in [106–108, 112] in order to obtain improved estimates
for the κxy that incorporate corrections beyond the large nc limit.

Section 5
• We expand the χPT Lagrangian in the meson matrix Φ, and present a complete list

of one- and two-meson interactions that couple χPT to generic hidden sectors.

Section 6
• We compute the most general LO transition amplitudes for three smoking-gun pro-

cesses with hidden particles, relevant for searches at fixed target experiments such as
NA62 and KOTO. Specifically, we consider the following meson decays: K± → π±si,
K± → `±ξa, and π0 → γv, where si, ξ, and vµ are a spin 0, spin 1

2 , and spin 1 hidden
field, respectively.

– 7 –
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2 Quantum chromodynamics

QCD is a SU(nc) gauge theory, where nc = 3 is the number of colours. It depends on
n2
c − 1 = 8 gluons Gµ as gauge fields and features nf massive quark flavours f. Using the

QCD gauge coupling gs, we define the fine-structure constant and its inverse as

αs = g2
s

4π , ω = 2π
αs

. (2.1)

The inverse fine-structure constant ω is the natural parameter for describing the dependence
of the gauge coupling on the renormalisation scale µ. In the modified minimal subtraction
(MS) scheme, it obeys the particularly simple renormalization group equation (RGE) [118,
119]

dω
dt = βs , βs = β0 +O

( 1
ω

)
, β0 = 11

3 nc −
2
3nf , (2.2)

where t = lnµ/Λ is the logarithm of the renormalisation scale, and β0 is the LO coefficient
of the β-function. In this scheme, the heavier quark flavours have to be integrated out
when they become inactive, so that nf ranges from six above the top mass to three below
the charm mass. At low energies, this prescription reveals an infrared (IR) divergence for
the coupling strength at [120–128]2

ΛMS
QCD(ω) = (343± 12lat)MeV , (2.3)

which invalidates the perturbative expansion in the gauge coupling. Working with ω sim-
plifies the inclusion of flavour invariant external currents introduced in section 3. For the
same reason, it is also convenient to normalise the gluon fields such that the covariant
quark derivative Dµ = ∂µ − iGµ is independent of gs. Then, the kinetic part of the QCD
Lagrangian is

LkinQ = LωQ + i q† /Dq + i q /Dq† , LωQ = −ωΥ(x) , Υ(x) = (4π)−2 〈GµνGµν〉c , (2.4)

where angle brackets 〈◦〉c indicate a trace in colour space, and the gauge singlet Υ(x)
is normalised such that the gauge coupling does not explicitly appear in the anomalous
contribution to the trace of the improved stress-energy tensor T introduced below. Fol-
lowing [appendix J of 129], we use two distinct left-handed Weyl fermions q and q to
describe each Dirac fermion (q, q†).3 The kinetic Lagrangian is invariant under global
flavour rotations

qa → V b
a qb , qȧ → qḃV

ȧ
ḃ , (V ,V ) ∈ GLR = U(nf)L ×U(nf)R , (2.5)

where nf = 3 is the number of active quark flavours below the charm mass and bold-
face symbols indicate matrices in flavour space. Lower (un-)dotted indices denote objects
that transform as members of the fundamental representations of U(nf)L and U(nf)R,

2We label the errors of quantities calculated on the lattice with the subscript lattice (lat).
3Note that the bar over the fermion does not denote a mathematical operation but is part of its definition.
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respectively, while upper indices denote objects that transform as members of the anti-
fundamental representations.4

Various mechanisms, either spontaneously or explicitly, break the GLR symmetry of
the kinetic Lagrangian. First, the finite vacuum expectation values (VEVs) of the light
and strange quark condensates [128, 130–137]

Σud = −1
2 〈0|uu + dd|0〉MS

2GeV + h.c. = (272± 5lat)3 MeV3 , (2.6a)

Σs = −〈0|ss|0〉MS
2GeV + h.c. = (296± 11lat)3 MeV3 , (2.6b)

spontaneously break GLR to the global vector symmetry GV ∼= U(nf)V by causing the
QCD vacuum to change under the action of the axial quotient group U(nf)A ∼= GLR/GV .
In mass-independent renormalisation schemes, the ratio

Σs
Σud

= 1.29± 0.16lat (2.7)

is scale independent [109, 138]. Second, the SM Higgs mechanism explicitly breaks the
chiral symmetry by inducing the mass term

LmQ = −〈mQ〉f + h.c. , m = diag(mu,md,ms, . . . ) , Qȧ
a = qaq

ȧ , (2.8)

where 〈◦〉f denotes a trace in flavour space and Q is a scalar quark bilinear. The formulation
of the mass term as a trace of matrices in flavour space is unusual in standard treatments of
QCD, but it is convenient for understanding correspondences between QCD and χPT, and
serves as preparation for the matching between these two theories, performed in section 4.
Third, the axial anomaly explicitly breaks the global axial U(1)A flavour symmetry that is
part of U(nf)A [139–141]. In general, anomalies appear as a result of the transformation
behaviour of the integration measure in the generating functional

ZQ[J ] = N
∫
Dϕ exp

(
i
∫

(LQ +OiJi) dx
)
, (2.9)

where ϕ collectively denotes the QCD fields, the Oi are local, gauge-invariant operators
composed of QCD fields, and the Ji are external currents. The axial anomaly is related to
the topologically nontrivial vacuum structure of QCD, which also causes the existence of
a further contribution to the QCD Lagrangian,

LθQ = −θw(x) , w =

〈
G̃µνG

µν
〉
c

(4π)2 = εµνρσ
∂µωνρσ0
(4π)2 , ωνρσ0 =

〈
GνGρσ + 2

3 iGνGρGσ
〉
c
,

(2.10)

where G̃µν = εµνρσG
ρσ/2 , and θ is the QCD vacuum angle [142, 143], which is experimen-

tally constrained to be |θ| . 10−10 [144]. Although the topological charge density w(x) is a
4The index-notation is inspired by the (un-)dotted Greek indices used in supersymmetry (SUSY) to

distinguish between left- and right-chiral spinor indices. In contrast to the SUSY notation, the Latin indices
we use run over nf -tuples in the (u, d, s) flavour space of QCD. We suppress flavour indices whenever the
meaning is captured by the implicit boldface notation.
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total derivative of the three-dimensional Chern-Simons (CS) term ωνρσ0 (x), its contribution
to the QCD action does not vanish, since the gluon fields remain finite at spatial infinity
for field configurations with finite winding number nw =

∫
w(x) d4x [145, 146]. The axial

anomaly manifests itself as a shift of the vacuum angle that results from the transformation
of the path integral measure Dϕ under U(1)A flavour rotations. The typical energy scale
associated with such a shift is measured by the topological susceptibility [147, 148]

χ = 〈0|n2
w|0〉
V

= − i
∫
〈0|Tw(x)w(0)|0〉 d4x = (66± 13lat)4 MeV4 , (2.11)

where V is a spacetime volume element and T is the time ordering operator. The quark
contribution to the topological susceptibility is governed by their condensates (2.6) and
masses (2.8) [149, 150],

1
χ

= 1
χ0

+
〈
m−1〉

f
Σ0

, Σ0 = Σud

∣∣∣∣
mud→0

= Σs

∣∣∣∣
ms→0

, (2.12)

where χ0 is the ‘quenched’ topological susceptibility obtained in a pure Yang-Mills (YM)
theory without quark fields, and Σ0 is the value of the quark condensates in the chiral
limit. Besides the perturbative expansion in the fine-structure constant that breaks down
in the vicinity of the QCD scale (2.3), one may also expand QCD in powers of n−1

c [151],
which corresponds to a semi-classical expansion in an effective theory of weakly interacting
mesons and glueballs. The axial anomaly (2.10) vanishes at zeroth order in the large nc
limit [152], which restores the otherwise badly broken U(nf)A flavour symmetry. Including
higher orders, the effect of the axial anomaly is therefore suppressed by factors of n−1

c .
The large nc expansion is defined such that the value of the QCD scale, which depends

on the product ncω−1, remains finite as nc goes to infinity [151, 153–155]. Therefore, the nc
enhancement of diagrams with additional closed colour loops balances with the suppression
due to additional powers of the coupling ω−1 ∝ n−1

c , and it can be shown that connected
diagrams can scale at most as n2

c , while disconnected diagrams scale like the product of
their connected subdiagrams. The leading connected diagrams do not contain any closed
quark loops or QCD θ angle insertions. Diagrams with nq quark loops and nθ vacuum
angle insertions scale at most as [151, 153–155]

n2−nq−nθ
c . (2.13)

Since the leading connected diagrams scale with a positive power of nc, correlation func-
tions for operators that can be decomposed into multiple gauge singlets are dominated by
contributions from disconnected diagrams. Hence, renormalised QCD correlation functions
obey the large nc factorization rule

〈0|OiOj |0〉 = 〈0|Oi|0〉 〈0|Oj |0〉
(
1 +O

(
n−1
c

))
, (2.14)

where the Oi are local colour singlets that cannot be decomposed further into other colour
singlets. This ‘vacuum saturation hypothesis’ can be used to match certain QCD observ-
ables with their χPT counterparts.
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In addition to the flavour symmetry, the classical theory associated with the kinetic
Lagrangian (2.4) is conformally invariant. The generators of the conformal Poincaré group
can be expressed via the Hilbert stress-energy tensor

T µν = 2 ∂L
∂gµν

− gµνL , (2.15)

which is divergenceless, symmetric, and traceless in the case of conformal theories.5
The conformal invariance of QCD is broken, at the classical level, by the masses of the
quarks (2.8), and, at the quantum level, by the conformal anomaly associated with the run-
ning of the gauge coupling (2.2), as it introduces an additional mass scale. Consequently,
both terms contribute to the trace of the Hilbert stress-energy tensor [157–160],

TQ = −LmQ + βs
ω
LωQ = (〈mQ〉f + h.c.)− βsΥ(x) . (2.16)

Notably, the dependence on the inverse fine-structure constant ω cancels in this expression.
In section 4, we use this trace relation to express Υ(x) as a linear combination of χPT op-
erators. Loop corrections associated with the quark masses generate another contribution
to the trace of the stress-energy tensor,

γm(〈mQ〉f + h.c.) , (2.17)

where γm is the anomalous dimension of the SM quark masses. However, we do not keep
track of this subleading contribution.

Summary. The complete QCD Lagrangian without EW contributions is constructed
by adding gauge fixing and ghost Lagrangians to the kinetic (2.4), mass (2.8), and axial
anomaly (2.10) terms, so that

LQ = LkinQ + LmQ + LθQ + LξQ + LghostQ , (2.18)

where, for covariant gauges,

LξQ = 1
ξ

〈
(∂µGµ)2

〉
c
, LghostQ = 2 〈∂µcDµc〉c , (2.19)

with ξ being the gauge-fixing parameter while c and c are the QCD ghost-fields.

2.1 Electroweak interactions

Besides the quarks and gluons, the SM at low energies contains an EW sector consisting
of the photon field, the charged electron and muon fields, and the left-handed SM neutrino
fields. QCD couples to the photons Aµ via the left- and right-handed vector current
interactions

LvQ = −〈lµAQµ〉f −
〈

rµAQµ

〉
f
, rµA = lµA = vµA , vµA = eqAµ , (2.20)

5The equally conserved canonical stress-energy tensor associated with the Noether current of spacetime
translations is generically neither symmetric nor traceless for conformal theories. This shortcoming can
be overcome by adding model dependent improvement terms [156], which then must result in the same
expression as the Hilbert stress-energy tensor.
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where q = diag(2,−1,−1)/3 is the quark-charge matrix,

Qµb
a = qaσ

µqb† , Q
µḃ
ȧ = q†ȧσ

µqḃ , (2.21)

are left- and right-handed vectorial quark bilinears, and sans-serif boldface font indicates
traceless matrices. The EM currents are parity blind (vµA = lµA = rµA), traceless, diagonal,
and couple identically to the down and strange quarks,

vµA = diag(vµA
u
u, v

µ
A
d
d, v

µ
A
s
s) , vµA

d
d = vµA

s
s = −2vµA

u
u , (2.22)

where individual fermion flavours are indicated by upright font. The split of the parity
blind EM current into a left- and right-handed current simplifies the generalisation to other
spin 1 currents. However, we will drop this distinction and use vµA when considering the
phenomenology of the hidden messengers in sections 5 and 6.

The impact of diagrams at the EW scale with virtual exchanges of the heavy SM fields
that have been integrated out can be captured at the strong scale by introducing an infinite
tower of higher dimensional operators. As their mass-dimensions are larger than four, these
operators are suppressed by powers of6

εSM = ∂2

Λ2
SM

, ∂2 . m2
c , ΛSM = 4πv , (2.23)

which measures the ratio between the EW and low energy momentum scales, where
v = (

√
8GF )−1/2 = (174.10358 ± 0.00004exp)GeV is the Higgs VEV [144].7 Since the

renormaliseable strong and EM interactions conserve quark flavour, the higher dimen-
sional operators contribute at LO to flavour violating processes such as kaon decays. LO
transitions that violate flavour by one unit, ∆f = ±1, are generated by operators with
mass dimension five and six.

At tree level, the contribution depicted in figure 3a and its Hermitian conjugate in-
duce the leptonic charged current interactions that couple quarks to charged leptons and
neutrinos,

LWQ = −〈lµWQµ〉f , lµW = −v−2
(
Vudλ

d
u + Vusλ

s
u

) ∑
`=e,µ

l†`σ
µν` + h.c. , (2.24)

where the Vij are elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. We use
the matrices

λba , (λba)
j
i = δaiδ

bj (2.25)

to construct an orthonormal basis in flavour space. The weak leptonic charged current is
traceless, Hermitian, and has no neutral contributions, so that

lµW
d
u = lµ†W

u
d , lµW

s
u = lµ†W

u
s , (2.26)

6The relevant operators in this paper are generated by contributions with virtual W -boson exchanges, so
that they are suppressed by factors ∂2g2

w

/
m2
W that involve the mass of the W -boson mW rather than the

Higgs VEV. We write the ratio of scales in terms of v2 = 2m2
W

/
g2
w to simplify the shape of the equations

that appear throughout this paper.
7The subscript exp indicates an experimental error.

– 12 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
3

l†` ν†`

u
d

d
u

W

(a) Vector current interaction.

s†

γ

d u

u†

W

(b) Electromagnetic dipole.

s†

g

d u

u†

W

(c) Chromomagnetic dipole.

Figure 3. Processes that generate higher dimensional operators at the strong scale with two
quarks. Panel a shows the tree level diagram that describes the charged current interaction (2.24).
Panels b and c show the 1-loop photon and gluon diagrams that describe the dipole interactions
(2.28). The cross indicates a mass insertion that can appear at either external fermion leg. Up type
quarks are collectively denoted by u = u, c, t.

while all remaining entries vanish. In order to prepare for the inclusion of the portal current
interactions in section 3, it is convenient to absorb the charged current interaction into the
left-handed external current

lµ = lµA + lµW , (2.27)

so that the vector current Lagrangian (2.20) accounts for both EM and weak charged
current interactions.

At one-loop, the contributions depicted in figures 3b and 3c with a virtualW -boson ex-
change and a light quark mass insertion at one of the external legs further induce the electro-
and chromomagnetic-dipole interactions between two quarks and a gauge boson [161]

LτQ = −Λ−2
SM 〈τ

µνQµν〉f + h.c. , LγQ = −Λ−2
SM

〈
γGQ̃

〉
f

+ h.c. , (2.28)

where the tensorial and scalar quark bilinears are

Qµν
ȧ
a = qaσµνq

ȧ , Q̃ȧ
a = qaσµνG

µνqȧ . (2.29)

The tensorial EM-dipole current and the scalar electro- and chromomagnetic-dipole cur-
rents are

τµν = 1
3F

µνγA , γV = m

λds ∑
u=u,c,t

cVu V
†
suVud + h.c.

 , (2.30)

where the indices V = G, A denote either gluon or photon contributions and the cVu are
known Wilson coefficients [161]. In the following, we abbreviate the chromomagnetic-dipole
current by γ = γG. The dipole currents are strangeness violating, but not necessarily
Hermitian. The only nonvanishing contributions are

γsd , γds , τµν sd , τµνds . (2.31)
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s† u†

u
d

d
u

W

(a) Tree-level diagram.

s†

d

q†

q†

q

q
u

u†
g

W

(b) One-loop penguin diagram.

Figure 4. Processes that generate higher dimensional operators at the strong scale with four
quarks. The tree level diagram a generates the operators O1 and O2 in (2.36a), while the penguin
diagram in b generates the operators O3 toO6 in (2.36b) and (2.36c). Up-type quarks are collectively
denoted by u = u, c, t.

The operator Q̃ also has nonvanishing condensates

ΣGud = −1
2 〈0|Q̃

u
u + Q̃d

d|0〉MS
2GeV + h.c. = (434± 4lat)5 MeV5 , (2.32a)

ΣGs = −〈0|Q̃s
s|0〉MS

2GeV + h.c. = (425± 14lat)5 MeV5 , (2.32b)

which are estimated using QCD sum rules [162–165] or lattice computations [166].8 Their
ratios with the VEV of light quark condensate (2.6a) are

ΣGud
Σud

= (875± 31lat)2 MeV2 ,
ΣGs
Σs

= (731± 73lat)2 MeV2 . (2.33)

Note that the ratio between the two quark-gluon condensates

ΣGs
ΣGud

= 0.90± 0.15lat . (2.34)

is consistent with one.

Four-quark interactions. The diagrams in figure 4 depict the contributions that gen-
erate four-quark interactions of the shape [167–170]

LhQ = −V
†
suVud
v2

6∑
ι=1

cιOι + h.c. , (2.35)

where |V †su| |Vud| = 0.2186 ± 0.00008 [144] and the cι are known Wilson coefficients [161].
After neglecting EM penguin diagrams, which are suppressed by at least one power of αEM,
there are six four-quark operators that violate quark-flavour by one unit [171],

O1 = s†σµu u†σµd , O2 = s†σµd u†σµu , (2.36a)
O3 = s†σµd q†σµq , O4 = s†σµq q†σµd , (2.36b)
O5 = s†σµd qσµq

† , O6 = s†q† qd . (2.36c)
8For simplicity, we indicate errors for values estimated using QCD sum rules with the same label as

errors for values calculated on the lattice.
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→
g

Figure 5. Replacement used to determine the number of closed colour loops in QCD diagrams
with four-quark operators. Diagrams with a given number of four-quark vertices contain the same
number of colour loops as diagrams where each four-quark vertex is replaced by the subdiagram
with gluon exchange that is depicted on the right-hand side.

Since these operators are necessarily neutral, they can only violate quark-flavour by medi-
ating d ↔ s transitions and thereby violate strangeness, ∆s = ±1. The operators O1 and
O2 (2.36a) are generated by the tree-level diagram shown in figure 4a, while the operators
O3 to O6 (2.36b) and (2.36c) are generated by one-loop penguin diagrams as shown in
figure 4b. Although the penguin operators are suppressed by loop-factors, the operator
O6 is enhanced at low energies due to chirality effects, so that it contributes at LO to
certain transitions. For a more detailed discussion, see section 4.4. We organise the four-
quark operators (2.36) according to their chirality structure into a scalar-scalar and two
vector-vector interaction terms

LhQ = −v−2
(
hs
ȧb
aḃ
Q†aȧQ

ḃ
b + hr

bḃ
aȧQµ

a
bQ

µȧ
ḃ

+ hl
bd
acQµ

a
bQ

µc
d

)
, (2.37)

where the parameters hs, hr, and h are four-index tensors in flavour space, which we indicate
using symbols in Fraktur font. Comparing this formulation of the four-quark Lagrangian
with the operators listed in eq. (2.36), the parameters are given as

hs = V †suVudc6
∑

u=u,d,s
λus ⊗ λdu + h.c. , hr = V †suVudc5λ

d
s ⊗ 1 + h.c. , (2.38a)

hl = V †suVud

c1λ
u
s ⊗ λdu + c2λ

d
s ⊗ λuu + c3λ

d
s ⊗ 1 + c4

∑
u=u,d,s

λus ⊗ λdu

+ h.c. , (2.38b)

where ⊗ denotes a tensor product.
Connected diagrams with four-quark vertices in Lagrangian (2.37) are not included

in standard derivations of the large nc power counting rule eq. (2.13) [151, 153, 155]. To
generalise this counting rule to diagrams with a finite number of four-quark vertices, we use
the replacement shown in figure 5 in order to map a given set of diagrams with four-quark
vertices onto an equivalent set of pure QCD diagrams without four-quark vertices. This
replacement is chosen such that the resulting diagram always contains the same number of
closed colour loops as its corresponding original four-quark diagram. The overall large nc
scaling of the diagram differs from the scaling of the original diagram in two ways: first, the
two three-point vertices in the pure QCD diagrams are associated with a total prefactor
of ω−1 ∝ n−1

c , whereas the four quark vertices scale as ω0 ∝ 1, so that the four-quark
diagrams are enhanced by one relative factor of nc for each four-quark vertex. Second,
the number of quark loops in the pure QCD diagrams can be lower than the number of
quark loops in the original four-quark diagrams, even though both diagrams contain the
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same number of closed colour loops. Hence, the leading contribution to the infinite series of
diagrams with exactly nh four-quark insertions and an arbitrary number of colour loops is
given by the subset for which the equivalent pure QCD diagram contains exactly one quark
loop. Applying the standard counting formula (2.13), we find that the leading four-quark
diagrams scale as

n1−nθ+nh
c , nh > 0 . (2.39)

Further, the leading diagrams with nh four-quark insertions, as well as nq simple QCD
quark loops in addition to the quark loops associated with the four-quark vertices, scale as

n1−nq−nθ+nh
c , nh > 0 , (2.40)

which extends the usual scaling behaviour (2.13).

Summary. The EW interactions induce the EW correction to the QCD Lagrangian (2.18)

LEWQ = LγQ + LτQ + LvQ + LhQ , (2.41)

which is given by the Lagrangians (2.20), (2.28) and (2.35), where Lagrangian (2.20) in-
cludes the full current (2.27). The EW interactions in Lagrangians (2.24), (2.28) and (2.35)
also generate additional contributions to the trace of the Hilbert stress-energy tensor (2.16).
After using the quark field equation of motion (EOM) in the presence of external currents
in eq. (A.23), the EW contribution becomes

T EW
Q = LγQ + LτQ − LWQ + 2LhQ . (2.42)

2.2 Flavour symmetry

Under the flavour symmetry (2.5) of the kinetic Lagrangian (2.4), the quark bilinears (2.8),
(2.21), and (2.29) transform as

Q→ V QV , Qµ → V QµV
† , Qµν → V QµνV , (2.43a)

Q̃→ V Q̃V , Qµ → V
†
QµV . (2.43b)

As a consequence, the QCD path integral (2.9)

ZQ = ZQ[ω, θ,m, lµ, rµ,h, τµν , hs, hr, hl] , (2.44)

is invariant under global GLR flavour rotations that transform the external currents as9

θ → θ − i
〈

lnV V
〉

f
, m→ V

†
mV † , hs

ḃd
aċ → V u

a V
ḃ
ẏhs

ẏv
uẋV

†ẋ
ċV
†d
v , (2.45a)

lµ → V lµV † , γ → V
†
γV † , hr

bḋ
aċ → V u

a V
†b
vhr

vẏ
uẋV

†ẋ
ċV

ḋ
ẏ , (2.45b)

rµ → V
†rµV , τµν → V

†
τµνV † , hl

bd
ac → V u

a V
†b
vhl

vy
uxV

x
c V

†d
y . (2.45c)

9Being a function of the gauge coupling only, the inverse fine-structure constant ω is invariant under
flavour rotations.
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Remarkably, the path-integral is additionally invariant under local flavour rotations that
transform the left- and right-handed currents in (2.20) as

lµ → V lµV † + iV ∂µV † , rµ → V
†rµV + iV †∂µV , (2.46)

while the transformation behaviour of the other external currents is unaltered. This trans-
formation law is analogous to that of gauge fields. To facilitate the construction of operators
that are invariant under the action of GLR, it is convenient to define covariant derivatives
for the quark fields

Dµq = ∂µq − i lµq , Dµq† = ∂µq† − i rµq† , (2.47)

as well as field-strength tensors for the left- and right-handed currents

lµν = ∂µlν − ∂ν lµ − i [lµ, lν ] , rµν = ∂µrν − ∂νrµ − i [rµ, rν ] . (2.48)

While the symmetry of the path integral with respect to (2.46) corresponds mathematically
to a gauge symmetry, it is important to emphasise that lµ and rµ are not fields in a physical
sense. In particular, while a gauge symmetry relates different field configurations that
correspond to the same physical state, the local GLR symmetry relates field configurations
that correspond to different physical states.

2.3 Four-quark operators

The four-quark operators in Lagrangian (2.37) transform as singlets under U(3)R [115].
For this reason, we suppress the right-handed indices of the external currents, and define

hs
d
a = 1

nf
hs
ċd
aċ , hr

b
a = 1

nf
hr
bċ
aċ , (2.49)

where the reduced parameters hs and hr transform under U(3)L as

3⊗ 3 = 8⊕ 1 . (2.50)

The traceless octet contributions are given as

hs = hs −
1
nf
hs , hr = hr −

1
nf
hr , (2.51)

where hr = 〈hr〉f and hs = 〈hs〉f . The corresponding left-handed, traceless octet operators
composed of the quark bilinears (2.8) and (2.21) are

Os = Q†Q− 1
nf

〈
Q†Q

〉
f
, Or = QµQµ −

1
nf
QµQµ , (2.52)

where Qµ = 〈Qµ〉f and Qµ =
〈
Qµ

〉
f
.

The purely left-handed vector-vector interaction parameter hbdac transforms under U(3)L
as a member of

(3⊗ 3)⊗ (3⊗ 3) = (8⊕ 1)⊗ (8⊕ 1) =

symmetric︷ ︸︸ ︷
8⊕ 1︸ ︷︷ ︸

totally antisymmetric

⊕ (27⊕ 8⊕ 1︸ ︷︷ ︸
totally symmetric

⊕

anti-symmetric︷ ︸︸ ︷
10⊕ 10⊕ 8)⊕ 8︸ ︷︷ ︸
mixed symmetric

, (2.53)
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where the parenthesis on the outermost right-hand side indicate the decomposition of the
8 ⊗ 8 product. Furthermore, the symmetry of each representation under exchanges of
the quark bilinears and quark spinors is indicated by curly braces above and below the
expression, respectively. Since hQµQ

µ is symmetric under exchange of the quark bilinears,
only representations that are totally (anti-)symmetric under exchanges of the quark spinors
can contribute to h. Therefore, the parameter hbdac can be written as

hl = h+
l + 1

n−8
h−l ∧ 1 + 1

n+
8

h+
l � 1 + 1

n−1
h−l 1 ∧ 1 + 1

n+
1
h+
l 1� 1 , (2.54)

where ∧ and � are (anti-)symmetrised tensor products and the symmetry prefactors are

n±8 = nf ± 2
4 , n±1 = n2

f ± nf
2 . (2.55)

The totally (anti-)symmetric singlet h±l , octet h±l , and 27-plet h+
l contributions are related

to the complete tensor via10

h+
l = h

(xy)
(xy) , h+

l
b
a = h

(bx)
(ax) −

1
nf

1bah+
l , h+

l
bd
ac = h

(bd)
(ac) −

1
n+

8
1(b

(ah+
l
d)
c) −

1
n+

1
1(b

(a1
d)
c)h

+
l , (2.56a)

h−l = h
[xy]
[xy] , h−l

b
a = h

[bx]
[ax] −

1
nf

1bah−l . (2.56b)

The totally (anti-)symmetric octet operators formed by the two traceless pairings of two
left-handed quark bilinears (2.21) related to the octet parameter h (2.56) are

O±l = 1
2n±8

[(
QµQµ −

1
nf
QµQµ

)
±
(
QµQµ −

1
nf
〈QµQµ〉f

)]
, (2.57)

while the (symmetric) 27-plet combination is

O+
l = Qµ �Qµ − 1�O+

l −
1

2n+
1

(
QµQµ + 〈QµQµ〉f

)
1� 1 . (2.58)

Hence, the complete octet and 27-plet contributions to the four-quark Lagrangian (2.37)
are

LhQ = −v−2
〈

hsOs + hrOr + h−l O−l + h+
l O+

l

〉
f
− v−2

〈〈
h+
l O

+
l

〉〉
f
, (2.59)

where the brackets 〈〈◦〉〉f denote the complete contraction of the totally symmetric tensors.
Using the symmetry properties of the 27-plet term

−h+
l
du
su = (nf − 1)h+

l
dd
sd = (nf − 1)h+

l
ds
ss , −O+

l
du
su = O+

l
dd
sd + O+

l
ds
ss , (2.60)

the strangeness violating contributions listed in (2.36) can be extracted via

LhQ
∣∣∣∣
∆s=±1

= − 1
v2

(
hsds Os

s
d + hrds Or

s
d + h−l

d
s O−l

s
d + h+

l
d
s O+

l
s
d

)
− 2n27

v2 h+
l
du
suO

+
l
su
du + h.c. ,

(2.61)
10(Anti-)symmetrised tensors are defined as 2T [µν] = Tµν − T νµ and 2T (µν) = Tµν + T νµ, respectively.
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Υ w Q Qµ Qµ Qµν Q̃ Os Or O−l O+
l O+

l

εSM 0 1

d 4 3 3 5 6 6

representation 1 8⊕ 1 8⊕ 1 8 27

Table 1. Colour singlets and quark multilinears at the strong scale. For each of them, we show
respectively their order in εSM, their mass dimension d and their flavour representation. The
composite gluon operators Υ and w are defined in Lagrangians (2.4) and (2.10), the quark bilinears
Q are defined in (2.8), (2.21), and (2.29), and the quark quadrilinears O and O are defined in (2.51),
(2.57), and (2.58). The corresponding external currents including their SM and BSM contribution
are listed in table 6.

where the 27-plet symmetry prefactor is

n27 = 2nf − 1
nf − 1 . (2.62)

In terms of the coefficients in Lagrangian (2.35) the octet and 27-plet coefficients are

h+
l
d
s = 1

4V
†
suVud

(
c+

12 + (nf + 2)c+
34

)
, hrds = V †suVudc5 , h+

l
du
su = 1

4V
†
suVud

nf + 1
nf + 2c

+
12 ,

(2.63a)

h−l
d
s = −1

4V
†
suVud

(
c−12 + c−34

)
, hsds = V †suVudc6 , c±ικ = cι ± cκ . (2.63b)

Summary. The QCD Lagrangian at the strong scale can be written in the compact form

LQ = θw − ωΥ−
〈

(mQ+ h.c.) + lµQµ + rµQµ

〉
f
− Λ−2

SM

〈
γQ̃+ τµνQµν + h.c.

〉
f

− v−2
〈

hsOs + hrOr + h−l O−l + h+
l O+

l

〉
f
− v−2

〈〈
h+
l O

+
l

〉〉
f
, (2.64)

where the gluon contributions are defined in Lagrangians (2.4) and (2.10), the nonet contri-
butions are defined in (2.8), (2.21), and (2.29), the octet contributions are defined in (2.51)
and (2.57), and the 27-plet contribution is defined in (2.58). All operators are also listed in
table 1. Finally, the complete trace of the Hilbert stress-energy tensor (2.15) that includes
both strong and EW contributions is

TQ = βs
ω
LωQ − LmQ + LτQ + LγQ − L

W
Q + 2LhQ

= − βsΥ(x) + 〈(mQ+ h.c.) + lµWQµ〉f − Λ−2
SM

〈
γQ̃+ τµνQµν + h.c.

〉
f

− 2v−2
〈

hsOs + hrOr + h−l O−l + h+
l O+

l

〉
f
− v−2

〈〈
h+
l O

+
l

〉〉
f
.

(2.65)

3 Portal interactions between the SM and hidden sectors

In this section, we present a framework for the construction of general portal effective
theories (PETs), and use it to construct EW and strong scale PETs that couple SMEFT
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and LEFT to a light messenger of spin 0, 1
2 , or 1. The portal SMEFTs comprise all

independent portal operators up to dimension five, and the portal LEFTs additionally
encompass quark-flavour violating portal operators of dimension six and seven. The latter
are necessary to capture quark-flavour violating transitions, which govern for instance
hadronic kaon decays. We use the accidental symmetries of the portal SMEFTs to further
constrain the shape of the corresponding portal LEFTs, so that these PETs should be
understood as the low energy limit of the portal SMEFTs, in which the heavy SM DOFs
have been integrated out.

For completeness, we provide in appendix B.2 a basis of independent portal operators
with dimension five or less that couple SMEFT to hidden particles with spin 3

2 and 2.

3.1 Portal effective theories

A PET is an EFT that couples SM DOFs to hidden sectors via messenger fields. The
framework we present is generic and can be used to construct PETs by starting from any
EFT that either encompasses or is derived from the SM, such as SMEFT, HEFT, LEFT,
HQET, or χPT. The PET Lagrangian can be cast as

L = LEFT + Lportal + Lhidden , (3.1)

where the original EFT Lagrangian LEFT and the hidden Lagrangian Lhidden depend only
on SM and hidden fields, respectively. The portal Lagrangian Lportal contains all available
operators that couple the SM fields to the hidden messenger fields. Since we aim to capture
the physics of the portal Lagrangian while remaining agnostic about the hidden sector, the
hidden Lagrangian may be fully general. In particular, it can contain, in addition to the
messenger field, secluded fields with arbitrary masses, quantum numbers, and interactions,
that do not couple directly to the SM particles. This idea is schematically depicted in
figure 1. We integrate out all hidden fields with masses well above the characteristic
energy scale of the relevant EFT. This does not restrict the regime of applicability of the
resulting PET, since the EFT by itself, even without being coupled to hidden sectors,
already becomes invalid at energies well above its characteristic energy scale. The impact
of the heavy particles is captured by an infinite tower of higher dimensional operators in
the EFT, portal, and hidden Lagrangians, which contain only the remaining light SM and
hidden fields.

In the remainder of this section, we construct PETs that couple the SM to a single
messenger field of spin 0, 1

2 , and 1. We begin by constructing EW scale PETs that ex-
tend SMEFT, and then use the resulting portal SMEFTs as a starting point to derive a
corresponding set of strong scale PETs that extend LEFT. In the first step, we take the
typical energy scale of SMEFT to be the Higgs VEV, and in the second step, we take the
typical energy scale of LEFT to be around 1GeV, which corresponds roughly the proton
mass. When extending SMEFT, we assume that the messenger is a singlet under the full
SM gauge group GSM = SU(3)c × SU(2)L × U(1)Y in order to remain consistent with the
SMEFT setup, but for the PETs that extend LEFT we only assume that the messenger field
is invariant under the broken SM gauge group Gsm = SU(3)c ×U(1)V . We do not assume
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that the portal SMEFTs respect any additional symmetries, such as gauge symmetries or
a new parity of the hidden sector. In particular, we allow for both P and CP violating
portal interactions. However, we use the accidental symmetries of the portal SMEFTs to
constrain the shape of the corresponding portal LEFTs.

3.1.1 Power counting

The lack of evidence for light sectors at colliders and fixed target experiments [63–65]
implies that any portal interaction has to be strongly suppressed. In order to reflect this
suppression, we normalise all portal operators such that they contain at least one explicit
degree of smallness εi, independent of their mass dimension. Physically, these degrees of
smallness can result from a wide variety of mechanisms that do not have to be connected to
each other, such as the small breaking of an approximate symmetry of the theory. At the
EW scale, unitarity implies that higher dimensional portal operators with mass dimension
larger than four must be dimensionally suppressed by factors εd−4

i = (v/fi )d−4, where fi
is some ultraviolet (UV) scale. For our purposes, it is not necessary to distinguish between
the various degrees of smallness εi. Therefore, we define the generic degree of smallness

εUV = max
i
εi = v

fUV
, fUV � v , (3.2)

and only count powers of εUV rather than distinguishing between various sources of small-
ness for the portal operators. Using this power counting, portal operators of mass-dimension
three, four, and five are suppressed by a single factor of εUV, while higher dimensional por-
tal operators are suppressed by higher powers of εUV, due to the required dimensional
suppression.

