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ABSTRACT: We present a framework for the construction of portal effective theory (PETS)
that couple effective field theories of the Standard Model (SM) to light hidden messenger
fields. Using this framework we construct electroweak and strong scale PETs that couple
the SM to messengers carrying spin zero, one half, or one. The electroweak scale PETs en-
compass all portal operators up to dimension five, while the strong scale PETs additionally
contain all portal operators of dimension six and seven that contribute at leading order to
quark-flavour violating transitions. Using the strong scale PETs, we define a set of por-
tal currents that couple hidden sectors to QCD, and construct portal chiral perturbation
theory (xPTs) that relate these currents to the light pseudoscalar mesons. We estimate
the coefficients of the portal yPT Lagrangian that are not fixed by SM observations using
non-perturbative matching techniques and give a complete list of the resulting one- and
two-meson portal interactions. From those, we compute transition amplitudes for three
golden channels that are used in hidden sector searches at fixed target experiments: i)
charged kaon decay into a charged pion and a spin zero messenger, ii) charged kaon decay
into a charged lepton and a spin one half messenger, and iii) neutral pion decay into a pho-
ton and a spin one messenger. Finally, we compare these amplitudes to specific expressions
for models featuring light scalar particles, axion-like particles, heavy neutral leptons, and
dark photons.
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1 Introduction

The search for physics beyond the Standard Model (BSM) is one of the most pursued re-
search avenues in modern high-energy physics. Models of BSM physics can be constructed
from the top down by postulating a novel set of first principles, as e.g. in grand unified [1-
3] or supersymmetric [4-7] theories, or from the bottom up by augmenting the Standard
Model (SM) with new particles and interactions that address specific hints for BSM physics,
such as e.g. heavy neutral leptons (HNLs) generating neutrino masses [8-15], axions ad-
dressing the strong CP problem [16-20] or little Higgs models addressing the hierarchy
problem [21-24]. The new particles predicted in both approaches are constrained to be
relatively heavy or rather weakly coupled in order to be consistent with bounds from past
and current collider and intensity experiments, respectively.

Effective field theories (EFTs) describe physics at a specific energy scale, with the
impact of physics at other scales being contained within the free parameters of the the-
ory [25, 26]. They can be used to describe the impact of new physics (NP) at energy scales
well above the characteristic energy scale of the EFT while remaining agnostic about the
specific realisation of NP in nature. EFTs are constructed by identifying the relevant fields
and symmetries that determine the physics one intends to characterise. The theory then
contains all available operators constructed from these fields. In particular, EFTs typically
contain an infinite tower of higher dimensional, non-renormaliseable operators that capture
the impact of the heavy degrees of freedom (DOFs). At the electroweak (EW) scale, there
are two EFTs that encompass the entire SM and that are commonly used to include heavy
NP [27]: Standard Model effective field theory (SMEFT), which is composed of all the
SM fields including the Higgs doublet and restricted by the SM gauge group [28-32], and
Higgs effective field theory (HEFT), which lifts the restriction on the Higgs boson to be
part of a doublet [33-36]. EFTs at lower energies, which encompass only a part of the
SM, account for the impact of the heavy SM DOFs via their higher dimensional operators.
Examples include light effective field theory (LEFT), which describes the interactions of
the SM after integrating out its heavy particles [37-40], chiral perturbation theory (xPT),
which encompasses the interactions of light hadrons [41-47], heavy quark effective theory
(HQET) [48-53] and non-relativistic quantum chromodynamics (NRQCD) [54, 55], which
capture the interactions of the hadrons containing heavy quarks, and soft-collinear effec-
tive theory (SCET), which describes physics of highly energetic particles, appearing for
instance in jets [56-62].

These EFTs do not include the large class of SM extensions that feature new feebly
interacting particles, such as axion-like particles (ALPs), light scalar particles, dilatons,
HNLs, and novel gauge bosons, with masses at or below the energy scale of the EFT. In
this paper, we address this gap by developing a framework for constructing portal effective
theories (PETs), which couple SM DOFs to light hidden messenger particles. To satisfy
all existing experimental bounds, see e.g. [63—65], the latter can couple only very weakly
to the SM fields. Besides the high intensity data sets of CMS [66-68], ATLAS [69] and
LHCD [70-76], and the high luminosity runs of the Large Hadron Collider (LHC) [77], which
are optimised for such searches, these particles could be produced in large quantities via
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Figure 1. The PET framework extends a given EFT of the SM by combining its operators with
portal operators that couple the SM DOFs to messenger fields that are dynamic at the relevant
energy scale. The portal operators ORIl can be collected into a set of portal currents JPorta! that
allow for a spurion analysis and for e.g. model-independent bounds. Here n and m symbolically label
SM and hidden sector operators, respectively, so that Lyortal = O,SLMJEO“‘“. The PET framework
is independent from additional secluded particles that do not interact directly with the SM fields.

meson decays in fixed target experiments such as NA62 [78-84], KOTO [85], SeaQuest [86],
or SHiP [63]. If the messenger particles are unstable and decay predominantly into SM
particles via the suppressed portal interactions, they are long-lived and can also be searched
for in dedicated long-lived particle (LLP) experiments [87], such as MATHUSLA [88],
FASER [89] and CODEXb [90].

By extending the existing EFTs of the SM, the PETs encompass all portal operators
that conform with the symmetries of the relevant EFT, and can be used to constrain
the coupling of the SM to light hidden sectors while remaining largely agnostic about
the internal structure of the hidden sector. The hidden sector can in general contain
an arbitrary number of secluded fields that do not couple directly to the SM but interact
among themselves and with the messenger fields. This setup, which is illustrated in figure 1,
describes both heavy and light new particles, since heavy particles with masses well above
the characteristic energy of the EFT are captured by infinite towers of SM, portal, and
hidden operators. Our comprehensive approach builds on previous works, in which SM
particles are coupled to specific hidden particles, see e.g. [91-95], and is closely related to
EFTs describing non-relativistic dark matter (DM) interactions [96-104].

To demonstrate the power of the PET framework, we construct a number of PETs
and highlight the connections between them. Extending SMEFT, we first construct EW
scale PETs that couple the SM to a light messenger field of spin 0, %, or 1 and encompass
all available non-redundant portal operators up to dimension five. To connect these portal
SMEFTs to PETSs that describe the interactions of hidden fields at the strong scale, where



many high intensity experiments search for feebly interacting particles, we subsequently
construct portal LEFTs, which additionally encompass quark-flavour violating portal op-
erators up to dimension seven. These additional operators capture leading order (LO)
contributions to hidden sector induced, strangeness-violating kaon decays. Since the per-
turbative description of quantum chromodynamics (QCD) breaks down at low energies, it
is not possible to compute transition amplitudes for meson decays using standard pertur-
bative methods in QCD, however, yPT provides an appropriate framework. In order to
supply a complete toolkit for the computation of hidden sector induced meson transitions,

we construct portal yPTs, which couple the light pseudoscalar mesons to a messenger of

1
IDB)
we adapt to our framework a number of well-established non-perturbative techniques used
to match xPT to QCD in the SM, as in e.g. [105-112].

Throughout this work, we encode the coupling to hidden sectors in terms of external

spin 0 or 1, and match them to the corresponding portal LEFTs. For this matching,

currents, as depicted in figure 1. We use these currents to derive the coupling of xPT with
the messenger particles via a spurion analysis, where we require that the yPT path integral
changes like the QCD path integral under transformations of the external currents. Besides
simplifying the spurion analysis, the external current approach has two advantages: first, it
clarifies the discussion, as most of our work is independent of the specific content of the ex-
ternal currents. Second, this formulation makes it easier to generalise our framework. For
instance, inclusive amplitudes do not encode any detailed information about the individual
hidden sector particles. Therefore, we expect that, when computing such amplitudes, it
is possible to integrate out the hidden fields entirely. In the resulting effective theory, the
impact of hidden sectors would be encoded via an infinite tower of external current interac-
tions, where the currents are space-time dependent functions of hidden sector parameters
rather than being functionals of the hidden fields. These currents can then serve as a source
or drain of energy, angular momentum, or other conserved quantum numbers, which, after
matching the effective theory to the full theory, should exactly mimic the impact of the
hidden sector fields on inclusive scattering amplitudes.! This means that the currents could
be used to efficiently parameterise and therefore constrain the coupling to arbitrary hidden
sectors in an extremely model independent way.

Organisation and novel contributions. Figure 2 visualises the structure of this paper,
which is organised as follows. In section 2, we summarise aspects of QCD at low energies
that are pertinent to the discussion in the remainder of this work. In particular, we focus on
the axial anomaly, the large n. expansion, and the impact of higher dimensional operators
that result from integrating out the heavy SM particles. We use the readers familiarity
with the topic to introduce a notation that lends itself to the transition from QCD to
xPT. In section 3, we construct portal SMEFTs and LEFTs that couple the SM to a single
messenger field. Furthermore, we construct the corresponding hidden currents and specify
the interaction Lagrangian that couples the currents to the SM fields. In section 4, we use

!This approach is inspired by a technique from non-equilibrium quantum field theory, where the impact
of an external bath is captured by the von Neumann density matrix in the path integral, see e.g. [section
3.2 in 113], and this density matrix can be recast as an infinite tower of external current interactions.
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Figure 2. Overview of our procedure to derive the PET Lagrangian that couples the light mesons
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portal Lagrangian to compute universal amplitudes for the three golden processes.

to messengers of spin 0 or 1. In the final step, we apply the Feynman rules extracted from the

the external current approach to derive the coupling of xPT to hidden sectors captured
by the portal LEFTs. In section 5, we list the xPT portal interactions in terms of mesons
and hidden fields, starting from the xPT Lagrangian derived in section 4. In section 6,
we use the interactions derived in the previous section to compute smoking gun processes
for meson decays into hidden fields, which are relevant for intensity experiments such as
NA62 and KOTO. We additionally connect our results to characteristic BSM models, such
as ALPs, scalar portal models, HNLs and dark photons. Section 7 concludes the paper
with a discussion of the results and an outlook to prospective future work. Further details
about the derivation of the main results of this paper are given in appendices A to D.

In the following list we summarise the main new results that we present throughout
this paper.

Section 2

o We generalise the standard large n. counting formula to also capture diagrams that
contain higher-dimensional four-quark operators generated by virtual W-boson ex-
changes at the EW scale.

e We construct an alternative basis for the four-quark operators that contains four
independent octet operators and one 27-plet operator. Compared to the standard
basis, cf. (2.36), which consists of six operators, this basis simplifies the matching
between yPT and QCD.

Section 3

e We develop the PET framework and define the procedure for constructing general
PETs.

e We construct EW scale PETs that couple SMEFT to a light messenger particle

with spin 0, %, or 1, which is neutral under the unbroken SM gauge group Gy =

SU(3). x SU(2)r, x U(l)y. These PETs encompass all available portal operators

up to dimension five, and are embedded into 21 portal currents. We further derive



the shape of the EW portal Lagrangian after EWSB in the unitary gauge, which is
sufficient for computations at tree level.

e We construct strong scale PETs that couple LEFT to a light messenger particle

, %, or 1 that is neutral with respect to the broken SM gauge group

with spin 0
Gsm = SU(3). x U(1)gm. These PETs contain all available portal operators up
to dimension five and additionally encompass all LO quark-flavour violating portal

operators up to dimension seven.

o We embed the portal LEFTs into ten external portal currents J € {S,,, ©, M, L,
R¥THY T, 95, 91, H;} that parameterise the coupling of the messenger particles to
QCD.

Section 4

e We derive the coupling of xPT to the scalar current S,,. The SM does not contain
an external current that couples to QCD like S,,, and hence this term is usually not
included in SM xPT. Our result generalises the xPT Lagrangian in [106], where the
authors derived the coupling of a light Higgs boson to xyPT, which interacts with
QCD via an operator hG, G* that is encompassed in S,,.

e Using the spurion technique, we derive the coupling of yPT to the four external
currents ', 9;, 9, and $Hs. The coupling of xYPT to constant currents I' and $,
is well-understood [42, 114-117]. Here, we generalise the description to account for
spacetime dependent external currents.

e The EW sector of the portal xPT Lagrangian contains 27 coefficients «, 21 of which
are not fixed completely by SM observations. We estimate the two coefficients kr and
/ﬁM + /ilM ', that measure the strength of the chromomagnetic current interactions, the

seven coeflicients k%

r, which measure the strength of the scalar current interactions,

and the 13 coefficients xy, that measure the coupling of xPT to the hidden currents
H, and $,. The authors of [106] have estimated four out of the seven coefficients
kL. Here, we adapt their strategy to also estimate the remaining three coeflicients.
Similarly, the coefficients x;; are known in the large n limit [107, 108, 110-112]. Here,
we adapt the strategies used in [106-108, 112] in order to obtain improved estimates
for the x; that incorporate corrections beyond the large n. limit.

Section 5

e We expand the xPT Lagrangian in the meson matrix ®, and present a complete list
of one- and two-meson interactions that couple xYPT to generic hidden sectors.

Section 6

e We compute the most general LO transition amplitudes for three smoking-gun pro-
cesses with hidden particles, relevant for searches at fixed target experiments such as
NA62 and KOTO. Specifically, we consider the following meson decays: K+ — nts;,
K* — t%¢,, and 7% — o, where s;, €, and v* are a spin 0, spin %, and spin 1 hidden

field, respectively.



2 Quantum chromodynamics

QCD is a SU(n.) gauge theory, where n. = 3 is the number of colours. It depends on
n? —1 =8 gluons G, as gauge fields and features ns massive quark flavours f. Using the
QCD gauge coupling g5, we define the fine-structure constant and its inverse as

2

, .
47 g

Qs (2.1)
The inverse fine-structure constant w is the natural parameter for describing the dependence
of the gauge coupling on the renormalisation scale p. In the modified minimal subtraction
(MS) scheme, it obeys the particularly simple renormalization group equation (RGE) [118,
119]
1 11 2

E :687 Bs :50+O(w> 5 BO = ?nc_ gnfa (22)
where ¢t = In /A is the logarithm of the renormalisation scale, and fy is the LO coefficient
of the p-function. In this scheme, the heavier quark flavours have to be integrated out
when they become inactive, so that ns ranges from six above the top mass to three below
the charm mass. At low energies, this prescription reveals an infrared (IR) divergence for
the coupling strength at [120-128]?