When constructing the portal SMEFTs in section 3.2, we neglect portal operators with
mass-dimension six or higher, and in the remainder of this work, we use these PETs as
the starting point for the subsequent construction of the strong scale portal LEFT and
χPT Lagrangians. This constraint restricts the types of hidden sectors we are able to
describe. For one, some SM extensions couple to the SM only via operators of mass-
dimension six or higher. For example, this is the case of fermionic DM models that couple
to the SM via four-fermion interactions of dimension six, see e.g. [172, 173]. In addition,
higher dimensional portal operators can mediate transitions that are not captured by lower
dimensional portal operators. As we show in section 3.2, this is the case for baryon-number
violating portal interactions, which only appear starting at dimension six. However, we
emphasise that these limitations are not a consequence of the PET approach as such, but
merely a consequence of our choice to only account for portal operators up to dimension
five. We leave the investigation of PETs with operators of dimension six or higher for
future work.

3.1.2 Mixing between SM and messengers fields

Generically, the portal sector contains quadratic operators that mix neutral SM fields with
hidden fields. Even though it is possible to diagonalise the portal Lagrangian such that
these quadratic operators are effectively eliminated from the theory, this diagonalisation
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would induce two new types of portal operators: first, one would obtain portal operators
that mirror SM interactions, except that one SM field is replaced by a messenger field.
Second, one would obtain new portal operators that mirror hidden sector interactions
involving the messenger fields, except that one messenger field is replaced by a neutral SM
field. This second type of portal operator conflicts with our strategy of being agnostic about
the internal structure of the hidden sector, as it introduces direct coupling between the
secluded fields and the neutral SM fields. Listing all of the corresponding portal operators
is impossible without making further assumptions about the hidden sector. Therefore, we
do not diagonalise any of the quadratic portal interactions.

However, in principle, it is necessary to diagonalise the portal mixing in order to con-
struct the proper asymptotic energy eigenstates of the theory. This can be avoided when
performing perturbative calculations at fixed order in εUV, since the undiagonalised fields
approximately overlap with the asymptotic energy eigenstates of the theory in the limit
of small εUV. However, it may be necessary to re-sum the quadratic portal interactions
in order to describe certain effects that cannot be captured by fixed-order computations
in perturbation theory. For example, consider a type-I seesaw model in which the SM is
augmented by a single HNL. In order to capture neutrino oscillations in this model, it is
necessary to re-sum the mass-mixing between the SM neutrinos and the HNL. However,
this does not affect the computation of S-matrix elements for microscopic scattering ampli-
tudes, since these oscillations typically occur over macroscopic distances, e.g. over several
kilometers in case of neutrinos produced in nuclear reactors [174].

3.2 Electroweak scale portal effective theories

We explicitly construct the EW scale PETs that couple SMEFT to a single messenger of
spin 0, 1

2 , or 1, and give a complete basis of portal operators with mass dimension five or
less for each resulting portal SMEFT. We then use these PETs to define a set of portal
currents that parameterise the coupling of SMEFT to generic hidden sectors, and study
the shape of the portal SMEFTs after EWSB.

3.2.1 Minimal bases of portal operators

In general, a naive listing of all possible portal operators with mass-dimension five or less
will contain numerous redundant operators. In order to obtain a minimal set of independent
portal operators for each type of messenger, we use the reduction techniques collected in
appendix A. The resulting operator basis is presented in table 2. We consider three types
of messengers:
Spin 0 fields can be either real (pseudo-)scalar or complex scalar fields. As we do not

require portal interactions to conserve parity, pseudoscalar and scalar fields couple
to SMEFT via the same set of portal interactions. Furthermore, a complex scalar
couples to SMEFT in the same way as two real scalar fields. Therefore, we can
account for all types of spin 0 messengers by considering how SMEFT couples to two
real scalar fields s1(x) and s2(x). These can interact with the SM fields via a minimal
basis of 14 different operators with dimensions ranging from three to five. There are
twelve additional redundant operators.
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d Higgs Yukawa + h.c. Fermions Gauge bosons

si

3 si|H|2

4 sisj |H|2

5

sisjsk|H|2 siqaubH̃
† siG

a
µνG

µν
a

siD
µH†DµH siqadbH

† siW
a
µνW

µν
a

si|H|4 si`aebH
† siBµνB

µν

siG
a
µνG̃

µν
a

siW
a
µνW̃

µν
a

siBµνB̃
µν

ξa
+
h.c.

4 ξa`bH̃
†

5 ξaξb|H|2 ξ†aσ
µ`bDµH̃

† ξaσ
µνξbBµν

vµ 4

vµv
µ|H|2 vµq†aσµqb

∂µv
µ|H|2 vµu†aσµub

vµH†
↔
DµH vµd

†
aσµdb

vµ`†aσµ`b

vµe†aσµeb

Table 2. List of all operators up to dimension five with SM fields and spin 0 (si with i = 1, 2), spin
1
2 (ξa with a = 1, 2) or spin 1 (vµ) messengers. The first column specifies the spin of the messenger
field, the second column denotes the dimension d of the operator and the remaining columns label
the SM sectors the messengers interact with. The left-handed SU(2) doublets `a = (νa, ea)T and
qa = (ua, da)T and the right-handed singlets u†a, d

†
a, and e†a are Weyl fermions.

Spin 1
2 fields can be either Weyl, Majorana, or Dirac fermions. Without loss of generality,
a Dirac fermion can be written as a combination of two left-handed Weyl fermions,
while a Majorana fermion can be written as single left-handed Weyl fermion. There-
fore, we can account for all types of fermionic messengers by considering how SMEFT
couples to two left-handed Weyl fermions ξ1(x) and ξ2(x). These can interact with
the SM fields via a minimal basis of four portal operators of dimension four and five.
Additionally, there are two redundant operators. Notice that the operator ξaσµνξbBµν
is antisymmetric under exchange of a and b, so that it can only contribute if SMEFT
couples to a Dirac fermion.

Spin 1 fields can be either vector or axial-vector fields. As we do not require portal in-
teractions to conserve parity, both of these can couple to SMEFT via the same portal
interactions, and we can account for both possibilities by considering how SMEFT
couples to a vector field vµ(x). These can interact with the SM fields via a minimal
basis of eight independent operators with mass-dimension four. Notably, there are
no operators of dimension five. There are two additional redundant operators.
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SHm Sx Sx Ξ V µ
H V µ

x Ξµ Tµν

spin 0 1/2 1 3/2 2

d 2 0 3/2 1 3/2 2

flavour
representation 1 1 8⊕ 1 3 1 8⊕ 1 3 1

symmetry V †µ = Vµ
DOFs 1 1 18 3 1 9 3 1

Table 3. Properties of the portal SMEFT currents. The first two rows list spin and mass dimension
d, and the remaining rows list the representation and symmetries under flavour transformations as
well as the resulting number of DOFs.

For the sake of completeness, we list the redundant operators in appendix B.1. If the
internal structure of the hidden sector is known, it is potentially possible to discard further
operators by using e.g. the EOMs for the messenger field. As discussed in section 3.1.2, this
may involve other hidden sector fields besides the messenger. Here and in the following,
we refrain from making such model dependent simplifications.

All of the above portal operators conserve baryon number, and portal operators with
spin 0 and 1 messengers also conserve lepton number. Portal operators with spin 1

2 mes-
sengers can violate lepton number by one unit. Furthermore, portal operators with spin 1

2
messengers do not couple to either the SM quark fields or any of the right-handed charged
lepton fields, and operators with spin 1 messengers only couple to pairs of quarks and
leptons with identical chirality, so that they cannot serve as a separate source of chiral
symmetry breaking. This becomes important when constructing strong scale PETs, since
it implies that some strong scale portal operators are subdominant as a result of chiral
suppression due to a light SM fermion mass insertion.

Further, we note that, although we have focused on the case in which SMEFT couples
only to a single messenger field, the portal sector defined by the operators in table 2
already captures interactions between SMEFT and an arbitrary number of messengers
with identical spin. For sets of messengers si or ξi or vµi , it is sufficient to iterate over all
possible values for the index i in the portal operators. However, we do not account for the
possibility of coupling SMEFT to multiple messengers with different spin.

3.2.2 External current description

It is convenient to collect all of the operators associated with the three messenger fields
into a single portal Lagrangian (3.1). We separate the portal operators into a Higgs H, a
Yukawa like Y , a fermionic F , and a gauge V sector

Lportal = LHEW + LYEW + LFEW + LVEW . (3.3)
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The individual Lagrangians are11

LHEW = SHm |H|
2 + 1

2S
H
λ |H|

4 + SHκ D
µH†DµH + iV µ

H H†
↔
DµH , (3.4a)

LYEW = Sem`eH
† + SdmqdH† + SumquH̃† + Ξ`H̃† + Ξµ`DµH̃† + h.c. , (3.4b)

LFEW = V µ
q q
†σµq + V µ

` `
†σµ`+ V µ

u u
†σµu+ V µ

d d
†
σµd+ V µ

e e
†σµe , (3.4c)

LVEW = (SBω Bµν + SBθ B̃µν + TBµν)Bµν + (SWω Wµν + SWθ W̃µν)Wµν

+ (SωGµν + SθG̃µν)Gµν .
(3.4d)

Lepton and quark doublets are written as left-handed Weyl fermions `a = (νa, ea)T and
qa = (ua, da)T , and the singlets as conjugated left-handed Weyl fermions u†a, d

†
a, and e†a.3

Table 3 summarises the properties of the scalar S, fermionic Ξ, and vectorial V µ portal
currents. The scalar current of mass-dimension two that appears in the Higgs mass-like
term in Lagrangian (3.4a) is

SHm = εUV

[
vc
SHm
i si + c

SHm
ij sisj + c

SHm
v2 v

µvµ + c
SHm
∂v ∂

µvµ + 1
v

(
c
SHm
ijk sisjsk + c

SHm
ab ξ

†
aξb
)]

, (3.5)

where the ccurrentoperator are dimensionless Wilson coefficients. The other (pseudo-)scalar currents
of mass dimension zero in Lagrangians (3.4a), (3.4b) and (3.4d) are

Sx = εUV
v
cSxi si , Sx = εUV

v
cSxi si , (3.6)

where x symbolically labels the different scalar currents. The left-handed fermionic currents
in Lagrangian (3.4b) are

Ξ = εUVc
Ξ
a ξa , Ξµ = εUVc

Ξ
∂aξ
†
aσµ , (3.7)

and the vectorial currents in Lagrangians (3.4a) and (3.4c) are

V µ
x = εUVc

x
vv
µ , V µ

x = εUVc
x
vv
µ , (3.8)

where the matrix valued vectorial currents and its Wilson coefficient are Hermitian. The
tensorial current in Lagrangian (3.4d) is

Tµν = εUV
v
cTabξ

†
aσµνξb . (3.9)

11The Higgs doublet is denoted by H, and its conjugate is H̃ = − i
2σ2H

†. We abbreviate |H|2 = H†H and
the antisymmetrised derivative is H†

↔
∂
µ
H = (∂µH)†H−H†∂µH. The Gµa are the gluon fields, whileWµ

a and
Bµ denote the EW gauge bosons. The field strength tensors are given as V µνa = ∂µV νa −∂νV µa − i fabcV µb V

ν
c .
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3.2.3 Electroweak symmetry breaking

After EWSB, the Higgs field H acquires a finite VEV v, which induces a shift in the
currents. In unitary gauge, the portal Lagrangian (3.3) becomes12

LHEWSB = 1
2S

H
κ ∂µh∂

µh+ 1
2S

H
λ

(
v + h√

2

)4

+
(
v + h√

2

)2 (1
2S

H
κ

(
W+
µ W

−µ + 1
2Z

µZµ

)
+ V µ

HZµ + SHm

)
,

(3.10a)

LYEWSB = 1√
2

(v +H)
(
Ŝeēmee+ Ŝdd̄m dd+ Ŝuūm uu− Ξν

)
− ∂µh√

2
Ξµν + h.c. , (3.10b)

LFEWSB = V̂ µ
quu
†σµu+ V̂ µ

qdd
†σµd+ V̂ µ

uūuσµu
† + V̂ µ

dd̄
dσµd

†

+ V̂ µ
`ee
†σµe+ V̂ µ

eēeσµe
† + V µ

` ν
†σµν ,

(3.10c)

LVEWSB =
(
SZωZµν + SZθ Z̃µν + TZµν

)
Z
µν +

(
SA
ωAµν + SA

θ Ãµν + TA
µν

)
Aµν

+
(
SωGµν + SθG̃µν

)
Gµν +

(
SAZ
ω Zµν + SAZ

θ Z̃µν
)
Aµν + 2

(
SWω W

+
µν + SWθ W̃

+
µν

)
W

µν
−

− 2 i
(
SWω ∂νρσ − 2SWθ εµνρσ∂µ

)
W 3
νW

+
ρ W

−
σ + 4SWω gµ[νgρ]σ

(
2W 3

µW
3
ν +W+

µ W
−
ν

)
,

(3.10d)

where
∂µρσ = gρσ (∂+ − ∂−)µ + gσµ (∂− − ∂3)ρ + gµρ (∂3 − ∂+)σ (3.11)

and we have defined the new scalar currents

SZx = c2
wS

W
x + s2

wS
B
x , SA

x = s2
wS

W
x + c2

wS
B
x , SAZ

x = 2cwsw(SWx − SBx ) , (3.12)

as well as the new tensorial currents

TA
µν = cwT

B
µν , TZµν = −swTBµν , (3.13)

that couple directly to the photon and Z-boson field strength tensors, with cw and sw
denoting the (co-)sine of the EW mixing angle. In Lagrangians (3.10a) and (3.10c), we
used a singular value decomposition in order to diagonalise the SM fermion mass matrices
mxy = UxmxU

†
y via a unitary rotation of the SM fermion fields. The resulting mass-

diagonal SM fermions couple to the rotated portal currents

Ŝxym = U †yS
x
mUx , V̂ µ

xy = U †yV
µ
x Uy . (3.14)

Note that the CKM matrix VCKM = U †dUu and the Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) matrix that one obtains after diagonalising the neutrino to hidden sector mass
mixing are the only combinations of the Ux constrained by measuring SM or portal in-
teractions in the broken phase. This implies that such observations cannot fully constrain
the shape of the unrotated portal currents Sxm and Vx that couple to the SM fermion
gauge eigenstates. This may be of interest when trying to constrain the shape of the por-
tal interactions at high temperatures or in the early universe with collider or fixed-target
experiments.

12In unitary gauge, the Higgs field is given as H = (0, v + h
/√

2)T , and H̃ = −(v + h
/√

2 , 0)T .
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3.3 Portals at the strong scale

At the strong scale, which we define to be roughly the scale associated with the gluon
dynamics (GD) contribution ∼ 1GeV to the proton mass, the SM dynamics is captured by
LEFT, which contains only the massless gauge bosons, electrons, muons, neutrinos, and
the light quarks (u, d, and s). Starting from the previously constructed portal SMEFTs, we
now derive the strong scale PETs that couple LEFT to a single messenger of spin 0, 1

2 , or 1.
While we have only included portal operators of dimension d ≤ 5 in the portal SMEFTs,
we now also include quark-flavour violating d ≤ 7 portal operators. These operators are
generated by diagrams that include virtualW -boson exchanges and are necessary to capture
quark-flavour violating transitions, such as decays of charged kaons into pions and hidden
fields, at LO in εSM.

To see why it is necessary to include the higher dimensional operators when construct-
ing a general strong scale PET, consider a generic quark-flavour violating transition at
the strong scale. Such a transition has to be suppressed by at least one degree of small-
ness εUV, and another degree of smallness εSM ≡ ∂2/Λ2

SM , cf. eq. (2.23). At O(εUVεEW),
quark-flavour violating processes are described by the two types of diagram depicted in
figure 6:

(i) Diagrams with one quark-flavour violating dimension six SM charged current vertex
and one quark-flavour conserving strong scale portal vertex.

(ii) Diagrams with a renormaliseable quark-flavour conserving SM vertex and a quark-
flavour violating strong scale portal vertex.

To fully capture quark-flavour violating transitions one has to include all portal operators
that can appear in either type of diagram.

First, consider the set of portal operators that can appear in type (i) diagrams: the
SM charged current interaction that appears in these diagrams is associated with a sup-
pression factor εSM. Since the overall diagram has to scale as εUVεSM, portal operators that
contribute to the diagrams cannot have a higher mass-dimension than their EW scale coun-
terparts, as this would imply further suppression by powers of √εSM. Hence, to capture all
type (i) diagrams, it is sufficient to include quark-flavour conserving portal operators with
spin 0 or 1

2 messengers that are at most of dimension five and quark-flavour conserving
portal operators with spin 1 messengers that are at most of dimension four. If the strong
scale PET is the low energy limit of another EW scale PET besides SMEFT, dimension
five portal operators with spin 1 messengers can also contribute to type (i) diagrams.

Next, consider the set of portal operator that can appear in type (ii) diagrams. Since
these diagrams do not contain a SM four-fermion vertex, they can contain portal opera-
tors that are suppressed by a factor εUVεSM rather than just a factor εUV. These portal
operators are generated by diagrams in the EW scale theory that contain a virtual W -
boson exchange, and they can have a mass-dimension that is at most the mass-dimension
of the corresponding EW scale portal operators plus two. Therefore, to capture all type (ii)
diagrams, one has to include quark-flavour violating portal operators with spin 0 and 1

2
messengers that are of dimension seven or less and quark-flavour violating portal operators
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(4π)2

d ≤ 6

∆f = 0
(4π)0

d ≤

5 for spin 0, 1
2

4 for spin 1

∆f = 0
(4π)0

d ≤ 4

∆f = ±1
(4π)2

d ≤

7 for spin 0, 1
2

6 for spin 1

Type (i)

Type (ii)

Figure 6. Schematic representation of the two possible types of quark-flavour violating diagrams at
the strong scale, which we distinguish based on the sector in which the flavour violation is located.
We assume that the relevant strong scale PET is the low energy limit of a corresponding EW scale
portal SMEFT. The diagrams show the suppression due to NDA power counting and the dimension
of the operators in the diagram. Type (i) diagrams contain a flavour violating SM sub-diagram
that scales as (4π)2 and contains one d ≤ 6 Fermi theory operator, as well as one flavour conserving
portal operator that scales as (4π)0 and has d ≤ 5. Type (ii) diagrams contain a flavour conserving
SM sub-diagram that scales as (4π)0 and contains only renormaliseable d ≤ 4 operators, as well
as one flavour violating portal operators that scales as (4π)2 and have d = 6, 7 or 5, 6. Type (i)
diagrams with d = 5 portal operators and type (ii) diagrams with d = 7 portal operators can appear
in strong scale PETs with spin 1 messengers that are derived from other EW scale PETs besides
portal SMEFT. See also appendix A.1 and [175–178] for details on the NDA counting.

with spin 1 messengers that are of dimension six or less. As in the case of type (i) diagrams,
dimension seven portal operators with spin 1 messengers can also contribute to type (ii)
diagrams, if the strong scale PET is the low energy limit of another EW scale PET besides
SMEFT.

In order to be phenomenologically viable, any strong scale portal operators have to be
invariant under the low energy SM gauge group Gsm = SU(3)c ×U(1)EM, but they do not
have to be invariant under the complete SM gauge group GSM, which also encompasses
weak interactions mediated by the heavy W - and Z-bosons. In addition, our operators
have to preserve the accidental symmetries obeyed by the relevant portal SMEFTs. This
implies that all strong scale portal operators have to conserve baryon number and bosonic
messenger fields have to conserve lepton number, while operators with spin 1

2 messengers
can violate lepton number by one unit. In addition, the portal SMEFT interactions with
spin 1

2 and 1 messenger fields do not mix SM fermions of different chirality, so that strong
scale portal operators with chirality flips are suppressed by an additional factor of ml/v ∼√
εSM, where ml is the mass of the relevant light SM fermion. Portal SMEFT interactions
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with scalar messenger fields can induce a single chirality flip, so that only strong scale
portal operators with at least two chirality flips are suppressed by such a factor of √εSM.

In addition to the dimensional suppression associated with εSM, the higher dimen-
sional quark-flavour violating portal operators can also be suppressed by loop factors of
(4π)−2. We keep track of this suppression by using the 4π power counting scheme of naive
dimensional analysis (NDA) [175–178], see also appendix A.1 for a detailed explanation.
Using NDA, the most suppressed type (i) diagrams with spin 0 and 1

2 messengers scale as
(4π)2εUVε

3
SM, while the most suppressed type (i) diagrams with spin 1 messengers scale as

(4π)2εUVε
2
SM, see also figure 6. In both cases, the (4π)2 enhancement captures the fact that

the leading strong-scale Fermi theory interactions are generated by tree-level diagrams at
the EW scale. When applying NDA to strong scale PETs, we discard all quark-flavour
violating dimension six and seven type (ii) operators that are even more suppressed than
the most suppressed type (i) operators. For PETs with spin 0 and spin 1

2 messengers,
dimension six operators without chiral suppression are suppressed by a relative factor of
√
εSM, rather than εSM, compared to the unsuppressed dimension five portal operators in

these PETs. This means that they are enhanced by a relative factor of ε−1/2
SM compared to

the most suppressed type (i) diagrams. Therefore, we only use NDA to discard operators
that are either of dimension seven or of dimension six and chirally suppressed. For PETs
with spin 1 messengers, we only use NDA to discard operators that are either of dimension
six, or of dimension four or five and sufficiently chirally suppressed.

3.3.1 Operator list

We construct minimal bases of portal operators for each portal LEFT by combining the
restrictions discussed in the previous section with the reduction techniques given in ap-
pendix A. The complete bases of both quark-flavour conserving and quark-flavour violating
operators up to dimension seven are given in appendix C. Table 4a shows the subset of
portal operators with dimension five or less. This subset mirrors the set of portal oper-
ators in the corresponding portal SMEFTs and contributes at LO to both quark-flavour
conserving and violating transitions. In the following we focus on the operators appearing
only at the strong scale. Table 4b shows the relevant subset of higher dimensional portal
operators that contribute to quark-flavour violating transitions at LO in εUV, εSM, and the
4π counting of NDA. The quark-flavour violating dimension six and seven operators that
are sub-leading only due to 4π loop suppression factors are given in table 5. As in the case
of the portal SMEFTs, we consider three types of messenger field:

Spin 0 fields couple to LEFT via six operators of dimension five or less. In addition,
there are eleven quark-flavour violating dimension six and seven operators that contribute
at LO in both εSM and 4π. At dimension six, there are three leading two-quark operators

sisjsk dd , ∂2si dd , si∂µsj d
†σµd , (3.15)

and two leading two-quark dipole operators involving the EM and the gluonic field strength
tensor

si dσµνd F
µν , si dσµνd G

µν . (3.16)
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d Scalar Vector Gauge

si

4 si ψψ

5

sisj ψψ si FµνF
µν

si Fµν F̃
µν

si GµνG
µν

si GµνG̃
µν

ξa
+
h.c.

3 ξa ν

5 ξaσµνν F
µν

ξaσµνξb F
µν

vµ 4 vµ ψ
†σµψ

(a) Type (i) quark-flavour conserving portal
operators of dimension three, four, and five.

d Two quarks Quark dipole Four fermions

si

6
sisjsk dd si F

µνdσµνd

∂2si dd si G
µνdσµνd

si∂µsj d
†σµd

7

sisjsksl dd si d
†q† qd

si q
†σµq q†σµq

si d
†σµd qσµq

†

si e
†σµν u†σµd

si ν
†σµν d†σµd

ξa
h.c. 6

ξ†aσµ e d
†σµu

ξ†aσµ ν d
†σµd

(b) Type (ii) dimension six and seven quark-flavour violat-
ing portal operators.

Table 4. List of all LO strong scale portal operators up to dimension seven that couple LEFT to
messenger fields of spin 0, 1

2 , or 1. Panel a shows operators that contribute to type (i) diagrams and
panel b shows operators that contribute to type (ii) diagrams. See also figure 6 for more details.
The first column specifies the spin of the messenger field, the second column contains the dimension
d of the operators and the remaining columns label the SM sectors they interact with. A generic
SM fermion is labelled by ψ = u, d, e, ν, the down-type quarks are d = d, s, the leptons are e = e,
µ and ν = νe, νµ, ντ , and q runs over all three light quarks u, d and s.

At dimension seven, there is one leading two-quark operator

sisjsksl dd (3.17)

as well as five leading four-fermion operators

si q
†σµq q†σµq , si u

†σµd e†σµν , (3.18a)
si d

†σµd qσµq
† , si d

†σµd ν†σµν , si d
†q† qd . (3.18b)

The semi-leptonic neutral current operator si d†σµd ν†σµν is generated by the box- and
penguin-type diagrams shown in figures 7a and 7b. These diagrams involve at least two
heavy boson exchanges, so that one might expect all of them to be suppressed by an
additional factor of εSM due to the second heavy boson exchange. However, the analogous
SM four-fermion operators d†σµd ν†σµν scale as εSMf(m2

t

/
v2 ), with some function f(x) ∼

1, so that there is no additional suppression [section XI.B of 179]. We expect that the
same can occur in case of the portal operator si d†σµd ν†σµν , and we therefore keep this
operator as part of the portal Lagrangian. All of the operators mentioned above are listed
in table 4.

The sub-leading dimension seven operators differ in their suppression. The four oper-
ators

sisj∂µsk d
†σµd , ∂νsi d

†σµV
µνd , ∂νsi d

†σµṼ
µνd , sisj dσµνV

µνd +h.c. , (3.19)
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(4π)−n Two Quarks Quark Dipole

1
sisj∂µsk d

†σµd ∂νsi d
†σµV

µνd

∂νsi d
†σµṼ

µνd

sisj dσµνV
µνd +h.c.

2 ∂2si dd

si∂µsj d
†σµd

(a) Scalar.

(4π)−n dd d†d d†V µνd

1 vµv
µvν d

†σνd vµ d†σνGµνd

vµ d†σνG̃µνd

2

vµv
µ dd ∂νv

ν vµ d
†σµd vµ d†σνFµνd

∂µv
µ dd ∂µvν v

ν d†σµd vµ d†σν F̃µνd

∂µvν dσµνd ∂νvµ v
ν d†σµd

∂2vµ d†σµd

εαβµν ∂αvβ vν d
†σµd

vµvν d†σµDνd

∂(νvµ) d†σµDνd

(b) Vector

LL× LL LR×RL RL×RL LL×RL

ξ†aσµξb d†σµd ν†ξ†a dd νξa dd νDµξa d†σµd

eσµξ
†
a d†σµu ξ†aξ

†
b dd ξaξb dd ξaD

µξb d†σµd

e†ξ†a ud eξa du eDµξa d†σµu

νσµνξa dσµνd νσµνDνξa d†σµd

ξaσ
µνξb dσµνd ξaσ

µνDνξb d†σµd

eσµνξb dσµνu eσµνDνξa d†σµu

(c) Fermion

Table 5. List of all sub-leading quark-flavour changing strong scale operators up to dimension
seven that couple LEFT to messenger fields of spin 0, 1

2 , or 1. Panel a shows the operators for
spin 0 messenger fields, panel shows c those for spin 1

2 messengers, and panel b shows those for
spin 1 messengers. All fermionic operators are suppressed by factors of (4π)−1, and the suppression
factor for the bosons are given in the tables. The notation is the same as in table 4.

d† d

ν ν†

s

u

`

W W

(a) Scalar box diagram.

d†

d

ν†

ν

s

u

u†

Z
W

(b) Scalar penguin diagram.

d†

d

ξ†

ξ
u

u†

Z

γ

W

(c) Fermionic penguin diagram.

Figure 7. One-loop portal diagrams for some of the portal operators. Panels a and b depict
contributions to the scalar portal operator (3.18b), where the scalar field can couple to any of the
heavy EW bosons. Panel c depicts the contribution to the fermionic portal operator in (3.21).

with V µν ∈ {Fµν , Gµν} are suppressed by factors of (4π)−1, and the operators

si∂
2sjdd , ∂µsi∂

µsjdd , (3.20)

and their Hermitian conjugates are suppressed by factors of (4π)−2. The above sub-leading
dimension seven operators are listed in table 5a.

– 31 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
3

Spin 1
2 fields couple to LEFT via three operators of dimension five or less. In addition,

there are two quark-flavour violating dimension six operators

ξ†aσµe d
†σµu , d†σµd ξ†aσµν , (3.21)

and their Hermitian conjugates, which contribute at LO in both εSM and 4π. The second
operator and its Hermitian conjugate can only be generated by penguin- and box-type
diagrams involving at least two heavy SM bosons. In analogy to the case of the scalar portal
operators in (3.18b), we expect that the diagrams with a virtual top quark exchange inside
the loop can scale as εSMf(m2

t

/
v2 ), so that there is no additional suppression compared

to the first operator. All of the operators mentioned above are listed in table 4.
The sub-leading operators can be either of dimension six or seven, and they are sup-

pressed by factors of (4π)−1 or (4π)−2. At dimension six, there are ten operators

dd νξa , dd ν†ξ†a , dσµνd νσµνξa , du eξa , d†σµu eσµξ
†
a , (3.22a)

dd ξaξb , dd ξ†aξ
†
b , dσµνd ξaσ

µνξb , ud e†ξ†a , dσµνu eσµνξb , (3.22b)

that contain charged right-chiral SM fermion fields, so that they are suppressed by an
additional factor of mψ/v ∝ √εSM, where mψ is the mass of the relevant right-chiral
fermion, due to the associated chiral suppression. As a result, they effectively behave as
dimension seven operators. Applying NDA, one finds that they are suppressed by factors
of (4π)−1. In addition, the operator

d†σµd ξ†aσµξb (3.23)

and its Hermitian conjugate, generated by penguin diagrams shown in figure 7c, contain
at least two SM gauge boson exchanges. At the EW scale, the hidden fermion only couples
to photons and Z-bosons via the dipole-type operator ξaσµνξbBµν . This coupling flips the
chirality of the hidden fermion, so that a light mass-insertion is necessary to undo the flip.
Therefore, the operator is suppressed by an additional factor of √εSM, and it effectively
counts as a dimension seven operator. Applying NDA, one also has to account for the 4π
suppression associated with the EW gauge couplings, so that the operator is suppressed
by at least a factor of (4π)−2.

Finally, at dimension seven, there are six derivative operators

d†σµd νDµξa , d†σµu eDµξa , d†σµd ξaD
µξb , (3.24a)

d†σµd νσµνDνξa , d†σµu eσµνDνξa , d†σµd ξaσ
µνDνξb , (3.24b)

and their Hermitian conjugates. We collect all of the above sub-leading operators in table 5.

Spin 1 fields couple to LEFT via one operator of dimension four, see table 4. Since there
are no dimension five operators that couple spin 1 messengers to SMEFT, the resulting
portal LEFT contains higher dimensional operators of dimension five and six, but not
seven. None of them contributes at LO in the 4π counting. The dimension six operators

vµv
µvν d

†σνd , vµ d†σνGµνd , vµ d†σνG̃µνd , (3.25)
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are suppressed by factors of (4π)−1. The dimension five operators

vµv
µ dd , ∂µv

µ dd , ∂µvν dσµνd (3.26)

and their Hermitian conjugates are suppressed by a factor of √εSM associated with each
right-chiral light quark insertion, so that they effectively contribute like dimension six
operators. Applying the NDA rules, one finds that they are suppressed by factors of
(4π)−2. Finally, the dimension six operators

vµFµν d
†σνd , ∂νv

ν vµ d
†σµd , vµvν d†σµDνd , ∂2vµ d†σµd ,

vµF̃µν d
†σνd , ∂µvν v

ν d†σµd , εαβµν ∂αvβ vν d
†σµd , ∂(νvµ) d

†σµDνd ,

∂νvµ v
ν d†σµd .

(3.27)

are also suppressed by factors of (4π)−2. We collect all of the above operators in table 5.

3.3.2 QCD portal currents

In order to prepare for the derivation of the portal χPT Lagrangian in the following section,
we embed the interactions encompassed by the portal LEFTs into appropriate portal cur-
rents, as we have done for the interactions of the portal SMEFTs. These currents contain
the leading quark-flavour conserving and violating portal operators collected in table 4, but
we neglect the subleading quark-flavour violating operators collected in table 5. Hence, the
QCD sector of the portal Lagrangian is

LportalQ = Sθw − SωΥ−
〈
SmQ+ V µ

l Qµ + V µ
r Qµ

〉
f
− Λ−2

SM

〈
SγQ̃+ TµνQµν + h.c.

〉
f

− v−2
〈

SsOs + SrOr + S−l O−l + S+
l O+

l

〉
f
− v−2

〈〈
S+
l O

+
l

〉〉
f
, (3.28)

where the composite QCD gluon operators w and Υ are defined in (2.4) and (2.10), the
quark bilinears Q are defined in (2.8), (2.21), and (2.29), and the quark quadrilinears O
and O are defined in (2.51), (2.57), and (2.58).

The (pseudo-)scalar portal currents Sθ and Sω couple to QCD in the same way as the
θ angle and the gluon coupling ω in Lagrangians (2.4) and (2.10). They read

Sω = εUV
v
cSωi si , Sθ = εUV

v
cSθi si . (3.29)

The (pseudo-)scalar portal current Sm couples to QCD in the same way as the quark mass
matrix in (2.8). It reads

Sm = εUVc
Sm
i si + εUV

v
cSmij sisj + εUV

v2

(
cSmijksisjsk + cSm∂2i∂

2si
)

+ εUV
v3 cSmijklsisjsksl . (3.30)

This current has to be uncharged, so that it obeys

Sm = Sm + 1
nf
Sm , Smu

d = Smd
u = Smu

s = Sms
u = 0 . (3.31)
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The left- and right-handed vector portal currents V µ
l and V µ

r couple to QCD in the same
way as the left- and right-handed EW currents in (2.20). They read

V µ
l = εUVc

L
v v

µ + εUV
v2

[
cLijsi

↔
∂
µ
sj +

(
λsuc

L
ūs i e

†σµν si + λsdcLd̄s i ν
†σµν si

+λsucLūs a e†σµξa +λsdcLd̄s a ν
†σµξa +h.c.

)]
,

(3.32a)

V µ
r = εUVc

R
v v

µ . (3.32b)

The current V µ
l is the only portal current that can carry charge due to the contributions

generated by virtual W -boson exchanges, which implies

Vµ
r
u
d = Vµ

r
d
u = Vµ

r
u
s = Vµ

r
s
u = 0 , V µ

l,r = Vµ
l,r + 1

nf
V µ
l,r . (3.33)

V µ
r and V µ

l are also Hermitian, so that

Vµ
l,r

s
d = (Vµ

l,r
d
s )† , Vµ

l
d
u = (Vµ

l
u
d)† , Vµ

l
s
u = (Vµ

l
u
s )† . (3.34)

The dipole portal currents Tµν
τ and SγV couple to QCD in the same way as the dipole

currents in Lagrangian (2.28). They read

Tµν
τ = −1

3F
µνSγA , SγV = εUV

(
λds c

γV
isd + λsdc

γV
ids

)
si . (3.35)

The chromomagnetic and tensor currents SγG and Tµν
τ are uncharged and strangeness

violating, but not necessarily Hermitian. Hence, the only non-vanishing contributions are

SγGs
d , SγGd

s , Tµν
τ

s
d , Tµν

τ
d
s . (3.36)

Finally, the four-quark portal currents mirror the four-quark interactions in Lagrangian (2.59).
They read

Ss = hsi
εUV
v
si , Sr = hri

εUV
v
si , (3.37a)

S−l = hai
εUV
v
si , S+

l = hsi
εUV
v
si , S+

l = hsi
εUV
v
si , (3.37b)

where the four-quark portal sector parameters ax1,2 = ax(cι1,2) and Wilson coefficients cι1,2
are defined such that they mirror the SM four-quark parameters eqs. (2.51) and (2.56) and
Wilson coefficients (2.35). It is convenient to define ax0 = ax(cι0) and cι0 = cι, so that the
generic objects axi and cιi with i = 0, 1, 2 can be used to collectively refer to the complete
set of both SM and portal sector parameters and Wilson coefficients.

Combining the SM and BSM contributions (cf. table 6) to the external currents, we
define the complete external currents

Θ = θ + Sθ , M = m+ Sm , Rµ = rµ + V µ
r , Tµν = τµν + Tµν

τ , (3.38a)
Ω = ω + Sω , Γ = γ + Sγ , Lµ = lµ + V µ

l , (3.38b)
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Ω Θ M Γ Hs Hr H−l H+
l H+

l Lµ Rµ Tµν

contribution SM ω θ m γ hs hr h−l h+
l h+

l lµ rµ τµν

BSM Sω Sθ Sm Sγ Ss Sr S−l S+
l S+

l V µ
l V µ

r Tµν
τ

spin 0 1 2

εSM 0 1 0 1

d 0 1 1 0 0 1 3

flavour

representation 1 8⊕ 1 8 8 27 8⊕ 1 8
symmetry V †µ = Vµ

DOFs 1 18 16 16 54 9 16
∆s = ±1 0 4 4 4 4 2 4

Table 6. List of all external currents interacting with QCD at the strong scale including both
SM and BSM contributions. The first three rows list their spin, the order in εSM at which they
contribute and their mass dimension d. Rows four, five, and six list their representations and
symmetries under flavour rotations as well as the resulting DOFs. The last row counts the number
of strangeness violating DOFs, which are the only relevant DOFs for currents starting contribute
at order εSM.

and13

Hs = hs + Ss , Hr = hr + Sr , (3.39a)
H−l = h−l + S−l , H+

l = h+
l + S+

l , H+
l = h+

l + S+
l . (3.39b)

Using these complete external currents in place of the SM external currents, one obtains
the corresponding complete interaction Lagrangians

LθQ → LΘ
Q , LωQ → LΩ

Q , LmQ → LMQ , LvQ → LVQ , (3.40a)
LγQ → L

Γ
Q , LτQ → LTQ , LhQ → LHQ , (3.40b)

where the original Lagrangians are given in (2.18), (2.35) and (2.41). Hence, the complete
external current sector of QCD including both SM and hidden contributions is

LQ = Θw − ΩΥ−
〈
MQ+LµQµ +RµQµ

〉
f
− Λ−2

SM

〈
ΓQ̃+ TµνQµν + h.c.

〉
f

− v−2
〈

HsOs + HrOr + H−l O−l + H+
l O+

l

〉
f
− v−2

〈〈
H+
l O

+
l

〉〉
f
, (3.41)

where the external currents are defined in current (3.38) and (3.39) and summarised in
table 6. All of them receive contributions from the SM. However, without NP, the currents
Θ, Ω, M , H, Hx, and H+

l are constant. The SM contributions to the currents Lµ, Rµ and
Tµν depend on the photon field, and Lµ additionally contains the weak leptonic charged
current, cf. (2.27) and (2.30).

13We emphasise that the use of h and H for both the Higgs field and the four quark current can not lead
to conflicts as these currents only appear at energy scales at which the Higgs field has been integrated out.
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Covariant derivatives. In contrast to the parameters defined in section 2, the external
currents defined in this section are spacetime dependent, and the χPT Lagrangian derived
in the next section contains contributions with derivatives acting on the external currents.
To enforce invariance of χPT under the action of the local GLR symmetry eqs. (2.45)
and (2.46), these derivatives have to be promoted to covariant derivatives. The covariant
derivative of a generic external current J is

iDµJ
BḊ
AĊ
≡ i ∂µJBḊAĊ +

n∑
i=1
Lµ

x
aiJ

BḊ
AxĊ
−

m∑
j=1
Lµ

bj
x J

BxḊ
AĊ

+
p∑

k=1
Rµ

ẋ
ċk
JBḊ
AĊx
−

q∑
l=1
Rµ

ḋl
ẋ J

BḊx
AĊ

, (3.42)

where the capital indices denote multi-indices

A = a1 . . . an , Ax = a1 . . . ai−1xai+1 . . . an ,

B = b1 . . . bm , Bx = b1 . . . bi−1xbj+1 . . . bm ,

Ċ = ċ1 . . . ċp , Ċx = ċ1 . . . ċk−1ẋċk+1 . . . ċp ,

Ḋ = ḋ1 . . . ḋq , Ḋx = ḋ1 . . . ḋl−1ẋḋl+1 . . . ḋq .

(3.43)

The current Θ does not carry any flavour indices, but due to the axial anomaly it transforms
like the trace of the logarithm of a unitary matrix ϑḃa ≡ ei Θ1ḃa with two flavour indices.
Hence, its covariant derivative can be defined as

DµΘ ≡ ϑµ ≡ − i
〈
ϑ†Dµϑ

〉
f

= ∂µΘ− Lµ +Rµ . (3.44)

This object is a chiral invariant and therefore not a covariant derivative in the proper sense.
In analogy to gauge fields, the external currents Lµ and Rµ cannot appear by themselves.
Instead χPT depends on the left- and right-handed field strength tensors

Lµν = ∂µLν − ∂νLµ − i [Lµ,Lν ] , Rµν = ∂µRν − ∂νRµ − i [Rµ,Rν ] . (3.45)

To prepare for the eventual decomposition of the χPT Lagrangian into SM and portal
contributions, it is also convenient to define the left- and right-handed portal field strength
tensors

V µν
l = ∂µV ν

l − ∂νV
µ
l − i

[
V µ
l ,V

ν
l

]
, V µν

r = ∂µV ν
r − ∂νV µ

r − i [V µ
r ,V

ν
r ] . (3.46)

4 Chiral perturbation theory

χPT is an effective theory of the light unflavoured and strange pseudoscalar mesons with
masses below roughly 1GeV, which corresponds to the mass scale associated with the GD
contribution to e.g. the proton mass. Experimentally, one observes nine such mesons
φ: three pions π± and π0, four kaons K±, K0, and K

0, and the two η- and η′-mesons.
Neglecting their masses, the typical energy scale of interactions involving these mesons
is determined by the meson decay constants, which are defined in terms of the hadronic
matrix elements [144]

fφ = i
2m2

φ

〈
0
∣∣∣∂µ 〈(Qµ −Qµ

)
λφ
〉

f

∣∣∣φ(p)
〉
e− i px , (4.1)
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where mφ is the mass of the meson in question, (Qµ−Qµ)/2 is axial-vector quark current,
and the matrix λφ projects onto the relevant combination of quark flavours. In particular,
the charged pion decay constant fπ = (65.1± 0.4exp)MeV, for which λφ = λdu, determines
the charged pion decay width [144]

Γ
(
π± → `±ν

)
= 1

16πmπ

(
1− m2

`

m2
π

)
f2
πm

2
`

v4 |Vud|
2
(
m2
π −m2

`

)
, (4.2)

where mπ = (139.57018 ± 0.00035exp)MeV is the mass of the charged pion and m` is the
mass of the charged lepton `± = e±, µ±.

The light pseudoscalar mesons can be identified with the pseudo Nambu-Goldstone
bosons (PNGBs) of the explicitly broken chiral GLR = U(3)L × U(3)R symmetry (2.5) of
the kinetic QCD Lagrangian (2.4). χPT is defined via a perturbative expansion of QCD
around the limit without explicit chiral symmetry breaking, which can be constructed by
setting the external currents to zero while keeping only the zeroth order terms in the large
nc expansion. In this limit, the quark condensate (2.6) still spontaneously breaks the
GLR symmetry to a GV = U(3)V vector symmetry, so that the Goldstone theorem [180–
182] implies the existence of nine massless Nambu-Goldstone bosons (NGBs), one for each
spontaneously broken generator. Reintroducing the explicit symmetry breaking generated
by the light quark masses (2.8), the other external currents (3.38) and (3.39), and the
axial anomaly (2.10) as small perturbations, one obtains the U(3) version of χPT, which
contains nine massive PNGBs. The PNGB masses scale as

m2
φ ∝ Lbroken , (4.3)

where Lbroken is the part of the Lagrangian that contains the explicit symmetry breaking
terms. In this version of χPT, it is necessary to expand QCD in powers of n−1

c in order
to control the impact of the axial anomaly. Without this expansion, the axial anomaly
badly breaks the U(1)A symmetry of QCD, and the perturbative expansion in the anoma-
lous contribution to Lbroken becomes invalid. Following this approach, one obtains the
SU(3) version of χPT, which contains only eight PNGBs, one for each broken generator of
SU(3)L × SU(3)R ⊂ GLR. However, we work in the U(3) version, since it is better suited
for understanding the coupling of the SM mesons to pseudoscalar hidden mediators such
as ALPs.

In U(3) χPT, the PNGBs parameterise the coset GLR/GV ∼= U(3)A in terms of a
non-linearly realised matrix valued field [105, 109, 149, 183]

g(x) = exp i Φ(x)
f0

, (4.4)

where the dimensionful parameter f0 determines the typical energy scale of χPT. At LO
in the small momentum expansion of χPT, the meson decay constants in (4.1) are all
identical and equal to f0, that is, fφ = f0, but higher order corrections cause the meson
decay constants to acquire different values, cf. appendix D.1. Since the impact of higher
order corrections is smallest for the pion, it is conventional to fix f0 by matching to the
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π8

η8

K+K0

π− π+

K
0

K−

−1

0

1
−1

0

1

−1 −1
2 0 1

2 1

q

s

I

(a) Meson octet Φ.

η1

I = s = q = 0

(b) Meson singlet Φ.

Figure 8. The light pseudoscalar mesons. Panel a shows the isospin I, strangeness s and electric
charge q quantum numbers of the light pseudoscalar meson octet, and panel b shows the quantum
numbers of the singlet. The three unflavoured mesons (π8, η8, and η1) mix into the neutral mass
eigenstates (π0, η, and η′).

pion decay constant fπ. The PNGB matrix

Φ(x) = Φ(x) + 1
nf

Φ(x) , Φ(x) = 〈Φ(x)〉f , (4.5)

transforms as a nonet under GV . Its trace Φ transforms as a singlet under GV , while the
traceless contribution Φ transforms as an octet. Using the Gell-Mann (GM) matrices14 λa
and the rescaled identity matrix λ0 =

√
2/nf 1, which are normalised such that 〈λaλb〉f =

2δab, to parameterise the PNGB octet and singlet according to

Φ =
∑
a 6=0

φaλa√
2

=


η8√

6 + π8√
2 π+ K+

π− η8√
6 −

π8√
2 K0

K− K
0 −2 η8√

6

 , Φ =
〈
φ0λ0√

2

〉
f

= nf
η1√

3
, (4.6)

their components can be identified with the light meson flavour eigenstates φa = {π±,
K±, K0, K0, π8, η8, η1}, whose quantum numbers are depicted in figure 8. There is a
large mass-mixing between the η8- and η1-mesons. After diagonalisation, the two mass
eigenstates are denoted as η and η′. Isospin violating contributions further induce a small
mixing between the neutral pion and the two η-mesons, while EW corrections induce a
feeble kinetic mixing between the charged kaons and pions.

14The GM matrices are λ1 = λd
u + λu

d , λ4 = λs
u + λu

s , λ6 = λs
d + λd

s , λ3 = λu
u − λd

d ,

iλ2 = λd
u − λu

d , iλ5 = λs
u − λu

s , iλ7 = λs
d − λd

s ,
√
nfλ8 = λu

u + λd
d − 2λs

s .
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4.1 Flavour symmetry

In the absence of explicit symmetry breaking, the χPT action has to be invariant under the
global GLR flavour symmetry (2.5) of the kinetic QCD Lagrangian (2.4). The coset matrix
g and the trace of the pseudoscalar meson matrix Φ/f0 = − i 〈ln g〉f transform under the
action of GLR as [105, 109, 149, 183]

g → V gV ,
Φ
f0
→ Φ

f0
− i
〈

lnV V
〉

f
. (4.7)

The transformation behaviour of Φ mirrors the behaviour of the pseudoscalar external
current Θ (2.45a), which is also a GV singlet. When including the external currents J = {Ω,
Θ,M , Lµ, Rµ, Tµν , Γ, Hs, Hr, Hl}, the χPT action can be obtained by means of a spurion
analysis, which corresponds to enforcing the invariance of the χPT path integral under the
local flavour symmetry (2.5) [105, 109, 149, 183–185]. This entails the promotion of the
partial derivative ∂µg to a covariant derivative

Dµg = ∂µg − i (Lµg − gRµ) , (4.8)

where the left- and right-handed external currents Lµ and Rµ effectively fulfil the role of
gauge fields. Besides being parts of the covariant derivatives, these two external currents
also contribute to the χPT action via operators involving the left- and right-handed field
strength tensors Lµν and Rµν , cf. definition (3.45), while the remaining external currents
appear as regular building blocks of the theory. GLR invariant operators in χPT are then
constructed by taking quark-flavour traces of either purely left- or right-handed products
of the coset matrix g, the external currents, and their covariant derivatives.

The spurion analysis is also a standard tool used to embed χPT into the remainder
of the SM, by parameterising the coupling of QCD to the EW sector in terms of the
external currents Θ,M , Lµ, and Rµ, which describe CP-violation, quark masses, and EM
vector current interactions in the SM, respectively. For more details, see e.g. the general
introductions to χPT in [184–187]. In the SM, the spurion approach neglects contributions
to the χPT Lagrangian that are generated from diagrams with virtual photon exchanges.
Starting at order αEM ∝ e2, one has to include an additional set of EM operators in order
to complete χPT. For extensive listings of these operators, see e.g. [188–193]. In particular,
they are necessary to obtain the correct SM estimates for e.g. the pion mass splitting and
the ε′/ε ratio [194–196], which measures the correlation of CP-violation in decays of neutral
kaons into pairs of charged pions, K0 → π+π−, and neutral pions, K0 → π0π0.

4.2 Power counting

When accounting only for the explicit symmetry breaking due to the axial anomaly, U(3)
χPT is defined via a simultaneous expansion in small momenta ∂2

/
Λ2
χPT and n−1

c , where
ΛχPT = 4πf0 = (803 ± 15exp ± NNLO)MeV is the symmetry breaking scale of χPT [105,
109, 149, 175, 183]. Following [109], we combine both of these expansions by defining a
single degree of smallness δ ∝ ∂2

/
Λ2
χPT ∝ n−1

c . This is appropriate for kaon decays, since
n−1
c = 1/3 ' m2

K

/
Λ2
χPT . At lower energies, such as for ∂2 ' m2

π � m2
K , the suppression

– 39 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
3

εUV εSM εEW δ

Numerator v ∂2 . m2
c Λ2

χPT ∂2 . m2
K

Denominator fUV Λ2
SM Λ2

SM Λ2
χPT

Table 7. Small parameters that are defined as ratios between the relevant UV, SM, and χPT
scales. The small parameter δ also captures the expansion in n−1

c of U(3) χPT. ΛSM = 4πv and
ΛχPT = 4πf0 are defined such that they include NDA loop factors. For momenta ∂2 . m2

K , one
has εSM = δεEW.

associated with the small momenta is a much better expansion parameter than n−1
c . In

this case, it is more appropriate to work with SU(2) or SU(3) χPT, so that the large nc
expansion, which is necessary in U(3) χPT, can be avoided. Besides the expansion in δ,
we also track the suppression due to εSM and εUV, as defined in (2.23) and (3.2), and
we eliminate operators that are doubly suppressed in either one of these two parameters.
Table 7 summarises the relation between the four expansion parameters.

Momentum expansion. χPT can be expanded in powers of ∂2
/

Λ2
χPT = ∂2/(4πf0)2 by

adopting the general power counting scheme for low energy EFTs [25], which is established
by studying the behaviour of individual diagrams under a rescaling pi → xpi of the external
momenta pi. Since f2

0 ∼ ∂2 defines the typical energy scale of χPT, the resulting power
counting in χPT is equivalent to the (4π)−1 expansion of NDA [175]. Applying the NDA
power counting rules, derivatives ∂µ are suppressed by factors of

√
δ, while powers of the

PNGB matrix Φ are unsuppressed. Since the external currents Lµ and Rµ appear in the
covariant derivative (4.8), they also count as

√
δ ∝ ∂µ/ΛχPT . The external currents M ,

Γ, and Tµν contribute to the PNGB masses, so relation (4.3) implies that all three of them
count as M , Γ, Tµν ∝ m2

φ ∝ ∂2 ∝ δ. In summary, each of these building blocks counts as

g ∝ 1 , ∂,L,R ∝
√
δ , M ,Γ,T ∝ δ . (4.9)

Large nc expansion. The standard formula for large nc scaling behaviour for diagrams
without four-quark operators eq. (2.13) shows that the leading QCD diagrams with a given
number of quark loops are suppressed by one factor of n−1

c for each quark-loop. Since χPT
operators with nq quark flavour traces have to be generated by contributions in the QCD
path-integral with at least nq quark loops, each quark-flavour trace in χPT counts as
n−1
c [appendix A of 109]. The large nc scaling behaviour of the leading QCD diagrams also

directly implies that the external currents Θ and Ω count as δ ∝ n−1
c .

Equation (2.40) establishes a modified large nc scaling for QCD diagrams with four-
quark vertices. It implies that χPT operators with one four-quark current insertion, Hx
or Hx, are enhanced by a relative factor of nc associated with the four-quark vertex. In
addition, the leading contributions to the QCD path-integral with one four-quark inser-
tion contain two quark loops but scale as if they contain only a single quark loop. Each
additional quark loop that is not associated with the four-quark insertion still gives a sup-
pression ∝ n−1

c . In total, this means that χPT operators with one four-quark current
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nt n′t nmc δn

0 1 2 3

1, 2 2 ∂0n2
c ∂2n2

c ∂4n2
c ∂6n2

c

1 3 1 ∂0n1
c ∂2n1

c ∂4n1
c

2 4 0 ∂0n0
c ∂2n0

c

3 5 −1 ∂0n−1
c

GD χPT

Table 8. Impact of flavour traces on the δ-counting of an operator. nt counts the number of
flavour traces in operators without four-quark current insertions, while n′t counts the same number
in operators with four-quark insertions. Note that m = 2 − nt = min(4 − n′t, 2) and that χPT
operators proportional to n2

c are only possible in the modified four-quark counting scheme

insertion and nq = 1, 2 quark flavour traces scale as n2
c , while operators with one four-

quark current insertion and nq > 2 quark flavour traces scale as n4−nq
c . In summary, each

of the above building blocks counts as

Sω,Θ ∝ δ , Hx,Hx ∝ δ−1 , 〈◦〉nf ∝ δ
max(n−nh,nh) , nh = 0, 1 . (4.10)

where nh = 0, 1 is the number of four-quark current insertions.

Expansion in powers of εSM and εUV. The parameter εSM = ∂2/Λ2
SM with ΛSM =

4πv measures the degrees of smallness associated with higher-dimensional operators at low
energies. However, it mixes the small momentum expansion of χPT with the suppression
due to virtual W -boson exchanges. In order to separate these two expansions, we define
εSM = δεEW, where εEW = f2

0
/
v2 = Λ2

χPT

/
Λ2
SM is the ratio between the χPT and EW

scales. With this definition, the external currents Γ, Tµν , Hx, and Hx are all suppressed by
one factor of εEW in χPT, independent of any additional momentum suppression. Addition-
ally, the suppression due to factors of εUV has to be taken into account when considering
modifications due to the Ω current, since the SM contribution ω ∝ g−2

s is integrated out
when constructing χPT, so that only the hidden sector contributions Sω remains. At LO
in both εUV and εEW, the χPT action can be at most linear in each of the above currents.

4.3 Construction of the portal χPT Lagrangian

We construct the complete χPT Lagrangian that couples the light pseudoscalar mesons
to generic hidden sectors at LO. To this end, we first summarise the shape of the χPT
Lagrangian when neglecting εEW and εUV suppressed hidden sector contributions. In this
case, the only non-vanishing external currents are Lµ, Rµ, M , and Θ, and the resulting
χPT Lagrangian is well established, see e.g. the discussions in [105, 109, 149, 183–187, 197].
Afterwards, we consider the εEW and εUV suppressed contributions and use the spurion
approach to construct the novel contributions with general spacetime dependent currents
Sω, Γ, Hx, and Hx.

– 41 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
3

The leading contributions to the connected part of the QCD path integral count as
order n2

c , and determine GD in the large nc limit [151, 153–155]. Since meson dynamics
are determined by connected QCD diagrams with at least one quark loop, which scale at
most as order nc, χPT operators have to be suppressed by at least a factor of δ compared
to the leading QCD diagrams. The only chiral invariant that could contribute at this order
is

Θ̂ = i
(

Θ− Φ
f0

)
, (4.11)

where the hat indicates a flavour invariant quantity. However, an operator proportional to
Θ̂ is forbidden by parity conservation [109, 149, 183]. Hence, the leading contributions to
the χPT action are of order δ2. See table 8 for an overview of the possible orders of an
operator.

Order δ2. Operators that contribute at this order can count either as order ∂2nc or order
∂0n0

c . Operators that count as order ∂2nc contain only a single quark-flavour trace. In the
absence of explicit symmetry breaking due to the mass-like current M , the only available
operator of this type is [105, 109, 149, 183–187, 197]

LD2
U = f2

0
2 〈UµU

µ〉f , (4.12)

where the left-handed Maurer-Cartan (MC) field associated with g is

Uµ = uµ −Lµ + R̂µ , uµ = i g∂µg† = − i(∂µg)g† , R̂µ = gRµg
† (4.13)

and uµ is the MC field obtained when neglecting the external currents Lµ and Rµ. Bold
hatted operators such as R̂µ are composite operators constructed from an external current
and the coset matrix g such that they transform under GLR in the same way as Uµ.15 The
MC field transforms as

Uµ → V UµV
† (4.14)

and corresponds to the low energy realisation (LER) of the conserved current associated
with left-handed chiral quark flavour rotations, cf. section 2.2. It obeys the relation

DµUν −DνUµ = i [Uµ,Uν ]−Lµν + R̂µν , R̂µν = gRµνg
† , (4.15a)

∂µuν − ∂νuµ = i [uµ,uν ] , (4.15b)

and its flavour trace
Uµ = 〈Uµ〉f = DµΦ

f0
= ∂µΦ

f0
− Lµ +Rµ (4.16)

encodes the covariant derivative of the trace of the coset matrix. Note that the above object
DµΦ is not a covariant derivative in the strict sense, since it remains invariant under chiral

15g is defined such that it is adjoined in the mass term (4.17) whenever the canonical quark mass matrix
M is adjoint. Furthermore, we define the MC field to be left-handed (rather than right-handed) in order to
simplify the description of W -boson induced processes. However, note that relations that involve only Uµ,
ϑµ, and hatted quantities are invariant under a change of either definition, provided that the hat-operation
is first redefined such that it transform external currents into purely right-handed (rather than left-handed)
objects and then reapplied appropriately.
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rotations rather than following the transformation law for Φ in eq. (4.7). When accounting
for the quark mass-like current M , it is possible to construct a second operator that also
contributes at order ∂2nc [109, 183–187, 197]

LMU = f2
0 b0
2 M̂ + h.c. , (4.17)

where

M̂ =
〈
M̂
〉

f
, M̂ = gM , M̂ → V M̂V † . (4.18)

This nonet mass term gives rise to the dominant contribution to the physical masses of
the pions, kaons, and the η-meson. The mass of the heavy η′-meson is dominated by the
contribution of the third and final term in the LO χPT Lagrangian, the PNGB singlet
mass term [109, 149, 152, 183]

LΘ2
U = f2

0m
2
0

2nf
Θ̂2 . (4.19)

This term contains two flavour traces and no derivatives, so that it enters at order ∂0n0
c

rather than ∂2nc. It is associated with the explicit chiral symmetry breaking due to the
axial anomaly (2.10). Putting all three contributions together, the complete LO Lagrangian

Lδ2
U = LD2

U + LMU + LΘ2
U (4.20)

yields the LO EOM
1
2
(
gD2g† −D2gg†

)
= b0

2
(
M̂ − M̂ †

)
+ m2

0
nf

Θ̂1 . (4.21)

Together with the general identity (4.13), this EOM implies that, without loss of generality,
terms containing gD2g† and its Hermitian conjugate can always be eliminated from higher
order Lagrangians.

Order δ3. Starting at this order, the χPT action can, in principle, contain operators
with covariant derivatives acting on Lµν , Rµν , M , and Θ. However, up to corrections of
order δ4 or higher, partial integration (PI) can always be used to eliminate operators with
derivatives acting on Lµν , Rµν , M in favour of operators with derivatives acting only on
g or Θ.

Operators that contribute at order δ3 can count either as order ∂4nc, order ∂2n0
c ,

or order ∂0n−1
c . Operators that count as order ∂4nc can contain only a single quark-

flavour trace. In the absence of external currents, the only available operators of this type
are [109, 183]

LD4
U = (2L2 + L3) 〈UµUµU

νUν〉f + L2 〈UµUνUµU ν〉f , (4.22)

where contributions with more than one derivative acting on a single coset matrix g can be
eliminated using PI, the EOM eq. (4.21), or identity (4.13). The quark mass-like current
M generates the additional contributions [109, 183]

LD2M
U = L5b0

〈
M̂UµU

µ
〉

f
+ h.c. , LM2

U = L8b
2
0

(〈
M̂2

〉
f

+ h.c.
)

+H2b
2
0

〈
M̂ †M̂

〉
f
.

(4.23)
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In the operator proportional to H2, the dependence on the coset field g drops out, so that
the term does not contribute to perturbatively computed S-matrix elements, but it has to
be added to the Lagrangian as a counter term in order to renormalise the theory [105, 109,
183–185, 197]. The field strength tensors Lµν and Rµν generate the contributions [105,
109, 183]

LD2V
U = − iL9

〈
UµU ν

(
Lµν + R̂µν

)〉
f
, (4.24a)

LV 2
U = L10

〈
LµνR̂µν

〉
f

+H1
〈
LµνL

µν + R̂µνR̂
µν
〉

f
, (4.24b)

where the operator proportional to H1 is another counter term. The operators that count
as order ∂2n0

c contain two flavour traces. In the absence of external currents, the only
available operator of this type is the kinetic term [109, 183]

LDDU = f2
0

2nf
Λ1UµU

µ . (4.25)

The external currents M and Θ induce the further mass-like term [109, 183]

LMΘ
U = f2

0 b0
2nf

Λ2M̂Θ̂ + h.c. , (4.26)

and a final counter term that depends on the covariant derivative of Θ defined in eq. (3.44)
[109, 183]

Lϑ2
U = f2

0
2nf

H0ϑµϑ
µ . (4.27)

There is no kinetic mixing term proportional to Uµϑµ, since this operator can always be
eliminated via a shift of Φ. There are also no operators of order ∂0n−1

c , since the only
candidate operator is proportional to Θ̂3, and it is forbidden due to parity conservation in
QCD.

Wess-Zumino-Witten action. Since the NGBs are pseudoscalar fields, a parity transfor-
mation corresponds to the combined transformation of spatial inversion x↔ −x and meson
conjugation g ↔ g†. The contributions derived so far are invariant under both transforma-
tions separately, so that the resulting χPT Lagrangian is more symmetric than QCD. In
the absence of external currents, there is no four dimensional Lagrangian that breaks this
additional symmetry [198], but starting at order δ3 it is possible to construct a so-called
Wess-Zumino-Witten (WZW) contribution to the χPT action that takes the form of a
five dimensional integral over a sub-manifold of the nine dimensional space of field values
that can be assumed by the coset matrix g(x) [199]. This integral can be connected to an
action written in terms of a Lagrangian density by identifying Minkowski space with the
four dimensional boundary of this sub-manifold. Hence, the WZW term can be written
as [199]

Γncu = − nc
(2π)2

∫
dx5 εijklmω

ijklm
0 (ui) , ωijklm0 (ui) = 2

5!
〈
uiujukulum

〉
f
, (4.28)
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δ2 δ3

ΛχPT f0 b0 m0 4L5 4L8 2H2 Λ2

4πf0
√
nc n

−1/2
c ΛχPT n

−3/2
c ΛχPT nc(4π)−2 nc(4π)−2 nc(4π)−2 n−1

c

Table 9. NDA and large nc scaling of selected coefficients that appear in the order δ2 and δ3

Lagrangians. Additionally, we have made the omitted symmetry factors explicit.

where ωijklm0 (ui) is the pure-gauge CS term and the i, j, k, . . . denote coordinate indices of
the five-dimensional sub-manifold. The left- and right-handed external currents Lµ andRµ

generate additional WZW contributions that can be written in the form of a conventional
four dimensional Lagrangian [199–202]

LncU = nc
(2π)2 εµνρσ

(
ρµνρσ(uµ + R̂µ,Lµ) + ρµνρσ(Rµ,−uµ)

)
, (4.29)

where the Bardeen counter-term of two vector currents V µ
i is

ρµνρσ(V µ
0 ,V

µ
1 ) = 2

4!

〈
V µ

0 σ
νρσ
1 + σµνρ0 V σ

1 + i
2V

µ
0 V

ν
1 V

ρ
0 V

σ
1

〉
f
. (4.30)

This term shares a common contribution with the four dimensional gauge transformation
of the five dimensional CS term

ωµνρσ1 = 1
3! 〈vε∂

µσνρσi 〉f , σµνρi = 1
2F

µν
i V ρ

i + 1
2V

µ
i F

νρ
i + iV µ

i V
ν
i V

ρ
i , (4.31)

where vε is a gauge parameter. The WZW action Lagrangian (4.28) and the gauged WZW
Lagrangian (4.29) constitute the LO contributions to interactions with an odd number of
mesons such as K+K− → π+π−π0 and π0 → γγ.

Low energy coefficients and loops. The prefactors of operators that contribute at
order ∂2nnmc scale as

coefficient ∝ Λ2−2n
χPT f

2
0n

m+n−2
c , ΛχPT, f0 ∝

√
nc , (4.32)

where f0 scales as
√
nc in order to reflect the large nc counting of the kinetic Lagrangian (4.12)

in the LO χPT Lagrangian. The standard notation, which we also follow, does not make
this scaling explicit. However, we have summarised the omitted NDA scaling and symmetry
prefactors in table 9 and will quote numerical values of the dimensionless NLO coefficient
with symmetry factors and factors of 4π made explicit.

Diagrams with nl loops are suppressed by factors (4πf0)−2nl ∝ (4π)−2nln−nlc ∝ δ2nl

compared to tree-level diagrams. This implies that diagrams with one loop start to con-
tribute at NNLO. Since we restrict ourselves to NLO contributions, we do not consider these
loop corrections. In particular, we fix the values of the low energy coefficients (LECs) by
using tree-level predictions for the light meson observables. However, it is necessary to
emphasise that one-loop contributions are expected to be numerically sizeable due to en-
hancement from large chiral logarithms that scale as ∝ ln ∂2/µ2 . In addition, one has to
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χ0
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mη′

m0

Figure 9. Illustration of the energy scales appearing in portal χPT. The numeric values correspond
to the central values, for simplicity we omit all uncertainties.

account for these corrections in order to capture the scale dependence of the Li and Hi

parameters. As a result, the tree-level estimates for the LO and NLO LECs can only be
expected to be order-of-magnitude accurate. Since the dominant corrections at NNLO are
generated by chiral loops, we expect that our estimates are the most well aligned with the
NNLO estimates that one obtains when working with a relatively small renormalisation
scale, such as µ2 = m2

K± .
In total, the LO and NLO U(3) χPT Lagrangians contain 13 LECs: three LO coeffi-

cients f0, b0, m0, and ten NLO coefficients Li, Hi, and Λi. The coefficients f0, m0, and Λi
remain finite even when accounting for loop corrections, but in general the coefficient b0,
the Li, and the Hi have to be renormalised. We use the NLO tree-level estimates derived
in appendix D.1, which gives

f0 = (63.9± 1.2exp)MeV±NNLO , m0 = 4π(76.3± 1.4exp)MeV±NNLO , (4.33)

and √
b0mud = 4π(10.68± 0.08exp)MeV±NNLO , (4.34a)√
b0ms = 4π(50.95± 0.28exp)MeV±NNLO . (4.34b)

See figure 9 for a comparison of the energy scales involved in this work. For the subsequent
discussion in section 4.4, we also require the values of the NLO parameters L5 and L8.
Using the tree-level results from appendix D.1, one obtains the estimates

4(4π)2L5 = 0.66± 0.04exp ±NNLO , Λ2 = 0.814± 0.023exp ±NNLO , (4.35a)
4(4π)2L8 = 0.215± 0.033exp ±NNLO , (4.35b)

which are renormalisation scale independent at this level of accuracy.

4.3.1 Weak current contributions

The weak currents Γ, Tµν , Hl, Hs, and Hr are suppressed by powers of εEW, so that they
are only relevant in quark-flavour violating transitions. As we have already discarded
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the quark-flavour conserving contributions to these currents in sections 2 and 3, the χPT
operators that involve them will automatically violate quark flavour. We only include the
leading contributions for each current. These contributions can be either of order εEWδ,
εEWδ

2, or εEWδ3.

Dipole contributions. The dipole current Γ transforms under chiral flavour rotations
like the mass-like current M , so it couples to χPT in the same way. Hence, there is only
one operator with Γ at order εEWδ2,

LΓ
U = εEWf

2
0 b0

2 κΓΓ̂ + h.c. , Γ̂ =
〈
Γ̂
〉

f
, Γ̂ = gΓ . (4.36)

where κΓ is a free parameter. For the sake of completeness, we also note that there are
three additional contributions with Γ that enter at order εEWδ3. These are

LΓD2
U = εEWb0

4 κD
2

Γ

〈
Γ̂UµUµ

〉
f

+ h.c. , LΓΘ
U = εEWf

2
0 b0

2nf
κΘ

Γ Γ̂Θ̂ + h.c. , (4.37a)

LΓM
U = εEWb

2
0

2
(
κMΓ

〈
Γ̂M̂

〉
f

+ κM
′

Γ

〈
Γ̂M̂ †

〉
f

)
+ h.c. , (4.37b)

The κxΓ with x = D2, Θ,M , andM ′ are four more free parameters, and the second operator
in (4.37b) is another counter term. The impact of the term LΓD2

U in the SM, where Γ→ γ

is a constant, has been discussed in [117]. The authors also estimate the parameter κD2
Γ .

Further operators with covariant derivatives acting on Ĥ can be eliminated using PI.

Tensor contributions. Without loss of generality, the tensorial current is traceless in
Lorentz space, Tµ

µ = 0, so that its two Lorentz indices have to be contracted by either two
covariant derivatives or a field strength tensor. Hence, the leading contributions with Tµν

count as O
(
εEW∂

4nc
)
∼ O

(
εEWδ

3). The two available operators of this type are

LTD2
U = εEW

4f0
κD

2
T

〈
T̂µνU

µU ν
〉

f
+ h.c. , LTVU = εEW

2f0
κLRT

〈
T̂µν(Lµν + R̂µν)

〉
f

+ h.c. ,

(4.38)

where T̂µν = gTµν and the κT are free parameters. This result is consistent with the list
of operators obtained in [203], which also includes terms that are quadratic in Tµν .

Four-quark contributions. The leading operators with one four-quark insertion con-
tain either two covariant derivatives or one quark-mass insertion. According to the modified
large nc power counting (2.40), the contributions to the QCD path-integral that generate
these operators contain two quark loops but scale as n2

c . Therefore, the leading operators
count as O(εEWδ) = O

(
εEWn

2
c∂

2) and they can contain either one or two quark-flavour
traces, where, in stark contrast to operators that are not induced by the four-quark currents,
the second flavour trace is not associated with a large nc suppression factor. Furthermore,
operators with covariant derivatives acting on the four-quark currents can be eliminated
using PI, while operators with two covariant derivatives acting on the same coset-matrix
g can be eliminated using either the identity (4.13) or the EOM eq. (4.21).
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QCD χPT

current Hs Hr H−l H+
l H+

l H1 H8 Hb H27
SM hs hr h−l h+

l h+
l h1 h8 hb h27

BSM Ss Sr S−l S+
l S+

l S1 S8 Sb S27

representation 8 27 1

Table 10. Currents that couple to the QCD four-quark operators introduced in section 2.3 and
the derived parameters we use in χPT, cf. equations eq. (4.41), Lagrangian (4.44), and (4.46). The
table indicates the names for the SM and BSM contributions, as well as their representations under
GLR.