ANSD(w) = (343 £ 121) MV, (2.3)

which invalidates the perturbative expansion in the gauge coupling. Working with w sim-
plifies the inclusion of flavour invariant external currents introduced in section 3. For the
same reason, it is also convenient to normalise the gluon fields such that the covariant
quark derivative D* = 0* — { G* is independent of gs. Then, the kinetic part of the QCD
Lagrangian is

L& =Ly +iq P +igha', LH=-wT(z), T(x)=(4m) 2 (GwG"),, (24)

where angle brackets (o). indicate a trace in colour space, and the gauge singlet Y(z)

C
is normalised such that the gauge coupling does not explicitly appear in the anomalous
contribution to the trace of the improved stress-energy tensor 7 introduced below. Fol-
lowing [appendix J of 129], we use two distinct left-handed Weyl fermions ¢ and g to
describe each Dirac fermion (g, g').?> The kinetic Lagrangian is invariant under global

flavour rotations
4o — Vg, =7V, (V.V) e Grr=U(ne)r x Ulne)r, (2.5)

where ny = 3 is the number of active quark flavours below the charm mass and bold-
face symbols indicate matrices in flavour space. Lower (un-)dotted indices denote objects
that transform as members of the fundamental representations of U(n¢)r and U(ng)g,

%We label the errors of quantities calculated on the lattice with the subscript lattice (lat).
3Note that the bar over the fermion does not denote a mathematical operation but is part of its definition.



respectively, while upper indices denote objects that transform as members of the anti-
fundamental representations.*

Various mechanisms, either spontaneously or explicitly, break the Gpr symmetry of
the kinetic Lagrangian. First, the finite vacuum expectation values (VEVs) of the light

and strange quark condensates [128, 130-137]

1 - P
Yug =~ (0T + dd|0)XE 1 + hc. = (272 4 510)3 MeV? | (2.6a)
S = — (0[s]0)}S, + hoc. = (296 & 1115¢)% MeV?, (2.6b)

spontaneously break Gpr to the global vector symmetry Gy = U(nf)y by causing the
QCD vacuum to change under the action of the axial quotient group U(nf)a = Grr/Gy .
In mass-independent renormalisation schemes, the ratio

Y
Eud

= 1.29 + 0161 (2.7)

is scale independent [109, 138]. Second, the SM Higgs mechanism explicitly breaks the
chiral symmetry by inducing the mass term

Eg = —(mQ) + h.c., m = diag(my, mq, ms, ... ), Qg = ¢aq", (2.8)

where (©); denotes a trace in flavour space and @ is a scalar quark bilinear. The formulation
of the mass term as a trace of matrices in flavour space is unusual in standard treatments of
QCD, but it is convenient for understanding correspondences between QCD and xPT, and
serves as preparation for the matching between these two theories, performed in section 4.
Third, the axial anomaly explicitly breaks the global axial U(1) 4 flavour symmetry that is
part of U(n¢)a [139-141]. In general, anomalies appear as a result of the transformation
behaviour of the integration measure in the generating functional

ZolT] = N / Dy exp (1 / (Lo + 0 ) dx) , (2.9)

where ¢ collectively denotes the QCD fields, the O; are local, gauge-invariant operators
composed of QCD fields, and the J; are external currents. The axial anomaly is related to
the topologically nontrivial vacuum structure of QCD, which also causes the existence of
a further contribution to the QCD Lagrangian,

_(Gw@) g

2
_ vpo vepo | 2. wep o
()2 e,“,pgi(llﬂ_)2 . W <G GP? + 31G GG > ,

C

(2.10)

where éw/ = €upeGP?/2, and 6 is the QCD vacuum angle [142, 143], which is experimen-
tally constrained to be |0 < 10710 [144]. Although the topological charge density w(x) is a

“The index-notation is inspired by the (un-)dotted Greek indices used in supersymmetry (SUSY) to
distinguish between left- and right-chiral spinor indices. In contrast to the SUSY notation, the Latin indices
we use run over n¢-tuples in the (u, d, s) flavour space of QCD. We suppress flavour indices whenever the
meaning is captured by the implicit boldface notation.



total derivative of the three-dimensional Chern-Simons (CS) term w;” (), its contribution

to the QCD action does not vanish, since the gluon fields remain finite at spatial infinity
for field configurations with finite winding number n,, = [w(z)d*z [145, 146]. The axial
anomaly manifests itself as a shift of the vacuum angle that results from the transformation
of the path integral measure Dy under U(1)4 flavour rotations. The typical energy scale
associated with such a shift is measured by the topological susceptibility [147, 148]
0[n2,|0

X = WXZ}UH = —i/ (0T w(z)w(0)|0) d*z = (66 & 13141)* MeV* (2.11)
where V is a spacetime volume element and T is the time ordering operator. The quark
contribution to the topological susceptibility is governed by their condensates (2.6) and
masses (2.8) [149, 150],

=

Mya—0

—=—+ s E():Ed
X Xo >0 b

o (2.12)
where x( is the ‘quenched’ topological susceptibility obtained in a pure Yang-Mills (YM)
theory without quark fields, and Xg is the value of the quark condensates in the chiral
limit. Besides the perturbative expansion in the fine-structure constant that breaks down
in the vicinity of the QCD scale (2.3), one may also expand QCD in powers of n ! [151],
which corresponds to a semi-classical expansion in an effective theory of weakly interacting
mesons and glueballs. The axial anomaly (2.10) vanishes at zeroth order in the large n.
limit [152], which restores the otherwise badly broken U(nf)4 flavour symmetry. Including
higher orders, the effect of the axial anomaly is therefore suppressed by factors of n_ 1.
The large n. expansion is defined such that the value of the QCD scale, which depends
on the product n.w™!, remains finite as n. goes to infinity [151, 153-155]. Therefore, the n..
enhancement of diagrams with additional closed colour loops balances with the suppression

due to additional powers of the coupling w™*

o n_!, and it can be shown that connected
diagrams can scale at most as n2, while disconnected diagrams scale like the product of
their connected subdiagrams. The leading connected diagrams do not contain any closed
quark loops or QCD 6 angle insertions. Diagrams with n, quark loops and ng vacuum

angle insertions scale at most as [151, 153-155]
n2~Ma=no (2.13)

Since the leading connected diagrams scale with a positive power of n., correlation func-
tions for operators that can be decomposed into multiple gauge singlets are dominated by
contributions from disconnected diagrams. Hence, renormalised QCD correlation functions
obey the large n. factorization rule

(010:0510) = (0]0410) (010;10) (1 +O(n ")) . (2.14)

where the O; are local colour singlets that cannot be decomposed further into other colour
singlets. This ‘vacuum saturation hypothesis’ can be used to match certain QCD observ-
ables with their xPT counterparts.

~10 -



In addition to the flavour symmetry, the classical theory associated with the kinetic
Lagrangian (2.4) is conformally invariant. The generators of the conformal Poincaré group
can be expressed via the Hilbert stress-energy tensor

oL
T =2
o

- gL, (2.15)
which is divergenceless, symmetric, and traceless in the case of conformal theories.’
The conformal invariance of QCD is broken, at the classical level, by the masses of the
quarks (2.8), and, at the quantum level, by the conformal anomaly associated with the run-
ning of the gauge coupling (2.2), as it introduces an additional mass scale. Consequently,
both terms contribute to the trace of the Hilbert stress-energy tensor [157-160],

Bs

To = LG+ L5 = ((mQ) +hc.) — B X(x) (2.16)
Notably, the dependence on the inverse fine-structure constant w cancels in this expression.
In section 4, we use this trace relation to express Y(z) as a linear combination of xPT op-
erators. Loop corrections associated with the quark masses generate another contribution

to the trace of the stress-energy tensor,

Ym((MmQ) + h.c.), (2.17)

where -, is the anomalous dimension of the SM quark masses. However, we do not keep
track of this subleading contribution.

Summary. The complete QCD Lagrangian without EW contributions is constructed
by adding gauge fixing and ghost Lagrangians to the kinetic (2.4), mass (2.8), and axial
anomaly (2.10) terms, so that

Lo=LE" + LY+ L+ Le+ LY, (2.18)
where, for covariant gauges,
1 .
£y, = 3 <(<9HG“)2>C : L = 2(d,eDle), , (2.19)

with & being the gauge-fixing parameter while ¢ and ¢ are the QCD ghost-fields.

2.1 Electroweak interactions

Besides the quarks and gluons, the SM at low energies contains an EW sector consisting
of the photon field, the charged electron and muon fields, and the left-handed SM neutrino
fields. QCD couples to the photons A* via the left- and right-handed vector current
interactions

o=—(LQu)— <rX§u>f ) =1 = Vi, Vi = eqA”, (2.20)

5The equally conserved canonical stress-energy tensor associated with the Noether current of spacetime

translations is generically neither symmetric nor traceless for conformal theories. This shortcoming can
be overcome by adding model dependent improvement terms [156], which then must result in the same
expression as the Hilbert stress-energy tensor.
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where q = diag(2, —1,—1)/3 is the quark-charge matrix,
Q" = quot'q", Q" =g, (2.21)

are left- and right-handed vectorial quark bilinears, and sans-serif boldface font indicates
traceless matrices. The EM currents are parity blind (viy = I’y = ry), traceless, diagonal,
and couple identically to the down and strange quarks,

po_ g copu pd g pd _ s n
viy = diag(Viyy, Vi, VaS) 5 Viad = Vs = —2Viy, (2.22)

where individual fermion flavours are indicated by upright font. The split of the parity
blind EM current into a left- and right-handed current simplifies the generalisation to other
spin 1 currents. However, we will drop this distinction and use vy when considering the
phenomenology of the hidden messengers in sections 5 and 6.

The impact of diagrams at the EW scale with virtual exchanges of the heavy SM fields
that have been integrated out can be captured at the strong scale by introducing an infinite
tower of higher dimensional operators. As their mass-dimensions are larger than four, these
operators are suppressed by powers off

82

€sM = e 9% <m?, Agm = 47, (2.23)

which measures the ratio between the EW and low energy momentum scales, where
v = (V8GF)~Y/2 = (174.10358 4 0.00004cx,) GeV is the Higgs VEV [144].7 Since the
renormaliseable strong and EM interactions conserve quark flavour, the higher dimen-
sional operators contribute at LO to flavour violating processes such as kaon decays. LO
transitions that violate flavour by one unit, Af = 41, are generated by operators with
mass dimension five and six.

At tree level, the contribution depicted in figure 3a and its Hermitian conjugate in-
duce the leptonic charged current interactions that couple quarks to charged leptons and
neutrinos,

LY = —(1Qu) . I = 2 (vudxg i vusxi) 3 Ufo"y + hee. (2.24)
l=e,u

where the V;; are elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. We use
the matrices

b (Y] = 6,:6% (2.25)

to construct an orthonormal basis in flavour space. The weak leptonic charged current is
traceless, Hermitian, and has no neutral contributions, so that

1 d — i s = fiu (2.26)

5The relevant operators in this paper are generated by contributions with virtual W-boson exchanges, so
that they are suppressed by factors 92¢2, / m?%, that involve the mass of the W-boson my rather than the
Higgs VEV. We write the ratio of scales in terms of v? = Qm?,v/gﬁ, to simplify the shape of the equations
that appear throughout this paper.

"The subscript exp indicates an experimental error.
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ZZ Vg sf ul sf i
%% w v w g
u d q U d U
d u
(b) Electromagnetic dipole. (c) Chromomagnetic dipole.

(a) Vector current interaction.

Figure 3. Processes that generate higher dimensional operators at the strong scale with two
quarks. Panel a shows the tree level diagram that describes the charged current interaction (2.24).
Panels b and ¢ show the 1-loop photon and gluon diagrams that describe the dipole interactions
(2.28). The cross indicates a mass insertion that can appear at either external fermion leg. Up type
quarks are collectively denoted by u = u, c, t.

while all remaining entries vanish. In order to prepare for the inclusion of the portal current
interactions in section 3, it is convenient to absorb the charged current interaction into the
left-handed external current

=V (2.27)

so that the vector current Lagrangian (2.20) accounts for both EM and weak charged
current interactions.

At one-loop, the contributions depicted in figures 3b and 3c with a virtual W-boson ex-
change and a light quark mass insertion at one of the external legs further induce the electro-
and chromomagnetic-dipole interactions between two quarks and a gauge boson [161]

LG = —A3% ("' Quu) + hc., £ = —Ash (v6Q), +he., (2.28)

where the tensorial and scalar quark bilinears are

Q;wg = an';wqd ) ég = QaUuVG'Lqu . (2'29)

The tensorial EM-dipole current and the scalar electro- and chromomagnetic-dipole cur-
rents are

™ = %F‘“"M , vy =m | Ad Z VIV +he. |, (2.30)
u=u,c,t

where the indices V = G, A denote either gluon or photon contributions and the ¢! are

known Wilson coefficients [161]. In the following, we abbreviate the chromomagnetic-dipole

current by v = 4. The dipole currents are strangeness violating, but not necessarily

Hermitian. The only nonvanishing contributions are

Yy 72 , ™, T’“’S . (2.31)
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(a) Tree-level diagram. (b) One-loop penguin diagram.

Figure 4. Processes that generate higher dimensional operators at the strong scale with four
quarks. The tree level diagram a generates the operators O; and Oz in (2.36a), while the penguin
diagram in b generates the operators O3 to Og in (2.36b) and (2.36¢). Up-type quarks are collectively
denoted by u = u, c, t.

The operator Q also has nonvanishing condensates

1 - ~ —_
Youa = —5 (01Q} + Q410)3 Gy + hoc. = (434 £ 43,)° MeV?, (2.32a)
Sae = — (0]Q0NS  + hoc. = (425 + 143,,)° MeV® (2.32D)

which are estimated using QCD sum rules [162-165] or lattice computations [166].% Their
ratios with the VEV of light quark condensate (2.6a) are

ZGud o 2 2 EGs
Sy (875 + 311at)” MeV=, 5.

= (731 4 731,¢)* MeV?2. (2.33)
Note that the ratio between the two quark-gluon condensates

EGS
XGud

= 0.90 = 0.15, - (2.34)

is consistent with one.

Four-quark interactions. The diagrams in figure 4 depict the contributions that gen-
erate four-quark interactions of the shape [167-170]

t 6
YouVud 3" ¢0, +he, (2.35)

=1

h _
Lo=- 02
where |V ||Via| = 0.2186 + 0.00008 [144] and the ¢, are known Wilson coefficients [161].

After neglecting EM penguin diagrams, which are suppressed by at least one power of amy,
there are six four-quark operators that violate quark-flavour by one unit [171],

0 = slatu u'z,d , 0y = slatd ulz,u , (2.36a)
05 = s'g*d qTEuq , 0,4 = s'at'q qTEMd , (2.36D)
05 = s'o’d go,q' , Os = s'g' qd . (2.36¢)

8For simplicity, we indicate errors for values estimated using QCD sum rules with the same label as
errors for values calculated on the lattice.

— 14 —



Figure 5. Replacement used to determine the number of closed colour loops in QCD diagrams
with four-quark operators. Diagrams with a given number of four-quark vertices contain the same
number of colour loops as diagrams where each four-quark vertex is replaced by the subdiagram
with gluon exchange that is depicted on the right-hand side.

Since these operators are necessarily neutral, they can only violate quark-flavour by medi-
ating d <> s transitions and thereby violate strangeness, As = 1. The operators O; and
O3 (2.36a) are generated by the tree-level diagram shown in figure 4a, while the operators
O3 to Og (2.36b) and (2.36c) are generated by one-loop penguin diagrams as shown in
figure 4b. Although the penguin operators are suppressed by loop-factors, the operator
Og is enhanced at low energies due to chirality effects, so that it contributes at LO to
certain transitions. For a more detailed discussion, see section 4.4. We organise the four-
quark operators (2.36) according to their chirality structure into a scalar-scalar and two

vector-vector interaction terms
Ll =—v? (0,2Q1Q} +b,1Qu4Q" + hikQ,5Q"3) | (2337)

where the parameters h;, b, and h are four-index tensors in flavour space, which we indicate
using symbols in Fraktur font. Comparing this formulation of the four-quark Lagrangian
with the operators listed in eq. (2.36), the parameters are given as

bs = Vi Viacs DAY @ Al + hee., by = VIVaaesAd @ 1 +he.,  (2.38a)

u=u,d,s

b =ViVia [ Al @ AT+ Al @ AL+ Al @1+ D AV @AY | +he.,  (2.38b)

u=u,d,s

where ® denotes a tensor product.

Connected diagrams with four-quark vertices in Lagrangian (2.37) are not included
in standard derivations of the large n. power counting rule eq. (2.13) [151, 153, 155]. To
generalise this counting rule to diagrams with a finite number of four-quark vertices, we use
the replacement shown in figure 5 in order to map a given set of diagrams with four-quark
vertices onto an equivalent set of pure QCD diagrams without four-quark vertices. This
replacement is chosen such that the resulting diagram always contains the same number of
closed colour loops as its corresponding original four-quark diagram. The overall large n.
scaling of the diagram differs from the scaling of the original diagram in two ways: first, the
two three-point vertices in the pure QCD diagrams are associated with a total prefactor
of w™! o nt,
diagrams are enhanced by one relative factor of n. for each four-quark vertex. Second,

whereas the four quark vertices scale as w® o 1, so that the four-quark

the number of quark loops in the pure QCD diagrams can be lower than the number of
quark loops in the original four-quark diagrams, even though both diagrams contain the
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same number of closed colour loops. Hence, the leading contribution to the infinite series of
diagrams with exactly nj, four-quark insertions and an arbitrary number of colour loops is
given by the subset for which the equivalent pure QCD diagram contains exactly one quark
loop. Applying the standard counting formula (2.13), we find that the leading four-quark
diagrams scale as

nl=netnn np > 0. (2.39)

Further, the leading diagrams with nj four-quark insertions, as well as n, simple QCD
quark loops in addition to the quark loops associated with the four-quark vertices, scale as

plnmamnotnn np >0, (2.40)

which extends the usual scaling behaviour (2.13).
Summary. The EW interactions induce the EW correction to the QCD Lagrangian (2.18)
LV =LL+ Lo+ LY+ LY, (2.41)

which is given by the Lagrangians (2.20), (2.28) and (2.35), where Lagrangian (2.20) in-
cludes the full current (2.27). The EW interactions in Lagrangians (2.24), (2.28) and (2.35)
also generate additional contributions to the trace of the Hilbert stress-energy tensor (2.16).
After using the quark field equation of motion (EOM) in the presence of external currents
in eq. (A.23), the EW contribution becomes

TOW = LL+ LY — LY +2L} . (2.42)

2.2 Flavour symmetry

Under the flavour symmetry (2.5) of the kinetic Lagrangian (2.4), the quark bilinears (2.8),
(2.21), and (2.29) transform as

Q- VQV, Q.- VQ, V', Q. —VQu.V, (2.43a)
Q- VQVv, Q.-»VQ,v. (2.43b)

As a consequence, the QCD path integral (2.9)

Zg = Zg[w, 0, m, 1 r" h, T b, b, by, (2.44)

is invariant under global G r flavour rotations that transform the external currents as®
0—0—i(ln VV>f ., moVimyl, S vV VIEVTL (245
[ T 74 y o Viavt, L Vv, VTV (2.45D)
- VIV, S Vit gl s vyt veEvid o (2.450)

9Being a function of the gauge coupling only, the inverse fine-structure constant w is invariant under
flavour rotations.
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Remarkably, the path-integral is additionally invariant under local flavour rotations that
transform the left- and right-handed currents in (2.20) as

I© - VIrV 4 vorvT, VIV +iV oMV, (2.46)

while the transformation behaviour of the other external currents is unaltered. This trans-
formation law is analogous to that of gauge fields. To facilitate the construction of operators
that are invariant under the action of G g, it is convenient to define covariant derivatives
for the quark fields

Dtg = dtq—iltq, Drgt = orgt —ivig (2.47)
as well as field-strength tensors for the left- and right-handed currents
# = oMY — OVIF — i [I*)1”], i = ot — 0t — Kt r"] . (2.48)

While the symmetry of the path integral with respect to (2.46) corresponds mathematically
to a gauge symmetry, it is important to emphasise that I* and r* are not fields in a physical
sense. In particular, while a gauge symmetry relates different field configurations that
correspond to the same physical state, the local Gpr symmetry relates field configurations
that correspond to different physical states.

2.3 Four-quark operators
The four-quark operators in Lagrangian (2.37) transform as singlets under U(3)g [115].
For this reason, we suppress the right-handed indices of the external currents, and define

1 . 1 .
d d b b
hsa = —nf ¢ h?“a = —nf c (249)

sac Tac»
where the reduced parameters hg and h, transform under U(3) as
33=8d1. (2.50)

The traceless octet contributions are given as

1 1
hy = hy — —h,, h, = h, — —h, . (2.51)
nf ng

where h, = (h,) and hs = (hg). The corresponding left-handed, traceless octet operators
composed of the quark bilinears (2.8) and (2.21) are

0.-Q'Q- - (@'Q),. 0, -QQ - Q. (252

where Q,, = (Q,) and Q,, = <@“> :

f

The purely left-handed vector-vector interaction parameter b

24 transforms under U(3),

as a member of

symmetric anti-symmetric

B3)B3)=Ba1)@@1)=8¢1a27Te8d161001048)®8, (2.53)
——
totally antisymmetric totally symmetric mixed symmetric
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where the parenthesis on the outermost right-hand side indicate the decomposition of the
8 ® 8 product. Furthermore, the symmetry of each representation under exchanges of
the quark bilinears and quark spinors is indicated by curly braces above and below the
expression, respectively. Since hQ,Q" is symmetric under exchange of the quark bilinears,
only representations that are totally (anti-)symmetric under exchanges of the quark spinors
can contribute to h. Therefore, the parameter h%? can be written as

1 1 1 1

bhi=b+—h  Al+—hfol+—h1A1+—h 101, (2.54)

l ne ! nt ! n- nt
8 8 1 1

where A and ® are (anti-)symmetrised tensor products and the symmetry prefactors are

2
i_nf:t2 i_nf:tnf
ng = 1 n1—72 .

(2.55)

The totally (anti-)symmetric singlet hli, octet hli, and 27-plet ;" contributions are related

to the complete tensor via'”

1 1 1
h+ — h+b — (bx) _ 71bh+ +bd _ (bd) _ 71(bh+d) _ 71“’ ]_d)th 2.56
l h xy)’ h(ax) ne a'’l > hl ac h(ac) nék (a™'l ¢) nir (a7e)™"l > ( a)

= b, = b — LTSS (2.56b)
ng

[zy]° [az]

The totally (anti-)symmetric octet operators formed by the two traceless pairings of two
left-handed quark bilinears (2.21) related to the octet parameter h (2.56) are

of = L [(Q Q- @'Q) = (@'Q - @ au)| . s

while the (symmetric) 27-plet combination is
1
O =Q"0Q,-100; - onT (Q"Qu+(Q"Qu)y)101. (2.58)

Hence, the complete octet and 27-plet contributions to the four-quark Lagrangian (2.37)
are

£l =—v"2(h,0,+h,0, +h; Oy +h/0O/ ) —v=2((b/D])) , (2.59)

where the brackets () denote the complete contraction of the totally symmetric tensors.
Using the symmetry properties of the 27-plet term

—b 3 = (g — )b = (nf — 1) E O/ =0 + O & (2.60)

| su [ ss» | su [ ss >

the strangeness violating contributions listed in (2.36) can be extracted via

1 n
= 5 (hd05 + 105+ h 805+ hL0S) — 22T GO + he.

ﬁh
@ As==+1 v?
(2.61)

10(Anti-)symmetrised tensors are defined as o7l = v _ vk and 2T W) = THY 4 T* respectively.
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T v Q Q Q, Q. Q O, O, 0] 0Of of

€SM 0 1
d 4 3 3 5 6 6
representation 1 81 81 8 27

Table 1. Colour singlets and quark multilinears at the strong scale. For each of them, we show
respectively their order in egyr, their mass dimension d and their flavour representation. The
composite gluon operators T and w are defined in Lagrangians (2.4) and (2.10), the quark bilinears
Q are defined in (2.8), (2.21), and (2.29), and the quark quadrilinears O and O are defined in (2.51),
(2.57), and (2.58). The corresponding external currents including their SM and BSM contribution
are listed in table 6.

where the 27-plet symmetry prefactor is

2nf — 1
= . 2.62
1 ng—1 ( )

In terms of the coefficients in Lagrangian (2.35) the octet and 27-plet coefficients are

d d d ns + 1
hl+s = ZV;LVU (CE + (nf + 2)@;4) ;o g = ‘/;LVUdC5’ hl_‘—bllll = Z BLVUd ne + 20—15?
(2.63a)
hfg = 4VsuVud (cf2 + 054) , hsg = VsLVudCG , ci =c, tc. (2.63Db)

Summary. The QCD Lagrangian at the strong scale can be written in the compact form

Lo=0w—wY — <(mQ+hc)+I“QM+r“Q > SM<7Q+TH QW+hc>
v (h,0, +h,0, +h; O +hi 0/ ) —v (5D ) , (264)
where the gluon contributions are defined in Lagrangians (2.4) and (2.10), the nonet contri-
butions are defined in (2.8), (2.21), and (2.29), the octet contributions are defined in (2.51)
and (2.57), and the 27-plet contribution is defined in (2.58). All operators are also listed in

table 1. Finally, the complete trace of the Hilbert stress-energy tensor (2.15) that includes
both strong and EW contributions is

TQ:% &= LH+Lo+LYy— LY +2LY

= — B0 (@) {(mQ + he) + Ky Qu) — Agh (Y@ + T Quu +he) (265)
2072 (h,0,+h,0, +h; Oy +hf0;/ ) —v=2 (b O] ))
3 Portal interactions between the SM and hidden sectors

In this section, we present a framework for the construction of general portal effective
theories (PETs), and use it to construct EW and strong scale PETs that couple SMEFT
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and LEFT to a light messenger of spin 0, %, or 1. The portal SMEFTs comprise all
independent portal operators up to dimension five, and the portal LEFTs additionally
encompass quark-flavour violating portal operators of dimension six and seven. The latter
are necessary to capture quark-flavour violating transitions, which govern for instance
hadronic kaon decays. We use the accidental symmetries of the portal SMEFTs to further
constrain the shape of the corresponding portal LEFTs, so that these PETs should be
understood as the low energy limit of the portal SMEFTSs, in which the heavy SM DOFs
have been integrated out.

For completeness, we provide in appendix B.2 a basis of independent portal operators

with dimension five or less that couple SMEFT to hidden particles with spin % and 2.

3.1 Portal effective theories

A PET is an EFT that couples SM DOFs to hidden sectors via messenger fields. The
framework we present is generic and can be used to construct PETs by starting from any
EFT that either encompasses or is derived from the SM, such as SMEFT, HEFT, LEFT,
HQET, or xPT. The PET Lagrangian can be cast as

L = LErT + Lportal + Lhidden ; (3.1)

where the original EFT Lagrangian Lgpr and the hidden Lagrangian Ly;qqen depend only
on SM and hidden fields, respectively. The portal Lagrangian Lo a1 contains all available
operators that couple the SM fields to the hidden messenger fields. Since we aim to capture
the physics of the portal Lagrangian while remaining agnostic about the hidden sector, the
hidden Lagrangian may be fully general. In particular, it can contain, in addition to the
messenger field, secluded fields with arbitrary masses, quantum numbers, and interactions,
that do not couple directly to the SM particles. This idea is schematically depicted in
figure 1. We integrate out all hidden fields with masses well above the characteristic
energy scale of the relevant EFT. This does not restrict the regime of applicability of the
resulting PET, since the EFT by itself, even without being coupled to hidden sectors,
already becomes invalid at energies well above its characteristic energy scale. The impact
of the heavy particles is captured by an infinite tower of higher dimensional operators in
the EFT, portal, and hidden Lagrangians, which contain only the remaining light SM and
hidden fields.

In the remainder of this section, we construct PETs that couple the SM to a single
messenger field of spin 0, %, and 1. We begin by constructing EW scale PETs that ex-
tend SMEFT, and then use the resulting portal SMEFTs as a starting point to derive a
corresponding set of strong scale PETs that extend LEFT. In the first step, we take the
typical energy scale of SMEFT to be the Higgs VEV, and in the second step, we take the
typical energy scale of LEFT to be around 1 GeV, which corresponds roughly the proton
mass. When extending SMEFT, we assume that the messenger is a singlet under the full
SM gauge group Gsm = SU(3). x SU(2)r, x U(1)y in order to remain consistent with the
SMEFT setup, but for the PETs that extend LEFT we only assume that the messenger field
is invariant under the broken SM gauge group Ggm = SU(3). x U(1)y. We do not assume
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that the portal SMEFTs respect any additional symmetries, such as gauge symmetries or
a new parity of the hidden sector. In particular, we allow for both P and CP violating
portal interactions. However, we use the accidental symmetries of the portal SMEFTs to
constrain the shape of the corresponding portal LEFTs.

3.1.1 Power counting

The lack of evidence for light sectors at colliders and fixed target experiments [63—65]
implies that any portal interaction has to be strongly suppressed. In order to reflect this
suppression, we normalise all portal operators such that they contain at least one explicit
degree of smallness ¢;, independent of their mass dimension. Physically, these degrees of
smallness can result from a wide variety of mechanisms that do not have to be connected to
each other, such as the small breaking of an approximate symmetry of the theory. At the
EW scale, unitarity implies that higher dimensional portal operators with mass dimension
larger than four must be dimensionally suppressed by factors ef_4 = (v/fi)* 4, where f;
is some ultraviolet (UV) scale. For our purposes, it is not necessary to distinguish between
the various degrees of smallness ¢;. Therefore, we define the generic degree of smallness

v

T fov>wv, (3.2)

€UV = Maxe€; =
i fov

and only count powers of eyy rather than distinguishing between various sources of small-
ness for the portal operators. Using this power counting, portal operators of mass-dimension
three, four, and five are suppressed by a single factor of eyy, while higher dimensional por-
tal operators are suppressed by higher powers of eyy, due to the required dimensional
suppression.