We first consider the operators that contain the octet contributions to the four-quark
currents Hx (3.39) with x = l, r, s (cf. table 10), and then proceed to the operators that
contain the 27-plet current (3.39) H+

l . The only leading octet operators are

〈HxUµUµ〉f , 〈HxUµ〉f U
µ ,

〈
Hx(M̂ + h.c.)

〉
f
, (4.39)

where Uµ and M̂ denote the octet contributions to Uµ and M̂ . In order to make contact
with the standard form of the four-quark χPT operators in the SM, we explicitly extract
the quark-flavour violating contributions by replacing Hx → 〈Hx〉ds λds +h.c. . The resulting
order εEWδ octet contributions are

LHD2
U = −εEWf

2
0

2
(
H8 〈UµUµ〉sd +H1 〈Uµ〉ds Uµ

)
+ h.c. , (4.40a)

LHMU = −εEWf
2
0 b0

2 Hb

〈
M̂ + M̂

†
〉s
d

+ h.c. , (4.40b)

where the three parameters H8, H1, and Hb are strangeness violating matrix elements of
linear combinations of the QCD four-quark currents (cf. table 10)

Hy =
〈
κ+
y H+

l + κ−y H−l + κryHr + κsyHs

〉d
s
, (4.41)

with y = b, 1, 8 and twelve free parameters κxy with x = +, −, r, s. The only leading
27-plet operator is 〈〈

UµH
+
l Uµ

〉〉
f

= 1
2 (Uµ

a
bUµc

d + Uµ
a
dUµc

b)H+
l
bd
ac . (4.42)

Using the first identity of (2.60) to explicitly isolate the quark-flavour violating contribu-
tions, one has〈〈

UµH
+
l Uµ

〉〉
f

∣∣∣∣
∆s=±1

= 2
nf − 1 (nfUµ

s
dUµu

u + (nf − 1)Uµ
u
dUµs

u)H+
l
su
du + h.c. (4.43)

The resulting order εEWδ 27-plet contribution is

LHD2

U = −εEWf
2
0

2 H27 (nfUµ
s
dUµu

u + (nf − 1)Uµ
u
dUµs

u) + h.c. , H27 = κ27H
+
l
du
su . (4.44)
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Hence, the complete χPT four-quark Lagrangian is

LHU = LHD2
U + LHMU + LHD2

U , (4.45)

where the SM contribution is consistent with the standard expressions found e.g. in [114,
115, 186]. Using current (3.39), we split the scalar currents Hy eq. (4.41) and (4.44) into
SM and portal contributions

Hy = hy + Sy , Sy = hyi
εUV
v
si , i = 1, 2 , (4.46)

where y = b, 1, 8, and 27. While the SM parameters h8, h1, and h27 are fixed by SM
observations, the SM parameter hb and the BSM parameters hyi with i = 1, 2 have to be
estimated using non-perturbative methods such as the large nc expansion.

4.3.2 Flavour-singlet current contributions

The GLR singlet current Ω = ω+ Sω contains a SM contribution ω = 2π/αs and a hidden
contribution Sω, but the SM contribution is implicitly integrated out when constructing
χPT, so that it cannot appear in the Lagrangian directly. Accounting for the hidden
current Sω, it is possible to construct additional chiral invariants by multiplying it by
each of the chiral invariants that contribute to the previously derived Lagrangians. Since
Sω insertions are suppressed by a factor of δ ∼ n−1

c , the leading strangeness conserving
contributions to the resulting sum of invariants count as δ3, while the leading strangeness
violating contributions count as εEWδ2 and εEWδ3. The full singlet current Lagrangian is

LSωU = LSωU δ3 + LSωU
EW
δ2 + LSωU

EW
δ3 , LSωU δn = SωΥUδn−1 , (4.47)

where the strong terms are

ΥUδ2 = κD
2

ω LD
2

U + κMω LMU + κΘ2
ω LΘ2

U , (4.48)

and the EW suppressed terms are

ΥU
EW
δ = κHD

2
ω LHD2

U + κHMω LHMU + κHD
2

ω LHD2

U , ΥU
EW
δ2 = κΓ

ωLΓ
U . (4.49)

The κω are seven free parameters. In the following, we abbreviate

ΥU = ΥUδ2 + ΥU
εEW
δ + ΥU

εEW
δ2 . (4.50)

The above result is consistent with the interaction Lagrangian used in [204] to capture the
coupling of the SU(3) χPT to a light Higgs boson. The treatment in [204] neglects the
chromo- and electromagnetic interactions captured by LΓ

U as well as the 27-plet interactions
captured by LHD2

U . Furthermore, the SU(3) χPT Lagrangian in [204] does not contain the
contribution LΘ2

U , which only appears in the U(3) χPT.
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4.3.3 Stress-energy tensor

The complete LO χPT action contains the Lagrangian contributions

LUδ2 = LD2
U + LMU + LΘ2

U , LUEW
δ = LHU , LUEW

δ2 = LΓ
U + LSωU

EW
δ2 , (4.51)

while the NLO χPT action contains the Lagrangian contributions

LUδ3 = LD4
U + LD2M

U + LM2
U + LDDU + LMΘ

U + Lϑ2
U + LD2V

U + LV 2
U + LSωU δ3 + LncU ,

(4.52a)

LUEW
δ3 = LD2H

U + LMH
U + LΘH

U + LD2T
U + LV TU + LSωU

EW
δ3 (4.52b)

as well as the ungauged WZW term Γncu (4.28). In the next section, we use the trace of
the SM Hilbert stress-energy tensor to estimate the novel parameters κω that appear in
the singlet current Lagrangian (4.47). Neglecting the contributions due to the Sω current,
which does not appear in the SM, the trace of the Hilbert stress-energy tensor at order δ2

is

TU = 2gµν δLU
δgµν

− 4LU = −2LD2
U − 4LMU − 4LΘ2

U + T EW
U , (4.53)

where

T EW
U = −L∂Wu − 4LΓ

U − 2LHD2
U − 4LHMU − 2LHD2

U (4.54)

collects the contributions due to the EW currents. The charged-current contribution

L∂Wu = −f2
0 〈lWµu

µ〉f (4.55)

is also a part of the kinetic χPT Lagrangian (4.12). This term appears separately because
it contains a vierbein eµa when the theory is embedded into a generic spacetime with back-
ground metric tensor gµν . Due to this vierbein, the derivative contribution for the kinetic
Lagrangian

gµν
δLD2

U

δgµν
= LD2

U −
1
2L

∂W
u (4.56)

picks up a leftover term with a relative prefactor of −1/2.

4.4 Matching of χPT to QCD

So far, we derived the shape of the modified χPT Lagrangian in the presence of generic
external currents J = {Sω, Θ, M , Lµ, Rµ, Tµν , Γ, Hs, Hr, Hl}. We now aim to provide
part of the means necessary to constrain the QCD portal sector Wilson coefficients at
energies above the mass of the charm quark using bounds on hidden sector induced low
energy meson transition amplitudes obtained from χPT.

A key element is that one has to estimate the 27 free parameters κ ∈ {κxΓ, κxT , κxy ,
κxω}, which appear in the εUV and εEW suppressed sectors. This then makes it possible to
translate bounds from hidden sector induced meson transitions into constraints on the
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external currents as they appear in the χPT Lagrangian. These currents are defined
such that they are identical to the external currents that appear in the low energy QCD
Lagrangian with three light u, d, and s quark flavours. To fully connect χPT to QCD in the
perturbative regime, it is also necessary to match this version of QCD to its counterpart
that includes dynamical charm and bottom quarks. We leave the work of matching these
two versions of QCD to future investigations, and instead consider only how to estimate
the κ parameters in χPT. The six parameters κD2

Γ , κΘ
Γ , κMΓ , κM ′Γ , κD2

T , and κLRT can be fixed
using SM observations, and we focus on those parameters for which this is not possible:

1. We estimate the seven parameters κxω that couple χPT to the external current Sω,
which vanishes in the SM. These parameters can be quantified using the anomalous
trace-relation for the stress-energy tensor (2.65). In the past, this technique has
already been used to estimate four out of the seven parameters [106]. Here, we follow
the same strategy to determine the remaining three parameters.

2. We estimate the free parameter κΓ, which couples χPT to the chromomagnetic dipole
current Γ at order δ2, and the combination of parameters κMΓ + κM ′Γ , which couple
χPT to the same current at order δ3. In principle, SM interactions do contribute
to both dipole currents Γ and Tµν , and we expect that SM observations can be
used to constrain the order δ3 parameters κxΓ and κxT that couple χPT to the dipole
currents. However, the order δ2 SM contribution to the operator associated with the
parameter κΓ can be reabsorbed into the quark mass matrix, so that this parameter
is not fixed by SM observations. Instead, we estimate its value, and the values of κMΓ
and κM ′Γ , by matching it to the lattice QCD prediction for the vacuum condensate of
the chromomagnetic operator, which is reasonably well known [162, 165, 166].

3. We estimate the thirteen parameters κxy , which appear in the χPT four-quark La-
grangian. These parameters enter into SM predictions only via the linear combina-
tions that constitute the octet and 27-plet coefficients h8, h1, and h27, so that SM
observations do not yield enough information to completely fix their values. At LO
in the large nc expansion, the factorization rule (2.14) can be used to estimate the κxy
parameters [107, 108, 110–112, 205, 206]. However, this approximation fails to accu-
rately reproduce e.g. the ∆I = 1/2 rule in the SM, which is an approximate selection
rule for kaon decays that results from the fact that the octet coefficients h8,1, which
mediate only ∆I = 1/2 transitions, are an order of magnitude larger than the 27-plet
coefficient h27, which mediates both ∆I = 1/2 and ∆I = 3/2 transitions. For this
reason, we expect that one has to include corrections beyond the large nc limit to ex-
tract order-of-magnitude accurate estimates of the portal sector Wilson coefficients
cιi from bounds on hidden sector induced meson transitions. To obtain improved
estimates for the κ parameters, we adapt the strategies used in [106–108, 112, 205],
and neglect the contributions generated by the penguin operators O3i, O4i, and O5i.
Since these operators are generated at 1-loop they are suppressed by factors of (4π)−2

compared to the tree-level operators O1i and O2i. The penguin operator O6i is also
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generated at 1-loop, but it is expected to generate the dominant penguin contribution
to kaon decay amplitudes [106, 112, 205–207].

4.4.1 Scale dependence of the external currents

Many of the external currents are scale-dependent, and therefore the estimates that one
obtains for the LECs and κ parameters in the χPT Lagrangian depend on the scale at
which the external currents are evaluated. In general, the scale-dependence of the external
currents has to cancel with the one of the LECs and κ parameters. If χPT is matched to
the version of QCD without the charm quark, so that there are no threshold effects, this
implies that the hidden currents can always be evaluated at some arbitrary higher scale,
say, µQCD = 1–2GeV, provided that one adjusts the values of the LECs and κ parameters
accordingly.

This approach has been used to deal with the scale dependence of the mass-like current
M and the anomalous axial singlet current Rµ − Lµ = ϑµ − ∂µΘ,16 which renormalise
according to [109]

M = Z−1
M Mbare , ϑµ = Z−1

ϑ ϑbareµ . (4.57)

The factors Zϑ and ZM relate the renormalised quark current corresponding associated
with M and ϑµ to their bare counterparts

Q = ZMQ
bare , Qµ −Qµ = Zϑ

(
Qµ −Qµ

)bare
. (4.58)

Extracting the renormalisation of the scalar axial current from (4.57) gives

(Lµ −Rµ) = Z−1
ϑ (Lµ −Rµ)bare −

(
1− Z−1

ϑ

)
∂µΘbare , (4.59)

where ∂µΘ = ∂µΘbare.footnote 16 This equation reflects the fact that the axial anomaly
mixes the scalar axial vector current with the derivative of the pseudoscalar current ∂µΘ.
We can see explicitly that the χPT Lagrangian is invariant under a change of the QCD
renormalisation scale, provided that it is written in terms of the renormalised singlet meson
field [109]

Θ̂ = i
(

Θ− Φ
f0

)
= iZ−1

ϑ

(
Θ− Φbare

f0

)
(4.60)

as well as the renormalised LECs

b0 = ZMb
bare
0 , m0 = Zϑm

bare
0 , 1 + Λ2 = Zϑ(1 + Λbare

2 ) , (4.61a)
H0 = Z2

ϑH
bare
0 , 1 + Λ1 = Z2

ϑ(1 + Λbare
1 ) . (4.61b)

The scale-dependent values of the renormalised LECs b0, m0, and Λ1,2 can now be fixed
by computing χPT observables in terms of the renormalised currents M = M(µQCD) and
Lµ − Rµ = (Lµ − Rµ)(µQCD). Of course, this renormalisation procedure only eliminates

16The currents Jinv = {Θ, Lµ +Rµ, Lµ ± Rµ} do not renormalise and are therefore scale-independent in
QCD [109], [section 6.6 in 208].
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divergences associated with the strong interaction. We emphasise that the χPT action
written in terms of the above fields and LECs still has to be renormalised as usual when
accounting for loop corrections starting at NNLO. As a result, one has to distinguish be-
tween the renormalisation scale of χPT µχPT and the renormalisation scale of QCD µQCD,
which are not necessarily the same. In general, the renormalised LECs and parameters
depend on both scales. Here and in the remainder of section 4.4, we only consider the
dependence on µQCD, and so we suppress the dependence on µχPT in the notation.

In the following, we apply the above renormalisation procedure to the εEW or εUV
suppressed currents J = {Sω, Γ, Tµν , H+

l , H±l , Hr,s}, and absorb their scale dependence
into the values of the free parameters κ. The upshot of this prescription is that, when
matching χPT to QCD without the charm quark , we can freely choose the renormalisation
scale µQCD, even choosing a value well above the charm quark mass. Of course, this would
not work if we were to attempt to match χPT to perturbatively computed low-energy
observables in QCD, since choosing a large renormalisation scale µQCD � mc would mean
that we neglect precisely the non-perturbative contributions on the QCD side that dominate
the physics of the strong interaction at low energies. However, this is not an issue when
matching χPT to the results of non-perturbative computations, such as those done in
lattice QCD, where no expansion in ω−1 is made. In fact, the scale µQCD = 2GeV is
a standard choice when computing low-energy observables such as the quark masses and
condensates in lattice QCD with and without the charm quark [128, 148, 165].

4.4.2 χPT realizations of QCD operators

To establish a point of contact between χPT and QCD that does not rely on a perturbative
expansion in ω−1, we use a standard technique employed e.g. in [105–107, 109–112], and
construct a set of well-defined LERs for QCD gauge-singlets as functional derivatives of the
path integral with respect to the external currents. For the sake of completeness, we outline
the general procedure and then summarise the resulting χPT LERs that are relevant to
the subsequent discussion.

Constructing low energy realisations. In general, the expectation value of any local,
gauge invariant QCD operator Oi that couples to an external current Ji is

trOi(x)ρ = δ lnZQ[Jj ]
δJi(x) , (4.62)

where the von Neumann density matrix ρ encodes the state of the system,

ZQ[Jj ] =
∫
Dϕρ exp

(
iSQ[ϕ] + i

∫
d4xJj(x)Oj(x)

)
(4.63)

is the generating functional in the presence of external currents Ji, and ϕ symbolically
denotes the quark and gluon fields. The χPT generating functional approximates the
QCD generating functional for small δ,

lnZQ[Jj ] = lnZU [Jj ] +O(δn) . (4.64)
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δn 1 2 3

J Hx Hx Θ Lµ Rµ Ω M Γ Tµν

δk 0 0 1/2 0 1

O Ox Ox w Qµ Qµ Υ Q Q̃ Qµν

δn−k 1 2 3/2 3 2

Table 11. Order in δ at which we evaluate the LERs. The first row shows the order in δ at which we
evaluate the χPT generating functional, the second row shows the δ scaling of the external current,
and the final row shows the resulting order in δ for the LER. While a momentum suppression ∝ ∂2

counts towards the scaling of the external currents, a large nc suppression does not, because it
is associated with the structure of the QCD diagrams that couple to the external current rather
than with the current itself. The order in δ at which we evaluate the χPT generating functional
is chosen such that we include the leading nonvanishing contribution for each operator. For Q, we
also include NLO contributions, since these enter at LO into the approximate factorised expressions
for the four-quark operators. Note also that the product of operators does not scale as the sum of
their individual suppressions. For instance, QµQ

µ ∝ n2
c∂

2 ∝ δ, rather than δ 3/2 × δ 3/2 = δ3, as
one might naively expect.

If an external current scales as Ji(x) ∝ δk, then inserting this relation into the expectation
value (4.62) gives

trOi(x)ρ = δ lnZU [Jj ]
δJi(x) +O

(
δn−k

)
= tr δSU

δJi
ρ+O

(
δn−k

)
. (4.65)

Since this has to hold for any physical choice of ρ, one finds the LERs

Oi(x) = δSU
δJi

+O
(
δn−k

)
. (4.66)

Operators. The LERs of the colour singlet Lagrangian (2.10) and the quark bilinears
(2.21) associated with the Lµ, Rµ, M , and Θ currents are well established. At leading
order in δ, they are [105, 107, 109, 184, 209]

Qµ = −f2
0Uµ , Qµ = −f2

0g
†Uµg , Q = −1

2f
2
0 b0g , w = − i f2

0
m2

0
nf

Θ̂ . (4.67)

The LO contributions to Qµ and Qµ count as order ∂nc, while the LO contribution to Q
counts as order nc. In order to estimate the four-quark coefficients κsx at order ∂2n2

c , which
is the first non-vanishing order, it is necessary to also track NLO corrections to the LER
of Q that count as ∂2nc. This gives the expression

Q = −1
2f

2
0 b0

(
1 + ∆QNLO

)
g , (4.68)

where

∆QNLO = 1
2f2

0

(
4L5UµU

µ + 2b0
(
4L8M̂ + 2H2M̂

†
))

+ Λ2
nf

Θ̂− εEW
(
Hbλ

d
s + h.c.

)
.

(4.69)
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Note that this expression differs from it’s SU(3) counterpart by the appearance of the term
proportional to Λ2, which does not exist in SU(3) χPT [105–107].

We apply the same technique to obtain LERs for operators associated with the εEW
and εUV suppressed currents. We find that the LERs of the colour singlet Lagrangian (2.4)
and the quark bilinears (2.29) associated with the Tµν , Γ, and Sω currents are

Qµν = −f0
(
κD

2
T UµU ν + κLRT (Lµν + R̂µν)

)
g , Q̃ = −1

2f
4
0 b0κΓg , Υ = −ΥU . (4.70)

At NLO, the LER of the scalar quark bilinear Q̃ is

Q̃ = −1
2f

4
0 b0

(
κΓ + ∆Q̃NLO

)
g , (4.71)

where

∆Q̃NLO = 1
2f2

0

(
κD

2
Γ UµU

µ + 2b0
(
κMΓ M̂ + κM

′
Γ M̂ †

))
+ κΘ

Γ
nf

Θ̂ . (4.72)

Finally, the LERs of the octet quark quadrilinear (2.52) and (2.57) associated with the Hx

currents are

Ox
s
d = 1

2f
4
0

(
κx8 〈UµUµ〉sd + κx1 〈Uµ〉ds Uµ + κxb b0

〈
M̂ + M̂ †

〉s
d

)
, (4.73)

where x = +, −, r, s, and the LER of the 27-plet quark quadrilinear (2.58) associated with
the H+

l current is

2n27O
+
l
su
du = 1

2f
4
0κ27 (nfUµs

dUµ
u
u + (nf − 1)Uµu

dUµ
s
u) . (4.74)

Lagrangians. Using the above LERs, one obtains approximate χPT expressions for var-
ious individual contributions to the QCD Lagrangian

LMQ = LMU + LHMU , LΓ
Q = LΓ

U , LWQ = LDWU , LHQ = LHU . (4.75)

Note that the mass-like four-quark octet term contributes not only to the LER of the
four-quark Lagrangian, but also to the LER of the mass Lagrangian.

4.4.3 Determination of selected parameters

We now estimate the 22 κ parameters κxω, κΓ, κMΓ + κM ′Γ , and κxy . As mentioned in the
introduction to this section, we do not estimate the five parameters κD2

Γ , κMΓ − κM ′Γ , κΘ
Γ

and κxT , which couple χPT to the Γ and Tµν currents at order εEWδ3, and leave this work
to future investigations. To illustrate the use of the LERs and to prepare for the estima-
tion of the four-quark parameters κyx, we first discuss two well-known computations that
match χPT to the lattice QCD predictions for the quark condensates and the topological
susceptibility of QCD.
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Quark condensates. The LER for the quark bilinearQ eq. (4.68) relates the parameters
b0 and 4L8 − 2H2 to the values of the chiral quark condensates (2.6). In the isospin
conserving limit mu, md → mud = (mu +md)/2 , one obtains the χPT predictions [105,
106]

Σud = f2
0 b0 + b20mud (4L8 + 2H2) , Σs = f2

0 b0 + b20ms (4L8 + 2H2) . (4.76)

The quark condensates are proportional to b0 and degenerate at LO. Their splitting is
captured at NLO by the parameter 4L8 + 2H2. Using the lattice values of condensates in
eq. (2.6) yields the estimates

b0 = msΣud −mudΣs
f2

0 (ms −mud) = 4π (387± 13exp ± 23lat) MeV±NNLO , (4.77a)

4L8 + 2H2 = Σs − Σud
b20 (ms −mud) = (4π)−2 (0.48± 0.022exp ± 0.26lat)±NNLO . (4.77b)

While b0 depends on the QCD renormalisation scale in the same way as Σud and Σs, the
dependence cancels in the expression for 4L8 + 2H2, which depends only on the renormal-
isation scale independent ratio of the quark condensates (2.7). Since L8 can be estimated
from the η-meson mass splitting and mixing angle, cf. eqs. (4.35) and (D.22), the above
expression can be used to estimate the value of the counter-term parameter

2(4π)2H2 = 0.27± 0.033exp ± 0.26lat ±NNLO . (4.78)

This parameter does not enter directly into perturbatively computed S-matrix elements,
but it is needed for the large nc estimate of the four-quark parameters κsx.

Topological susceptibility. The LER of the quark condensate can be combined with
the LER of w eq. (4.67) and relation eq. (2.12) to express the topological susceptibility
(2.11) as a combination of χPT parameters. Since diagrams with internal quark loops do
not contribute to the QCD path integral at zeroth order in the large nc expansion, QCD
behaves similar to a pure YM theory with no quark fields in this limit. Hence, a direct
estimate of the topological susceptibility using the LO LER (4.67) for w yields an estimate
for the quenched susceptibility [109, 148, 149, 152]

χ0 = f2
0
m2

0
nf

= (188.1± 2.4exp)4 MeV4 ±NNLO . (4.79)

Combining this result with the LO estimate of the quark condensate eq. (4.76) and relation
(2.12), one obtains the estimate

f2
0
χ

= nf
m2

0
+
〈
m−1〉

f
b0

= 3
m2

0
+ 2
m2
π

+ 1
2m2

K −m2
π

= f2
0

(76.9± 1.3exp)4 MeV4 ±NNLO
, (4.80)

for the topological susceptibility of QCD, which lies within the error bars of the lattice
result (2.11). See appendix D.1 for the definition of the pion and kaon mass parameters
mπ and mK .
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Flavour singlet contribution. We estimate the three new κω coefficients that appear
in the Sω contribution to χPT by following the strategy used in [106, 210, 211], where the
trace of the QCD stress-energy tensor (2.65)

βsΥ = −TQ − LMQ + LΓ
Q + LTQ − LWQ + 2LHQ (4.81)

has been used to express the gluon-kinetic term Υ as a linear combination of the trace
of the stress-energy tensor and the other terms in the QCD Lagrangian. Using the χPT
expression for the trace of the stress-energy tensor (4.53) as well as the LERs for the other
terms in the Lagrangian (4.75), this gives the LO LER of the gluon-kinetic term

βsΥU = LΓ
U − LMU − LDWU + 2LHU − TU

= 2LD2
U + 3LMU + 4

(
LΘ2
U + LHD2

U + LHD2

U

)
+ 5

(
LΓ
U + LHMU

)
.

(4.82)

In principle, the contribution to the trace of the stress-energy due to the quark masses
receives a further correction associated with their anomalous dimension [157, 158, 160],
and we expect the same to hold for the contributions due to the other external currents.
However, since the term LSωU has to be independent of µQCD, we can choose to evaluate
the above relation at a sufficiently large renormalisation scale µQCD � 1GeV, where the
impact of quantum corrections to the external current contributions to the stress-energy
tensor is small due to asymptotic freedom. With this choice, and provided that we also
evaluate Sω(µQCD) at the same scale, the above relation becomes a valid approximation.
In addition, the β-function at this scale is well-approximated by its leading term βs =
β0 + O

(
ω−1(µQCD)

)
. Hence, choosing to evaluate relation (4.82) at µQCD � 1, the seven

coefficients that appear in Lagrangian (4.47) are given as

κD
2

ω = 2
β0
, κMω = 3

β0
, κΘ2

ω = κHD
2

ω = κHD
2

ω = 4
β0
, κΓ

ω = κHMω = 5
β0

. (4.83)

While the coefficients κD2
ω , κMω , κHD2

ω , and κHMω are known [106], the coefficients κHD2
ω ,

κΘ2
ω , and κΓ

ω are a new result.

Chromomagnetic contribution and quark gluon condensates. We estimate the
parameter κΓ and the linear combination κMΓ + κM

′
Γ by matching the χPT prediction for

the condensate of the chromomagnetic quark bilinear Q̃ to the quark-gluon condensates
eq. (2.32). Using the LERs (4.70), the condensates are given as

ΣGud
(4π)2 = f4

0 b0κΓ + b20mud
(
κMΓ + κM

′
Γ

)
,

ΣGs
(4π)2 = f4

0 b0κΓ + b20ms
(
κMΓ + κM

′
Γ

)
. (4.84)

The 4π enhancement of the condensates is a consequence of definition (2.28), in which we
have not included the loop factor into the operator, but written it as an explicit contribution
to the Lagrangian. Matching this prediction to the lattice and QCD sum rule values of the
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condensate from eq. (2.33), one obtains the estimates

κΓ = msΣGud −mudΣGs
Λ2
χPTf

2
0 b0(ms −mud) = 1.21± 0.06exp ± 0.06lat ±NNLO . (4.85a)

κMΓ + κM
′

Γ = ΣGs − ΣGud
Λ2
χPTb

2
0(ms −mud) = −(4π)−2 (0.20± 0.004exp ± 0.31lat ±NNLO) .

(4.85b)

The negative prefactor of κMΓ + κM
′

Γ and the fact that its value is consistent with being
zero reflects that ΣGs has been estimated to be slightly smaller than ΣGud, while its value
is consistent with both condensates being equal to each other within their error bars.

Four-quark contributions. Written in terms of the parameters κxy and the Wilson
coefficients cιi, the octet and 27-plet coefficients in the four-quark Lagrangian are given as

hyi = 1
4V
†
suVud

[
κ+
y

(
c+

12i + (nf + 2)c+
34i

)
− κ−y (c−12i + c+

34i) + 4κryc5i + 4κsyc6i
]
, (4.86a)

h27i = 1
4V
†
suVudκ27

nf + 1
nf + 2c

+
12i , c±ικi = cιi ± cκi , (4.86b)

where i = 0, 1, and 2. Following the convention introduced in section 3.3.2, we denote the
SM Wilson coefficients as hx = hx0 and cι = cι0. See also sections 2.1 and 4.3.1, where
we define these coefficients. Since the coefficients hyi have to be independent of the QCD
renormalisation scale, the scale dependence of the Wilson coefficients cancels with the scale
dependence of the thirteen κxy parameters.

The large nc factorisation rule (2.14) can be used to estimate the parameters at LO
in δ [110, 111]. The main idea is to combine the vacuum saturation hypothesis eq. (2.14)
with the LERs of the quark bilinears (4.67) and (4.68) to obtain approximate large nc
realisations for the octet and 27-plet operators. These can then be compared with the
exact LERs for the four-quark operators (4.73) and (4.74) that have been obtained by
varying the χPT with respect to the H+

l and Hx currents. The resulting approximate large
nc realisations for the octet operators are

Os
s
d = 1

4f
2
0 b

2
0

(
4L5 〈UµUµ〉sd + (4L8 + 2H2) b0

〈
M̂ + M̂ †

〉s
d

)
, Or

s
d = f4

0 Uµs
dUµ , (4.87a)

O−l
s
d = f4

0

(
2
nf

Uµs
dUµ −

1
2n−8

〈UµUµ〉sd

)
, O+

l
s
d = f4

0

(
2
nf

Uµs
dUµ + 1

2n+
8
〈UµUµ〉sd

)
, (4.87b)

and the approximate large nc realizations for the 27-plet operator is

O+
l
su
du = 1

2f
4
0

(
1 + 1

4n+
8

)
Uµs

dUµ
u
u + 1

2f
4
0

(
1− 1

4n+
8

)
Uµu

dUµ
s
u . (4.87c)

where 〈◦〉ji =
〈
◦λij

〉
f
. Matching these expression to the exact LERs (4.73) and (4.74), one

obtains the LO estimates κ [110, 111]

κr1 = 2 , κ+
8 = 1

n+
8

= 4
5 , κ27 = n27

n+
8

= 2 , (4.88a)

κ−1 = κ+
1 = 4

nf
= 4

3 , −κ−8 = 1
n−8

= 4 , (4.88b)
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and

κs8 = nf
2 κ

s
1 = 1

2
b20
f2

0
4L5 = 2.00± 0.16exp ± 0.13lat , (4.89a)

κsb = 1
2
b20
f2

0
(4L8 + 2H2) = 1.45± 0.10exp ± 0.8lat . (4.89b)

The remaining parameters κxy vanish in the large nc limit, κ = 0. In this approximation,
the parameters κ±,ry and κ27 are renormalisation scale independent, while the κsy run as
b20 ∼ Σ2

ud
/
f4

0 . This is consistent with the scale dependence of the SM four-quark Wilson
coefficients: in the large nc limit, the ci coefficients with i 6= 6 are in fact renormalisation
scale independent, while c6 remains scale-dependent and runs as b−2

0 [107, 212, 213]. This
running of c6, which we have absorbed into the values of the κsy, is the physical cause
behind the enhancement factors b20

/
f2

0 of the singlet operators and cancels the suppression
associated with the factors L5 and 2L8 +H2.

Moving beyond the large nc limit, we expect that the resulting corrections to the κxy
coefficients should depend only on the operator that is being factorised,

κxy = kxκxy , κ27 = k27κ27 . (4.90)

Since the 27-plet contribution proportional to κ27 is obtained by factorising the same
combination of QCD operators as the symmetric octet contribution proportional to κ+

y ,
we also expect k27 = k+. Keeping only contributions from c1i, c2i, and c6i, the resulting
predictions for the octet and 27-plet coefficients can be written as

h8i = 1
2V
†
suVud

(
k+c+

12i
2n+

8
+ k−c−12i

2n−8
+ 4L5

b20
f2

0
ksc6i

)
, (4.91a)

h1i = 1
nf
V †suVud

(
k+c+

12i − k
−c−12i + 4L5

b20
f2

0
ksc6i

)
, (4.91b)

hbi = 1
2V
†
suVud (4L8 + 2H2) b

2
0
f2

0
ksc6i , (4.91c)

h27i = 1
4V
†
suVud

n27

n+
8

nf + 1
nf + 2k

+c+
12i . (4.91d)

The correction factors kx can be fixed by matching them to kaon decay amplitudes.
Neglecting electromagnetic contributions, the experimentally determined amplitudes for
K → ππ decays [144]

A(K0 → π+π−) = (277.22± 0.12exp) eV , A(K+ → π+π0) = (18.18± 0.04exp) eV ,
(4.92a)

A(K0 → π0π0) = (259.18± 0.22exp) eV . (4.92b)

They can be parameterised as [111]

A(K0 → π+π−) = A1/2 +A3/2 , A(K+ → π+π0) = 3√
2
A3/2 , (4.93a)

A(K0 → π0π0) = A1/2 − 2A3/2 . (4.93b)
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The amplitudes A1/2 and A3/2 are associated with ∆I = 1/2 and ∆I = 3/2 transitions,
respectively. In the limit mu, md → mud, they are [171]

A1/2 = εEW
m2
K −m2

π

4f0

(
h8 + 1

3h27

)
, A3/2 = εEW

m2
K −m2

π

4f0

5
3h27 . (4.94)

Hence, the absolute values and relative phase of the complex currents are

|h8| = 2.23± 0.09exp ±NLO , arg h8 − arg h27 = (45.03± 0.77exp)◦ ±NLO ,

(4.95a)
|h27| = 0.0425± 0.0018exp ±NLO . (4.95b)

The final parameter h1 can be fixed by matching it to KL → γγ decays [112], which
results in

h1 = (0.37± 0.05exp)h8 , |h1| = 0.82± 0.12exp ±NLO . (4.96)

Finally, inverting equations (4.91), one obtains

V †suVudk
−c−12 = 2

3h8 + 1
2h27 − h1 , V †suVudk

sc6 = f2
0

4L5b20

(2
3h8 − 2h27 + 2h1

)
, (4.97a)

V †suVudk
+c+

12 = 5
2h27 . (4.97b)

Therefore the absolute values are∣∣∣V †suVudk−c−12

∣∣∣ = 0.69± 0.13exp ±NLO , (4.98a)∣∣∣V †suVudk+c+
12

∣∣∣ = 0.106± 0.005exp ±NLO , (4.98b)∣∣∣V †suVudksc6
∣∣∣ = 0.125± 0.013exp ± 0.015lat ±NLO . (4.98c)

Since the values of the SM Wilson coefficients are well known even at relatively low scales,
such as µQCD = 1GeV [179], this relation makes it possible to extract estimates for the
correction coefficients kx. In turn, these can be used to constrain the shape of the portal
Wilson coefficients c1i, c2i, and c6i with i = 1, 2 using bounds on the corresponding hyi
obtained from searches for hidden sector induced meson transitions. Keep in mind that we
have considered only the leading contributions have for example neglected the impact of
the penguin operators associated with c3i, c4i, and c5i.

4.5 Transition to the physical vacuum

The two SM mass like terms (4.37b) and (4.40b) contain the tadpole contribution

LhmU + LhmU ⊃ i εEWf0b0
2 h′b 〈[m,Φ]〉sd + h.c. , h′b = hb − κΓ

〈
m−1

q γG

〉d
s
, (4.99)

which generates a finite VEV for the PNGB matrix Φ. When computing purely hadronic
kaon decay rates in the SM such as K → ππ and K → πππ, diagrams that contain tad-
pole vertices exactly cancel with the other contributions from the mass-like terms (4.37b)
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and (4.40b), so that the final transition amplitudes do not depend on h′b [42, 114, 115].
This reflects the fact that the mass-like terms can be eliminated entirely defining a rotated
meson field [114]

g′ = W †gW
†
, 〈0|g′|0〉 = 1 . (4.100)

Accounting for the impact of the chromomagnetic dipole Lagrangian (4.37b), which is often
neglected [114], the appropriate rotation matrices are

W = e− i(αLλ7+βLλ6) = 1 +O(εEW) , W = ei(αRλ7+βRλ6) = 1 +O(εEW) , (4.101)

where the angles αL/R and βL/R defined by

βL
αL

= βR
αR

= − tan
(
arg h′b

)
, (4.102a)

|αL + iβL| ± |αR + iβR| = arctan
(
εEW

∣∣h′b∣∣ms ±md
ms ∓md

)
' εEW

∣∣h′b∣∣ (1± 2md
ms

)
, (4.102b)

measure the size of EW contributions to the light quark masses. After this field redefinition,
the entries of the diagonalised quark mass matrix

m′ = Wmo(h′b)W , o(x) = 1− εEW
(
xλds + h.c.