When constructing the portal SMEFTs in section 3.2, we neglect portal operators with
mass-dimension six or higher, and in the remainder of this work, we use these PETs as
the starting point for the subsequent construction of the strong scale portal LEFT and
xPT Lagrangians. This constraint restricts the types of hidden sectors we are able to
describe. For one, some SM extensions couple to the SM only via operators of mass-
dimension six or higher. For example, this is the case of fermionic DM models that couple
to the SM via four-fermion interactions of dimension six, see e.g. [172, 173]. In addition,
higher dimensional portal operators can mediate transitions that are not captured by lower
dimensional portal operators. As we show in section 3.2, this is the case for baryon-number
violating portal interactions, which only appear starting at dimension six. However, we
emphasise that these limitations are not a consequence of the PET approach as such, but
merely a consequence of our choice to only account for portal operators up to dimension
five. We leave the investigation of PETs with operators of dimension six or higher for
future work.

3.1.2 Mixing between SM and messengers fields

Generically, the portal sector contains quadratic operators that mix neutral SM fields with
hidden fields. Even though it is possible to diagonalise the portal Lagrangian such that
these quadratic operators are effectively eliminated from the theory, this diagonalisation
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would induce two new types of portal operators: first, one would obtain portal operators
that mirror SM interactions, except that one SM field is replaced by a messenger field.
Second, one would obtain new portal operators that mirror hidden sector interactions
involving the messenger fields, except that one messenger field is replaced by a neutral SM
field. This second type of portal operator conflicts with our strategy of being agnostic about
the internal structure of the hidden sector, as it introduces direct coupling between the
secluded fields and the neutral SM fields. Listing all of the corresponding portal operators
is impossible without making further assumptions about the hidden sector. Therefore, we
do not diagonalise any of the quadratic portal interactions.

However, in principle, it is necessary to diagonalise the portal mixing in order to con-
struct the proper asymptotic energy eigenstates of the theory. This can be avoided when
performing perturbative calculations at fixed order in eyy, since the undiagonalised fields
approximately overlap with the asymptotic energy eigenstates of the theory in the limit
of small eyy. However, it may be necessary to re-sum the quadratic portal interactions
in order to describe certain effects that cannot be captured by fixed-order computations
in perturbation theory. For example, consider a type-I seesaw model in which the SM is
augmented by a single HNL. In order to capture neutrino oscillations in this model, it is
necessary to re-sum the mass-mixing between the SM neutrinos and the HNL. However,
this does not affect the computation of S-matrix elements for microscopic scattering ampli-
tudes, since these oscillations typically occur over macroscopic distances, e.g. over several
kilometers in case of neutrinos produced in nuclear reactors [174].

3.2 Electroweak scale portal effective theories

We explicitly construct the EW scale PETs that couple SMEFT to a single messenger of
spin 0, %, or 1, and give a complete basis of portal operators with mass dimension five or
less for each resulting portal SMEFT. We then use these PETs to define a set of portal
currents that parameterise the coupling of SMEFT to generic hidden sectors, and study

the shape of the portal SMEFTs after EWSB.

3.2.1 Minimal bases of portal operators

In general, a naive listing of all possible portal operators with mass-dimension five or less
will contain numerous redundant operators. In order to obtain a minimal set of independent
portal operators for each type of messenger, we use the reduction techniques collected in
appendix A. The resulting operator basis is presented in table 2. We consider three types
of messengers:

Spin 0 fields can be either real (pseudo-)scalar or complex scalar fields. As we do not
require portal interactions to conserve parity, pseudoscalar and scalar fields couple
to SMEFT via the same set of portal interactions. Furthermore, a complex scalar
couples to SMEFT in the same way as two real scalar fields. Therefore, we can
account for all types of spin 0 messengers by considering how SMEFT couples to two
real scalar fields s;(z) and sa(z). These can interact with the SM fields via a minimal
basis of 14 different operators with dimensions ranging from three to five. There are
twelve additional redundant operators.
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d Higgs Yukawa + h.c. Fermions  Gauge bosons
3 si|H|?
4 SZ'Sj ’H’2
SiSjSk’H’2 Siqaﬂbgﬁ SiGZVG‘gV
S s;DFHTD,H  s;q,dpyHT siW i, W
5 8i|H|4 SigaébHT SiBM,,B/W
8iG L, GLY
siW, WY
5i B, B*
fa 4 £a€bj—_:ﬂL
_|_ o ~
he 5 GlHI gl D, HY €00 €, By,
vt | H|? vH 45Ty
vt |H|? VM o, T
vt 4 v“HTﬁuH U“Elauab
U“@Lﬁueb
U“ELUMEI,

Table 2. List of all operators up to dimension five with SM fields and spin 0 (s; with ¢ = 1, 2), spin
% (& with a =1, 2) or spin 1 (v*) messengers. The first column specifies the spin of the messenger
field, the second column denotes the dimension d of the operator and the remaining columns label
the SM sectors the messengers interact with. The left-handed SU(2) doublets ¢, = (v4, €,)T and

q, = (uq, do)” and the right-handed singlets al, EZ, and gf are Weyl fermions.

Spin % fields can be either Weyl, Majorana, or Dirac fermions. Without loss of generality,
a Dirac fermion can be written as a combination of two left-handed Weyl fermions,
while a Majorana fermion can be written as single left-handed Weyl fermion. There-
fore, we can account for all types of fermionic messengers by considering how SMEFT
couples to two left-handed Weyl fermions &;(x) and & (x). These can interact with
the SM fields via a minimal basis of four portal operators of dimension four and five.
Additionally, there are two redundant operators. Notice that the operator {,0""§, B,
is antisymmetric under exchange of a and b, so that it can only contribute if SMEFT
couples to a Dirac fermion.

Spin 1 fields can be either vector or axial-vector fields. As we do not require portal in-
teractions to conserve parity, both of these can couple to SMEFT via the same portal
interactions, and we can account for both possibilities by considering how SMEFT
couples to a vector field v#(z). These can interact with the SM fields via a minimal
basis of eight independent operators with mass-dimension four. Notably, there are
no operators of dimension five. There are two additional redundant operators.
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st s, S8, = Vi \Z3 = T

spin 0 1/2 1 3/2 2
d 2 0 3/2 1 3/2 2
representation 1 1 8¢1 3 1 8ad1 3 1
flavour symmetry VJ =V,
DOFs 1 1 18 3 1 9 3 1

Table 3. Properties of the portal SMEFT currents. The first two rows list spin and mass dimension
d, and the remaining rows list the representation and symmetries under flavour transformations as
well as the resulting number of DOFs.

For the sake of completeness, we list the redundant operators in appendix B.1. If the
internal structure of the hidden sector is known, it is potentially possible to discard further
operators by using e.g. the EOMs for the messenger field. As discussed in section 3.1.2, this
may involve other hidden sector fields besides the messenger. Here and in the following,
we refrain from making such model dependent simplifications.

All of the above portal operators conserve baryon number, and portal operators with
spin 0 and 1 messengers also conserve lepton number. Portal operators with spin % mes-
sengers can violate lepton number by one unit. Furthermore, portal operators with spin %
messengers do not couple to either the SM quark fields or any of the right-handed charged
lepton fields, and operators with spin 1 messengers only couple to pairs of quarks and
leptons with identical chirality, so that they cannot serve as a separate source of chiral
symmetry breaking. This becomes important when constructing strong scale PETs, since
it implies that some strong scale portal operators are subdominant as a result of chiral

suppression due to a light SM fermion mass insertion.

Further, we note that, although we have focused on the case in which SMEFT couples
only to a single messenger field, the portal sector defined by the operators in table 2
already captures interactions between SMEFT and an arbitrary number of messengers

¥ it is sufficient to iterate over all

with identical spin. For sets of messengers s; or &; or v},

possible values for the index ¢ in the portal operators. However, we do not account for the
possibility of coupling SMEFT to multiple messengers with different spin.

3.2.2 External current description

It is convenient to collect all of the operators associated with the three messenger fields
into a single portal Lagrangian (3.1). We separate the portal operators into a Higgs H, a
Yukawa like Y, a fermionic F', and a gauge V sector

Loortal = Lty + Lipw + Linw + Liw - (3.3)
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The individual Lagrangians are'!

LEw = ShIH + %SleVl +SHD'HTD,H +iV} HID,H | (3.4a)
Low = SeteH + 8L qdH + S¥ quH' +=¢H' + Z,(D"H' + h.c., (3.4b)
LEw = VP50 + V"5, + Vialo,u+ VId o,d+ Vielo,e, (3.4c)
LYw = (SEByy + S¥ By + TE)BM + (SY Wy + Sy W) WH (3.4d)

+ (SuGuw + SeGlu)GH .

Lepton and quark doublets are written as left-handed Weyl fermions £, = (v4,e,)? and

q, = (uq,dq)T, and the singlets as conjugated left-handed Weyl fermions dl, and el .3

a’ a’
Table 3 summarises the properties of the scalar S, fermionic =, and vectorial V# portal
currents. The scalar current of mass-dimension two that appears in the Higgs mass-like
term in Lagrangian (3.4a) is

SH SH SH SH 1/ gH SH
Sg = eyv |ve; ™S8 + Cz’jm 8355 + CUZ'”U”U“ + Cagbal‘vﬂ + E (CZ.J»TZ 8488k + cd”{l&,) , (35)

current
operator

of mass dimension zero in Lagrangians (3.4a), (3.4b) and (3.4d) are

where the ¢ are dimensionless Wilson coefficients. The other (pseudo-)scalar currents

€ €UV
Sy = —?}V sy S, = —[j) crs; (3.6)

where x symbolically labels the different scalar currents. The left-handed fermionic currents
in Lagrangian (3.4b) are

E = ecuovezta, B = euvC5alo (3.7)
and the vectorial currents in Lagrangians (3.4a) and (3.4c) are
VIM = GchiU‘u, ‘/x,u = GUchv’u, (38)

where the matrix valued vectorial currents and its Wilson coefficient are Hermitian. The
tensorial current in Lagrangian (3.4d) is

€uv
Ty = Tcgbfl%ufb . (3.9)

1 The Higgs doublet is denoted by H, and its conjugate is H= —%agHT. We abbreviate |H|2 = H'H and

=g
the antisymmetrised derivative is H' o"H = (GMH)TH—HTa“H. The GY% are the gluon fields, while W} and
B* denote the EW gauge bosons. The field strength tensors are given as Vi = 0*V, — 90"V} —i far V' V.
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3.2.3 Electroweak symmetry breaking

After EWSB, the Higgs field H acquires a finite VEV v, which induces a shift in the
currents. In unitary gauge, the portal Lagrangian (3.3) becomes!?

1 1 h\*
- (v + h)2 <1SH <W+W“ + iy ) +VEZ, + SH>
\/é 97k o 9 H H“p m |

1 P P . Oth

LYwep = —=(v+ H) (Seeeé + 8% dd + Sz — Eu) — —Z,v+he., (3.10b)
\/i m m m \/i H

Lhwss = Viule,u+ Vidie,d + Viao,al + Vido,d' (3.10¢)

+V/ela,e + Vieo, el + Vivia,w,
Lhwss = (S22 + S§ Zu + TE) Z" + (S5 A + S§ Ay + T ) AP
~ — ~ S =+ \ —u
t+ (SuGs + S0G ) G + (S57Z 0 + 37 2, ) A 2 (SZV W, + Sy WW> 7

= 2i (S orrr — 28y e o, ) WEW, Wy + 48 gl gl (2WEWE + W)
(3.10d)

where
0% = 77 (D — D) + g7 (D — 03) + " (D5 — 0,)° (3.11)

and we have defined the new scalar currents

SZ=28W 4288 GA=2SW L 28B  SAZ —9c,5,(SY —SB),  (3.12)

w~r ) w~x

as well as the new tensorial currents

Tj},, =T, T, = —suTp, (3.13)

that couple directly to the photon and Z-boson field strength tensors, with ¢, and s,
denoting the (co-)sine of the EW mixing angle. In Lagrangians (3.10a) and (3.10c), we
used a singular value decomposition in order to diagonalise the SM fermion mass matrices
Myy = UmmrUJ via a unitary rotation of the SM fermion fields. The resulting mass-
diagonal SM fermions couple to the rotated portal currents

S —UlsiU,, Vi =UvVIu, . (3.14)

Note that the CKM matrix Vogv = UJ; U, and the Pontecorvo-Maki-Nakagawa—Sakata
(PMNS) matrix that one obtains after diagonalising the neutrino to hidden sector mass
mixing are the only combinations of the U, constrained by measuring SM or portal in-
teractions in the broken phase. This implies that such observations cannot fully constrain
the shape of the unrotated portal currents S;, and V, that couple to the SM fermion
gauge eigenstates. This may be of interest when trying to constrain the shape of the por-
tal interactions at high temperatures or in the early universe with collider or fixed-target
experiments.

12Tn unitary gauge, the Higgs field is given as H = (0,v + h/\/i)T, and H = —(v+ h/\/i ,0)T.

— 96 —



3.3 Portals at the strong scale

At the strong scale, which we define to be roughly the scale associated with the gluon
dynamics (GD) contribution ~ 1 GeV to the proton mass, the SM dynamics is captured by
LEFT, which contains only the massless gauge bosons, electrons, muons, neutrinos, and

the light quarks (u, d, and s). Starting from the previously constructed portal SMEFTs, we

1
92
While we have only included portal operators of dimension d < 5 in the portal SMEFTs,

now derive the strong scale PETs that couple LEFT to a single messenger of spin 0, 3, or 1.
we now also include quark-flavour violating d < 7 portal operators. These operators are
generated by diagrams that include virtual W-boson exchanges and are necessary to capture
quark-flavour violating transitions, such as decays of charged kaons into pions and hidden
fields, at LO in egp.

To see why it is necessary to include the higher dimensional operators when construct-
ing a general strong scale PET, consider a generic quark-flavour violating transition at
the strong scale. Such a transition has to be suppressed by at least one degree of small-
ness eyy, and another degree of smallness esy = 92/A3),, cf. eq. (2.23). At O(eyverw),
quark-flavour violating processes are described by the two types of diagram depicted in
figure 6:

(i) Diagrams with one quark-flavour violating dimension six SM charged current vertex
and one quark-flavour conserving strong scale portal vertex.

(ii) Diagrams with a renormaliseable quark-flavour conserving SM vertex and a quark-
flavour wviolating strong scale portal vertex.

To fully capture quark-flavour violating transitions one has to include all portal operators
that can appear in either type of diagram.