)
(4.103)

correspond to the experimentally determined quark masses. In general, using the redefined
external currents

M ′ = m′ + S′m = W
(
Mo

(
h′b + Sb

)
+ εEWκΓSγ

)
W . (4.104)

and

L′µ = W †LµW , R′µ = WRµW
†
, Θ′ = Θ + i

〈
lnWW

〉
f
, (4.105)

in place of the original ones, the net effect of the field redefinition is two-fold: i) both
mass-like terms LHMU and LΓ

U are eliminated from the χPT Lagrangian, being reabsorbed
into M ′, and ii) while these mass-like term still contribute to ΥU , in contrast to (4.83),
they now contribute with new relative prefactors of

κHMω − κMω = κHω − κMω = 2
β0

. (4.106)

The rotated mass and octet Lagrangians are

L′HU = LHD2
U + LHD2

U , (4.107a)

L′MU = f2
0 b0
2 M̂ ′ + h.c. , L′HMU = −εEWf

2
0 b0

2 Hb

〈
M̂
′ + M̂

′†
〉s
d

+ h.c. , (4.107b)

while the rotated GLR singlet contributions to the χPT Lagrangian are

LSωU δn = SωΥUδn−1 , LSωU
EW
δn = SωΥU

EW
δn−1 , (4.108)

where

β0Υ′Uδ2 = 2LD2
U + 3L′MU + 4LΘ2

U , β0Υ′UEW
δ = 2

(
L′HU + L′HMU

)
, β0Υ′UEW

δ2 = 2LΓ
U .

(4.109)
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4.6 Expanded Lagrangian

The final Lagrangian that captures the LO interactions between the light mesons and each
of the external currents is

LLOU = L′Uδ2 + L′Uδ3 + L′UEW
δ + L′UEW

δ2 + L′UEW
δ3 (4.110)

where the strong contributions are

L′Uδ2 = LD2
U + L′MU + LΘ2

U , L′Uδ3 = L′SωU δ3 + LncU , (4.111)

and the εEW suppressed contributions are

L′UEW
δ = L′HU , L′UEW

δ2 = L′SωU
EW
δ2 , L′UEW

δ3 = LTD2
U + LTVU + L′SωU

EW
δ3 . (4.112)

The individual terms are given in Lagrangians (4.12), (4.19), (4.29), (4.38), (4.107) and (4.108).
To ease the application of this result to phenomenological computations, we decompose

the Lagrangian into individual contributions that mediate either purely hadronic meson
interactions or the coupling of χPT to specific combinations of the SM and portal currents.
Although the final χPT Lagrangian contains interactions with both one and two photons,
we restrict ourselves to explicitly listing interactions with at most a single photon field. This
is sufficient for capturing a large number of interesting hidden sector induces transitions,
such as e.g. π0 → γγdark.

Order δ2. The gauged kinetic Lagrangian (4.12) LD2
U contains the ungauged kinetic

Lagrangian

L∂2
u = f2

0
2 〈uµu

µ〉f , (4.113)

and couples the mesons to the photon current via the interaction

L∂Au = f2
0 〈uµ(̂rµA − lµA)〉f . (4.114)

It also couples the mesons to the hidden currents V µ
l and V̂ µ

r via the interactions

L∂Vlu = −f2
0

〈
V ′µl uµ

〉
f
, LAVlu = −f2

0

〈
V ′µl r̂Aµ

〉
f
, (4.115a)

L∂Vru = f2
0

〈
V̂ ′µr uµ

〉
f
, LAVru = −f2

0

〈
V̂ ′µr lAµ

〉
f
. (4.115b)

The rotated mass Lagrangian (4.107b) and the anomaly Lagrangian (4.19) contain the
purely hadronic mass-terms

L′mu = f2
0 b0
2 m̂′ + h.c. , Lθu = −f

2
0m

2
0

2nf
θ̂2 (4.116)

and couple the mesons to the complex scalar S′m current and the pseudoscalar Sθ current
via the interactions

L′Smu = f2
0 b0
2 Ŝ′m + h.c. , LSθu = −f

2
0m

2
0

nf
θ̂Ŝθ . (4.117)
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Order δ3. The order δ3 contribution to the rotated singlet Lagrangian (4.108) couples
mesons to the Sω current via the interactions

L′Sωu δ3 = Sω
β0

(
2
(
L∂2
u + L∂Au

)
+ 3L′mu + 4Lθu

)
(4.118)

and the WZW Lagrangian (4.29) couples mesons to the hidden currents V µ
l and V µ

r . The
coupling to V µ

l is mediated by the Lagrangians

LncVlu = 2nc
4!(2π)2 εµνρσ

〈
− iV ′µl u

νuρuσ
〉

f
, (4.119a)

LncVlAu = 2nc
4!(2π)2 εµνρσ

〈
V ′µl

({
lνρA + 1

2 r̂νρA ,u
σ
}
− iuν(lρA − r̂ρA)uσ − i {lνA − r̂νA,uρuσ}

)〉
f
,

(4.119b)

and the coupling to V µ
r is mediated by the Lagrangians

LncVru = 2nc
4!(2π)2 εµνρσ

〈
− i V̂ ′µr uνuρuσ

〉
f
, (4.120a)

LncVrAu = 2nc
4!(2π)2 εµνρσ

〈
V̂ ′µr

({1
2 lνρA + r̂νρA ,u

σ
}
− iuν(lρA − r̂ρA)uσ − i {lνA − r̂νA,uρuσ}

)〉
f
.

(4.120b)

Order εEWδ. At this order, the kinetic-like Lagrangians (4.40) and (4.44) that appear
in the rotated four-quark Lagrangian (4.107a) generate additional contributions to the
kinetic-like term

Lh∂2
u = −εEWf

2
0

2
(
h8 〈uµuµ〉sd + h1uµsduµ

)
+ h.c. , (4.121a)

Lh∂2
u = −εEWf

2
0

2 h27 (nfuµsduµuu + (nf − 1)uµuduµsu) + h.c. , (4.121b)

and couple the mesons to the photon current via the interactions

Lh∂Au = −εEWf
2
0

2
(
h8 〈{uµ, r̂µA − lµA}〉

s
d + h1r̂µA

s
duµ

)
+ h.c. , (4.122a)

Lh∂Au = −εEWf
2
0

2 h27 (nf (uµsd(̂rµA − lµA)uu + r̂Aµsduµuu) + (nf − 1) (̂rAµuduµsu + uµudr̂µA
s
u)) + h.c. .

(4.122b)

They also couple mesons to the hidden vector currents V µ
l and V µ

r and the hidden scalar
currents S8, S1, Sb, and S27. Neglecting strangeness conserving contributions generated by
interactions involving V µ

l
s
d, the coupling to V µ

l is mediated by the octet terms

Lh∂Vlu = εEWf
2
0

2
(
h8
〈{

Vµ
l ,uµ

}〉s
d + h1uµsdV

µ
l

)
+ h.c. , (4.123a)

LhAVlu = εEWf
2
0

2
(
h8
〈{

Vµ
l , r̂Aµ

}〉s
d + h1r̂AµsdV

µ
l

)
+ h.c. , (4.123b)
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and the 27-plet terms

Lh∂Vlu = εEWf
2
0

2 h27nfuµsdVµ
l
u
u + h.c. , LhAVlu = εEWf

2
0

2 h27nf r̂AµsdVµ
l
u
u + h.c. . (4.124)

The coupling to V µ
r is mediated by the octet terms

Lh∂Vru = −εEWf
2
0

2
(
h8
〈{

V̂µ

r ,uµ
}〉s

d
+ h1

(
V̂µ

r
s
duµ + uµsdV̂ µ

r

))
+ h.c. , (4.125a)

LhAVru = −εEWf
2
0

2
(
h8
〈{

V̂µ

r , r̂Aµ − lAµ
}〉s

d
+ h1r̂AµsdV̂ µ

r

)
+ h.c. , (4.125b)

and the 27-plet terms

Lh∂Vru = −εEWf
2
0

2 h27
(
nf
(

uµsdV̂µ

r
u
u + V̂µ

r
s
duµuu

)
+(nf − 1)

(
V̂µ

r
u
duµsu + uµudV̂µ

r
s
u

))
+ h.c. ,

(4.126a)

LhAVru = −εEWf
2
0

2 h27
(
nf
(

V̂µ

r
s
d(̂rAµ − lAµ)uu + r̂AµsdV̂µ

r
u
u

)
+(nf − 1)

(
V̂µ

r
u
dr̂Aµsu + r̂AµudV̂µ

r
s
u

))
+ h.c. .

(4.126b)

Finally, the coupling to the Sy currents with y = b, 1, 8, 27 is mediated by the octet terms

L∂2S
u = −εEWf

2
0

2
(
S8 〈uµuµ〉sd + S1uµsduµ

)
+ h.c. , (4.127a)

LASu = −εEWf
2
0

2
(
S8 〈{uµ, r̂µA} − lµA〉

s
d + S1r̂µA

s
duµ

)
+ h.c. , (4.127b)

and the 27-plet terms

L∂2S
u = −εEWf

2
0

2 S27 (uµsduµuu + (nf − 1)uµuduµsu) + h.c. , (4.128a)

LAS
u = −εEWf

2
0

2 S27 (nf (uµsd(̂rµA − lµA)uu + r̂Aµsduµuu) + (nf − 1) (̂rAµuduµsu + uµudr̂µA
s
u)) + h.c. .

(4.128b)

Order εEWδ
2. At this order, the gauged kinetic Lagrangian (4.12) couples the mesons

to the photon the weak-leptonic charged currents via the interactions

LAWu = −f2
0 〈l

µ
W r̂Aµ〉f , L∂Wu = −f2

0 〈uµlµW 〉f . (4.129)

It also couples the mesons to the hidden current V̂ µ
r via the interaction

LWVr
u = −f2

0

〈
V̂ µ
r lWµ

〉
f
. (4.130)

The rotated singlet Lagrangian (4.108) couples mesons to the Sω current via the interactions

L′Sωu EW
δ2 = 2Sω

β0

(
Lh∂2
u + Lh∂2

u + Lh∂Au + Lh∂Au + L′hmu
)
, (4.131)

where

L′hmu = −εEWf
2
0 b0

2 hb
〈
m̂′ + m̂′†

〉s
d

+ h.c. (4.132)
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Order εEWδ
3. At this order, the rotated singlet Lagrangian (4.108) couples mesons to

the Sω current via the interactions

L′Sωu EW
δ3 = 2Sω

β0

(
L∂Wu + LAWu + Lγu

)
, (4.133)

where

Lγu = εEWf
2
0 b0

2 κΓγ̂ + h.c. (4.134)

The dipole Lagrangian (4.38) couples mesons to the hidden currents V µ
l , V µ

r , and Tµν
τ via

the interactions

LT∂2
u = εEW

f0
κD

2
T

〈
T̂µν

τ uµuν
〉

f
+ h.c. , LTVu = εEW

f0
κLRT

〈
T̂µν

τ lAµν
〉

f
+ h.c. , (4.135a)

LT∂Vu = εEW
f0

κD
2

T

〈
T̂µν

τ (uµ(lAν − r̂Aν) + (lAµ − r̂Aµ)uν)
〉

f
+ h.c. (4.135b)

Finally, the WZW Lagrangian (4.29) couples mesons to the hidden currents V µ
l and V µ

r .
The coupling to V µ

l is mediated by the term

LncVlWu = 2nc
4!(2π)2 εµνρσ

〈
V µ
l ({lνρW ,u

σ} − iuν lρWu
σ − i {lνW ,uρuσ})

〉
f , (4.136)

and the coupling to V µ
r is mediated by the term

LncVrWu = 2nc
4!(2π)2 εµνρσ

〈
V̂ µ
r

(1
2{l

νρ
W ,u

σ} − iuν lρWu
σ − i {lνW ,uρuσ}

)〉
f
. (4.137)

5 Portal interactions of the light pseudoscalar mesons

In this section, we illustrate the information encoded inside the χPT action derived in
the previous section by extracting a set of concrete interactions. In particular, we expand
the χPT action in terms of the meson matrix Φ in order to extract the bilinear and
trilinear terms that are induced by the hidden messengers and that contribute to meson
decays with at most one SM meson in the final state. These decays are among the primary
channels for production of hidden particles at fixed target experiments, such as K± → π±si,
K± → l±ξa, and π0 → γvµ. They also include invisible decays of neutral mesons into light
hidden fields, which can be constrained with collider or fixed target observations, such
as [85, 214].

In section 5.1, we list the portal interactions that result from expanding the portal
χPT Lagrangian up to quadratic order in the meson matrix Φ. Whenever relevant, we
additionally show the contributions that originate from the SM χPT action. We refer to
appendix D for a more detailed discussion of the expansion procedure. In section 5.2, we
then evaluate the flavour traces extracted in section 5.1, and provide the interactions that
couple the individual singlet and octet mesons to flavour blind hidden sectors.

The SM χPT Lagrangian mixes the neutral singlet and octet mesons with each other,
so that they do not coincide with mass eigenstates of the theory. The diagonalisation
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procedure used to construct the mass eigenstates and the corresponding mixing angles is
well established and reported in appendix D.1 for sake of completeness. In addition, cer-
tain one-meson portal interactions mix the SM mesons with the hidden spin 0 messenger.
At LO in εUV, it is not necessary to diagonalise these interactions, which can be treated
perturbatively when computing microscopic scattering and decay rates. To facilitate com-
putations in which it is necessary to re-sum the mixing, we present an explicit computation
of the mixing angles between SM gauge eigenstates and messengers in appendix D.2.

5.1 One- and two-meson interactions

Here we list the one- and two-meson interactions, as described above. In general, the
one-meson interactions mix the SM mesons with hidden sector particles or mediate non-
hadronic decays into some combination of leptons, photons, and hidden particles. The
two-meson interactions mediate semi-hadronic decays with a single meson in the final state.
Due to the mixing between mesons and messenger particles, pure SM interactions with two
or three mesons can also contribute to processes with messenger fields in the final state.
Therefore, whenever relevant, we list the pure SM terms contributing to such processes.

Order δ2. At this order, the photon Lagrangian (4.114) encodes the SM two-meson
interaction

L∂AΦ2 = − i 〈vµA[Φ, ∂µΦ]〉f , (5.1)

which mediates radiation of virtual photons. This interaction also contributes to decays
with associated photon production, such as φi → φjγsk and φi → φjγvµ.

The kinetic-like Lagrangians in (4.115) couple χPT to the portal currents V µ
l and V µ

r

via the one-meson interactions

L∂VlΦ = −f0
〈
V ′µl ∂µΦ

〉
f
, L∂VrΦ = f0

〈
V ′µr ∂µΦ

〉
f , (5.2)

and the two-meson interactions

L∂VlΦ2 = − i
2
〈

V′µl [Φ, ∂µΦ]
〉

f
, L∂VrΦ2 = − i

2
〈
V′µr [Φ, ∂µΦ]

〉
f , (5.3a)

LAVlΦ2 = 1
2
〈

V′µl [Φ, [Φ, vAµ]]
〉

f
, LAVrΦ2 = 1

2
〈
V′µr [Φ, [Φ, vAµ]]

〉
f . (5.3b)

The one-meson interactions mediate decays such as φi → `aξb and φi → `aνbsj . They are
also responsible for invisible neutral meson decays into hidden particles. Even though these
channels are not directly measurable experimentally, their relative weights compared to
decays with invisible SM final states constrain the coupling of mesons to NP, complementing
the constraints obtained from decays that feature observable SM final states and hidden
fields. The two-meson interactions mediate decays such as φi → φjsksl, φi → φj`aξb, and
φi → φjγvµ. The decay φi → φjγvµ producing a photon receives contributions from both
(5.3a) and (5.3b). However, diagrams that contain the interaction eq. (5.3a), which does
not involve photons directly, also have to contain a SM interaction (5.1), which radiates
the required photon. If the hidden sector contains secluded neutral particles X, which

– 66 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
3

can act e.g. as DM and interact with the SM only via the hidden field, the two-meson
interactions can also give rise to decays mediated by an off-shell messenger exchange, such
as φi → φjv

∗
µ → φjXX.

The quark-mass Lagrangian in (4.116) couples χPT to the imaginary and real parts
of the portal current S′m via the one- and two-meson interactions

L′SmΦ = −f0b0
〈
Φ ImS′m

〉
f , L′SmΦ2 = −b02

〈
Φ2 ReS′m

〉
f
. (5.4)

These one-meson interactions are similar to the one in (5.2), which couple χPT to Vl and
Vr, and mix the SM mesons with the hidden spin 0 messenger and mediate neutral meson
decays into hidden spin 0 particles. The two-meson interactions mediate decays such as
φi → φjsk and φi → φjsksl. Like the interactions (5.3), they can also give rise to decays
with photons in the final state, such as φi → φjskγ, as well as decays into secluded particles
X that are mediated by an off-shell messenger exchange, such as φi → φjs

∗
k → φjXX.

Finally, the anomaly Lagrangian in (4.116) couples χPT to the portal current Sθ via
the one-meson interaction

LSθΦ = f0
m2

0
nf
SθΦ , (5.5)

which mixes the singlet η1-meson with the spin 0 messenger.

Order δ3. At this order, the singlet Lagrangian (4.118) couples χPT to the portal current
Sω via the one-meson interactions

L′SωΦ = Sω
β0

4LθΦ , LθΦ = f0m
2
0

nf
θΦ , (5.6)

and the two-meson interactions

L′SωΦ2 = Sω
β0

(
2
(
L∂2

Φ2 + L∂AΦ2

)
+ 3L′mΦ2 + 4LθΦ2

)
, (5.7)

where

L∂2

Φ2 = 1
2 〈∂µΦ∂

µΦ〉f , LθΦ2 = −m
2
0

2nf
Φ2 , L′mΦ2 = −b02

〈
Φ2m

〉
f
. (5.8)

The one-meson interactions (5.6) mix the singlet η1 with spin 0 messenger particles, but
this mixing is negligible because it is strongly suppressed by the QCD theta angle. The
two-meson interactions eq. (5.7) are similar to the one in (5.4). They mediate decays into
spin 0 messengers, such as φi → φjsk and φi → φjγsk, as well as decays into secluded
particles X, such as φi → φjXX.

The WZW Lagrangians (4.119a) and (4.119b) couple χPT to the portal current V µ
l

via the one-meson interaction

LncVlAΦ = εµνρσ
(4π)2f0

3
4
〈
Φ
{

vρσA ,V ′µνl

}〉
f
, (5.9)
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and the two-meson interactions

LncVlAΦ2 = εµνρσ
(4π)2f2

0

i
4
〈
V ′µl (3{vρσA , [Φ, ∂νΦ]}+ 2{[Φ, vρσA ], ∂νΦ})

〉
f
. (5.10)

Finally, the WZW Lagrangians (4.120a) and (4.120b) couple χPT to the portal current
V µ
r via the one-meson interaction

LncVrAΦ = εµνρσ
(4π)2f0

3
4
〈
Φ
{

vρσA ,V ′µνr

}〉
f , (5.11)

and the two-meson interactions

LncVrAΦ2 = εµνρσ
(4π)2f2

0

i
4
〈
V ′µr (3{vρσA , [Φ, ∂νΦ]}+ 4{[Φ, vρσA ], ∂νΦ} − 6[Φ, {vρσA , ∂νΦ}])

〉
f .

(5.12)

The one-meson interactions eqs. (5.9) and (5.11) mediate decays such as φi → γvµ and
φi → γ`aξb, while the two-meson interactions (5.10) and (5.12) mediate decays such as
φi → φjγvµ. Notice that the WZW action is the only contribution that mediates non-
hadronic meson decays with a spin 1 messenger particles in the final state. In particular,
the order δ3 Lagrangians (4.22) to (4.27), which one may expect to do so, do not mediate
such transitions.

Order εEWδ. At this order, the octet Lagrangians (4.121a) and (4.122a) encode the
strangeness-violating SM two-meson interactions

Lh∂2

Φ2 = −εEW2
(
h8 〈∂µΦ∂µΦ〉sd + h1∂

µΦs
d∂µΦ

)
+ h.c. , (5.13a)

Lh∂AΦ2 = − i
εEW

2 h8 〈{∂µΦ, [Φ, vµA]}〉sd + h.c. . (5.13b)

The 27-plet Lagrangians (4.121b) and (4.122b) encode the additional strangeness-violating
SM two-meson interactions

Lh∂
2

Φ2 = −εEW2 h27 (nf∂
µΦu

u∂µΦs
d + (nf − 1)∂µΦu

d∂
µΦs

u) + h.c. , (5.14a)

Lh∂AΦ2 = − i
εEW

2 h27(nf − 1) (〈[Φ, vµA]〉ud∂µΦs
u + ∂µΦu

d〈[Φ, v
µ
A]〉su) + h.c. . (5.14b)

These interactions mix kaons with pions and η-mesons, and also mediate decays such as
φi → φj`a`a, where both charged leptons are of the same flavour. Similarly to (5.1), the
latter interactions also contribute to decays with associated photon production, such as
φi → φjγsj and φj → φjγvµ. The octet Lagrangian (4.123) couples χPT to the portal
current V µ

l via the strangeness-violating one-meson interactions

Lh∂VlΦ = εEWf0
2

(
h8
(

Vµ
l
d
d + Vµ

l
s
s

)
+ h1V

µ
l

)
∂µΦs

d + h.c. , (5.15)

and the strangeness-violating two-meson interactions

Lh∂VlΦ2 = i
εEW

4
(
h8
(

Vµ
l
d
d + Vµ

l
s
s

)
+ h1V

µ
l

)
〈[Φ, ∂µΦ]〉sd + h.c. , (5.16a)

LhAVlΦ2 = −εEW4
(
h8
(

Vµ
l
d
d + Vµ

l
s
s

)
+ h1V

µ
l

)
〈[Φ, [Φ, vAµ]]〉sd + h.c. . (5.16b)

– 68 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
3

The 27-plet Lagrangian (4.124) couples χPT to the portal current V µ
l via the strangeness-

violating one-meson interaction

Lh∂VlΦ = εEWf0
2 h27nfVµ

l
u
u∂µΦµ

s
d + h.c. , (5.17)

and the strangeness-violating two-meson interactions

Lh∂VlΦ2 = i
εEW

4 h27nfVµ
l
u
u 〈[Φ, ∂µΦ]〉sd + h.c. , (5.18a)

LhAVlΦ2 = −εEW4 h27nfVµ
l
u
u 〈[Φ, [Φ, vAµ]]〉sd + h.c. . (5.18b)

The octet Lagrangian (4.125) couples χPT to the portal current V µ
r via the strangeness-

violating one-meson interaction

Lh∂VrΦ = −εEWf0
2

(
h8
(

Vµ
r
d
d + Vµ

r
s
s

)
+ h1V

µ
r

)
∂µΦs

d + h.c. , (5.19)

and the strangeness-violating two-meson interactions

Lh∂VrΦ2 = − i
εEW

4
(
2h8 〈{[Φ,Vµ

r ], ∂µΦ}〉sd
+
(
h8
(

Vµ
r
d
d + Vµ

r
s
s

)
+ h1V

µ
r

)
〈[Φ, ∂µΦ]〉sd

)
+ h.c. ,

(5.20a)

LhAVrΦ2 = εEW
4
(
2h8 〈{[Φ,Vµ

r ], [Φ, vAµ]}〉sd
+
(
h8
(

Vµ
r
d
d + Vµ

r
s
s

)
+ h1V

µ
r

)
〈[Φ, [Φ, vAµ]]〉sd

)
+ h.c. .

(5.20b)

The 27-plet Lagrangian (4.126) couples χPT to the portal current V µ
r via the strangeness-

violating one-meson interaction

Lh∂VrΦ = −εEWf0
2 nfh27Vµ

r
u
u∂µΦs

d + h.c. , (5.21)

and the strangeness-violating two-meson interactions

Lh∂VrΦ2 = − i
εEW

4 h27
(
nf 〈[Φ, ∂µΦ]〉sd Vµ

r
u
u

+2(nf − 1) (〈[Φ,Vµ
r ]〉ud∂µΦs

u + ∂µΦu
d〈[Φ,Vµ

r ]〉su)) + h.c. ,
(5.22a)

LhAVrΦ2 = εEW
4 h27

(
nf 〈[Φ, [Φ, vAµ]]〉sd Vµ

r
u
u

+2(nf − 1) (〈[Φ,Vrµ]〉ud〈[Φ, v
µ
A]〉su + 〈[Φ, vAµ]〉ud〈[Φ,Vµ

r ]〉su)) + h.c. .

(5.22b)

The one-meson interactions eqs. (5.15), (5.17), (5.19) and (5.21) are similar to the one-
meson interactions in (5.2) and (5.4) and mediate only invisible decays. The two-meson
interactions eqs. (5.16), (5.18), (5.20) and (5.22) are similar to the interactions (5.3), (5.10)
and (5.12). They mediate decays with photons in the final state, such as φi → φjγvµ, as
well as decays into secluded particles X, such as φi → φjv

∗
µ → φjXX.

Finally, the octet Lagrangian (4.127) couples χPT to the portal currents Sy via the
strangeness-violating two-meson interactions

L∂2S
Φ2 = −εEW2

(
S8 〈∂µΦ∂µΦ〉sd + S1∂

µΦs
d∂µΦ

)
+ h.c. , (5.23a)

LASΦ2 = − i
εEW

2 S8 〈{∂µΦ, [Φ, vµA]}〉sd + h.c. , (5.23b)
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while the 27-plet Lagrangian (4.128) also couples χPT to the portal currents Sy via the
strangeness-violating two-meson interactions

L∂2S
Φ2 = −εEW2 nfS27

(
∂µΦs

d∂
µΦu

u + nf − 1
nf

∂µΦµ
u
d∂

µΦs
u

)
+ h.c. , (5.24a)

LAS
Φ2 = − i

εEW
2 (nf − 1)S27

(
[Φ, vµA]ud∂

µΦs
u + ∂µΦu

d[Φ, vµA]su
)

+ h.c. . (5.24b)

These interactions are similar to the two-meson interactions in (5.4). They mediate decays
such as φi → φjsk, φi → φjskγ, and φi → φjXX, with secluded particles X in the final
state.

Order εEWδ
2. At this order, the kinetic Lagrangian (4.129) encodes the SM one-meson

interactions

L∂WΦ = −f0 〈lµW∂µΦ〉f , LAWΦ = − i f0 〈lµW [Φ, vAµ]〉f , (5.25)

and the SM two-meson interactions

L∂WΦ2 = − i
2 〈l

µ
W [Φ, ∂µΦ]〉f , LAWΦ2 = 1

2 〈l
µ
W [Φ, [Φ, vAµ]]〉f . (5.26)

The one-meson interactions mediate non-hadronic charged meson decays such as φi →
`aνa, while the two-meson interactions mediate semi-hadronic three-body decays such as
φi → φj`aνa. The kinetic Lagrangian (4.130) couples χPT to the portal current V µ

r via
the one-meson interaction

LWVr
Φ = i f0 〈Vµ

r [Φ, lWµ]〉f , (5.27)

and the two-meson interaction

LWVr
Φ2 = 1

2 〈V
µ
r [Φ, [Φ, lWµ]]〉f . (5.28)

The one-meson interactions mediate decays such as φi → `aνbvµ, while the two-meson
interactions mediate decays such as φi → φj`aνbvµ. The singlet Lagrangian (4.131) couples
χPT to the portal current Sω via the one-meson interaction

L′SωΦ = Sω
β0

2L′hmΦ , L′hmΦ = − i
εEWf0b0

2 hb
〈[

Φ,m′
]〉s
d + h.c. , (5.29)

and the two-meson interactions

L′Sω

Φ2 = Sω
β0

2
(
L′hmΦ2 + 2

(
Lh∂

2

Φ2 + Lh∂A
Φ2 + Lh∂2

Φ2 + Lh∂A
Φ2

))
, L′hmΦ2 = εEWb0

4 hb
〈{

Φ2,m
}〉s

d + h.c. .

(5.30)

The one-meson interaction eq. (5.29) is similar to the one meson interaction (5.6) and mixes
neutral kaons with the hidden spin 0 messenger. However, in contrast to interaction (5.6),
the mixing here is not suppressed by the QCD theta angle, and therefore not in general
negligible. The two-meson interactions (5.30) are similar to the two-meson interactions in
(5.4) and (5.24) and mediate decays such as φi → φjsk, φi → φjskγ, and φi → φjXX.
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Order εEWδ
3. At this order, the singlet Lagrangian (4.133) couples χPT to the portal

current Sω via the one-meson interactions

L′SωΦ = Sω
β0

2
(
L∂WΦ + LAWΦ + LγΦ

)
, LγΦ = −εEWf0b0κΓ 〈Φ Imγ〉f , (5.31)

and the two-meson interactions

L′SωΦ2 = Sω
β0

2
(
L∂WΦ2 + LAWΦ2 + LγΦ2

)
, LγΦ2 = −εEWb02 κΓ

〈
Φ2 Reγ

〉
f
. (5.32)

The one-meson interactions that involve the dipole current γ are similar to the interactions
(5.4), (5.6) and (5.29) and mix neutral kaons with the hidden spin 0 messenger. The one-
meson interactions that involve the weak leptonic charged current lµW mediate decays such
as φi → `aνbsj . The two-meson interactions (5.32) mediate decays such as φi → φjsk,
φi → φjskγ, φi → φjXX, and φi → φj`aνbsk. The tensor Lagrangian (4.135) couples χPT
to the portal current Tµν

τ via the two-meson interactions

LT∂2

Φ2 = εEW
f3

0
κD

2
T 〈Tµν

τ ∂µΦ∂νΦ〉f + h.c. , LTVΦ2 = −εEW2f3
0
κLRT 〈Tµν

τ [Φ, [Φ, vAµν ]]〉f + h.c. ,

(5.33a)

LT∂VΦ2 = i
εEW
f3

0
κD

2
T 〈Tµν

τ (∂µΦ[Φ, vAν ] + [Φ, vAµ]∂νΦ)〉f + h.c. . (5.33b)

These interactions mediate decays such as φi → φjγsk and φi → φjγγsk. The WZW
Lagrangian (4.136) couple χPT to the portal current V µ

l via the one-meson interactions

LNVlWΦ = εµνρσ
(4π)2f0

1
2
〈
Φ
{

lρσW ,V
µν
l

}〉
f , (5.34)

and the two-meson interactions

LNVlWΦ2 = εµνρσ
(4π)2f2

0

i
2
〈
V µ
l ({lρσW , [Φ, ∂

νΦ]}+ 2∂ρΦlνW∂σΦ− 2{∂ρΦ∂σΦ, lνW })
〉
f . (5.35)

Finally, the WZW Lagrangian (4.137) couple χPT to the portal current V µ
r via the one-

meson interactions

LNVrWΦ = εµνρσ
(4π)2f0

1
4 〈Φ{l

ρσ
W ,V

µν
r }〉f , (5.36)

and the two-meson interactions

LNVrWΦ2 = εµνρσ
(4π)2f2

0

i
4 〈V

µ
r ({lρσW , [Φ, ∂

νΦ]}+ 4∂ρΦlνW∂σΦ− 4{∂ρΦ∂σΦ, lνW })〉f . (5.37)

The one-meson interactions (5.34) and (5.36) mediate decays such as and φi → vµ`aνb,
while the two-meson interactions (5.35) and (5.37) mediate decays such as φi → φj`aνbvµ.

– 71 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
3

5.2 Flavour-blind hidden sectors

In this section, we focus on the coupling of χPT to flavour-blind hidden sectors and evaluate
the χPT flavour traces to provide the one- and two-meson interactions in terms of the
singlet and octet meson eigenstates π8, η8, η1, π±, K±, K0, K0. Mixing between the π8,
η8, and η1 gives rise to the physical mass eigenstates π0, η, and η′, while K0 and K0 are
diagonalised into the two physical mass eigenstates K0

S and K0
L.

The hidden sector is flavour blind only if the EW scale PETs are flavour blind. After
integrating out the heavy SM particles, the resulting strong scale PETs can still violate
quark-flavour due to virtual W -boson exchanges. Hence, the octet contributions to corre-
sponding strong-scale portal currents are given as

S′m = λsdS′ms
d + λds S′md

s , V′µl = λsdV′µl
s
d + h.c. , V′µr = 0 , Tµν

τ = T[µν]
τ , (5.38)

where S′ms
d, S′md

s , Vµ
l
s
d, and Tµν

τ capture the contributions due to W -boson exchanges, so
that they are suppressed by a factor of εSM. This also implies that we can replace the
primed currents in (4.105) with their unprimed counterparts. At order εSM, the right-
handed current V µ

r in current (3.32) does not receive any contributions from higher dimen-
sional operators. Hence, it has to be flavour blind even at the strong scale, and its octet
contribution vanishes.

Order δ2. After evaluating the flavour traces, the SM two-meson photon interactions
(5.1) are

L∂Aφ2 = − i eAµ
(
π+↔∂µπ

− +K+↔∂µK
−
)
. (5.39)

The corresponding kinetic-like interactions (5.2) and (5.3) that couple χPT to the portal
currents V µ

l and V µ
r become

L∂Vlφ = −f0V
µ
l ∂µ

η1√
3
− f0(Vµ

l
d
s ∂µK

0 + h.c.) , L∂Vrφ = f0V
µ
r ∂µ

η1√
3
, (5.40a)

and

L∂Vlφ2 = − i
2

(
Vµ
l
d
s

(
π−
↔
∂µK

+ +K0↔∂µ

(
π8√

2
− 3 η8√

6

))
− h.c.

)
, (5.41a)

LAVlφ2 = −eAµ
(

Vµ
l
d
sK

+π− + h.c.
)
. (5.41b)

The mass-like interactions (5.4) that couple χPT to the portal current S′m become

L′Smφ = −f0b0 ImS′m
η1√

3
− f0b0

(
(Im S′m)dsK0 + h.c.

)
, (5.42)

and

L′Smφ2 = − b0
nf

ReS′m
(1

2
(
π2

8 + η2
8 + η2

1

)
+ π+π− +K+K− +K0K

0
)

− b0
2

(
(Re S′m)ds

(
K+π− +K0

(
2 η1√

3
− π8√

2
− η8√

6

))
+ h.c.

)
. (5.43)

Finally, the anomalous interaction (5.5) that couples χPT to the portal current Sθ becomes

LSθφ = f0m
2
0Sθ

η1√
3
. (5.44)
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Order δ3. After evaluating the flavour traces, the singlet interactions (5.6) and (5.7)
that couple χPT to Sω become

L′Sωφ = Sω
β0

4Lθφ , L′Sωφ2 = Sω
β0

(
2
(
L∂2

φ2 + L∂Aφ2

)
+ 3L′mφ2 + 4Lθφ2

)
, (5.45)

where the SM Lagrangians

Lθφ = f0m
2
0θ
η1√

3
, Lθφ2 = −m

2
0

2 nf

(
η1√

3

)2
, (5.46)

and

L∂2

φ2 = 1
2 (∂µπ8∂

µπ8 + ∂µη8∂
µη8 + ∂µη1∂

µη1)

+ ∂µπ
+∂µπ− + ∂µK

+∂µK− + ∂µK
0∂µK

0
,

(5.47a)

L′mφ2 = −b02
(
(m′u +m′d)π+π− + (m′u +m′s)K+K− + (m′d +m′s)K0K

0

+m′u
(
η1√

3
+ η8√

6
+ π8√

2

)2
+m′d

(
η1√

3
+ η8√

6
− π8√

2

)2
+m′s

(
η1√

3
− 2 η8√

6

)2
)
,

(5.47b)

are identical to the SM Lagrangians in (5.6) and (5.8). The WZW interactions (5.9)
and (5.10) that couple χPT to the portal current V µ

l become

LNVlAΦ = 2nceF̃µν
3(4π)2f0

(
∂µV ν

l

(
π8√

2
+ η8√

6

)
−
(
∂µVν

l
d
sK

0 + h.c.
))

, (5.48)

and

LNVlAΦ2 = inceF̃µν
3(4π)2nff

2
0

(
V µ
l

(
π+↔∂

ν
π− +K+↔∂

ν
K−

)
− nfVµ

l
d
s

(
K0↔∂

ν
(
π8√

2
− 3 η8√

6

)))
.