First, consider the set of portal operators that can appear in type (i) diagrams: the
SM charged current interaction that appears in these diagrams is associated with a sup-
pression factor egy;. Since the overall diagram has to scale as eyvesy, portal operators that
contribute to the diagrams cannot have a higher mass-dimension than their EW scale coun-
terparts, as this would imply further suppression by powers of /esy. Hence, to capture all
type (i) diagrams, it is sufficient to include quark-flavour conserving portal operators with
spin 0 or % messengers that are at most of dimension five and quark-flavour conserving
portal operators with spin 1 messengers that are at most of dimension four. If the strong
scale PET is the low energy limit of another EW scale PET besides SMEFT, dimension
five portal operators with spin 1 messengers can also contribute to type (i) diagrams.

Next, consider the set of portal operator that can appear in type (ii) diagrams. Since
these diagrams do not contain a SM four-fermion vertex, they can contain portal opera-
tors that are suppressed by a factor eyyvegy rather than just a factor eyy. These portal
operators are generated by diagrams in the EW scale theory that contain a virtual W-
boson exchange, and they can have a mass-dimension that is at most the mass-dimension
of the corresponding EW scale portal operators plus two. Therefore, to capture all type (ii)
diagrams, one has to include quark-flavour violating portal operators with spin 0 and %

messengers that are of dimension seven or less and quark-flavour violating portal operators

_97 —



Type (i)  Af=4+1 Af=0

(47)° (47)°
i<6 p 5 for spin 0, %
4 for spin 1
— SM " hidden —

/ . Portal \

7 for spin 0, %

6 for spin 1

Figure 6. Schematic representation of the two possible types of quark-flavour violating diagrams at
the strong scale, which we distinguish based on the sector in which the flavour violation is located.
We assume that the relevant strong scale PET is the low energy limit of a corresponding EW scale
portal SMEFT. The diagrams show the suppression due to NDA power counting and the dimension
of the operators in the diagram. Type (i) diagrams contain a flavour wiolating SM sub-diagram
that scales as (47)? and contains one d < 6 Fermi theory operator, as well as one flavour conserving
portal operator that scales as (47)" and has d < 5. Type (ii) diagrams contain a flavour conserving
SM sub-diagram that scales as (47)° and contains only renormaliseable d < 4 operators, as well
as one flavour violating portal operators that scales as (47)? and have d = 6, 7 or 5, 6. Type (i)
diagrams with d = 5 portal operators and type (ii) diagrams with d = 7 portal operators can appear
in strong scale PETs with spin 1 messengers that are derived from other EW scale PETs besides
portal SMEFT. See also appendix A.1 and [175-178] for details on the NDA counting.

with spin 1 messengers that are of dimension six or less. As in the case of type (i) diagrams,
dimension seven portal operators with spin 1 messengers can also contribute to type (ii)
diagrams, if the strong scale PET is the low energy limit of another EW scale PET besides
SMEFT.

In order to be phenomenologically viable, any strong scale portal operators have to be
invariant under the low energy SM gauge group Ggm = SU(3). x U(1)gm, but they do not
have to be invariant under the complete SM gauge group Gsn, which also encompasses
weak interactions mediated by the heavy W- and Z-bosons. In addition, our operators
have to preserve the accidental symmetries obeyed by the relevant portal SMEFTs. This
implies that all strong scale portal operators have to conserve baryon number and bosonic
messenger fields have to conserve lepton number, while operators with spin % messengers
can violate lepton number by one unit. In addition, the portal SMEFT interactions with
spin % and 1 messenger fields do not mix SM fermions of different chirality, so that strong
scale portal operators with chirality flips are suppressed by an additional factor of m;/v ~
Vésm, where my is the mass of the relevant light SM fermion. Portal SMEFT interactions
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with scalar messenger fields can induce a single chirality flip, so that only strong scale
portal operators with at least two chirality flips are suppressed by such a factor of /esn.

In addition to the dimensional suppression associated with egy, the higher dimen-
sional quark-flavour violating portal operators can also be suppressed by loop factors of
(47)~2. We keep track of this suppression by using the 47 power counting scheme of naive
dimensional analysis (NDA) [175-178], see also appendix A.1 for a detailed explanation.
Using NDA, the most suppressed type (i) diagrams with spin 0 and % messengers scale as
(47)%eyvedy, while the most suppressed type (i) diagrams with spin 1 messengers scale as
(4m)%euvedy, see also figure 6. In both cases, the (47)? enhancement captures the fact that
the leading strong-scale Fermi theory interactions are generated by tree-level diagrams at
the EW scale. When applying NDA to strong scale PETs, we discard all quark-flavour
violating dimension six and seven type (ii) operators that are even more suppressed than
the most suppressed type (i) operators. For PETs with spin 0 and spin % messengers,
dimension six operators without chiral suppression are suppressed by a relative factor of
V€sm, rather than egy, compared to the unsuppressed dimension five portal operators in
these PETs. This means that they are enhanced by a relative factor of es_l\l/[/ 2 compared to
the most suppressed type (i) diagrams. Therefore, we only use NDA to discard operators
that are either of dimension seven or of dimension six and chirally suppressed. For PETs
with spin 1 messengers, we only use NDA to discard operators that are either of dimension
six, or of dimension four or five and sufficiently chirally suppressed.

3.3.1 Operator list

We construct minimal bases of portal operators for each portal LEFT by combining the
restrictions discussed in the previous section with the reduction techniques given in ap-
pendix A. The complete bases of both quark-flavour conserving and quark-flavour violating
operators up to dimension seven are given in appendix C. Table 4a shows the subset of
portal operators with dimension five or less. This subset mirrors the set of portal oper-
ators in the corresponding portal SMEFTs and contributes at LO to both quark-flavour
conserving and violating transitions. In the following we focus on the operators appearing
only at the strong scale. Table 4b shows the relevant subset of higher dimensional portal
operators that contribute to quark-flavour violating transitions at LO in eyy, esm, and the
47 counting of NDA. The quark-flavour violating dimension six and seven operators that
are sub-leading only due to 47 loop suppression factors are given in table 5. As in the case
of the portal SMEFTs, we consider three types of messenger field:

Spin O fields couple to LEFT via six operators of dimension five or less. In addition,
there are eleven quark-flavour violating dimension six and seven operators that contribute
at LO in both egy and 47. At dimension six, there are three leading two-quark operators

58Sk dd s 8287; dd , Siausj‘ dTE“d R (3.15)

and two leading two-quark dipole operators involving the EM and the gluonic field strength
tensor

S; Eauyd . S; an,d GHv . (3.16)
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d Scalar Vector Gauge d Two quarks  Quark dipole Four fermions

4 s U0 s;s;sk dd s; F'do,,d
- 2.. 17 Wall
$i5; D) 5; B F1Y 6 0°s; df—u si G*do,,d
Si s F, Fuv 50,5 d'otd
5 L -
S GWCN}’W s; SiSjspsydd s; dTgt qd
s; G, GH si 4'0"q q',.q
7 s; dieg"d Go,q'
3 I
ia Sa ¥ S; GTE#I/ utetd
h.c 5 gaayuy Fr S; VTEHU dTEU«d
o ai 17 F,ul/
$aT S & 6 €5, e dichu
v, 4 v, PiEiyp he. ~ ¢, v dietd

(a) Type (i) quark-flavour conserving portal  (b) Type (ii) dimension six and seven quark-flavour violat-
operators of dimension three, four, and five.  ing portal operators.

Table 4. List of all LO strong scale portal operators up to dimension seven that couple LEFT to

messenger fields of spin 0, %, or 1. Panel a shows operators that contribute to type (i) diagrams and

panel b shows operators that contribute to type (ii) diagrams. See also figure 6 for more details.
The first column specifies the spin of the messenger field, the second column contains the dimension
d of the operators and the remaining columns label the SM sectors they interact with. A generic
SM fermion is labelled by ¥ = u, d, e, v, the down-type quarks are d = d, s, the leptons are e = e,
pwand v = v, v, V7, and q runs over all three light quarks u, d and s.

At dimension seven, there is one leading two-quark operator
SiSjSkS] Ed (3.17)
as well as five leading four-fermion operators

si 4'0"q ¢'7.q s; ulgtd el v, (3.18a)
si d'otd Go,q | si diotd vig,u s; d'gt qd . (3.18b)

The semi-leptonic neutral current operator s; diatd VTEMV is generated by the box- and
penguin-type diagrams shown in figures 7a and 7b. These diagrams involve at least two
heavy boson exchanges, so that one might expect all of them to be suppressed by an
additional factor of egy; due to the second heavy boson exchange. However, the analogous
SM four-fermion operators d'a*d v'7,v scale as esy f(m? /v?), with some function f(z) ~
1, so that there is no additional suppression [section XI.B of 179]. We expect that the
same can occur in case of the portal operator s; dig#d VTEMV, and we therefore keep this
operator as part of the portal Lagrangian. All of the operators mentioned above are listed
in table 4.

The sub-leading dimension seven operators differ in their suppression. The four oper-
ators

5i5;0uSk d'g*d ,  Bys; dTEuVWd ,  Oys; dTEMIN/Wd ., SiSj EEWV””d +h.c., (3.19)
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(47)™™ Two Quarks Quark Dipole (4m)™™ dd d'd dtvevd

580,55 digtd Bys; diT,V*d v, digvd " A5V GLud

~ 1 ) ~
1 dysi diz,VHd vt 15 Gd
o 124 —
si8; 4o V" +hec. vuv dd 00" v, dio*d o' d'E Fld
) d%s; dd d,vt dd vy v d'a*d  v* dTeY FLd
5;0,5; d'ard vy do*’d v, v” diotd
5 d%v,, d'g"d
(a) Scalar. eaﬁ,u,u 604’[}[3 vy dTEMd
v d'5,D.d
dwvyy die* D d
(b) Vector
LLxLL LRxRL RLxRL LL x RL
gl diard viel dd v€, dd vD"¢, d'G,d
eou el digru  elel dd €alp dd £aD" &, diT,d
efel ud efq du eD"¢, die*u

Vo€, dou,d  ve" D€, d'E,ud
Ea" €y duwd  E,0" D& dTT,.d
eat’ &y %Wu e’ D, &, d'atu

(¢) Fermion

Table 5. List of all sub-leading quark-flavour changing strong scale operators up to dimension

seven that couple LEFT to messenger fields of spin 0, %,
spin 0 messenger fields, panel shows ¢ those for spin % messengers, and panel b shows those for

spin 1 messengers. All fermionic operators are suppressed by factors of (47)~!, and the suppression

or 1. Panel a shows the operators for

factor for the bosons are given in the tables. The notation is the same as in table 4.

.I.
d & d
W WS----s
1
v ot
(a) Scalar box diagram. (b) Scalar penguin diagram. (c) Fermionic penguin diagram.

Figure 7. One-loop portal diagrams for some of the portal operators. Panels a and b depict
contributions to the scalar portal operator (3.18b), where the scalar field can couple to any of the
heavy EW bosons. Panel ¢ depicts the contribution to the fermionic portal operator in (3.21).

with V# € {F* G} are suppressed by factors of (47)~!, and the operators
SiaZSjad y 8usi8“sj8d s (320)

and their Hermitian conjugates are suppressed by factors of (47)~2. The above sub-leading
dimension seven operators are listed in table 5a.
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Spin % fields couple to LEFT via three operators of dimension five or less. In addition,
there are two quark-flavour violating dimension six operators

€z ,e die'u d'gtd ElF v, (3.21)

and their Hermitian conjugates, which contribute at LO in both egy and 47. The second
operator and its Hermitian conjugate can only be generated by penguin- and box-type
diagrams involving at least two heavy SM bosons. In analogy to the case of the scalar portal
operators in (3.18b), we expect that the diagrams with a virtual top quark exchange inside
the loop can scale as egy f(m? / v?), so that there is no additional suppression compared
to the first operator. All of the operators mentioned above are listed in table 4.

The sub-leading operators can be either of dimension six or seven, and they are sup-
pressed by factors of (47)~! or (47)~2. At dimension six, there are ten operators

dd vé, , dd Z/Tﬁl , do,,d votve, | du e&, , die"u 60#52 , (3.22a)

dd €&, dd €el . doud &ove,  ud el douu ea™e ,  (3.22b)
that contain charged right-chiral SM fermion fields, so that they are suppressed by an
additional factor of my/v o< \/esm, where my, is the mass of the relevant right-chiral
fermion, due to the associated chiral suppression. As a result, they effectively behave as
dimension seven operators. Applying NDA, one finds that they are suppressed by factors
of (47)~!. In addition, the operator

d'atd €78 (3.23)

and its Hermitian conjugate, generated by penguin diagrams shown in figure 7c, contain
at least two SM gauge boson exchanges. At the EW scale, the hidden fermion only couples
to photons and Z-bosons via the dipole-type operator {,0"§,B,,,. This coupling flips the
chirality of the hidden fermion, so that a light mass-insertion is necessary to undo the flip.
Therefore, the operator is suppressed by an additional factor of |/esm, and it effectively
counts as a dimension seven operator. Applying NDA, one also has to account for the 4w
suppression associated with the EW gauge couplings, so that the operator is suppressed
by at least a factor of (47)~2.
Finally, at dimension seven, there are six derivative operators

d'z,d vD"¢, d'e"u eDME, | d'z,.d £,D"Ey (3.24a)
d'z,d va"' D&, , d'5"u e’ D, &, , d'z,d £ D&, , (3.24D)
and their Hermitian conjugates. We collect all of the above sub-leading operators in table 5.

Spin 1 fields couple to LEFT via one operator of dimension four, see table 4. Since there
are no dimension five operators that couple spin 1 messengers to SMEFT, the resulting
portal LEFT contains higher dimensional operators of dimension five and six, but not
seven. None of them contributes at LO in the 47 counting. The dimension six operators

v, dievd ot A5G d vt A5G d (3.25)
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are suppressed by factors of (47)~!. The dimension five operators
vt dd vt dd vy doy,d (3.26)

and their Hermitian conjugates are suppressed by a factor of /esn associated with each
right-chiral light quark insertion, so that they effectively contribute like dimension six
operators. Applying the NDA rules, one finds that they are suppressed by factors of
(47)~2. Finally, the dimension six operators

o' F,, d'avd, 9 v, dotd, v’ d'5,Dyd 0%, d'otd ,
V'E,, di5Vd, Oy, v” dietd, P davg v, diGud v, diTMDYd,  (3.27)
Oyvy, V¥ d'atd .

are also suppressed by factors of (47)~2. We collect all of the above operators in table 5.

3.3.2 QCD portal currents

In order to prepare for the derivation of the portal YPT Lagrangian in the following section,
we embed the interactions encompassed by the portal LEFTs into appropriate portal cur-
rents, as we have done for the interactions of the portal SMEFTs. These currents contain
the leading quark-flavour conserving and violating portal operators collected in table 4, but
we neglect the subleading quark-flavour violating operators collected in table 5. Hence, the
QCD sector of the portal Lagrangian is

£ = Spw — 5,7 — <SmQ +V'Q, + Vﬂ@>f — A3 <57Q +THQ,, + h.c.>f
—v7?(8,0,+5,0,+S,0; +5/0) —v2((&/D])) . (3.28)
where the composite QCD gluon operators w and Y are defined in (2.4) and (2.10), the

quark bilinears @ are defined in (2.8), (2.21), and (2.29), and the quark quadrilinears O
and O are defined in (2.51), (2.57), and (2.58).

The (pseudo-)scalar portal currents Sy and S, couple to QCD in the same way as the
0 angle and the gluon coupling w in Lagrangians (2.4) and (2.10). They read

€UV €UV
S, = ch“si, Sy = chesi . (3.29)

The (pseudo-)scalar portal current S, couples to QCD in the same way as the quark mass
matrix in (2.8). It reads

S, €UV g, €UV ([ S, Sm 92 €UV S,
Sm = euve;™si + = Cij 5155 + 2 (Cijksisjsk + 50 Si) + o3 CifkiSiSisksL - (3.30)

This current has to be uncharged, so that it obeys

1 )
S =S+ — S, S.i=S,1=5,=85,5=0. (3.31)
f
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The left- and right-handed vector portal currents VE“ and V} couple to QCD in the same
way as the left- and right-handed EW currents in (2.20). They read

no_ L €UV [ L. Gk, s L — , s L - ,
V' = eyvey vt + 2 c;58i0" sj + (Ayc eloty s; + AiCs i ety s; (3.32a)

u-us s
+A8ck  elate, A5k vighe, +h.c.>} ,
Vi = egyclot (3.32b)
The current Vl“ is the only portal current that can carry charge due to the contributions
generated by virtual W-boson exchanges, which implies

T

1
Vi = Vi = v = v =0, V=V oV (333)
V# and V" are also Hermitian, so that

Via= (VL9 viG = (vt vis = (vt (3.34)

l,rs

The dipole portal currents T#” and S, couple to QCD in the same way as the dipole
currents in Lagrangian (2.28). They read

1
TV = —SFIS,,, Sy = euv (AS + XY ) si (3.35)

The chromomagnetic and tensor currents S,, and T%” are uncharged and strangeness
violating, but not necessarily Hermitian. Hence, the only non-vanishing contributions are

Sqad: S LR LS (3.36)

T

Finally, the four-quark portal currents mirror the four-quark interactions in Lagrangian (2.59).
They read

Ss = hsiEUJSZ‘, ST = hrimsi, (3.37&)
v v

Sl_ = hm'GUTVSi, S;r = hsieUTvsi, 6l+ = SZ'GUTVSI', (3.37b)

where the four-quark portal sector parameters a,12 = a,(c,1,2) and Wilson coeflicients ¢,1 2
are defined such that they mirror the SM four-quark parameters eqgs. (2.51) and (2.56) and
Wilson coefficients (2.35). It is convenient to define a9 = a,(c,0) and ¢,9 = ¢,, so that the
generic objects ay; and ¢,; with ¢ = 0, 1, 2 can be used to collectively refer to the complete
set of both SM and portal sector parameters and Wilson coefficients.

Combining the SM and BSM contributions (cf. table 6) to the external currents, we
define the complete external currents

©=0+S, M=m+S,, R:‘=v4+VF  TH=1M4TH  (3.38)
Q=w+S,, r=~+Ss,, L' =1r+ Vv, (3.38b)
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Q © M T Hy H. H HS &5 L R+ T¥
contribution SM w 0 m v hs h. hS hl+ bl+ " re T
BSM S, S Swm S, Ss S, S S & vt ver T
spin 0 1 2
€SM 0 1 0 1
d 0 1 1 0 0 1 3
representation 1 8d1 8 8 27 8ad1 8
symmetry vi=vV,
flavour 1 18 16 16 54 9 16
DOFs
As = *£1 0 4 4 4 4 2 4

Table 6. List of all external currents interacting with QCD at the strong scale including both
SM and BSM contributions. The first three rows list their spin, the order in egy at which they
contribute and their mass dimension d. Rows four, five, and six list their representations and
symmetries under flavour rotations as well as the resulting DOFs. The last row counts the number
of strangeness violating DOFs, which are the only relevant DOFs for currents starting contribute
at order egyp.

and!?

Hy =h, +S,, H.=h,+S,, (3.39)
H =h +S;, HM =h/ +5S;, 9 =b+6]. (3.39b)

Using these complete external currents in place of the SM external currents, one obtains
the corresponding complete interaction Lagrangians
L) — Lg, S — L3, =Ly, O — LY, (3.40a)
r T h H

where the original Lagrangians are given in (2.18), (2.35) and (2.41). Hence, the complete
external current sector of QCD including both SM and hidden contributions is

Lo =0w—0F — (MQ+L'Q,+ R'Q,) — Agl (TQ+T"Qu +hec.)
— v (H,0, +H,0, + H O +H/ O/ ) —v™>((5/9])) . (341)

where the external currents are defined in current (3.38) and (3.39) and summarised in
table 6. All of them receive contributions from the SM. However, without NP, the currents
0,Q, M, H, H,, and ﬁf are constant. The SM contributions to the currents L*, R* and
T depend on the photon field, and L* additionally contains the weak leptonic charged
current, cf. (2.27) and (2.30).

13We emphasise that the use of h and H for both the Higgs field and the four quark current can not lead
to conflicts as these currents only appear at energy scales at which the Higgs field has been integrated out.
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Covariant derivatives. In contrast to the parameters defined in section 2, the external
currents defined in this section are spacetime dependent, and the xYPT Lagrangian derived
in the next section contains contributions with derivatives acting on the external currents.
To enforce invariance of yPT under the action of the local Gpr symmetry egs. (2.45)
and (2.46), these derivatives have to be promoted to covariant derivatives. The covariant
derivative of a generic external current J is

m

~BD ~BD i~ By D ~BD d\yBD,
1Du‘5AC—1 JAC+ZLN22‘5A Z W"Ao +ZR“§I¢"‘AC ZR P e (342)

where the capital indices denote multi-indices

A=ay...ay, Ay =a1...0i{—1TQi11 ... Gy,
C=¢...¢, Cp=2¢1...Ch1TCpq1 ... Cp,
Dedy.odyy  Dy—di.dpsidis .. d, .

The current © does not carry any flavour indices, but due to the axial anomaly it transforms

like the trace of the logarithm of a unitary matrix 192 = ei@lg with two flavour indices.

Hence, its covariant derivative can be defined as
D,0=0,=-i(9'D9) =90 -L,+R, . (3.44)

This object is a chiral invariant and therefore not a covariant derivative in the proper sense.
In analogy to gauge fields, the external currents L* and R* cannot appear by themselves.
Instead xPT depends on the left- and right-handed field strength tensors

V= 9MLY — LM —i[L*, L], R"™ =9"R’—9"R‘—i|R"R'].  (3.45)

To prepare for the eventual decomposition of the yPT Lagrangian into SM and portal
contributions, it is also convenient to define the left- and right-handed portal field strength
tensors

VIV = V-0V - [V VY] VR = 0V S0V VA VYL (346)

4 Chiral perturbation theory

XPT is an effective theory of the light unflavoured and strange pseudoscalar mesons with
masses below roughly 1 GeV, which corresponds to the mass scale associated with the GD
contribution to e.g. the proton mass. Experimentally, one observes nine such mesons
¢: three pions 7+ and 70, four kaons K+, K°, and FO, and the two n- and 7r’-mesons.
Neglecting their masses, the typical energy scale of interactions involving these mesons
is determined by the meson decay constants, which are defined in terms of the hadronic

matrix elements [144]

fo = gz (O] (@0 = Q) Ao o) e (4.1)

2m¢
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where mg is the mass of the meson in question, (Q, —@N) /2 is axial-vector quark current,
and the matrix A, projects onto the relevant combination of quark flavours. In particular,
the charged pion decay constant fr = (65.1 £ 0.4exp) MeV, for which Ay = A4, determines
the charged pion decay width [144]

2\ 2,2
T (n% — (*v) = ! (1 — W) frmg Ve (mgr — m%) , (4.2)

167y, m2 ) vt

where m, = (139.57018 £ 0.00035¢xp) MeV is the mass of the charged pion and my is the
mass of the charged lepton ¢+ = e*, u*.

The light pseudoscalar mesons can be identified with the pseudo Nambu-Goldstone
bosons (PNGBs) of the explicitly broken chiral Grr = U(3)r x U(3)gr symmetry (2.5) of
the kinetic QCD Lagrangian (2.4). xPT is defined via a perturbative expansion of QCD
around the limit without explicit chiral symmetry breaking, which can be constructed by
setting the external currents to zero while keeping only the zeroth order terms in the large
n. expansion. In this limit, the quark condensate (2.6) still spontaneously breaks the
Grr symmetry to a Gy = U(3)y vector symmetry, so that the Goldstone theorem [180—
182] implies the existence of nine massless Nambu-Goldstone bosons (NGBs), one for each
spontaneously broken generator. Reintroducing the explicit symmetry breaking generated
by the light quark masses (2.8), the other external currents (3.38) and (3.39), and the
axial anomaly (2.10) as small perturbations, one obtains the U(3) version of xPT, which
contains nine massive PNGBs. The PNGB masses scale as

mi X Ebrokcn s (43)

where Lproken is the part of the Lagrangian that contains the explicit symmetry breaking
terms. In this version of YPT, it is necessary to expand QCD in powers of n_ ! in order
to control the impact of the axial anomaly. Without this expansion, the axial anomaly
badly breaks the U(1)4 symmetry of QCD, and the perturbative expansion in the anoma-
lous contribution to Lp.oken becomes invalid. Following this approach, one obtains the
SU(3) version of xPT, which contains only eight PNGBs, one for each broken generator of
SU(3)r x SU(3)r € Grr. However, we work in the U(3) version, since it is better suited
for understanding the coupling of the SM mesons to pseudoscalar hidden mediators such
as ALPs.

In U(3) xPT, the PNGBs parameterise the coset Gpr/Gy = U(3)4 in terms of a
non-linearly realised matrix valued field [105, 109, 149, 183]

i®(x)
fo

where the dimensionful parameter fy determines the typical energy scale of xPT. At LO

g(x) = exp (4.4)

in the small momentum expansion of xPT, the meson decay constants in (4.1) are all
identical and equal to fo, that is, fgs = fo, but higher order corrections cause the meson
decay constants to acquire different values, cf. appendix D.1. Since the impact of higher
order corrections is smallest for the pion, it is conventional to fix fy by matching to the
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(a) Meson octet ®. (b) Meson singlet ®.

Figure 8. The light pseudoscalar mesons. Panel a shows the isospin |, strangeness s and electric
charge q quantum numbers of the light pseudoscalar meson octet, and panel b shows the quantum
numbers of the singlet. The three unflavoured mesons (7s, 1g, and 7;) mix into the neutral mass
eigenstates (7°, n, and 7’).

pion decay constant f;. The PNGB matrix

1
®(z) = ®(z) + ~2(z), D(z) = (®(2)) , (4.5)
transforms as a nonet under Gy . Its trace ® transforms as a singlet under Gy, while the
traceless contribution @ transforms as an octet. Using the Gell-Mann (GM) matrices'* A,
and the rescaled identity matrix Ag = \/2/n¢1, which are normalised such that (AzAp) =
2845, to parameterise the PNGB octet and singlet according to

7178_'_% Tt Kt

V6
¢a>\a — 78 iy 0 <¢0A0> m
(b:E = 71' B 18 K o = =nf—— (4.6)
V6 V2 ) f )

NG

their components can be identified with the light meson flavour eigenstates ¢, = {n%,
K* K9 FO, 78, M3, N1}, whose quantum numbers are depicted in figure 8. There is a
large mass-mixing between the 7s- and 7;-mesons. After diagonalisation, the two mass
eigenstates are denoted as n and 7. Isospin violating contributions further induce a small
mixing between the neutral pion and the two n-mesons, while EW corrections induce a
feeble kinetic mixing between the charged kaons and pions.

“The GM matrices are A1 = AT+ A3, As= A5+ AL, A¢ = A5+ Y, Az = Al — Ag,
iAo =A0 =A%, A=A =AY, iAr =2 =AY, Vs = AL 4 AG —2X8 .

— 38 —



4.1 Flavour symmetry

In the absence of explicit symmetry breaking, the xPT action has to be invariant under the
global G i flavour symmetry (2.5) of the kinetic QCD Lagrangian (2.4). The coset matrix
g and the trace of the pseudoscalar meson matrix ®/fy = —i(Ing); transform under the
action of G r as [105, 109, 149, 183]

g— VgV, ;Z - 2 - i<ln VV>f : (4.7)
The transformation behaviour of ® mirrors the behaviour of the pseudoscalar external
current O (2.45a), which is also a Gy singlet. When including the external currents J = {2,
©,M,L,, R, T,, T, Hr, 5}, the xPT action can be obtained by means of a spurion
analysis, which corresponds to enforcing the invariance of the yPT path integral under the
local flavour symmetry (2.5) [105, 109, 149, 183-185]. This entails the promotion of the
partial derivative 0*g to a covariant derivative

Dtg = ot'g —i(L'g —gR") , (4.8)

where the left- and right-handed external currents L* and R* effectively fulfil the role of
gauge fields. Besides being parts of the covariant derivatives, these two external currents
also contribute to the xPT action via operators involving the left- and right-handed field
strength tensors L, and Ry, cf. definition (3.45), while the remaining external currents
appear as regular building blocks of the theory. Gpp invariant operators in yPT are then
constructed by taking quark-flavour traces of either purely left- or right-handed products
of the coset matrix g, the external currents, and their covariant derivatives.

The spurion analysis is also a standard tool used to embed xPT into the remainder
of the SM, by parameterising the coupling of QCD to the EW sector in terms of the
external currents ©, M, L*, and R*, which describe CP-violation, quark masses, and EM
vector current interactions in the SM, respectively. For more details, see e.g. the general
introductions to xPT in [184-187]. In the SM, the spurion approach neglects contributions
to the xPT Lagrangian that are generated from diagrams with virtual photon exchanges.

Starting at order apy o< e?