(5.49)

Finally, the WZW interactions (5.11) and (5.12) that couple χPT to the portal current V µ
r

become

LNVrAΦ = 2nceF̃µν
3(4π)2f0

∂µV ν
r

(
π8√

2
+ η8√

6

)
, (5.50)

and

LNVrAΦ2 = − inceF̃µν
3(4π)2nff

2
0
V µ
r

(
π+↔∂

ν
π− +K+↔∂

ν
K−

)
. (5.51)

Order εEWδ. After evaluating the flavour-traces, the SM octet interactions eq. (5.13)
are

Lh∂2

φ2 = −εEW2

(
h8∂

µK+∂µπ
− + ∂µK0

(
h8∂µ

(
π8√

2
+ η8√

6

)
+ nfh1∂µ

η1√
3

))
+ h.c. ,

(5.52a)

Lh∂Aφ2 = − i
eεEW

2 h8Aµ
(
π−
↔
∂µK

+
)

+ h.c. . (5.52b)

– 73 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
3

The SM 27-plet interactions eq. (5.14) are

Lh∂
2

φ2 = −εEW2 h27

(
nf∂

µ
(
π8√

2
+ η8√

6

)
∂µK

0 + (nf − 1)∂µπ−∂µK+
)

+ h.c. , (5.53a)

Lh∂Aφ2 = − i
eεEW

2 h27(nf − 1)Aµ
(
π−
↔
∂
µ
K+

)
+ h.c. . (5.53b)

Since the octet contribution to the left-handed portal current V µ
l is generated by diagrams

that involve virtual W -boson exchanges, it counts as Vµ
l ∝ εEW. At order εEW, the latter

and the octet contribution Vµ
r to the right-handed portal current V µ

r can be both neglected
in the 27-plet interactions (5.17), (5.18), (5.21) and (5.22), which then vanish. The octet
interactions (5.15) and (5.16) that couple χPT to the singlet portal current V µ

l become

Lh∂Vlφ = εEWf0
2 h1V

µ
l ∂µK

0 + h.c. , (5.54)

and

Lh∂Vlφ2 = i
εEW

4 h1V
µ
l

(
π−
↔
∂µK

+ +
(

3 η8√
6
− π8√

2

)
↔
∂µK

0
)

+ h.c. , (5.55a)

LhAVlφ2 = eεEW
2 h1V

µ
l AµK

+π− + h.c. . (5.55b)

The octet interactions (5.19) and (5.20) that couple χPT to the portal current V µ
r become

Lh∂Vrφ = −εEWf0
2 h1V

µ
r ∂µK

0 + h.c. , (5.56)

and

Lh∂Vrφ2 = − i
εEW

4 h1V
µ
r

(
π−
↔
∂µK

+ +
(

3 η8√
6
− π8√

2

)
↔
∂µK

0
)

+ h.c. , (5.57a)

LhAVrφ2 = −eεEW2 h1V
µ
r AµK+π− + h.c. . (5.57b)

The octet interactions (5.23) that couple χPT to the portal currents Sy become

L∂2S
φ2 = −εEW2

(
S8∂

µK+∂µπ
−

+∂µK0
(
−S8∂µ

(
π8√

2
+ η8√

6

)
+ nfS1∂µ

η1√
3

))
+ h.c. ,

(5.58a)

LASφ2 = − i
eεEW

2 S8Aµ
(
π−
↔
∂µK

+
)

+ h.c. . (5.58b)

Finally, the 27-plet interactions (5.24) that couple χPT to the portal currents Sy become

L∂2S
φ2 = −εEW2 nfS27

(
∂µK

0∂µ
(
π8√

2
+ η8√

6

)
+ nf − 1

nf
∂µπ

−∂µK+
)

+ h.c. , (5.59a)

LAS
φ2 = − i

eεEW
2 (nf − 1)S27Aµπ−

↔
∂
µ
K+ + h.c. . (5.59b)
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Order εEWδ
2. After evaluating the flavour traces, the SM one- and two-meson charged-

current interactions (5.25) and (5.26) are

L∂Wφ = −f0
(

lµW
u
d∂µπ

+ + lµW
u
s ∂µK

+ + h.c.
)
, (5.60a)

LAWφ = i f0eAµ
(

lµW
u
dπ

+ + lµW
u
sK

+ − h.c.
)
, (5.60b)

and

L∂Wφ2 = − i
2

(
lµW

u
d

(
2π+↔∂µ

π8√
2

+K+↔∂µK
0
)

+lµW
u
s

(
π+↔∂µK

0 −K+↔∂µ

(
π8√

2
+ 3 η8√

6

))
− h.c.

)
,

(5.61a)

LAWφ2 = 1
2eAµ

(
lµW

u
d

(
2π+ π8√

2
+K+K

0
)

+lµW
u
s

(
K+

(
π8√

2
+ 3 η8√

6

)
+ π+K0

)
+ h.c.

)
.

(5.61b)

The singlet interactions (5.29) and (5.30) that couple χPT to the portal current Sω become

L′Sωφ = Sω
β0

2L′hmφ , L′Sωφ2 = Sω
β0

2
(
L′hmφ2 + 2

(
+Lh∂2

φ2 + Lh∂Aφ2 + Lh∂
2

φ2 + Lh∂Aφ2

))
, (5.62)

where the SM Lagrangians

L′hmφ = − i
εEWf0b0

2 hb(m′s −m′d)K0 + h.c. , (5.63a)

L′hmφ2 = εEWb0
4 hb

(
m′d +m′s

) (
K+π− −K0

(
π8√

2
+ η8√

6

))
+ h.c. (5.63b)

are identical to the SM Lagrangians in (5.29) and (5.30).

Order εEWδ
3. After evaluating the flavour traces, the singlet interactions (5.31) and (5.32)

that couple χPT to the portal current Sω become

L′Sωφ = Sω
β0

2
(
L∂Wφ + LAWφ + Lγφ

)
, L′Sωφ2 = Sω

β0
2
(
L∂Wφ2 + LAWφ2 + Lγφ2

)
, (5.64)

where the SM Lagrangians

Lγφ = −εEWf0b0κΓ(Imγ)dsK0 + h.c. , (5.65)

Lγφ2 = −εEWb02 κΓ(Reγ)ds
(
K+π− −K0

(
π8√

2
+ η8√

6

))
+ h.c. , (5.66)

are identical to the SM Lagrangians in (5.31) and (5.32). The tensor interactions (5.33)
that couple χPT to the portal current Tµν

τ become

LT∂2

φ2 = 2εEW
f3

0
κD

2
T (Re Tµν

τ )ds
(
∂µK

+∂νπ
− − ∂µK0∂ν

(
π8√

2
+ η8√

6

))
+ h.c. , (5.67a)

LTVφ2 = −eεEW
f3

0
κLRT Fµν(Re Tµν

τ )ds 2K+π− + h.c. , (5.67b)

LT∂Vφ2 = eεEW
f3

0
κD

2
T Aν(Im T[µν]

τ )ds ∂µ
(
2K+π−

)
+ h.c. . (5.67c)
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The WZW interactions (5.34) and (5.35) that couple χPT to V µ
l become

LNVlWΦ = 2ncεµνρσ
3(4π)2nff0

∂µV ν
l

(
lρσW

u
sK

+ + lρσW
u
dπ

+ + h.c.
)
, (5.68)

and

LNVlWΦ2 = incεµνρσ
3(4πf0)2

1
nf
V µ
l

(
lρσW

u
s

(
π+↔∂

ν
K0 −K+↔∂

ν
(
π8√

2
+ 3 η8√

6

))
+lρσW

u
d

(
2π+↔∂

ν π8√
2

+K+↔∂
ν
K

0
)
− 3lνW u

d

(
2∂ρ π8√

2
∂σπ+ + ∂ρK+∂σK

0
)

−3lνW u
s

(
∂ρ
(
π8√

2
+ 3 η8√

6

)
∂σK+ + ∂ρπ+∂σK0

)
+ h.c.

)
. (5.69)

Finally, the WZW interactions (5.36) and (5.37) that couple χPT to V µ
r become

LNVrWΦ = ncεµνρσ
3(4π)2nff0

∂µV ν
r

(
lρσW

u
sK

+ + lρσW
u
dπ

+ + h.c.
)
, (5.70)

and

LNVrWΦ2 = incεµνρσ
3(4πf0)2

1
nf
V µ
r

(1
2 lρσW

u
s

(
π+↔∂

ν
K0 −K+↔∂

ν
(
π8√

2
+ 3 η8√

6

))
+1

2 lρσW
u
d

(
2π+↔∂

ν π8√
2

+K+↔∂
ν
K

0
)
− 3lνW u

d

(
2∂ρ π8√

2
∂σπ+ + ∂ρK+∂σK

0
)

−3lνW u
s

(
∂ρ
(
π8√

2
+ 3 η8√

6

)
∂σK+ + ∂ρπ+∂σK0

)
+ h.c.

)
. (5.71)

6 Meson interactions of hidden sector models

In this section, we apply the results of sections 4 and 5 to compute generic transition
amplitudes for golden channels used to search for NP in meson experiments. This step
serves first to validate our results with preexisting computations and second to exemplify
their use to compute meson decays involving a hidden particle. We consider one example
for each messenger type that is captured by the PET framework:

Spin 0 messengers The decay K± → π±si is a smoking gun process for ALP searches
at kaon factories, see e.g. [81, 84]. It can be especially relevant within the context of
interpreting the recent KOTO excess [215]. Scalar, pseudoscalar and complex scalar
messengers couple to the χPT Lagrangian via a large variety of external currents. As
a result, this type of process clearly demonstrates the power of the PET framework to
perform global parameter scans instead of considering only one specific SM extension
at a time.

Spin 1
2 messengers The decay K± → `±ξa is a key signature for light HNL searches [79,
83]. If ξa is a HNL, the computation of the transition amplitude is straightforward,
as the HNL couples to the SM only via its mixing with neutrinos [8–13]. After
diagonalising this mixing, the HNL couples to QCD via a single operator that mirrors
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the leptonic charged current interaction in the SM. Up to leading order in αEM and
the 4π counting of NDA, this operator is also the only one that couples QCD directly
to a completely generic spin 1

2 messenger. Since we do not diagonalise the portal
interactions, we keep track of both the mixing and the charged current operator. As
discussed in section 3.1.2, this means that the final decay amplitude also captures
hidden sectors that contain a non-trivial secluded sector in addition to the messenger
field. The net-effect is that the mixing angles θbi in eq. (6.60), which measure the size
of the HNL amplitude, are replaced with effective mixing angles θba in eq. (6.56) that
measure both the impact of the mixing of ξa with neutrinos and the direct production
via the four-fermion operator.

Spin 1 messengers The decay π0 → γvµ is a smoking gun process for dark photon
searches, see e.g. [82]. If vµ couples to χPT like a vector particle in a parity conserving
theory, such as in common models of dark photons, the parity-odd WZW action
generates the only contribution to the decay amplitude. A priori, one might expect
that the parity-even order δ3 contributions to the χPT action in Lagrangians (4.22)
to (4.27) can mediate neutral pion decays π0 → γaµ into messengers aµ that couple
to χPT like axial-vectors in a parity conserving theory. However, as mentioned below
eq. (5.12), this does not occur. For this reason, the dark photon decay amplitude
actually encompasses the production of generic spin 1 messengers.

To summarise, our decay amplitudes for hidden (pseudo-)scalar messengers, HNLs and
dark photons capture the production of generic hidden spin 0, 1

2 and 1 messengers to LO
in αEM, εEW, and the NDA 4π counting.

6.1 Charged kaon decay to charged pions and hidden scalars

We compute the transition amplitude for charged kaon decays K± → π±si into spin 0
messengers si. These decays can be induced via seven out of the ten portal currents that
are contained in the portal χPT Lagrangian. To compute the complete generic decay
amplitude, we first consider decays mediated by each of these currents individually, and
compute the leading contributions to the corresponding partial decay amplitudes. We then
sum these contributions to obtain a universal expression.

In general, the δ and εEW scaling behaviour of each partial amplitude can be different
for each of the seven portal currents, and the final result for the decay amplitude will
mix contributions of different order in δ and εEW. For instance, a quark-flavour violating
contribution to the current ReSm ∝ εUVsi induces an amplitude in eq. (6.15a) that formally
scales as εUVδ2, with no suppression due to εEW, while the currents Sx ∝ εUV si/v induce
an amplitude in eq. (6.15a) that scales as εUVε3/2EWδ, and the current Sω ∝ εUV si/v induces
an amplitude (6.15b) that scales as εUVε3/2EWδ

2. In the case of the Sω and Sx currents,
the additional ε1/2EW suppression results from the fact that the underlying EW scale portal
operators are of dimension five rather than dimension four. When considering a specific
SM extension, it may be possible to neglect the higher order contributions if they appear
in conjunction with lower order contributions. However, to capture the coupling of χPT to
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fully generic hidden sectors, it is necessary to keep track of all contributions, since a priori
a hidden sector can couple to χPT via any one of the portal currents.

6.1.1 Single scalar portal current contributions

In section 3.3.2, we have given the complete list of portal interactions that contribute to
each external current at LO. The relevant contributions that mediate K± → π±si decays
are those with exactly one hidden spin 0 messenger and no other SM or hidden fields,

Sω = εUV
v
cSωi si , Sm ⊃ εUV

(
cSmi + cSm∂2i

1
v2∂

2
)
si , Ss = hsi

εUV
v
si , (6.1a)

Sθ = εUV
v
cSθi si , Sγ = εUV

(
λsdc

γ
isd + λds c

γ

ids

)
si , Sr = hri

εUV
v
si , (6.1b)

Sl = hli
εUV
v
si . (6.1c)

Since ∂2/v2 ∝ εEWδ, the second term in Sm induces amplitudes that are suppressed by
an additional factor εEWδ compared to the contributions generated by the first term. In
the following, we simplify the expressions by approximating mu,md → mud and εs ≡
mud/ms → 0. Matching to χPT and transitioning to the physical vacuum, this gives the
modified currents

S′m = εUV

(
c′Smi + cSm∂2i

1
v2∂

2
)
si +O

(
ε2EW, ε

2
s

)
, Sy = hyi

εUV
v
si , (6.2)

where the parameters hyi are given in equation (4.91), and

c′Smi = cSmi + 2εEW
[
εs
(
h′†b λ

s
d − h′bλds

)
cSmi − h′†b c

Sm
i λsd

]
− εEWm

v

(
hbiλ

d
s + h.c

)
+ εEWκΓ

(
cγisdλ

s
d + cγ

idsλ
d
s

)
+O

(
ε
3/2
EW, ε

2
s

)
. (6.3)

The strength of strangeness-violating contributions to S′m is measured by the Wilson co-
efficients

c′Smi
d
s = cSmi

d
s − εEW

(
2h′bεscSmi d

d + ms
v
hbi − κΓc

γ

ids

)
, (6.4a)

c′Smi
s
d = cSmi

s
d + εEW

(
2h′†b

(
εsc

Sm
i

s
s − c

Sm
i

d
d

)
− εs

ms
v
h†bi + κΓc

γ
isd

)
. (6.4b)

6.1.2 Relevant interactions

At tree-level, K± → π±si decays are mediated by portal interactions with either one or
two mesons. The former give rise to indirect production via mixing of the messenger with
the SM mesons, while the latter give rise to direct production. Both types of interaction
are listed in section 5.1.

We first consider the case of indirect production via the process depicted in the diagram
in figure 10a. The one-meson interactions mix the hidden scalar with the neutral SM
mesons, and contribute to K± → π±si decays via off-shell K± → π±π0∗, K± → π±η∗, and
K± → π±η′∗ transitions, in which the neutral meson subsequently oscillates into the hidden
scalar. Hence, the diagram in figure 10a contains two vertices: i) a trilinear SM vertex with
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K±

π±

si

π0, η, η′

(a) Production via mass mixing.

K±

si

π±

(b) Direct production.

Figure 10. Feynman diagrams for the K± → π±si process.

one K±-leg, one π∓-leg, and one neutral meson leg, and ii) a one-meson portal interaction
that captures the meson to hidden scalar mixing. The expressions for the trilinear SM
interactions are known, and can be extracted from the SM χPT Lagrangian by following
the procedure that we summarise in appendix D.3. The resulting Lagrangian is

LKπΦ = − i εEW
2f0

(
2VKππ

π0
√

2
+ 3VKπη

η√
3

+ 3VKπη′
η′√

3

)
K+π− (6.5)

where we have defined the functions

VKππ = 1
4 [(h8 + 7h27)∂π0∂K − 5h27∂π0∂π− − (h8 + 2h27)∂π−∂K ] , (6.6a)

VKπη = 1
6
√

2
cη
[
(3h8 + 6h27)∂π∂K

−(h8 + 3
√

2tηh1 − 3h27)∂η∂K − (2h8 − 3
√

2tηh1 + 9h27)∂η∂π
]
,

(6.6b)

VKπη′ = 1
6
√

2
sη
[
(3h8 + 6h27)∂π∂K

−(h8 − 3
√

2t−1
η h1 − 3h27)∂η∂K − (2h8 + 3

√
2t−1
η h1 + 9h27)∂η∂π

]
.

(6.6c)

Notice that there is no K±π∓K0 SM vertex. Therefore, we do not have to keep track of the
mixing between the neutral kaons and the messenger. This also means that we can neglect
EW contributions to type ii) interactions. The hidden currents ImS′m and Sθ induce the
only relevant type ii) vertices, given within the interactions (5.4) and (5.5). Extracting the
vertices, one obtains

LSθΦ = εUVm
2
0f0c

Sθ
i

v

(
cη
η′√

3
− sη

η√
3

)
si , (6.7a)

L′SmΦ ⊃ −εUVf0b0

(
csiπ

π0
√

2
+ csiη

η√
3

+ csiη′
η′√

3

)
si +O(εEW) , (6.7b)

where the Wilson coefficients are

csiπ = Im cSmi u
u − Im cSmi d

d , (6.8a)

csiη = −sη Im cSmi + cη√
2

(
Im cSmi u

u + Im cSmi d
d − 2 Im cSmi s

s

)
, (6.8b)

csiη′ = cη Im cSmi + sη√
2

(
Im cSmi u

u + Im cSmi d
d − 2 Im cSmi s

s

)
. (6.8c)
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We now move on to the case of direct production via the process depicted in the
diagram in figure 10b. This diagram consists of a single trilinear portal vertex with one
K±-leg, one π∓-leg, and one hidden spin 0 messenger leg. The hidden current ReS′m
induces the vertices

L′SmΦ2 ⊃ −
b0
2 εUVK

+π−
(
cKπsi + Re cSm∂2i

d
s
∂2

v2

)
si +O

(
ε2EW

)
, (6.9)

which are part of the interactions (5.4), where

cKπsi = Re cSmi d
s + εEW

2
(
(m2

K −m2
π) Re cSmi u

u +m2
K Re cSmi d

d −m2
π Re cSmi s

s

)
θK±π∓

− εEW
2

(
2h′b

(
εsc

Sm
i

d
d − εscSmi

s
s
† + cSmi d

d
†)+ mud +ms

v
hbi − κΓ

(
cγ
ids + cγ†isd

))
. (6.10)

The hidden currents Sy induce the vertices

L∂2S
Φ2 + L∂2S

Φ2 ⊃ −
εUVεEW

2v (h8i + (nf − 1)h27i) si∂µπ−∂µK+ , (6.11)

which are encompassed by the interactions (5.23) and (5.24). Finally, the Sω current
induces the vertices

L′SωΦ2 ⊃
εUVεEWc

Sω
i

vβ0

(
h′bm

2
KK

+π− − (h8 + (nf − 1)h27) ∂µK+∂µπ
−
)
si , (6.12)

which are given within the interactions (5.30). These vertices contribute at order δ3 rather
than order δ2 due to the large nc dependence of the β function, which scales as β0 ∼ nc.
As mentioned below eq. (5.6), Sω induces also a one-meson vertex that mixes the η1 singlet
with the messenger. However, this interaction is suppressed by the QCD θ angle and is
always negligible with respect to the above trilinear portal vertices.

6.1.3 Partial decay width

In summary, the hidden currents ImS′m and Sθ couple to χPT via bilinear one-meson
portal interactions, while the hidden currents ReS′m, Sω, and the Sy couple to χPT via tri-
linear two-meson portal interactions. Putting everything together, the complete transition
amplitude can be decomposed as

A(K+ → π+si) = Adirect +Amixing . (6.13)

The amplitude for direct production via the trilinear interactions is

Adirect = ARe
m +Ah +Aω , (6.14)

where

ARe
m = −εUVb02

(
cKπsi − Re cSm∂2i

d
s
m2
s

v2

)
, Ah = −εUVεEW2v Xi , (6.15a)

Aω = εUVεEWc
Sω
i

β0v

(
h′bm

2
K −X0

)
. (6.15b)
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The quantities

Xi = 1
2 (h8i + (nf − 1)h27i)

(
m2
K +m2

π −m2
s

)
(6.16)

measure the dependence on the octet and 27-plet coefficients h8i and h27i. Following the
discussion in appendix D.2, the amplitude for indirect production Amixing can be written
in terms of the generic meson-to-messenger mixing angles

θπsi = εUVf0
b0csiπ

m2
s −m2

π

, θηsi = εUVf0
b0csiη + cSθi sη

m2
0
v

m2
s −m2

η

, (6.17a)

θη′si = εUVf0
b0csiη′ − c

Sθ
i cη

m2
0
v

m2
s −m2

η′
. (6.17b)

This results in

Amixing = AIm
m +Aθ = − i

εEW
2f0

(
θπsiVKππ + θηsiVKπη + θη′siVKπη′

)
. (6.18)

In momentum space, and evaluated on-shell, the functions (6.6) become

VKππ = 1
8
[
5h27(2m2

K −m2
s −m2

π) + (2h8 + 9h27)(m2
s −m2

π)
]
, (6.19a)

VKπη = cη

12
√

2

[
(2h8 − 3

√
2tηh1 + 9h27)(2m2

K −m2
s −m2

π)

−(4h8 + 3
√

2tηh1 + 3h27)(m2
s −m2

π)
]
,

(6.19b)

VKπη′ = sη

12
√

2

[
(2h8 + 3

√
2t−1
η h1 + 9h27)(2m2

K −m2
s −m2

π)

−(4h8 − 3
√

2t−1
η h1 + 3h27)(m2

s −m2
π)
]
.

(6.19c)

All of the above amplitudes are determined entirely by m2
K , m2

π, andm2
s, with no remaining

angular dependence. The resulting partial decay width is

Γ(K+ → π+si) = 1
8πmK

ρ(xπ, xs)
∣∣∣A(K+ → π+si)

∣∣∣2 , (6.20)

where the phase-space factor is

ρ(xπ, xs) =
√(1− xπ − xs

2

)2
− xπxs , xi = m2

i

m2
K

, (6.21)

and the squared amplitude is∣∣∣A(K+ → π+si)
∣∣∣2 = |ReA|2 + |ImA|2 , (6.22)

where

|ReA|2 = ε2UVb
2
0

4

∣∣∣∣∣Re
(
cKπsi − c

Sm
∂2i

d
s
m2
s

v2

)
+ εEW

b0v

(
Xi + 2c

Sω
i

β0

(
X0 − h′bm2

K

))∣∣∣∣∣
2

,

(6.23a)

|ImA|2 = 1
4

∣∣∣∣εUVb0 Im cKπsi + εEW
f0

(
θπsiVKππ + θηsiVKπη + θη′siVKπη′

)∣∣∣∣2 . (6.23b)
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Hence, the decay width reads

Γ(K+ → π+si) = 2πmK

(
εUV

2
b0

4πmK

)2
ρ(xπ, xs)∣∣∣∣∣Re

(
cKπsi − c

Sm
∂2i

d
s
m2
s

v2

)
+ εEW

b0v

(
Xi + 2c

Sω
i

β0

(
X0 − h′bm2

K

))∣∣∣∣∣
2

+
∣∣∣∣Im cKπsi + εEW

εUVf0b0

(
θπsiVKππ + θηsiVKπη + θη′siVKπη′

)∣∣∣∣2
)
. (6.24)

6.1.4 Flavour-blind hidden sectors

Starting from the results given in the previous section, we derive the full amplitude squared
for K± → π±si decays in the case of flavour-blind portal interactions. For such portal
interactions, the Wilson coefficients (6.8) and (6.10) simplify to

csiπ = 0 , csiη = −sη Im cSmi , csiη′ = cη Im cSmi , (6.25)

and

Re cKπsi = εEW
nf

(
h8 + (nf − 1)h27 − h′b

)
Re cSmi

+ Re cSmi
d
s − εEW

(
m2
K

b0v
Rehbi −

κΓ
2 Re

(
cγ
ids + cγisd

))
,

(6.26a)

Im cKπsi = εEW

(
h′b
nf

(1− 2εs) Im cSmi + m2
K

b0v
Im hbi −

κΓ
2 Im

(
cγ
ids − c

γ
isd

))
, (6.26b)

while the mixing angles become

θηsi = − sηεη1si

m2
s −m2

η

, θη′si = cηεη1si

m2
s −m2

η′
, εη1si = εUVf0

(
b0 Im cSmi − cSθi

m2
0
v

)
. (6.27)

6.1.5 Explicit portal currents for specific hidden sector models

PETs including hidden spin 0 fields can be motivated from a broad range of BSM models
and are realised for instance in models of DM (see e.g. [216–221]), inflation (see e.g. [222,
223]), naturalness (see e.g. [224–229]) and baryogenesis (see e.g. [88] for references). Spin
0 particles can be grouped into several categories, depending on their portal interactions
with the SM at the EW scale. We briefly summarise these categories and describe how the
PET procedure can be applied to each of them. Additionally, we provide the relevant PET
operators at the GeV scale, and their connection to the hidden currents, for ALPs and real
scalar models, which are among the most studied realisations of light spin 0 messengers.

ALPs. ALPs are PNGBs associated with the spontaneous breaking of an approximate
global symmetry. Hence, they arise in a multitude of theoretically well motivated models,
ranging from string theory (see e.g. [230–232]) to QCD. The original axion field is the
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PNGB of the Peccei-Quinn symmetry [16–19], which has been introduced in order to solve
the strong CP problem and is broken by the axial anomaly of QCD.17

Depending on the underlying theoretical model, ALPs can have theoretically un-
constrained couplings with the SM gauge bosons and derivative couplings with the SM
fermions. The latter couplings can be traded for non-flavour blind Yukawa couplings, as
described in appendix A.2. Up to dimension five, the most general Lagrangian before
EWSB is given by [93, 233–236]

La = Lhiddena + Lportala , Lhiddena = 1
2∂µa∂

µa+ 1
2m

2
aa

2 . (6.28)

Here a is the ALP field and the portal interactions are

Lportala = a

fa

(
cWWµνW̃

µν + cBBµνB̃
µν + cGGµνG̃

µν

+
(
i cuquH̃† + cdqdH† + ce`eH† + h.c.

))
, (6.29)

where fa is the energy scale associated with the ALP and the ci (with i = G, W , B)
and ci (with i = u, d, e) are scalar and matrix valued Wilson coefficient in flavour space,
respectively. For models that comply with minimal flavour violation, the coefficient ma-
trices in the Yukawa interactions are aligned with and of comparable strength as the SM
Yukawa matrices yi. All coefficients have been defined after using the EOM for the Higgs
and fermion fields in order to eliminate the derivative interactions of the ALP, for details
see [93, 235, 236]. For QCD axions, the mass term is generated by the QCD quark conden-
sate, so that fama ∝ m2

π, while for generic ALP models, both the scale fa and the mass
term ma are free parameters of the theory. The mass term is part of the Lagrangian de-
scribing the internal structure of the hidden sector, which we do not need in our procedure,
and it is listed here only for completeness. Considering the portal Lagrangian (6.29), we
recognise that all terms can be matched to the spin 0 portal operators defined in table 2.
Hence, the relevant currents that drive the phenomenology of ALPs at the EW scale are
given by

SXm = cX
a

fa
, Sθ = cG

a

fa
, SXθ = cX

a

fa
, (6.30)

where we have used εUV = v/fa , after confronting eq. (6.29) with the pertinent PETs in
table 2. Comparing with eq. (6.1), the resulting portal current that couple QCD to ALPs
at the strong scale are

Sm ⊃ cSm
v

fa
a , Sx = hx

a

fa
, Sθ = cSθ

a

fa
, Sγ =

(
λsdc

γ
sd + λds c

γ

ds

) v

fa
a , (6.31a)

where we have used the EOMs for the ALP to resorb the ∂2/v2 contribution from the
general expression in (6.1) into cSm . In addition, the term in Lagrangian (6.29) that
contains the photon field strength tensor gives rise to the Primakoff effect [237], which our
work does not modify.

17It has been long thought that axions in the MeV range were excluded, however this might not be the
case. We refer to [20] for a critical overview of bounds on MeV axions.
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The axial current Sθ and the imaginary part of the Yukawa current Sm mix the ALP
with pions and η-mesons, and give rise to ‘indirect’ production via diagram 10a. The
remaining currents give rise to ‘direct’ production via diagram 10b. For models that comply
with minimal flavour violation, the coefficients cSm , c

γ
sd, and cγds are aligned with and of

comparable size as their SM counterparts,

vcSm ∼m , vcγsd ∼ md , vcγds ∼ ms . (6.32)

In χPT, one finally obtains the currents

S′m = c′Sm
v

fa
a+O

(
ε2EW, ε

2
s

)
, Sy = hy

a

fa
, (6.33)

where the coefficient c′Sm is defined like its generic counterpart c′Smi in eq. (6.3), except
with the generic Wilson coefficients replaced according to(

cSmi + cSm∂2i

1
v2∂

2
)
→ cSm , cSθi → cSθ , cγisd → cγsd , cγ

ids → cγds , hyi → hy . (6.34)

Hence, the complete amplitude for K± → π±a decays is

A(K+ → π+a) = Adirect +Amixing , (6.35)

where the direct contribution is

Adirect = ARe
m +Ah = − b0v2fa

cKπa −
εEW
2fa

X0 , (6.36)

while the indirect contribution for production via meson-to-axion mixing is

Amixing = AIm
m +Aθ = − i

εEW
2f0

(
θπaVKππ + θηaVKπη + θη′aVKπη′

)
, (6.37)

where the mixing angles are now

θπa = f0
fa

b0vcaπ
m2
a −m2

π

, θηa = f0
fa

b0vcaη + cSθm
2
0sη

m2
a −m2

η

, θη′a = f0
fa

b0vcaη′ − cSθm2
0cη

m2
a −m2

η′
. (6.38)

The coefficients cKπa and caX are defined like their generic counterparts cKπi and csiX in
eqs. (6.8) and (6.10), except that the Wilson coefficients are replaced according to (6.34).
If the Wilson coefficients in Lagrangian (6.29) are aligned with the SM Yukawa couplings,
as it is usually the case, all amplitudes above are of the same order and equally contribute
to the decay rate. However, for flavour-blind ALPs with cX ∼ 1 in (6.30), the amplitudes
ARe
m and AIm

m are much bigger than the other two and dominate the decay rate.
We note that the indirect amplitude encompasses e.g. the production amplitude of

proper QCD axions given in [20], where the authors have neglected the 27-plet contributions
∝ h27 as well as the finite pion and axion masses m2

π, m2
a → 0. In this approximation, the

function VKππ vanishes, and the resulting expression becomes independent of the axion-to-
pion mixing angle θπa.
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Light real scalar fields. This type of field can appear in a huge variety of BSM models,
ranging from DM models, where the scalar is protected by a Z2 symmetry (see e.g. [238,
239]), to models for baryogenesis (see e.g. [88]), and two Higgs-doublet models (2HDMs)
(see e.g. [240, 241]), such as the inert doublet model, see e.g. [242]. Additionally, there are
interesting candidates in SUSY with R-parity conservation, such as the saxino, which is
the scalar R-odd component of the axion superfield. The saxino mass is typically of the
same order of the gravitino mass, however there are models in which it can be naturally at
a low scale, see i.e. [243]. The most common hidden Lagrangian can be cast as

Ls = Lhiddens + Lportals , Lhiddens = 1
2∂µs∂

µs+ λs2 + λ′s3 + λ′′s4 , (6.39)

where the λ denote the self-couplings, however, being part of the hidden Lagrangian they
are not relevant for the PET approach. The portal interactions are

Lportals = α0
Λ sDµH†DµH +

(
α1s+ α2s

2 + α3
Λ s3

)
H†H + α4

Λ s
(
H†H

)2

+ s

Λ
(
i cuquH̃† + cdqdH† + ce`eH† + h.c.

)
+ cW

Λ sWµνW
µν + cB

Λ sBµνB
µν + cG

Λ sGµνG
µν ,

(6.40)

where the αi, the cX with X = W,B,G, and the cx with x = u, d, e are dimensionless
Wilson coefficients and coefficient matrices, respectively. The self- and portal-couplings
involving an odd number of scalar fields are only present if the scalar field does not obey
a Z2 symmetry. The PET framework is suitable for n equal spin hidden messengers,
hence it can describe several cases, such as: i) a single hidden scalar messenger, which is
even under the symmetry of the secluded sector and arises for instance in simplified DM
models [244], ii) a DM candidate which is odd under the Z2 symmetry, the typical example
being the singlet scalar Higgs portal model [245, 246], and iii) models with Zn symmetries
(see e.g. [247] for DM models). Depending on the symmetries of the model, the real scalar
s can mix with the SM Higgs boson or assume a non-zero VEV, however we will not discuss
these possibilities here. Typically, the scalar portal Lagrangian (6.40) only includes terms
up to dimension four, while we include here also EW scale terms of dimension five using
the PET approach. A term which is especially relevant for light scalar fields is the coupling
with the gluon field strength tensor, which is present for instance in theories with a dilaton
field, see e.g. [248].

In order to demonstrate that the generic decay amplitude (6.13) encompasses and is
consistent with standard computations, we apply this general result to the case of light
Higgs production in charged kaon decays K± → π±h. We compare our results with those
obtained in [106], where h is considered to be the SM Higgs boson, and [249], where it is
taken to be the lightest Higgs particle of a 2HDM model. The computation in [106] was
performed before the discovery of the top-quark and the Higgs boson, so that the Higgs was
still allowed to be lighter than the charged kaons. In general, a light Higgs boson, with a
massmh < mK , couples to QCD at the strong scale directly via quark Yukawa interactions,
and additionally via effective hGG and hqqqq vertices, which arise after integrating out the
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heavy SM DOFs. Translating these interactions into the hidden current picture, the only
non-vanishing Wilson coefficients in eqs. (6.2) and (6.3) are [106, 249]

εUVc
Sm
i = 1

v

(
κm−msκdsλ

d
s −mudκ

†
dsλ

s
d

)
, εUVc

Sω
i = 2κG , εUVhyi = −2κWhy ,

(6.41)

where κ = diag (κu, κd, κd). The coefficients κu and κd measure the coupling of the Higgs-
particle to the up-type and down-type quarks in the SM, respectively. In the case of a
light 2HDM Higgs-particle, one has κG = (2κu + κd)/3 , while the remaining κx are free
parameters. In case of the SM Higgs boson, one has [106]

κu = κd = κG = κW = 1 . (6.42)

The constant κds ∼ εEW is determined by matching the low energy theory to the EW scale
description. In general, it can be parameterised as [249, 250]

κds = 2
∑

u=u,c,t
V †duVusxuf(xu) , xu = m2

u

Λ2
SM

, (6.43)

and f(xu) is a model dependent function. For the SM Higgs-particle, assuming xu �
(4π)−2, and neglecting the running of the Wilson coefficients between the EW and strong
scales, one has f(xu) = 3/4 [106]. In the case of the 2HDM, the corresponding expression
is known, but quite complicated. It can be found e.g. in [250–252]. Using eq. (6.41), the
coefficient (6.10) becomes

εUVcKπsi = m2
π

2vb0
(κu−κd)εEW(h8 +(nf−1)h27)+m2

K

vb0
(2εEWκWhb − κds)+O

(
ε2s

)
. (6.44)

The overall K± → π±h decay amplitude receives contributions from the partial ampli-
tudes ARe

m , Aω, and Ah, all of which mediate direct production. There is no meson-to-Higgs
mixing because the Higgs is a scalar, rather than a pseudoscalar, particle. One obtains

ARe
m = m2

K

2v (κds − 2κW εEWhb)−
m2
π

4v (κu − κd)εEW(h8 + (nf − 1)h27) , (6.45a)

Ah = εEWm
2
K

2v κW (h8 + (nf − 1)h27)
(

1 + m2
π −m2

s

m2
K

)
, (6.45b)

Aω = εEWm
2
K

2v
2κG
β0

(
2h′b − (h8 + (nf − 1)h27)

(
1 + m2

π −m2
s

m2
K

))
. (6.45c)

Thus, the full amplitude is

A(K+ → π+h) = m2
K

v

[(
κW
2 −

κG
β0

)
εEW(h8 + (nf − 1)h27)

(
1 + m2

π −m2
s

m2
K

)

+κd − κu
4 εEW(h8 + (nf − 1)h27)m

2
π

m2
K

− 2εEW
(
κW
2 hb −

κG
β0
h′b

)
+ κds

]
. (6.46)
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K±

ξa

`±

(a) Direct production.

K±

`±

ξa

ν`

(b) Production via mass mixing.

Figure 11. Feynman diagrams for the K± → `±ξa process.

This result encompasses the one given in [249], where the contributions from the 27-plet
and chromomagnetic operators have been neglected, which amounts to replace h27 → 0
and h′b → hb.18 Using the values (6.42), one also obtains the result given in [106].19

Pseudoscalars. Pseudoscalar particles are predicted in many extensions to the Higgs
sector, see e.g. [253, 254] and the recently proposed relaxion field (see e.g. [228, 255]), and
have more general characteristics as compared to ALPs. The latter are restricted by being
PNGBs, while generic pseudoscalar particles can couple to the SM via additional portal
operators at the EW scale, most notably a direct coupling with the Higgs boson. In this
sense, these particles combine features that arise in both ALPs and light scalar models.

Complex Scalars. As explained in section 3, PETs can describe complex scalars as a
combination of two distinct real spin 0 fields that can be either scalar or pseudoscalar. There
are several interesting models with light complex scalar fields, see e.g. [256]. Additionally,
complex scalars commonly arise in SUSY models, such as the sgoldstino [257–264], which
can naturally be in the MeV mass range, the sneutrino [265–269], which appears in the
minimal supersymemtric Standard Model (MSSM), and the additional complex scalar field
introduced in the next-to-minimal supersymemtric Standard Model, see e.g. [270] for a
review.

6.2 Charged kaon decay to charged leptons and hidden fermions

In this section, we compute the transition amplitude for production of a generic fermionic
messenger ξa in charged kaon decays K± → `±ξa at LO in δ.

6.2.1 Relevant interactions

At tree-level, K± → `±ξa decays are described by the two types of diagrams, depicted in
figure 11: i) diagrams with a single trilinear one-meson K± → `±ξa portal vertex that
directly couples χPT to hidden sectors, and ii) diagrams with one trilinear K± → `±ν` SM
vertex and a second ν` → ξa portal vertex that indirectly couples χPT to hidden sectors
by mixing the SM neutrinos with the fermionic messenger. The relevant portal current

18In [249] the amplitude is expressed in terms of 2gH = κds, kG = 2κG/β0 , γ8 = εEWh8/4 , and
γ̃8 = εEWh1/4 .

19In [106] the amplitude is written in terms of the quantities ξ = κ†ds, κ ≡ 2/β0, γ1 = εEWh8, and
γ2 = εEWhb.

– 87 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
3

contributions to type i) diagrams are those with exactly one hidden spin 1
2 messenger and

one charged lepton. Using the list of portal currents in section 3.3.2, the only contribution is

V µ
l ⊃

εUV
v2 cL†ūsaλ

u
s ξ
†
aσµeb +h.c. , (6.47)

where e and cL†ūs are doublets in flavour space that capture the coupling to both e± and µ±.
The corresponding vertex mediating charged kaon decays is encoded inside the kinetic-like
one meson portal interactions (5.2), leading to

L∂VlK = −εUVf0
v2 cL†ūs,ba ξ

†
aσµeb ∂

µK+ . (6.48)

To compute diagrams of type ii), we have to specify both the neutrino to hidden fermion
mixing vertex and the trilinear SM vertex. The mixing vertex is given as

Lνbξa = −εUVv (cνbaνbξa + h.c.) , (6.49)

where ν and cνa are doublets in flavour space that capture the mixing of both νe and νµ.
The trilinear SM vertex is encoded inside the kinetic-like one meson interactions (5.25),
leading to

L∂WK = f0Vus
v2 ∂µK

+ ∑
b=e,µ

ν†bσ
µ`b . (6.50)

6.2.2 Partial decay width

The vertices (6.47) to (6.49) are written in the two-component notation of [129]. Applying
the Feynman rules for the two-component spinor notation [129, 271] to compute the two
types of diagrams illustrated in figure 11, one obtains the full decay amplitude

A(K+ → `+b ξa) = Adirect +Amixing , (6.51)

where the partial amplitudes are

Adirect = − i
εUVf0
v2 cL†ūs,ba x

†(pξ, sξ)σµy(p`, s`) pµK , (6.52a)

Amixing = i
εUVf0
vm2

ξ

cνbaVus y(pξ, sξ)σνσµy(p`, s`) pνξp
µ
K , (6.52b)

and the functions x(p, s) and y(p, s) are the polarisation spinors for two-component fermion
fields. The resulting helicity-summed partial decay width is

Γ(K+ → `+b ξa) = 2πmK

(
εUVεEW

mK

4πf0

)2
ρ(x`, xξ)

∣∣∣∣∣cLūs,ba + cνbaVusv

mξ

∣∣∣∣∣
2

, xi = m2
i

m2
K

, (6.53)

where the phase-space factor is

ρ(x`, xξ) =
(
x` + xξ − (x` − xξ)2

)√(1− x` − xξ
2

)2
− x`xξ . (6.54)
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In terms of the partial decay width for the process K+ → `+b νb, this is

Γ(K+ → `+b ξa) = Γ(K+ → `+b νb)
ρ(x`, xξ)
ρ(x`, 0) |θba|

2 , (6.55)

where the SM partial decay width and the effective mixing angle are

Γ(K+ → `+b νb) = 2πmK

(
εEW

mK

4πf0

)2
|Vus|2ρ(x`, 0) , θba = εUV

(
cνbav

mξ
+
cLūs,ba
Vus

)
.

(6.56)

6.2.3 Explicit portal currents for specific hidden sector models

Gauge singlet fermionic hidden fields are common in BSM models. In the SM, left-handed
neutrinos are the only fields without a right-handed partner. Therefore, it is natural
to consider that such fields exist, but have so far not been observed due to their feeble
interactions with SM fields. One or more right-handed neutrinos can be added to the SM
and can play an important role in several mechanisms of BSM physics, via their mixing
with ordinary neutrinos. They can be used to generate neutrino masses (via one of the
seesaw mechanisms), are required in leptogenesis models, and can act as DM. Since the
nature of (right-handed) neutrinos is not known, the hidden messengers can be either
Majorana or Dirac particles. The latter case is described in our framework by two hidden
Weyl fermions. For reviews on the plethora of BSM models with right-handed neutrinos we
refer to e.g. [63, 65, 272]. Many BSM models with right-handed neutrinos are commonly
embedded into SUSY theories, see various realisation of type-I and inverse seesaw, e.g. [273–
277].

As an example for a model with HNLs, we consider the type-I seesaw model. The
minimal type-I seesaw Lagrangian couples the SM to a pair of two sterile Majorana neu-
trinos [8–13],

Lν = Lportalν + Lhiddenν , Lhiddenν = 1
2
(
ν†i i /∂νi −Mijνiνj

)
+ h.c. , (6.57)

where
Lportalν = −yiaνi`aH̃† + h.c. (6.58)

Here, Mij = Mji denotes the sterile neutrino Majorana mass matrix, and yai is the cou-
pling strength of the sterile neutrino Yukawa interactions. Without loss of generality,
Mij = diag(M1,M2). The sterile neutrinos do not couple directly to QCD, and the only
contribution to the EW scale portal currents is

Ξa = −νiyia . (6.59)

At the strong scale, this interaction generates the mass-mixing

Lportalν → −yiaνiνav + h.c. , (6.60)

so that εUVvcνbi = vyib. Hence, the effective mixing angle is just the physical mixing angle
between the SM neutrino and the sterile neutrino, θbi = vyib/Mi .
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π0

vµ

γ

Figure 12. Feynman diagram for the π0 → γvµ process.

Another category of hidden fermionic fields is given by the axinos, which are SUSY
partners of the axions, see e.g. [278, 279]. They are unrelated to the neutrino sector, unless
R-parity violation is allowed. Axinos can be produced for instance by gluon fusion or in
neutralino decays, which are useful mechanisms for searches in beam dump experiments or
at colliders, and can be naturally in the MeV mass range, see e.g. [280].

6.3 Neutral pion decay to photons and hidden vectors

In this section, we consider anomalous neutral pion decays into hidden spin 1 messengers,
π0 → γvµ, at order δ3. Unlike in the previous sections, we now include EM contributions
up to order αEM. However, we neglect all EW contributions that are suppressed by factors
of εEW, as this process is flavour conserving.

6.3.1 Relevant portal current contributions

The relevant portal current contributions are those with a single hidden vector field. Using
the list of portal currents in section 3.3.2, the only contributions of this type are

V µ
l ⊃ εUVc

L
v v

µ , V µ
r = εUVc

R
v v

µ . (6.61)

Figure 12 depicts the only relevant Feynman diagram. In principle the process can be
mediated by two types of diagrams: i) diagrams with a trilinear π0 → γγ SM vertex and
a mixing vertex that makes the SM photon oscillate into a hidden spin 1 particle, and
ii) diagrams with a direct trilinear π0 → γvµ portal vertex. Choosing an appropriate
operator basis, there is no type i) diagram, since the kinetic mixing term can always
be eliminated from the theory using the SM EOM, in favour of a coupling to the SM
fermion fields. As a result, only the diagram of type ii) contributes to the decay amplitude
π0 → γvµ. This interaction vertex arises from the anomalous WZW contribution, which
enters at order δ3.

6.3.2 Partial decay width

The interaction corresponding to the diagram in figure 12 is contained in Lagrangian (5.9).
By extracting from it the contribution with a singlet pion, one obtains

Lπ→γv ≡
nc
3

1
(4π)2f0

(
2V µν

v
u
u + V µν

v
d
d

) π8√
2
eF̃µν , (6.62)

where V µ
v ≡ V

µ
l + V µ

r and the photon field is canonically normalised. Using expressions
(6.61), one has

V µ
v = εUV

(
cRv + cLv

)
vµ . (6.63)
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The above expression implies that the WZW does not couple neutral pions to the axial-
vector current V µ

a ≡ V
µ
l − V µ

r . This is to be expected, since the WZW mediates parity
violating transitions, while neutral pion decays into a photon and a hidden axial-vector
would conserve parity. The partial decay width for π0 → γvµ decays is

Γ(π0 → γv) = 1
16πmπ

(
1− m2

v

m2
π

)
|A(π0 → γv)|2 , (6.64)

where the square amplitude is

|A(π0 → γv)|2 =
(
nc
3
εUV
4πf0

)2 αEM
4π

[
2(cRv + cLv )uu + (cRv + cLv )dd

]2 (
m2
π −m2

v

)2
. (6.65)

In terms of the partial decay width for the process π0 → γγ it reads

Γ(π0 → γv) = 2ε2effΓ(π0 → γγ)
(

1− m2
v

m2
π

)3

, (6.66)

where

Γ(π0 → γγ) = 2πmπ

(
nc
3
αEM
4π

mπ

4πf0

)2
, εeff = εUV

2(cRv + cLv )uu + (cRv + cLv )dd
2e
(
2quu + qdd

) , (6.67)

are the SM partial decay width and the effective mixing parameter.

6.3.3 Explicit portal currents for specific hidden sector models

Relatively light vectors states (i.e. below the GeV scale) that are very weakly coupled to the
SM fields represent attractive physics targets for experimental searches at the cross-over of
the intensity and high-energy frontiers. In the literature there are several proposals, with
different motivations, for vector portal models. The simplest realisations do not charge the
SM fields under the new gauge group related to the hidden vectors, giving rise to kinetic
mixing portals. An attractive alternative is given by gauging certain combinations of SM
fields under the new U(1), in order to achieve for instance anomaly free or UV complete
models. Examples of the latter models are the B− L or the Lµ − Lτ anomaly free models,
see e.g. [281–286]. For a broad overview of the different models, physics motivations and
experimental constraints, we refer to the reviews [63, 256, 287].

Here, we consider the simplest dark photon model, which is QED-like, from [288, 289],
with a single hidden vector vµ. The hidden Lagrangian is given by

Lv = Lhiddenv + Lportalv , Lhiddenv = −1
4F
′µνF ′µν + 1

2m
2
vvµv

µ , (6.68)

and the portal interaction is

Lportalv = − ε2F
µνF ′µν . (6.69)

In this equation, ε is the kinetic mixing parameter between the hidden vector and the
photon and F ′µν is the field strength tensor of the hidden vector. We show part of the
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hidden Lagrangian, however, this is not needed for our purposes. First, it is not actually
relevant how the dark photon acquires a mass. This can be achieved by the spontaneous
symmetry breaking of the symmetry to which the dark photon is associated, requiring a
dark Higgs, or could be achieved via the Stückelberg mechanism [290, 291], if the symmetry
is a U(1). As long as the dark Higgs is heavier than the χPT scale and is integrated out,
eq. (6.65) is not modified by the mass generation mechanism. Second, we remain agnostic
about the remaining particle content of the hidden sector, which might include fermionic
states X, charged under the new U(1), that couple only to the dark photon (we already
mentioned this possibility in section 5.1). A model similar to (6.69) that couples to the
hypercharge instead of the EM charge is obtained by substituting the QED U(1) with the
hypercharge U(1) field in the SM.

The expected branching ratio (BR) for the process π0 → γvµ is known, see e.g. [82],
and is equivalent to eq. (6.65), which can be seen by rewriting the kinetic mixing La-
grangian (6.69) in terms of the portal operators using the SM EOM. Afterwards, the dark
photon field couples to QCD via the neutral current interaction

Lportalv → −
〈

v′µ
(
Qµ +Qµ

)〉
f
, v′µ = εeqvµ . (6.70)

Hence, εUV(cLv + cRv ) = εeq, and therefore εeff = ε.

7 Conclusion

In this paper, we have developed a framework of PETs, which extend EFTs associated
with the SM by coupling them to generic hidden messenger fields with masses at or below
the characteristic energy scale of the relevant EFT. This framework enables the coupling
of SM fields to light hidden sectors while remaining largely agnostic about the internal
structure of the hidden sector, which can include secluded particles that do not couple
directly to the SM but interact with each other and the messenger fields. It also accounts
for the coupling to heavier hidden sectors via the inclusion of higher dimensional operators
in PET Lagrangians. Throughout the paper, we have focused primarily on hidden fields
with masses at or below the strong scale, for which there are extensive searches at intensity
frontier experiments. However, we emphasise that the PET framework, and in particular
the portal SMEFTs we derived in section 3, also capture messengers that are much heavier,
as long as their mass is within the regime of applicability of the corresponding EFT.

Using the PET framework, we have first constructed EW scale and strong scale PETs
that couple SMEFT and LEFT to a messenger of spin 0, 1

2 , or 1. The resulting portal
SMEFTs encompass all available portal operators up to dimension five, while the portal
LEFTs additionally encompass all dimension six and seven operators that contribute to
quark-flavour violating transitions at LO in εEW, αEM, and the NDA 4π counting scheme.
We have found that all portal SMEFTs conserve baryon number, and that the spin 0 and
1 messenger portal SMEFTs conserve lepton number. In the case of spin 1

2 messenger,
the portal operators can violate lepton number by one unit, |∆L| ≤ 1. Additionally, this
messenger does not couple to any of the quark fields or the right-chiral charged lepton
fields, while the spin 1 messenger only couples to pairs of quarks and leptons with identical
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chirality, so that it cannot act as a separate source of chiral symmetry breaking. We used
all these properties to constrain the portal LEFTs, so that the resulting LEFTs should be
understood as a low energy approximation of the corresponding portal SMEFTs, where the
heavy SM DOFs have been integrated out.

We have parameterised the coupling of QCD to hidden sectors at the strong scale in
terms of ten external currents J ∈ {Ω, Θ, M , Lµ, Rµ, Tµν , Γ, Hl, Hr, Hs}, and used a
spurion analysis to derive the corresponding PETs that couple the hidden messengers to the
U(3) version of χPT, which contains a η1 singlet meson in addition to the light pseudoscalar
meson octet of SU(3) χPT. The spurion analysis is the standard technique used to embed
χPT in the remainder of the SM at LO in αEM. Hence, the coupling of χPT to the currents
Θ, M , Lµ, and Rµ, which capture the impact of photons, the light SM leptons, and the
QCD theta angle in the SM, is well understood [105, 109, 149, 183–187, 197]. Similarly,
the coupling of χPT to Tµν has been studied in [203].

Here, we have extended the spurion technique to also account for the space-time depen-
dent external currents Γ, Hl, Hr, Hs, and Ω. The SM contributions to all these currents are
constant, and the SM contribution to the current Ω = ω + Sω is the inverse fine-structure
constant of QCD ω ∝ g−2

s . Since strong interactions are integrated out when constructing
χPT, only the portal contribution Sω can appear in the χPT action. Sω encompasses e.g.
the coupling of χPT to a light Higgs boson h via the interaction hGµνG

µν , previously
studied e.g. in [106]. We generalise that description to account for the coupling of χPT to
a fully generic current Sω. The constant SM contributions to the dipole current Γ and the
four-quark currents Hx are usually included into χPT by appealing directly to the transfor-
mation behaviour of the QCD dipole and four-quark operators under global quark-flavour
rotations [42, 114–117]. Since it is difficult to generalise this transformation behaviour ap-
proach to space-time dependent external currents, we have used the more powerful spurion
approach. In order to include the four-quark currents Hx into the power counting for U(3)
χPT, which is defined via a simultaneous expansion in momenta ∂2 and large nc, we have
generalised the standard QCD large nc counting formula.

The final χPT Lagrangian contains 27 free coefficients κ ∈ {κxΓ, κxT , κxy , κxω}. In order
to make it possible to constrain interactions in the portal LEFTs using bounds on hidden
sector induced meson transitions, we have estimated 22 of these coefficients using a number
of well-established techniques for the non-perturbative matching of χPT to QCD. Four of
the seven coefficients κω, which measure the coupling of χPT to the Sω current, have
already been estimated by using the anomalous trace relation of the QCD stress-energy
tensor (2.65) [106]. Using this strategy, we have fixed the remaining three coefficients.
The thirteen κyx coefficients, which measure the coupling of χPT to the octet and 27-plet
currents Hl, Hr, and Hs, are well known in the large nc limit [107, 108, 110–112, 205, 206].
However, corrections that appear for finite n−1

c are known to be important when estimating
the strength of the four-quark operators in the SM, and we expect the same to be true for
the four-quark operators in the portal sector. Hence, we have adapted the strategies used
in [106–108, 112, 205], and obtained improved estimates for the κyx coefficients by matching
them to experimental values of the octet and 27-plet coefficients h8,1,27. Finally, we have
estimated the coefficients κΓ and κMΓ + κM

′
Γ , which measure the coupling of χPT to the
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dipole current Γ, by matching the χPT prediction for the vacuum condensates of the QCD
dipole quark bilinear (2.29) to the corresponding lattice values in (2.32).

To facilitate the application of our results, we have listed all one- and two-meson
interactions that arise from the LO portal χPT action. We have then computed the most
general transition amplitudes for three golden channels, which are used to constrain the
coupling to hidden sectors in fixed-target experiments: i) K± → π±si, ii) K± → `±ξa, and
iii) π0 → γvµ.20 For the spin 0 messenger, we have computed a universal decay amplitude
and connected it to simple realisations of ALPs and scalar portal models. For spin 1

2 fields,
we have mapped our generic decay amplitude to the case of HNL by rewriting it in terms of
a generalised effective mixing angle. We have also connected our comprehensive expression
for the spin 1 messengers to the case of QED-like dark photon model by using the photon
EOM to express the kinetic mixing operator in terms of our portal operators.

Outlook. The work we have presented in this paper opens up several potentially in-
teresting avenues for further investigation, which range from formal improvements of the
PET framework to theoretical work to expand its regime of applicability and further to a
number of relevant phenomenological applications.

In this paper, we have focused primarily on completing a minimal version of portal χPT
that can be used to make concrete predictions for meson decays at intensity experiments,
and have left open some questions that need to be addressed in order to complete the
PET framework. For instance, one has to connect the EW and strong scale PETs in
order to constrain the shape of portal Lagrangians at the EW scale by means of low-
energy experiments. This connection can be established e.g. via an explicit procedure of
successive matching and running, where the Wilson coefficients for each portal interaction
are run down from the EW scale (µ ∼ v) to the strong scale (µ . mc), while integrating
out each heavy SM DOF as it becomes inactive. Further, it is necessary to complete
the matching between the strong scale PETs and χPT by determining the remaining κ

coefficients related to the external currents Γ and Tµν . This is an unavoidable procedure
to relate meson scattering and decay amplitudes induced by these two currents to the
corresponding dipole operators in QCD.

In addition, there are several avenues that can be pursued to extend the PET frame-
work by expanding the range of models that it is able to capture. First, it is possible
to include e.g. portal operators up to dimension six at the EW scale, which would allow
for describing a larger class of DM models. Second, one can construct PETs for hidden
sector models with higher spin messengers or with multiple messengers. In appendix B.2,
we have already constructed portal SMEFTs for spin 3

2 and 2 messengers, but it remains
to construct the corresponding portal LEFTs at the strong scale, as well as the result-
ing portal χPT Lagrangian at LO. Finally, while the PETs we have constructed already
account for the possibility of multiple messengers with identical spin, for a fully general
description of models with multiple portals, it might be interesting to add portal operators
that encompass hidden fields with different spin.

20Recall that the fields si, ξa and vµ denote generic spin 0, spin 1
2 and spin 1 messengers, respectively.
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Finally, one can apply the PET framework to make predictions for various experimental
setups besides the low-energy fixed target experiments that have been the focus of this
work. For instance, EW scale PETs can be used to constrain hidden sectors at collider
experiments, e.g. at the LHC, similarly to how SMEFT is being used to constrain the
coupling to heavy new sectors, and to make predictions for flavour physics experiments,
such as LHCb [292], or for beam dump experiments, such as SHiP, which produce an
enormous amount of heavy D- and B-mesons. In order to apply the PET approach to
heavy meson physics and a wide range of other experimental setups, it will be useful to
construct PETs that extend a large class of EFTs in the SM, such as HEFT, HQET,
NRQCD, and SCET.

In the long term, this program of building and linking various PETs at many different
energy scales will make it possible to perform a truly global parameter scan, which could
be used to constrain light hidden sectors in a very general way, as it will combine differ-
ent observations at the EW scale, from flavour physics experiments, and from intensity
experiments. This goal will require the ability to compute a large variety of amplitudes
for a wide range of distinct hidden-sector induced transitions. In order to simplify this
task, it is thus sensible to implement the various PETs into tools that automatise Feynman
rules, such as FeynRules [293], and to produce model files for software packages, such as
MadGraph [294], MadDM [295, 296] and MadDump [297], which are able to compute the
matrix elements and the necessary theoretical predictions.
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A Construction of portal effective theories

In this appendix we describe the techniques we use to construct EW and strong scale PETs
that extend an EFT of the SM by coupling the SM DOFs to a hidden messenger that is
lighter than the characteristic energy scale of the relevant EFT. We summarise the NDA
power counting scheme, and give a number of well-known reduction techniques used to
obtain a minimal basis of independent portal operators for each PET.
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A.1 Naive dimensional analysis

After integrating out the heavy SM DOFs, the strong scale PETs may contain portal
operators with dimension larger than five. The higher dimensional operators are suppressed
by powers of εSM ≡ ∂2/Λ2

SM . In addition, operators that receive contributions from tree-
level diagrams at the EW scale theory will be suppressed by loop factors of (4π)−1. These
loop factors can be integrated into the power counting using NDA [175–178]. The NDA
counting scheme assumes that the EFT Lagrangian can be written as [176]

L = Ld≤4 +
∑
i

ciOi , (A.1)

where the ci are Wilson coefficients and the Oi denote effective operators of dimension
di > 4. The renormalisable Lagrangian Ld≤4 contains gauge interactions with couplings
gi, Yukawa interactions with couplings yi, φ3 interactions with couplings κi, and φ4 inter-
actions with couplings λi. Assuming that the kinetic part of the Lagrangian is canonically
normalised, NDA stipulates that the Wilson coefficients ci are expected to be of order one,
or smaller, if the Oi are normalised as

Oi ∝
Λ4

(4π)2

(
g

4π

)ng ( y

4π

)ny ( κ

4πΛ

)nκ ( λ

(4π)2

)nλ ( p2

Λ2

)np (4πφ
Λ

)nφ ((4π)2ψψ

Λ3

)2nψ
,

(A.2)
where Λ is a high-energy scale associated with a small momentum expansion in powers of
ε ∝
√
s/Λ , φ and ψ denote bosonic and fermionic fields present in the effective theory, and

p2 stands for any light mass scale (i.e. it includes both derivatives ∂ ∝ p and light masses
m ∝ p).

The NDA power counting is self-consistent in the sense that an arbitrary diagram with
insertions of higher dimensional operators normalised according to (A.2) is renormalised
by operators with the same 4π normalization. That is, the Wilson coefficients mix as [176]

δci ∝
∏
j

cj , (A.3)

which implies that the Wilson coefficients should satisfy ci . 1, even if the underlying UV
theory is strongly coupled [178]. If the UV theory is weakly coupled, the Wilson coefficients
may be much smaller than one, ci � 1, so that the 4π power counting of NDA can be broken
by strongly hierarchical values of the Wilson coefficients, which could potentially satisfy
4πci � cj for certain i 6= j.

When using the NDA counting scheme to discriminate between portal operators at
the strong scale, we specifically count (4π)−1 suppression factors associated with loops in
the EW scale diagrams that generate each strong scale operator. Since the renormalisable
d = 3, 4 operators in the strong scale theory are generated by tree-level diagrams at
zeroth order in εEW, their normalization should not contain any explicit factors of 4π.
This requirement implies that the small portal coupling εUV has to be associated with a
factor (4π)−1, so that e.g. an operator εUVqqsi scales as (4π)0 rather than (4π)1. This is
completely analogous to the (4π)−1 suppression that has to accompany each SM Yukawa

– 96 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
3

coupling. In view of our choice gauge field normalization, which ensures that the covariant
derivatives Dµ = ∂µ − iAµ are independent of the gauge couplings, the SM photon field
strength tensor needs also to be associated with a factor of (4π)−1. In principle, this
reasoning also applies to gluon field strength tensors, but the corresponding factor of (4π)−1

does not result in any relative suppression, since gs/4π is not a small parameter in the
non-perturbative regime of QCD. Therefore, we do not keep track of the factors of 4π
associated with the gluon field strength tensor. Summarising, we normalise each portal
operator at the strong scale as follows,

Oi ∝
(

Λ2
SM

4π

)2 (
e

4π

)ne ( p2

Λ2
SM

)np (
Fµν

Λ2
SM

)nF (4πψSM

Λ3/2
SM

)nψ

×
( 1

4π

)ϑ(ns+nv+nξ/2 ) εUV
4π

(4πsi
ΛSM

)ns (4πvµi
ΛSM

)nv ( 4πξa
Λ3/2
SM

)nξ
, (A.4)

where ψSM stands for SM fermions, and p ∼ Dµ,m now denotes either a covariant derivative
or a light mass scale. The function

ϑ(x) =

1 x > 1
0 x ≤ 1

(A.5)

measures how many hidden fields the operator contains. If it contains more than one
hidden boson or more than two hidden fermions, the operator has to have been generated
by EW scale diagrams that contain at least one hidden sector interaction, and according to
the general NDA counting scheme this interactions has to be associated with suppression
by at least one factor (4π)−1.

A.2 Reduction techniques

In general, a naive listing of all available operators at each order in the power counting
contains a number of redundant operators that can be expressed as a linear combination
of other operators at the same or higher order in the power counting. In the following, we
list a number of standard reduction techniques that we use to identify minimal bases of
portal operators without redundancies: further details on these reduction techniques can
be found in [29, 298–300] and references therein.

Algebraic identities directly associate operators with each other. In our analysis, we
use

• Bianchi identities that relate the covariant derivatives of field strength tensors V µν .
One has

DµV νρ +DνV ρµ +DρV µν = 0 . (A.6)

In particular, these identities imply that

σµν(DρV µν + 2DµV νρ) = 0 , DµṼ
µν = 0 . (A.7)
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• Fierz completeness relations that relate products of fermion bilinears [298, 299].
These are often given in terms of four component fermions, see for instance [299]. In
the two-component notation of [129], the Fierz identities we use take the form

ψaψb ψcψd = 1
2 ψaψd ψcψb +1

4 ψaσµνψd ψcσ
µνψb , (A.8a)

ψ†aψ
†
b ψ

†
cψ
†
d = 1

2 ψ†aψ
†
d ψ†cψ

†
b +1

4 ψ†aσµνψ
†
d ψ†cσ

µνψ†b , (A.8b)

and

ψ†aσµψb ψcσ
µψ†d = 2 ψ†aψ

†
d ψcψb , (A.9a)

ψ†aσµψb ψ
†
cσ

µψd = − ψ†aσµψd ψ†cσ
µψb , (A.9b)

ψaσµψ
†
b ψcσ

µψ†d = − ψaσµψ
†
d ψcσ

µψ†b , (A.9c)

as well as
ψaσµνψd ψ†cσ

µνψ†b = 0 , (A.10)

and finally

ψaψb ψ
†
cσ

µψd = 1
2 ψaψd ψ†cσ

µψb − i
3
8 ψaσ

µνψd ψ†cσνψb , (A.11a)

ψ†aψ
†
b ψ

†
cσ

µψd = 1
2 ψ†aσ

µψd ψ†cψ
†
b − i

3
8 ψ†aσνψd ψ†cσ

µνψ†b . (A.11b)

Partial integration can be used to rearrange (covariant) derivatives within the opera-
tors, assuming that the fields vanish at infinity.

Field redefinitions of the shape

φ(x)→ φ(x)− εnf [φ](x) , (A.12)

where ε is a small parameter of the theory and f [φ](x) is a polynomial that depends only
on powers of φ and its derivatives evaluated at x, can be used to eliminate operators
proportional to the zeroth order EOM for the effective DOFs that appear at order εn [29,
178, 301, 302]. The repetition of this procedure at each order in ε makes it possible to
eliminate operators proportional to the zeroth order EOM at all orders in ε.

A.3 Standard Model equations of motions

In this section, we collect the EOMs for the SM fields we use throughout this work.

A.3.1 EOMs at the electroweak scale

At the EW scale, the SM EOMs for fermions are

i /D` = yeeH , i /De = y†eH
†` (A.13a)

i /Dq = yuuH̃ + yddH , i /Du = y†uH̃
†d , i /Dd = y†dH

†d , (A.13b)
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where the yi (i = e, u, d) denote the SM Yukawa coupling matrices. The EOMs for SM
bosons are given by

D2H =
(
m2 − λ|H|2

)
H − e†y†e`− d†y

†
dq − (εq)†yuu , (A.14a)

∂µB
µν =

∑
all f

yfψfγµψf + i yhH†
↔
DµH , (A.14b)

(DµW
µν)I = φ† i

↔
DνIφ+ l†bσ

νT I lb + q†bσ
νT Iqb , (A.14c)

2(DµG
µν)x = u†aσ

νλxua + u†aσ
νλxua + d

†
aσ

νλxda + d†aσ
νλxda , (A.14d)

where ε is the SU(2)L totally anti-symmetric tensor, the index x denotes objects that
transform as members of the adjoint representation of SU(3)C , and the λx are GM matrices
acting on triplets in colour-space.

A.3.2 EOMs at the strong scale

At the strong scale, the EOMs for SM fermions are given by

i /Dei = meie
†
i , i /Ddi = mdid

†
i , i /Dui = mdiu

†
i , i /Dνi = 0 , (A.15a)

i /Dei = meie
†
i , i /Ddi = mdid

†
i , i /Dui = mdiu

†
i . (A.15b)

At the same scale, the EOMs for SM bosons are

2 (DµG
µν)x = u†aσ

νλxua + u†aσ
νλxua + d

†
aσ

νλxda + d†aσ
νλxda , (A.16a)

∂µF
µν =

∑
light f

qfψ
†
fσ

νψf . (A.16b)

where qf is the EM charge of the fermion in question.
For the PETs we construct, it is possible to combine the strong scale EOMs with the

other reduction techniques to eliminate all operators with at least one covariant derivative
acting on a SM fermion. Considering a generic Weyl fermion ψa with mass ma and gauge
charges qa, and a field strength tensor V µν , we get

DρD
ρψa =

(
/D /D − qa

1
2σµνV

µν
)
ψa

EOM−−−→ −
(
m2
a + qa

1
2σµνV

µν
)
ψa , (A.17)

and further

Oµ
(
ψa
↔
Dµψb

)
= 1

2O
µ
(
ψa

[↔
/Dσµ + σµ

↔
/D
]
ψb

)
PI−→ −Oµ

(
ψa

[←
/Dσµ − σµ

→
/D
]
ψb

)
+ (iDνOµ) (ψaσνµψb)

EOM−−−→ − i (mb +ma)Oµ
(
ψ
†
aσ

µψb + ψaσ
µψ
†
b

)
+ (iDνOµ) (ψaσνµψb) ,

(A.18)

and

Oµ
(
ψaσ

µν↔Dνψb
)

= iOµ
(
ψa

[
σµ /D +

←
/Dσµ −Dµ −

←
Dµ
]
ψb

)
EOM−−−→ (mb +ma)Oµ

(
ψ
†
aσ

µψb + ψaσ
µψ
†
b

)
+ (iDµOµ) (ψaψb) ,

(A.19)
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and

O (DρψaD
ρψb) = 1

2O (Dρψa)Dρψb + 1
2O (Dρψa)Dρψb

PI−→ − 1
2O

(
D2ψa

)
ψb −

1
2Oψa

(
D2ψb

)
− 1

2 (DρO) ∂ρ (ψaψb)

EOM−−−→ 1
2
(
D2O

)
ψaψb + 1

2
(
m2
a +m2

b

)
Oψaψb ,

(A.20)

and

O (Dµψaσ
µνDνψb) = i

2O
(
ψa

[←
/D
→
/D −

←
Dµγ

νγµ
→
Dν

]
ψb

)
= iO

(
ψa

[←
/D
→
/D −

←
D
ρ→
Dρ

]
ψb

)
EOM−−−→ imambOψ

†
aψ
†
b − iO (DρψaDρψb) ,

(A.21)

as well as

O[µν]
(
ψ†aσν

↔
Dµψb

)
= O[µν] i

2

(
ψ†a

[
σµν

↔
/D −

↔
/Dσµν

]
ψb

)
PI−→ O[µν] i

(
ψ†a

[
σµν

→
/D +

←
/Dσµν

]
ψb

)
+DρOµν i

2
(
ψ†a [σρσµν + σµνσρ]ψb

)
EOM−−−→ O[µν]

(
mbψ

†
aσµνψ

†
b −maψaσµνψb

)
+ i

2
(
ψ†aσσψb

)
DρÕρσ .