, one has to include an additional set of EM operators in order
to complete xPT. For extensive listings of these operators, see e.g. [188-193]. In particular,
they are necessary to obtain the correct SM estimates for e.g. the pion mass splitting and
the € /e ratio [194-196], which measures the correlation of CP-violation in decays of neutral

kaons into pairs of charged pions, K° — 77~ and neutral pions, K0 — 7979,

4.2 Power counting

When accounting only for the explicit symmetry breaking due to the axial anomaly, U(3)
xPT is defined via a simultaneous expansion in small momenta 02 / AiPT and n_ !, where
Aypr = 4 fy = (803 & 15cxp = NNLO) MeV is the symmetry breaking scale of xPT [105,
109, 149, 175, 183]. Following [109], we combine both of these expansions by defining a
single degree of smallness § o< 02 / AiPT o n, . This is appropriate for kaon decays, since

nyt=1/3 ~ m3% / AiPT. At lower energies, such as for 9 ~ m2 < m?2., the suppression
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€uv €SM EEW o

2 2 A2 2 2
Numerator v 0° Sm; Alpr 0° Smi

. 2 2 2
Denominator  fuy Agy Agy Apr

Table 7. Small parameters that are defined as ratios between the relevant UV, SM, and xPT
scales. The small parameter § also captures the expansion in n;! of U(3) xPT. Agy = 47v and
Aypr = 47 fo are defined such that they include NDA loop factors. For momenta 92 < m%, one
has €ESM = 5€EW~

associated with the small momenta is a much better expansion parameter than n;!. In

this case, it is more appropriate to work with SU(2) or SU(3) xPT, so that the large n.
expansion, which is necessary in U(3) xPT, can be avoided. Besides the expansion in §,
we also track the suppression due to egv and eyy, as defined in (2.23) and (3.2), and
we eliminate operators that are doubly suppressed in either one of these two parameters.
Table 7 summarises the relation between the four expansion parameters.

Momentum expansion. YPT can be expanded in powers of 92 / AiPT = 0?/(4m fo)? by
adopting the general power counting scheme for low energy EFTs [25], which is established
by studying the behaviour of individual diagrams under a rescaling p; — xp; of the external
momenta p;. Since f& ~ 0% defines the typical energy scale of yPT, the resulting power
counting in xPT is equivalent to the (47)~! expansion of NDA [175]. Applying the NDA
power counting rules, derivatives 0,, are suppressed by factors of V6, while powers of the
PNGB matrix ® are unsuppressed. Since the external currents L* and R appear in the
covariant derivative (4.8), they also count as v/§ o 9,/A,pr. The external currents M,
I, and T*” contribute to the PNGB masses, so relation (4.3) implies that all three of them
count as M, I', T x mz) x 0%  §. In summary, each of these building blocks counts as

go 1, d,L,Rx V5, M,T,Txé. (4.9)

Large n. expansion. The standard formula for large n. scaling behaviour for diagrams
without four-quark operators eq. (2.13) shows that the leading QCD diagrams with a given
number of quark loops are suppressed by one factor of n_ ! for each quark-loop. Since YPT
operators with n, quark flavour traces have to be generated by contributions in the QCD
path-integral with at least n, quark loops, each quark-flavour trace in xPT counts as
n; ! [appendix A of 109]. The large n. scaling behaviour of the leading QCD diagrams also
directly implies that the external currents © and Q count as § oc n_ '

Equation (2.40) establishes a modified large n. scaling for QCD diagrams with four-
quark vertices. It implies that xPT operators with one four-quark current insertion, £,
or H,, are enhanced by a relative factor of n. associated with the four-quark vertex. In
addition, the leading contributions to the QCD path-integral with one four-quark inser-
tion contain two quark loops but scale as if they contain only a single quark loop. Each
additional quark loop that is not associated with the four-quark insertion still gives a sup-

1

pression o< n, . In total, this means that xPT operators with one four-quark current
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0 1 2 3
1,2 2 92 9*n2 o'n? 9n?
1 3 1 nl 0*nl O'nl
2 4 o'nd  9?n?
3 5 -1 n 1
GD YPT

Table 8. Impact of flavour traces on the Jd-counting of an operator. n; counts the number of
flavour traces in operators without four-quark current insertions, while n} counts the same number
in operators with four-quark insertions. Note that m = 2 — n; = min(4 — n},2) and that yPT
operators proportional to n? are only possible in the modified four-quark counting scheme

insertion and ng = 1, 2 quark flavour traces scale as n2, while operators with one four-
. . 4—

quark current insertion and n, > 2 quark flavour traces scale as n. "4 In summary, each

of the above building blocks counts as

S.,,0 6, Nz, Hp o 071, (o) oc gmax(n=nn.nn) ny=0,1. (4.10)
where np = 0, 1 is the number of four-quark current insertions.

Expansion in powers of egyt and eyy. The parameter ey = 02 / A%M with Agy =
47v measures the degrees of smallness associated with higher-dimensional operators at low
energies. However, it mixes the small momentum expansion of yPT with the suppression
due to virtual W-boson exchanges. In order to separate these two expansions, we define
esM = depw, where epw = f2/v? = AiPT/A%M is the ratio between the xyPT and EW
scales. With this definition, the external currents I', T*”, $),, and H, are all suppressed by
one factor of egyw in xPT, independent of any additional momentum suppression. Addition-
ally, the suppression due to factors of eyy has to be taken into account when considering
modifications due to the ) current, since the SM contribution w o< g2 is integrated out
when constructing xPT, so that only the hidden sector contributions .S, remains. At LO
in both eyy and egw, the YPT action can be at most linear in each of the above currents.

4.3 Construction of the portal xPT Lagrangian

We construct the complete yPT Lagrangian that couples the light pseudoscalar mesons
to generic hidden sectors at LO. To this end, we first summarise the shape of the xyPT
Lagrangian when neglecting egw and eyy suppressed hidden sector contributions. In this
case, the only non-vanishing external currents are L*, R*, M, and O, and the resulting
XPT Lagrangian is well established, see e.g. the discussions in [105, 109, 149, 183187, 197].
Afterwards, we consider the egpw and eyy suppressed contributions and use the spurion
approach to construct the novel contributions with general spacetime dependent currents
Sw, Ty 9z, and Hy.
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The leading contributions to the connected part of the QCD path integral count as
order n?, and determine GD in the large n. limit [151, 153-155]. Since meson dynamics
are determined by connected QCD diagrams with at least one quark loop, which scale at
most as order n., YPT operators have to be suppressed by at least a factor of § compared
to the leading QCD diagrams. The only chiral invariant that could contribute at this order

: é:i(@—;;) , (4.11)

where the hat indicates a flavour invariant quantity. However, an operator proportional to
O is forbidden by parity conservation [109, 149, 183]. Hence, the leading contributions to
the YPT action are of order §2. See table 8 for an overview of the possible orders of an
operator.

Order 2. Operators that contribute at this order can count either as order 9%n,. or order
d°nY. Operators that count as order 9%n,. contain only a single quark-flavour trace. In the
absence of explicit symmetry breaking due to the mass-like current M, the only available
operator of this type is [105, 109, 149, 183-187, 197]

2 f2
Ly = 50 uu"y (4.12)
where the left-handed Maurer-Cartan (MC) field associated with g is
U,=u,—L,+ j%,u ) u, = iga,ugT = —i(aﬂg)gT ) Ru = gl:llLQﬂL (4.13)

and wu,, is the MC field obtained when neglecting the external currents L, and R,. Bold
hatted operators such as I?l” are composite operators constructed from an external current
and the coset matrix g such that they transform under G r in the same way as U “.15 The
MC field transforms as

U, - VU,V (4.14)

and corresponds to the low energy realisation (LER) of the conserved current associated
with left-handed chiral quark flavour rotations, cf. section 2.2. It obeys the relation

DU, — DU, =i[U,, U, — L, + R, R, =gR.g", (4.15a)
Oy — Oy, = iluy, uy), (4.15Db)
and its flavour trace DED R
Ut = (U") = = — —[*4+ RV (4.16)
fo fo

encodes the covariant derivative of the trace of the coset matrix. Note that the above object
D, ® is not a covariant derivative in the strict sense, since it remains invariant under chiral

154 is defined such that it is adjoined in the mass term (4.17) whenever the canonical quark mass matrix
M is adjoint. Furthermore, we define the MC field to be left-handed (rather than right-handed) in order to
simplify the description of W-boson induced processes. However, note that relations that involve only U,
¥,, and hatted quantities are invariant under a change of either definition, provided that the hat-operation
is first redefined such that it transform external currents into purely right-handed (rather than left-handed)
objects and then reapplied appropriately.
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rotations rather than following the transformation law for ® in eq. (4.7). When accounting
for the quark mass-like current M, it is possible to construct a second operator that also
contributes at order 9n,. [109, 183-187, 197]

M fgbo >
where
M= <ﬁ>f M =gM, M-~ VMV, (4.18)

This nonet mass term gives rise to the dominant contribution to the physical masses of
the pions, kaons, and the 7-meson. The mass of the heavy n'-meson is dominated by the
contribution of the third and final term in the LO xPT Lagrangian, the PNGB singlet
mass term [109, 149, 152, 183]

fimg

g =
2n¢

e?. (4.19)

This term contains two flavour traces and no derivatives, so that it enters at order 9°n?
rather than 0%n.. It is associated with the explicit chiral symmetry breaking due to the
axial anomaly (2.10). Putting all three contributions together, the complete LO Lagrangian

£y =l + M + e (4.20)
yields the LO EOM

L on2at — D2aat) = 20 (37 — A1) o ™06

5(gD —Dgg)—E(M—M)—i-n—f@l. (4.21)
Together with the general identity (4.13), this EOM implies that, without loss of generality,
terms containing gD?g' and its Hermitian conjugate can always be eliminated from higher

order Lagrangians.

Order 83. Starting at this order, the YPT action can, in principle, contain operators
with covariant derivatives acting on L*¥, R* M, and ©. However, up to corrections of
order 64 or higher, partial integration (PI) can always be used to eliminate operators with
derivatives acting on L, R*” M in favour of operators with derivatives acting only on
g or O.

Operators that contribute at order 63 can count either as order d*n., order 9%n?,

1

or order 3°n_!. Operators that count as order 9*n. can contain only a single quark-

flavour trace. In the absence of external currents, the only available operators of this type
are [109, 183]

LY = (2Ly + L3) (UMULUYU,) + Ly (UUUMU") (4.22)

where contributions with more than one derivative acting on a single coset matrix g can be
eliminated using PI, the EOM eq. (4.21), or identity (4.13). The quark mass-like current
M generates the additional contributions [109, 183]

LM = L:b, <J\7.1UMU#>f the, LM =Lgh? (<]\/212>f +hec.) + Hobf <1\7T1\A4>f .
(4.23)
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In the operator proportional to Hs, the dependence on the coset field g drops out, so that
the term does not contribute to perturbatively computed S-matrix elements, but it has to
be added to the Lagrangian as a counter term in order to renormalise the theory [105, 109,
183-185, 197]. The field strength tensors L,, and R, generate the contributions [105,
109, 183]

£V = —iLy (U'U" (Ly + ﬁuy)>f : (4.24a)
LY = Lo (L Ry ) + Hi (L L + R R (4.24b)

where the operator proportional to Hj is another counter term. The operators that count
as order 9?nY contain two flavour traces. In the absence of external currents, the only
available operator of this type is the kinetic term [109, 183]

2
LhP = f—OAlUuU“ : (4.25)
2n¢

The external currents M and © induce the further mass-like term [109, 183]
me _ fibo, o
nf

and a final counter term that depends on the covariant derivative of © defined in eq. (3.44)
(109, 183]

2
o = f—oﬂoﬁuﬁ“ . (4.27)
2n¢

There is no kinetic mixing term proportional to U,¥*, since this operator can always be

-1

eliminated via a shift of ®. There are also no operators of order 9%n_?,

since the only
candidate operator is proportional to ©3, and it is forbidden due to parity conservation in

QCD.

Wess-Zumino- Witten action. Since the NGBs are pseudoscalar fields, a parity transfor-
mation corresponds to the combined transformation of spatial inversion x <+ —x and meson
conjugation g <+ g. The contributions derived so far are invariant under both transforma-
tions separately, so that the resulting yPT Lagrangian is more symmetric than QCD. In
the absence of external currents, there is no four dimensional Lagrangian that breaks this
additional symmetry [198], but starting at order &3 it is possible to construct a so-called
Wess-Zumino-Witten (WZW) contribution to the xPT action that takes the form of a
five dimensional integral over a sub-manifold of the nine dimensional space of field values
that can be assumed by the coset matrix g(x) [199]. This integral can be connected to an
action written in terms of a Lagrangian density by identifying Minkowski space with the
four dimensional boundary of this sub-manifold. Hence, the WZW term can be written
as [199]

‘ n el . ikl , 2 .
b =~y [ 4 e ) = (bt L 128)
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C

Table 9. NDA and large n. scaling of selected coefficients that appear in the order §2 and §°
Lagrangians. Additionally, we have made the omitted symmetry factors explicit.

where wéjklm (u) is the pure-gauge CS term and the 4, j, k, ... denote coordinate indices of
the five-dimensional sub-manifold. The left- and right-handed external currents L* and R*
generate additional WZW contributions that can be written in the form of a conventional
four dimensional Lagrangian [199-202]

nC

(2m)?

where the Bardeen counter-term of two vector currents V" is

Ll = g (77 (w + RE L) + 9 (RE, —ut)) (4.29)

2 .
pul/pa(vblt’ ‘/1#) — I <‘/0#0.11pr + a_éwpv-la + ;%#Vvlu%p‘/la>f ) (4'30)

This term shares a common contribution with the four dimensional gauge transformation
of the five dimensional CS term
s 1 - 1 1 y
W7 = G ) ol = SV SVIRY LVIVIVE L (43))
where v, is a gauge parameter. The WZW action Lagrangian (4.28) and the gauged WZW

Lagrangian (4.29) constitute the LO contributions to interactions with an odd number of
mesons such as KTK~ — 777 7% and 70 — 7.

Low energy coefficients and loops. The prefactors of operators that contribute at
order §?"n'™ scale as

coefficient o AiISQT" 2pmtn=2 Aypr, fo xvVng, (4.32)

where fj scales as y/n, in order to reflect the large n. counting of the kinetic Lagrangian (4.12)
in the LO xPT Lagrangian. The standard notation, which we also follow, does not make
this scaling explicit. However, we have summarised the omitted NDA scaling and symmetry
prefactors in table 9 and will quote numerical values of the dimensionless NLO coefficient
with symmetry factors and factors of 47 made explicit.

Diagrams with n; loops are suppressed by factors (47 fo) =™ oc (4m)~2Mn;™ o 627
compared to tree-level diagrams. This implies that diagrams with one loop start to con-
tribute at NNLO. Since we restrict ourselves to NLO contributions, we do not consider these
loop corrections. In particular, we fix the values of the low energy coefficients (LECs) by
using tree-level predictions for the light meson observables. However, it is necessary to
emphasise that one-loop contributions are expected to be numerically sizeable due to en-
hancement from large chiral logarithms that scale as oc In 92 / p?. In addition, one has to
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Figure 9. Illustration of the energy scales appearing in portal yPT. The numeric values correspond
to the central values, for simplicity we omit all uncertainties.

account for these corrections in order to capture the scale dependence of the L; and H;
parameters. As a result, the tree-level estimates for the LO and NLO LECs can only be
expected to be order-of-magnitude accurate. Since the dominant corrections at NNLO are
generated by chiral loops, we expect that our estimates are the most well aligned with the
NNLO estimates that one obtains when working with a relatively small renormalisation
scale, such as p? = mﬁ(i.