(A.22)

A.3.3 Quark EOM including external currents

To compute the trace of the QCD Hilbert stress-energy tensor (2.65) in the presence of
generic external currents, we include these currents into the quark EOMs. Therefore, they
are

i /Dq†b =
(
MT q +

(
TT
µν + ΓTGµν

)
σµνq +LTµσµq†

)b
− |V |

2
sd

v2

(
2Hlbdacσµq†a q†cσµqd +Hr

bḋ
aċσ

µq†a qċσµq
†
ḋ
−Hsḋbaċqċ q†aq

†
ḋ

)
,

(A.23a)

i /Dq†ȧ =
(
Mq − (Tµν + ΓGµν)σµνq +Rµσ

µq†
)
ȧ

+ |V |
2
sd

v2

(
Hr

bḋ
cȧσ

µq†
ḋ
q†cσµqb +Hs

ḃd
cȧqd q

†cq†
ḃ

)
.

(A.23b)

B Electroweak scale portal operators

In this appendix, we first collect the redundant EW scale portal operators for messengers
with spin 0, 1

2 , and 1, and then present the portal operators for messengers with spin 3
2

and 2.

B.1 Redundant portal operators with messenger field up to spin one

The operators listed in table 2 form a complete basis in the sense that it is impossible to
further reduce the number of independent portal operators by using the standard reduction
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techniques discussed in appendix A.2. In particular, we have used the SM EOM to minimise
the number of derivatives appearing within each operator, but for certain applications, it
may be more convenient to work with alternative bases of portal operators. To facilitate
this, we list below the redundant EW portal operators that can be constructed in PETs
based on SMEFT, and show which techniques were used to trade them.

The redundant spin 0 portal operators are

∂µ∂νsiB
µν PI←→ ∂µsi∂νB

µν PI←→ si∂µ∂νB
µν = 0 , (B.1)

as well as

∂µsi(H†
↔
DµH) PI←→ si

(
H†D2H − h.c.

)
, (B.2a)

∂2si|H|2
PI←→ ∂µsi∂

µ|H|2 PI←→ si
(
H†D2H + h.c.

)
+ non-redundant (B.2b)

and

∂µsiq
†
aσ

µqb
PI←→ siq

†
a /Dqb , ∂µsiu

†
aσ

µub
PI←→ siu

†
a /Dub , ∂µsid

†
aσ

µdb
PI←→ sid

†
a /Ddb , (B.2c)

∂µsi`
†
aσ

µ`b
PI←→ si`

†
a /D`b , ∂µsie

†
aσ

µeb
PI←→ sie

†
a /Deb . (B.2d)

Notice that the remaining operators (H†D2H ± h.c.) and ψ†a /Dψb on the right-hand side of
these expressions can be replaced with Yukawa type portal operators using the SM EOMs.

The only redundant spin 1
2 portal operators are

Dµξ
†
aσ

µ`aH̃
† + h.c. PI←→ ξ†a /D`aH̃

† + non-redundant , (B.3)

where the remaining operator on the right-hand side can also be replaced with Yukawa
type portal operators using the SM EOMs.

Finally, the redundant spin 1 portal operators are

∂νvµB̃
µν PI←→ vµ∂νB̃

µν = 0 , ∂νvµB
µν PI←→ vµ∂νB

µν , (B.4)

where the only remaining operator vµ∂νBµν can also be replaced with Yukawa type portal
operators using the SM EOMs.

Finally, we already argued in section 3.2 that the number of independent portal op-
erators given in table 2 can be further reduced by using the EOMs proper to the hidden
sector. However, these EOMs depend strongly on the internal structure of the latter, the
modelling of which is beyond the scope of this paper.

B.2 Rarita-Schwinger and Fierz-Pauli fields

Here we briefly discuss the case in which the SM couples to hidden 3
2 Weyl fields ξµi (x) with

i = 1, 2 or to a spin 2 field tµν . Without loss of generality, we take t ≡ tµµ = 0, since the
scalar DOF t couples to the SM via the operators collected in table 2. Table 12 collects the
complete list of portal operators up to dimension five for both spin 3

2 fermion and tensorial
messenger fields.
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d Higgs Yukawa + h.c. Fermions Gauge bosons

ξaµ
+
h.c.

4 ξ†aµσ
µ`bH̃

†

5

ξaµξ
µ
b |H|

2 (∂µξaµ)`bH̃† ξaµξbνB
µν

ξaµσ
µνξbν |H|2 (∂νξaµ)σµν`bH̃† ξaρσ

µνξρbBµν
ξaµ`bD

µH̃† ξaµσ
µρξνbBνρ

ξaµσ
µν`bDνH̃

† ξaµσ
µρξνb B̃νρ

ξaασ
ρ
µξbβBνρε

αβµν

tµν

3 tµνB
µν

t̃µνB
µν

5

tµνDµH
†DνH tµνqaσµνubH̃ (∂µtµν)q†aσνqb tµνG

µρGν
ρ

t̃µνDµH
†DνH tµνqaσµνdbH (∂µtµν)u†aσνub t̃µνG

µρGν
ρ

(∂µtµν)(H†
↔
DνH) tµν`aσµνebH (∂µtµν)d†aσνdb tµνG̃

µρGν
ρ

(∂µtµν)`†aσν`b tµνG
µρG̃ν

ρ

(∂µtµν)e†aσνeb t̃µνW
µρW ν

ρ

(∂µt̃µν)q†aσνqb tµνW̃
µρW ν

ρ

(∂µt̃µν)u†aσνub tµνW
µρW̃ ν

ρ

(∂µt̃µν)d†aσνdb t̃µνB
µρBν

ρ

(∂µt̃µν)`†aσν`b tµνB̃
µρBν

ρ

(∂µt̃µν)e†aσνeb tµνB
µρB̃ν

ρ

tµνB
µν |H|2

t̃µνB
µν |H|2

Table 12. List of all portal operators up to dimension five that couple SMEFT to hidden spin 3
2

fermionic fields ξµa and tensor fields tµν . The first column specifies the type of portal, the second
column denotes the dimension d of the portal operator and the remaining columns label the SM
sectors to which the hidden field couples. In the case of the vector-fermion PETs, each operator
is supplemented by its Hermitian conjugate. The bold operators couple to the strong sector of
the SM.

A standard example of hidden spin 3
2 fields coupling to the SM model are the gravitinos

appearing in supergravity models. Although their precise mass depends on the details of the
model, they can easily be much lighter than the other supersymmetric particles [303, 304],
leading to interesting phenomenology [305–307], and placing it into the regime of PETs.

Broadly speaking, there are two separate energy ranges in which spin 2 messengers
constitute viable extensions of the SM. On the one hand, in extra-dimension models, see
e.g. [308–311], besides the massless zero mode, higher order graviton excitations are inter-
esting portals for NP, and their allowed mass range lies in the TeV scale [312–314]. They
can be described by portal SMEFTs at high-energy colliders [315, 316] or for models of TeV
scale DM [317]. On the other hand, bimetric theories of gravity [318, 319], called bigravity,
feature an new massive interacting spin 2 state. This new boson can be a DM candidate.
However, either its mass range is beyond the sensitivity of intensity experiments, lying
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below the eV range, see [320], or it lies in the MeV range but its interaction strength with
ordinary matter is so negligible to make a detection hopeless, see [312, 321, 322]. Finally,
models with hidden spin 2 glueballs have been proposed [323, 324], but in this case the
prospects for detection in the mass range of interest would also be low. However, we do
not preclude the possibility of a viable theory involving those fields which can be detected
by light meson factories.

C Portal operators at the strong scale

In this appendix, we give a complete basis of both strangeness conserving and violating
portal operators at the strong scale that are suppressed by at most a factor of εUV

/
v3 while

respecting the general restrictions outlined in section 3.3. In particular, we assume that
the strong scale PETs are a low energy limit of a corresponding portal SMEFT, and also
include operators that are sub-leading in the (4π) counting of NDA. The relevant leading
strangeness violating QCD operators are listed in table 4, and the sub-leading strangeness
violating operators are given in table 5. For spin 0 and 1

2 mediators, the relevant portal
operators may be of dimension d ≤ 7, while for spin 1 mediators, the portal operators are
of dimension d ≤ 6. This basis is constructed using the reduction techniques summarised
in appendix A, see also [300] for additional details.

We follow the two component notation in [129] for fermionic fields, and distinguish
between portal operators with either zero, two or four fermionic fields. To list the operators,
it is convenient to define stand-ins for various SM SU(3)c colour gauge singlets. For SM
fermions, we define the following neutral pairs

(qq)0 ∈
{
uaub, dadb

}
, (ψψ)′0 ∈ {(qq)0, eaeb} , (ψψ)0 ∈

{
(ψψ)′0, νaνb

}
,

(C.1a)

(q†q†)0 ∈
{
u†au

†
b, d
†
ad
†
b

}
, (ψ†ψ)′0 ∈ {u†aub, d†adb, e†aeb,

u†aub, d
†
adb, e

†
aeb} ,

(ψ†ψ)0 ∈
{

(ψ†ψ)′0, ν†aνb
}
,

(C.1b)

and the following charged pairs

(qq)+ ∈
{
uadb, daub

}
, (ψ†ψ)+ ∈

{
d†aub, d

†
aub, e

†
aνb
}
, (C.2a)

(q†q†)− ∈
{
u†ad
†
b, d
†
au
†
b

}
, (ψ†ψ)− ∈

{
u†adb, u

†
adb, ν

†
aeb
}
, (C.2b)

where the indices run over all available flavours at the strong scale (a, b = u, d, s for quarks,
a, b = e, µ for charged leptons and a, b = νe, νµ, ντ for neutrinos) and the subscript specifies
the total electric charge of each fermionic pair. For the gauge bosons, we indicate their
field strength tensors with

V µν ∈ {Fµν , Gµν} . (C.3)

For operators with more that one occurrence of V µν , we adopt the convention that all of
these instances denote the same field strength tensor within each operator. For instance,
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the object V µνVµν may denote FµνFµν or GµνGµν but not FµνGµν . The Fierz completeness
relations (A.8), (A.9) and (A.11) reduce the number of independent four-fermion operators.
We can then restrict ourselves to products of the colour singlets (C.1) and (C.2) without loss
of generality. For operators without quarks, we can further restrict ourselves to products
involving only the neutral singlets (C.1).

C.1 Scalar portal

At order εUV
/
v3 , the scalar portal operators can be of dimension seven or less. We list all

portal operators that include at most two hidden real scalar fields (si with i = 1 2).

Zero-fermion operators can contain either one, two, or three field strength tensors.
The operators with one field strength tensor are

si ∂νsj ∂µsk F
µν , si ∂νsj ∂µsk F̃

µν . (C.4)

The operators with two field strength tensors are

si 〈VµνV µν〉c , sisj 〈VµνV µν〉c , sisjsk 〈VµνV µν〉c , si 〈DρVµνD
ρV µν〉c , (C.5a)

si
〈
Vµν Ṽ

µν
〉
c
, sisj

〈
Vµν Ṽ

µν
〉
c
, sisjsk

〈
Vµν Ṽ

µν
〉
c
, si

〈
DρVµνD

ρṼ µν
〉
c
. (C.5b)

The operators with three field strength tensors are

si
〈
GνµG

µ
ρG

ρ
ν

〉
c
, si

〈
G̃νµG

µ
ρG

ρ
ν

〉
c
. (C.6)

Two-fermion operators can contain at most a single SM field strength tensor. The
operators without field strength tensor may contain no more than two derivatives. The
operators with zero derivatives are

si(ψψ)0 , sisj(ψψ)0 , sisjsk(ψψ)0 , sisjsksl(ψψ)0 . (C.7)

The operators with one derivative are

si
↔
∂µsj (ψ†σµψ)0 , si sj

↔
∂µsk (ψ†σµψ)0 . (C.8)

The operators with two derivatives are

∂2si(ψψ)0 , si∂
2sj(ψψ)0 , ∂µsi ∂

µsj (ψψ)0 . (C.9)

The operators with a single SM field strength tensor and no derivatives are

si(ψσµνV µνψ)0 , sisj(ψσµνV µνψ)0 . (C.10)

The operators with a single SM field strength tensor and one derivative are

∂νsi (ψ†σµV µνψ)0 , ∂νsi (ψ†σµṼ µνψ)0 . (C.11a)

All the operators above are accompanied by their Hermitian conjugate.
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Four-fermion operators cannot contain any derivatives or field strength tensors. They
are

si(ψ†σµψ)0(ψ†σµψ)0 , si(ψ†σµψ)+(ψ†σµψ)− , si(qq)0(q†q†)0 , si(qq)+(q†q†)− ,
(C.12)

plus Hermitian conjugates. The operator si(ψ†σµψ)+(ψ†σµψ)− contains only combinations
with either two or four quarks. Using the Fierz identity (A.9), combinations with four
leptons can be eliminated in favour of operators contained within si(ψ†σµψ)0(ψ†σµψ)0. At
order εEW, there are no operators si(ψψ)(ψψ) or si(ψσµνψ)(ψσµνψ), since these involve
at least two chirality flips for the SM fermions, suppressing them further by an additional
factor of

√
εEW ∝ mψ/v .

C.2 Fermionic portal

At order εUV
/
v3 , a fermionic portal particle can couple to the SM via operators up to

dimension d ≤ 7. These operators can contain either two or four fermions. As before, it is
sufficient to list portal operators with two hidden left-handed Weyl fermions ξi with i = 1,
2 to account for both Majorana and Dirac fermionic fields in general.

Two-fermion operators can contain either zero, one, or two SM field strength tensors.
The sole operator without field strength tensors is

νaξi . (C.13)

The operators with one field strength tensor are

νaσµνξiF
µν , ξiσµνξjF

µν , ξiσµνD
2ξjF

µν , νaσµνD
2ξiF

µν , (C.14)

and

ν†aσµDνξiF
µν , ξ†i σµDνξjF

µν , ξiσµρDνD
µξjF

νρ , νaσµρDνD
µξiF

νρ , (C.15a)
ν†aσµDνξiF̃

µν , ξ†i σµDνξjF̃
µν , ξiσµρDνD

µξjF̃
νρ , νaσµρDνD

µξiF̃
νρ . (C.15b)

The operators with two field strength tensors are

νaξi 〈V µνVµν〉c , ξiξj 〈V µνVµν〉c , ξiσµνξj
〈
V µ
ρ V

ρν
〉
c
, νaσµνξi

〈
V µ
ρ V

ρν
〉
c
, (C.16a)

νaξi
〈
V µν Ṽµν

〉
c
, ξiξj

〈
V µν Ṽµν

〉
c
, ξiσµνξj

〈
V µ
ρ Ṽ

ρν
〉
c
, νaσµνξi

〈
V µ
ρ Ṽ

ρν
〉
c
, (C.16b)

All operators are accompanied by their Hermitian conjugate.

Four-fermion operators can contain at most one derivative. The operators without
derivatives can be either of the scalar-scalar type or of the vector-vector type. The former
are

ξiξj νaξ , daub ecξi , (ψψ)′0 νaξi , (ψσµνψ)′0 νaσµνξi , (C.17a)
(ψψ)′0 ξiξj , (ψσµνψ)′0 ξiσµνξj , (C.17b)
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and

(ψψ)′0 ν†aξ
†
i , (ψψ)′0 ξ

†
i ξ
†
j , uadb e

†
aξ
†
i . (C.17c)

The vector-vector type operators are

ν†aσ
µξi ξ

†
jσµξk , d†aσ

µub e
†
aσµξi , u†aσ

µdb e
†
aσµξi , (ψ†σµψ)0 ν

†
aσ

µξi , (C.18a)

(ψ†σµψ)0 ξ
†
i σ

µξj . (C.18b)

The operators with one derivative are

(ψ†σµψ)0 νaD
µξi , (ψ†σµψ)0 νaσ

µνDνξi , (ψ†σµψ)0 ξiD
µξj , (ψ†σµψ)0 ξiσ

µνDνξj ,

(C.19a)
d†aσ

µub ecD
µξi , d†aσ

µub ecσ
µνDνξi , ξ†i σ

µνa ξjDµξk , ξ†i σµνa ξjσ
µνDνξk ,

(C.19b)
ν†aσ

µξi ξjDµξk , ν†aσµξi ξjσ
µνDνξk .

(C.19c)

All operators are accompanied by their Hermitian conjugate.

C.3 Vector portal

At the EW scale, spin 1 messengers do not couple to SMEFT via operators of dimension five,
hence the corresponding low energy portal Lagrangian can only contain interactions that
are suppressed at most by a factor of ε

/
v2 rather than ε

/
v3 . At order ε

/
v2 , hidden (axial-)

vector mediators couple to the SM via operators of dimension d ≤ 6 only. Therefore, there
are no portal operators with four SM fermions, since they would be at least of dimension
seven.

It is convenient to define

∂v ≡ ∂ρvρ , vµν ≡ ∂[µvν] , v̂µν ≡ ∂{µvν} , ṽµν ≡ 2εµνρσ∂ρvσ . (C.20)

Zero-fermion operators can contain either one or two SM field strength tensors. The
operators with one field strength tensor are

vρvρvµνF
µν , vνv

µv̂µρF
νρ , vνv

µvµρF̃
νρ , ṽµν v̂µρF

ρ
ν , (C.21a)

vρvρṽµνF
µν , vνv

µvµρF
νρ , vνv

µṽµρF
νρ , ṽµνvµρF

ρ
ν , (C.21b)

and

∂vvµνF
µν , vµνvρ∂

ρFµν , vµ∂
2vνF

µν , (C.22a)
∂vvµνF̃

µν , vµνvρ∂
ρF̃µν , vµ∂

2vνF̃
µν . (C.22b)

The operators with two field strength tensors are

vρvρ 〈V µνVµν〉c , vµv
ν 〈V µρVνρ〉c , ∂v 〈V µνVµν〉c , (C.23a)

vρvρ
〈
V µν Ṽµν

〉
c
, vµv

ν
〈
V µρṼρν

〉
c
, ∂v

〈
V µν Ṽµν

〉
c
, ∂µv

ν
〈
V µρṼρν

〉
c
. (C.23b)
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Two-fermion operators can contain a scalar-valued, vector-valued, or tensor-valued
SM fermion bilinear. The operators with scalar- and tensor-valued fermion bilinears are

vρvρ(ψψ)0 , ∂v(ψψ)0 , vµν(ψσµνψ)0 , (C.24)

plus Hermitian conjugates. The operators with vector-valued fermion bilinears are

vµ(ψ†σµψ)0 , v̂µν(ψ†σµDνψ)0 , vµ(ψ†σνVµνψ)0 , vµνv
ν(ψ†σµψ)0 , (C.25a)

vρvρvµ(ψ†σµψ)0 , vµvν(ψ†σµDνψ)0 , vµ(ψ†σν Ṽµνψ)0 , v̂µνv
ν(ψ†σµψ)0 , (C.25b)

ṽµνv
ν(ψ†σµψ)0 , (C.25c)

and

∂vvµ(ψ†σµψ)0 , ∂2vµ(ψ†σµψ)0 . (C.25d)

D Expansion of the χPT building blocks

In this appendix we provide details about the expansion of the chiral Lagrangians in terms
of light mesons and hidden particle states. This material covers the necessary steps to
derive the results of section 5 and provides the reader with the necessary tools to use the
results obtained in section 4 and section 5 for their own calculations.

The matrix uµ and the hatted external currents X̂ ∈ {M̂ , Γ̂, T̂ µν} and Ŷ ∈ {R̂µ,
R̂µν} can be expanded as

X̂ = gX =
(

1 + i
f0

Φ− 1
2f2

0
Φ2 − i

6f3
0

Φ3 + . . .

)
X , (D.1a)

Ŷ = gY g† = Y + i
f0

[Φ,Y]− 1
2f2

0
[Φ, [Φ,Y]]− i

6f3
0

[Φ, [Φ, [Φ,Y]]] + . . . , (D.1b)

uµ = i g∂µg† = 1
f0
∂µΦ + i

2f2
0

[Φ, ∂µΦ]− 1
6f3

0
[Φ, [Φ, ∂µΦ]] + . . . . (D.1c)

Using the definition of the meson matrix Φ

Φ = Φ + 1
nf

Φ , Φ =


η8√

6 + π8√
2 π+ K+

π− η8√
6 −

π8√
2 K0

K− K
0 −2 η8√

6

 , Φ = nf
η1√

3
, (D.2)

one obtains the individual contributions

Φ2 =


( η8√

6
+ π8√

2
)2+π+π−+K+K− 2π+ η8√

6
+K+K

0
π+K0+K+( π8√

2
− η8√

6
)

2π− η8√
6

+K−K0 π+π−+( η8√
6
− π8√

2
)2+K0K

0
K+π−−K0

(
π8√

2
+ η8√

6

)
π−K

0+K−( π8√
2
− η8√

6
) π+K−−K0

(
π8√

2
+ η8√

6

)
K+K−+K0K

0+4( η8√
6

)2

 , (D.3a)

[Φ, ∂µΦ] =

 π+↔
∂ µπ−+K+↔

∂ µK− 2π+↔
∂ µ

π8√
2

+K+↔
∂ µK

0
π+↔

∂ µK0−K+↔
∂ µ( π8√

2
+3 η8√

6
)

2π−
↔
∂ µ

π8√
2

+K0↔
∂ µK− −π+↔

∂ µπ−+K0↔
∂ µK

0 −K+↔
∂ µπ−+K0↔

∂ µ( π8√
2
−3 η8√

6
)

K
0↔
∂ µπ−+K−

↔
∂ µ( π8√

2
+3 η8√

6
) −π+↔

∂ µK−+K0↔
∂ µ(3 η8√

6
− π8√

2
) −K+↔

∂ µK−−K0↔
∂ µK

0

 .

(D.3b)
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The interactions involving the SM photon current are

[Φ, rµA] = eAµ
 0 −π+ −K+

π− 0 0
K− 0 0

 , (D.4a)

[Φ, [Φ, rµA]] = −eAµ
 −2(π+π−+K+K−) 2π+ π8√

2
+K+K

0
K+(3 η8√

6
+ π8√

2
)+π+K0

2π− π8√
2

+K−K0 2π+π− 2K+π−

K−(3 η8√
6

+ π8√
2

)+π−K0 2π+K− 2K+K−

 . (D.4b)

Finally, for interactions involving the hidden current Vr, one has

[Vr,Φ] =


0 π+(Vruu−Vrdd)−K+Vrsd K+(Vruu−Vrss)−π+Vrds

π−(Vrdd−Vruu)+K−Vrds K
0
Vrds−K0Vrsd K0(Vrdd−Vrss)+Vrds

(
π8√

2
−3 η8√

6

)
K−(Vrss−Vruu)+π−Vrsd K

0(Vrss−Vrdd)+
(

3 η8√
6
− π8√

2

)
Vrsd K0Vrsd−K

0
Vrds

.
(D.5)

D.1 Standard model meson phenomenology at NLO

We summarise the diagonalisation procedure for the U(3) χPT mesons and compute the
resulting meson masses and decay constants at NLO. We use the approximation m′u, m′d →
mud ≡ (m′u +m′d)/2 , which neglects the mixing between the neutral pion and the two η-
mesons and we also neglect EM corrections for the charged meson masses, which are of
order αEM ∝ e2. These EM contributions are given by

∆EM
π = m2

π± −m
2
π0 , ∆EM

K = (1 + (0.84± 0.25nc)) ∆EM
π , (D.6)

where the correction factor captures the impact of NLO contributions [325, 326]. We use
the EM contributions in combination with the measured values of the meson masses [144]

mπ± = (139.57039± 0.00017exp)MeV , mK± = (493.677± 0.013exp)MeV , (D.7a)
mπ0 = (134.9768± 0.0005exp)MeV , mK0 = (497.611± 0.013exp)MeV . (D.7b)

Meson decay constants. The part of the NLO Lagrangian that mediates charged meson
decays is

L∂Wφ + Lm∂Wφ = −f0 〈lµW∂µΦ〉f −
2L5b0
f0
〈lµW {m, ∂µΦ}〉f . (D.8)

The resulting predictions for the meson decay constants are

fπ
f0

= 1 + 4L5
m2
π

f2
0

+O
(
δ3
)
,

fK
f0

= 1 + 4L5
m2
K

f2
0

+O
(
δ3
)
, (D.9)

or equivalently

f0 = m2
Kfπ −m2

πfK
m2
K −m2

π

, 4L5 = f0
fπ − f0
m2
π

= f0
fK − f0
m2
K

, (D.10)

– 108 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
3

where

m2
π = m2

π0 , 2m2
K = m2

K± +m2
K0 −∆EM

K , (D.11)

are the charged meson masses without electromagnetic contributions. To fix the values of
the parameters f0 and L5, we use the measured values of the meson decay constants [144]

fπ = (65.1± 0.6exp)MeV , fK = (77.85± 0.15exp)MeV . (D.12)

Hence, one obtains the estimates

f0 = (63.9± 1.2exp ±NNLO)MeV , 4(4π)2L5 = 0.66± 0.04exp ±NNLO . (D.13)

Masses and mixing angles. After diagonalising the neutral kaon sector via the field
redefinition

√
2K0

L = K0 +K
0
, − i

√
2K0

S = K0 −K0
, (D.14)

one obtains from the Lagrangians (4.116) the mass term

L′mφ2 + Lθφ2 = −m2
ππ

+π− −m2
KK

+K− − 1
2
(
m2
ππ

02 +m2
K

(
K0
L

2 +K0
S

2)+ ηT2 m
2
η2η2

)
.

(D.15)
The NLO predictions for the pion and kaon mass parameters are

m2
π = b0mud

(
1 + 8L8

b0mud
f2

0

)
, m2

K = b0
2 (m′s +mud)

(
1 + 4L8

b0(m′s +mud)
f2

0

)
, (D.16)

while the prediction for the mass matrix of the η-meson doublet η2 = (η8, η1)T is

m2
η2 =

(
m2
η8 m2

η8η1

m2
η8η1 m2

η1

)
=
(
M2
K −

∆Kπ

2

)
12×2 +

(
∆Kπ −

√
2∆Kπ

−
√

2∆Kπ M2
0

)
+O

(
δ3
)
, (D.17)

where the quantities

M2
K = m2

K + 2
3(m2

K −m2
π)
(

Λ2 + 34L8
f2

0
(m2

K −m2
π)
)
, M2

0 = m2
0 − 2Λ2m

2
K , (D.18a)

∆Kπ = 2
3
(
m2
K −m2

π

)(
1− Λ2 + 44L8

f2
0
m2
K

)
(D.18b)

depend on the kaon and pion masses as well the three parameters m0, Λ2, and L8. The η2
mass eigenstates are

η = cηη8 − sηη1 , η′ = cηη1 + sηη8 , m2
η +m2

η′ = trm2
η2 , m2

ηm
2
η′ = detm2

η2 , (D.19)

and their mixing is determined by

m2
η8 =

m2
η +m2

η′t
4
η

1 + t4η
, m2

η1 =
m2
η′ +m2

ηt
4
η

1 + t4η
, m2

η8η1 =
(m2

η′ −m2
η)t2η

1 + t4η
, (D.20)
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where the sine, cosine, and tangent functions of the η mixing angle is indicated by sη, cη, and
tη, respectively. In order to fix the values of the free parameters we fit the above predictions
to the experimentally obtained values for the η-meson masses and mixing angle [144, 327]

mη = (547.862± 0.018exp)MeV , tη = −0.29± 0.09exp , (D.21a)
mη′ = (957.78± 0.06exp)MeV . (D.21b)

Hence, one obtains the estimates

m0 = 4π(76.3± 1.4exp ±NNLO)MeV , Λ2 = 0.814± 0.023exp ±NNLO , (D.22a)
4(4π)2L8 = 0.215± 0.033exp ±NNLO . (D.22b)

Finally, using eq. (D.16) to fix the values of the parameters b0mud and b0ms, results in√
b0mud = 4π(10.68± 0.08exp ±NNLO)MeV , (D.23a)√
b0ms = 4π(50.95± 0.28exp ±NNLO)MeV . (D.23b)

Weak interaction induced kinetic mixing. When computing matrix elements for
quark-flavour violating transitions, one also has to account for kinetic mixing due to weak
corrections, which is captured by the quadratic part of the octet and 27-plet Lagrangians

La∂2

φ2 + La∂2

φ2 = −εEW2
(
(h8 + (nf − 1)h27) ∂µK+∂µπ− + h.c.

)
− εEW (−Reh8 + nf Reh27) ∂µ

K0
L√
2
∂µ

π0
√

2

− εEW (− Im h8 + nf Im h27) ∂µ
K0
S√
2
∂µ

π0
√

2

− εEW
[
nf Reh12εηη′ + (−Reh8 + nf Reh27)

]
∂µ
K0
L√
2
∂µ

η√
6

− εEW
[
nf Im h12εηη′ + (− Im h8 + nf Im h27)

]
∂µ
K0
S√
2
∂µ

η√
6

+ εEW
[
nf Reh1 + (−Reh8 + nf Reh27) εηη′

]
∂µ
K0
L√
2
∂µ

η′√
3

+ εEW
[
nf Im h1 + (− Im h8 + nf Im h27) εηη′

]
∂µ
K0
S√
2
∂µ

η′√
3
. (D.24)

To LO in εEW, these interactions can be diagonalised via the field redefinitions(
π+

K+

)
→
[
12×2 + εEW

2

(
0 m2

K±θK±π∓

−m2
π±θ

†
K±π∓ 0

)](
π+

K+

)
, (D.25a)

π0

K0
L

K0
S

η

η′

→
15×5 + εEW

2


0 m2

K0θTπK 0 0
−m2

π0θπK 02×2 −m2
ηθηK −m2

η′θη′K
0 m2

K0θTηK 0 0
0 m2

K0θTη′K 0 0





π0

K0
L

K0
S

η

η′

 , (D.25b)
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where the mixing angles are

θK±π∓ ≡
1

m2
K± −m

2
π±

(h8 + (nf − 1)h27) , (D.26a)

θπK ≡
1

m2
K0 −m2

π0

(
nf Reh12επη′ + (−Reh8 + nf Reh27) (1 + επη)
nf Im h12επη′ + (− Im h8 + nf Im h27) (1 + επη)

)
, (D.26b)

θηK ≡
1

m2
K0 −m2

η

(
nf Reh12εηη′ + (−Reh8 + nf Reh27) (1− 3επη)
nf Im h12εηη′ + (− Im h8 + nf Im h27) (1− 3επη)

)
, (D.26c)

θη′K ≡
1

m2
K0 −m2

η′

(
nf Reh1 + (−Reh8 + nf Reh27) (3επη′ + εηη′)
nf Im h1 + (− Im h8 + nf Im h27) (3επη′ + εηη′)

)
. (D.26d)

D.2 Mixing between mesons and scalar messengers

In section 6, we compute a generic K+ → π+si decay amplitude by treating the bilinear
portal interactions perturbatively. In some instances, it may be necessary to resum these
bilinear interactions by diagonalising the portal Lagrangian. Following this strategy, one
obtains additional portal interactions generated by both SM and internal hidden sector
interactions, the size of which is measured by meson to hidden particle mixing angles.

In general, the bilinear interactions that couple χPT to hidden sectors are

L′SmΦ + LSθΦ = −f0b0
〈
Φ ImS′m

〉
f + f0m

2
0

nf
SθΦ = −1

2φ
T
0 εs+ h.c. , (D.27)

where φT0 = (π, K0
L, K0

S , η, η′), sT = (s1, s2, . . . ), ε = (ε1, ε2, . . . ), and

εi = εUVf0b0



1√
2csiπ

1√
2

(
Im c′Smi d

s + Im c′Smi s
d

)
1√
2 i

(
Im c′Smi d

s − Im c′Smi s
d

)
1√
3

(
csiη + sη

m2
0

vb0
cSθi

)
1√
3

(
csiη′ − cη

m2
0

vb0
cSθi

)


. (D.28)

The coefficients csiX and c′Smi are given in eqs. (6.1) and (6.8). For canonical quadratic
hidden Lagrangians

Lhidden ⊃ −1
2s

T (∂2 +m)s , m = diag(m2
1,m

2
2, . . . ) (D.29)

the mass-mixing matrix is

L ⊃ −1
2
(
φT0 sT

)(M ε

εT m

)(
φ0
s

)
, M = diag

(
m2
π,m

2
K ,m

2
K ,m

2
η,m

2
η′

)
. (D.30)

This matrix can be diagonalised using a unitary field redefinition(
φ0
s

)
→
(

1 θ

−θT 1

)(
φ0
s

)
+O

(
θ2
)
, θ = (θ1, θ2, . . . ) , (D.31)
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where θ is a solution of the matrix-valued equation

ε = θm−Mθ . (D.32)

Assuming that all of the si share the same mass ms = mi, one obtains

θi =
(
m2
s1−M

)−1
εi . (D.33)

D.3 Trilinear Standard Model vertices used in the K± → π±si decay

The hidden currents ImSm and Sθ contribute to the generic K± → π±si amplitude via
Feynman diagrams that contain a SM three-meson vertex with one charged kaon leg,
one charged pion leg, and one neutral meson leg, with the neutral meson subsequently
oscillating into a hidden scalar. The SM three-meson vertices are encoded by the kinetic
Lagrangian (4.113), the octet Lagrangian (4.121a), and the 27-plet Lagrangian (4.121b),

LΦ3 ≡ L∂2

Φ3 + La∂2

Φ3 + La∂2

Φ3 , (D.34)

where

L∂2

Φ3 = i
2f0
〈∂µΦ[Φ, ∂µΦ]〉f = 0 , (D.35a)

La∂2

Φ3 = − i εEW
4f0

(
h8 〈{∂µΦ, [Φ, ∂µΦ]}〉sd + h1 〈[Φ, ∂µΦ]〉sd ∂

µΦ
)

+ h.c. , (D.35b)

La∂2

Φ3 = − i εEW
4f0

h27 (3∂µΦs
d[Φ, ∂µΦ]uu + 2∂µΦu

d[Φ, ∂µΦ]su
+3[Φ, ∂µΦ]sd∂

µΦu
u + 2[Φ, ∂µΦ]ud∂

µΦs
u
)

+ h.c.
(D.35c)

Evaluating the flavour traces, the relevant terms with one K+, one π+, and one neutral
meson are

LΦ3 ⊃ LKπΦ ≡ La∂
2

KπΦ + La∂2
KπΦ , (D.36)

where

La∂2
KπΦ = − i εEW

4f0

[
h8 (3∂π−∂K+ − ∂η8∂K+ − 2∂η8∂π−) η8√

6
K+π−

+h8 (∂K+∂π8 − ∂K+∂π−) π8√
2
π−K+

+3h1 (∂η1∂K+ − ∂η1∂π−) η1√
3
π−K+

]
+ h.c. ,

(D.37a)

La∂2
KπΦ = − i εEW

4f0
h27

[
(7∂π8∂K+ − 5∂π8∂π− − 2∂π−∂K+) π8√

2
π−K+

−3 (3∂η8∂π− − 2∂π−∂K+ − ∂η8∂K+) η8√
6
π−K+

]
+ h.c. .

(D.37b)

Diagonalising the Lagrangian, one obtains the final interactions

LKπΦ = LKππ + LKπη + LKπη′ , (D.38)
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where

LKππ = − i εEW
4f0

[(h8 + 7h27)∂π0∂K+ − 5h27∂π0∂π−

−(h8 + 2h27)∂K+∂π− ]K+π−
π0
√

2
,

(D.39a)

LKπη = − i εEW
4f0

cη
[
(3h8 + 6h27)∂K+∂π− − (h8 + 3

√
2tηh1 − 3h27)∂η∂K+

−(2h8 − 3
√

2tηh1 + 9h27)∂η∂π−
]
K+π−

η√
6
,

(D.39b)

LKπη′ = − i εEW
4f0

sη
[
(3h8 + 6h27)∂K+∂π− − (h8 − 3

√
2t−1
η h1 − 3h27)∂η′∂K+

−(2h8 + 3
√

2t−1
η h1 + 9h27)∂η′∂π−

]
K+π−

η′√
6
.

(D.39c)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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