In total, the LO and NLO U(3) xPT Lagrangians contain 13 LECs: three LO coeffi-
cients fy, bg, mg, and ten NLO coefficients L;, H;, and A;. The coeflicients fqy, mg, and A;
remain finite even when accounting for loop corrections, but in general the coefficient by,
the L;, and the H; have to be renormalised. We use the NLO tree-level estimates derived

in appendix D.1, which gives

fo = (63.94 1.24p) MeV £ NNLO,  mg = 4m(76.3 % 1.4cyp) MeV + NNLO,  (4.33)

and
Vbomug = 47(10.68 £ 0.08.x,) MeV £ NNLO, (4.34a)
boms = 47(50.95 £ 0.28¢xp) MeV £ NNLO . (4.34D)

See figure 9 for a comparison of the energy scales involved in this work. For the subsequent
discussion in section 4.4, we also require the values of the NLO parameters L5 and Lg.
Using the tree-level results from appendix D.1, one obtains the estimates

4(47)?Ls = 0.66 + 0.04¢x, = NNLO, Ag = 0.814 4 0.023¢,, + NNLO,  (4.35a)
4(47)%Lg = 0.215 £ 0.033¢,p + NNLO (4.35b)

which are renormalisation scale independent at this level of accuracy.

4.3.1 Weak current contributions

The weak currents I', T*", §;, s, and ), are suppressed by powers of egw, so that they
are only relevant in quark-flavour violating transitions. As we have already discarded
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the quark-flavour conserving contributions to these currents in sections 2 and 3, the xyPT
operators that involve them will automatically violate quark flavour. We only include the
leading contributions for each current. These contributions can be either of order egwd,
EEw(sQ, or EEW53~

Dipole contributions. The dipole current I' transforms under chiral flavour rotations
like the mass-like current M, so it couples to xYPT in the same way. Hence, there is only
one operator with I' at order egwd?,

2
b ~ ~ ~ ~
ch = %ﬁpr the., r= <1“>f : T=gr. (4.36)

where s is a free parameter. For the sake of completeness, we also note that there are
three additional contributions with I that enter at order egwd>. These are

b - 5h0 ona
LED® = Eﬂ%ﬁg? (TUU") +hee., L = emgﬂﬁ?r@ +h.c., (4.37a)
nf
b2 ~ ) o~
LM — 6EV2V O (k! (DM + " (TMT) ) +hec., (4.37b)

The s<f with z = D?, 0, M, and M’ are four more free parameters, and the second operator
in (4.37b) is another counter term. The impact of the term £}P * in the SM, where I — v
is a constant, has been discussed in [117]. The authors also estimate the parameter xX .

Further operators with covariant derivatives acting on H can be eliminated using PI.

Tensor contributions. Without loss of generality, the tensorial current is traceless in
Lorentz space, T‘/j = 0, so that its two Lorentz indices have to be contracted by either two
covariant derivatives or a field strength tensor. Hence, the leading contributions with T#¥
count as O(egwd*n.) ~ O(epwd?). The two available operators of this type are

LD’ = %EJSOV P (T UU”) +he.,  LFV = ;ETV;H%R (T (L™ +R™)) +hee.,
(4.38)

where fw = gT,, and the k7 are free parameters. This result is consistent with the list
of operators obtained in [203], which also includes terms that are quadratic in TH.

Four-quark contributions. The leading operators with one four-quark insertion con-
tain either two covariant derivatives or one quark-mass insertion. According to the modified
large n. power counting (2.40), the contributions to the QCD path-integral that generate
these operators contain two quark loops but scale as nz Therefore, the leading operators
count as O(egwd) = O(egwn?20?) and they can contain either one or two quark-flavour
traces, where, in stark contrast to operators that are not induced by the four-quark currents,
the second flavour trace is not associated with a large n. suppression factor. Furthermore,
operators with covariant derivatives acting on the four-quark currents can be eliminated
using PI, while operators with two covariant derivatives acting on the same coset-matrix
g can be eliminated using either the identity (4.13) or the EOM eq. (4.21).
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current Hg H, Hl_ Hl+ ﬁl—i_ H{ Hs Hp, Hoyy
SM  h; h, hl_ h;'_ f);'_ hi hg hy  hort
BSM S, S, Sf Sl+ 6? ST Ss S, Sor

representation 8 27 1

Table 10. Currents that couple to the QCD four-quark operators introduced in section 2.3 and
the derived parameters we use in yPT, cf. equations eq. (4.41), Lagrangian (4.44), and (4.46). The
table indicates the names for the SM and BSM contributions, as well as their representations under
GLR.

We first consider the operators that contain the octet contributions to the four-quark
currents H, (3.39) with x = [, 7, s (cf. table 10), and then proceed to the operators that
contain the 27-plet current (3.39) ﬁfr. The only leading octet operators are

(H,U,U"), | (H,U,) U*, <Hx(K/I\ + h.c.)>f , (4.39)

where U, and M denote the octet contributions to U u and M. In order to make contact
with the standard form of the four-quark xPT operators in the SM, we explicitly extract
the quark-flavour violating contributions by replacing H, — (H :p>§ Ad+h.c. . The resulting
order egwd octet contributions are

2
€
e p—— EVZYf O (Hs (UM + Hy (U U,) + b, (4.40a)
2b _ __1\S
LHM _%Hb <M + MT>d +h.c., (4.40b)
where the three parameters Hg, Hi, and H} are strangeness violating matrix elements of
linear combinations of the QCD four-quark currents (cf. table 10)
d
s bl

H,= </{;'Hl+ + K, Hy + kg Hy + K;HS> (4.41)

T

v with © = +, — 7, s. The only leading

with y = b, 1, 8 and twelve free parameters x
27-plet operator is

(U um)), = 2 (U507 + U507 57 (4.42)

Using the first identity of (2.60) to explicitly isolate the quark-flavour violating contribu-

tions, one has

(vusirvr)),

The resulting order egwd 27-plet contribution is

2
Nt mp—1 (neUgUML + (nf — 1)U, qUM) 9,73 + hee. (4.43)
s—=

2
L‘gDZ = —%H27 (nfUijU“E + (nf — 1)UM3UM3) +h.c., Hoyr= 52753;'_51111 . (4.44)
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Hence, the complete yPT four-quark Lagrangian is
Lo = cHP? 4 cHM 4 ooD” (4.45)

where the SM contribution is consistent with the standard expressions found e.g. in [114,
115, 186]. Using current (3.39), we split the scalar currents H, eq. (4.41) and (4.44) into
SM and portal contributions

H,=h,+5,, S, = hnyTVsi, i=1,2, (4.46)

where y = b, 1, 8, and 27. While the SM parameters hg, hi, and ho7 are fixed by SM
observations, the SM parameter hj, and the BSM parameters h,; with ¢« = 1, 2 have to be
estimated using non-perturbative methods such as the large n. expansion.

4.3.2 Flavour-singlet current contributions

The G g singlet current Q2 = w + S, contains a SM contribution w = 27/a, and a hidden
contribution S,,, but the SM contribution is implicitly integrated out when constructing
xPT, so that it cannot appear in the Lagrangian directly. Accounting for the hidden
current S, it is possible to construct additional chiral invariants by multiplying it by
each of the chiral invariants that contribute to the previously derived Lagrangians. Since
S, insertions are suppressed by a factor of § ~ n_!, the leading strangeness conserving
contributions to the resulting sum of invariants count as 63, while the leading strangeness
violating contributions count as egwd? and egwd>. The full singlet current Lagrangian is

Le = L0w s+ L7284 LowEW L350 = SuTygn1, (4.47)
where the strong terms are
Yuse = 2°CE + kMM + k0728 (4.48)
and the EW suppressed terms are
YyEW = HD? pHD? o (HM pHM  ( 9D? poD? TreW = kLY . (4.49)
The k,, are seven free parameters. In the following, we abbreviate
Tu =Yyse + Ty + Tus"W . (4.50)
The above result is consistent with the interaction Lagrangian used in [204] to capture the
coupling of the SU(3) xPT to a light Higgs boson. The treatment in [204] neglects the
chromo- and electromagnetic interactions captured by E}} as well as the 27-plet interactions

captured by ,CgD . Furthermore, the SU(3) xPT Lagrangian in [204] does not contain the
contribution £92, which only appears in the U(3) xPT.
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4.3.3 Stress-energy tensor
The complete LO xPT action contains the Lagrangian contributions
Lo =L + LM+, coPWV=rcl, oSV =rh+ieBV, (451
while the NLO xPT action contains the Lagrangian contributions
Luss = LE + LM + £ + £BP + LM + L8 + LBV + £ + Lo 50 + L7
(4.52a)
LoBW = LPPH 4 LM 4 LOH 4 DT 4 fVT 4 £owEW (4.52b)
as well as the ungauged WZW term I'7'¢ (4.28). In the next section, we use the trace of
the SM Hilbert stress-energy tensor to estimate the novel parameters k,, that appear in
the singlet current Lagrangian (4.47). Neglecting the contributions due to the S, current,

which does not appear in the SM, the trace of the Hilbert stress-energy tensor at order §2
is

5L
To = 2g’“’ﬁ ALy = —2LD —ack —aL® + TEV (4.53)
where
TEW = —OW _agh — 2cHP* —achM _ opdP* (4.54)

collects the contributions due to the EW currents. The charged-current contribution
L = 15 (w (4.55)

is also a part of the kinetic yPT Lagrangian (4.12). This term appears separately because
it contains a vierbein e/ when the theory is embedded into a generic spacetime with back-
ground metric tensor ¢g"”. Due to this vierbein, the derivative contribution for the kinetic
Lagrangian

w0
dghv

D2
1
0Ly _ cy - §£3W (4.56)

picks up a leftover term with a relative prefactor of —1/2.

4.4 Matching of xPT to QCD

So far, we derived the shape of the modified yPT Lagrangian in the presence of generic
external currents J = {S,, ©, M, L* R' T* T, s, 9, $;}. We now aim to provide
part of the means necessary to constrain the QCD portal sector Wilson coefficients at
energies above the mass of the charm quark using bounds on hidden sector induced low
energy meson transition amplitudes obtained from yPT.

A key element is that one has to estimate the 27 free parameters x € {kf, K7, Ky
k¥ }, which appear in the eyy and egw suppressed sectors. This then makes it possible to
translate bounds from hidden sector induced meson transitions into constraints on the
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external currents as they appear in the yPT Lagrangian. These currents are defined
such that they are identical to the external currents that appear in the low energy QCD
Lagrangian with three light u, d, and s quark flavours. To fully connect xPT to QCD in the
perturbative regime, it is also necessary to match this version of QCD to its counterpart
that includes dynamical charm and bottom quarks. We leave the work of matching these
two versions of QCD to future investigations, and instead consider only how to estimate
the k parameters in yPT. The six parameters /@19 2, /@1@, /-ilM , /-ilM " /Q%ﬁ, and R%R can be fixed

using SM observations, and we focus on those parameters for which this is not possible:

1. We estimate the seven parameters , that couple xPT to the external current S,,,
which vanishes in the SM. These parameters can be quantified using the anomalous
trace-relation for the stress-energy tensor (2.65). In the past, this technique has
already been used to estimate four out of the seven parameters [106]. Here, we follow
the same strategy to determine the remaining three parameters.

2. We estimate the free parameter xkp, which couples yPT to the chromomagnetic dipole
current I at order 62, and the combination of parameters /<;1M + /@%4’, which couple
XPT to the same current at order §3. In principle, SM interactions do contribute
to both dipole currents I' and T, and we expect that SM observations can be
used to constrain the order §3 parameters x% and x% that couple YPT to the dipole
currents. However, the order §2 SM contribution to the operator associated with the
parameter kr can be reabsorbed into the quark mass matrix, so that this parameter
is not fixed by SM observations. Instead, we estimate its value, and the values of /@%/I
and m%/[ ') by matching it to the lattice QCD prediction for the vacuum condensate of

the chromomagnetic operator, which is reasonably well known [162, 165, 166].

x
y’
grangian. These parameters enter into SM predictions only via the linear combina-
tions that constitute the octet and 27-plet coefficients hg, hi, and ho7, so that SM

observations do not yield enough information to completely fix their values. At LO

3. We estimate the thirteen parameters k¥, which appear in the yPT four-quark La-

in the large n. expansion, the factorization rule (2.14) can be used to estimate the xj
parameters [107, 108, 110-112, 205, 206]. However, this approximation fails to accu-
rately reproduce e.g. the Al = 1/2 rule in the SM, which is an approximate selection
rule for kaon decays that results from the fact that the octet coefficients hg 1, which
mediate only Al = 1/2 transitions, are an order of magnitude larger than the 27-plet
coefficient hg7, which mediates both Al = 1/2 and Al = 3/2 transitions. For this
reason, we expect that one has to include corrections beyond the large n. limit to ex-
tract order-of-magnitude accurate estimates of the portal sector Wilson coefficients
¢,; from bounds on hidden sector induced meson transitions. To obtain improved
estimates for the xk parameters, we adapt the strategies used in [106-108, 112, 205],
and neglect the contributions generated by the penguin operators Os;, Oy, and Os;.
Since these operators are generated at 1-loop they are suppressed by factors of (47) =2
compared to the tree-level operators O1; and O9;. The penguin operator Og; is also
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generated at 1-loop, but it is expected to generate the dominant penguin contribution
to kaon decay amplitudes [106, 112, 205-207].

4.4.1 Scale dependence of the external currents

Many of the external currents are scale-dependent, and therefore the estimates that one
obtains for the LECs and x parameters in the yPT Lagrangian depend on the scale at
which the external currents are evaluated. In general, the scale-dependence of the external
currents has to cancel with the one of the LECs and k parameters. If YPT is matched to
the version of QCD without the charm quark, so that there are no threshold effects, this
implies that the hidden currents can always be evaluated at some arbitrary higher scale,
say, iqcp = 1-2 GeV, provided that one adjusts the values of the LECs and x parameters
accordingly.

This approach has been used to deal with the scale dependence of the mass-like current
M and the anomalous axial singlet current R* — L* = 9* — 9"©,'6 which renormalise
according to [109]

M = Zy M"™ Dy = Zg o0 (4.57)

The factors Zy and Zj,; relate the renormalised quark current corresponding associated
with M and J* to their bare counterparts

— —,\ bare
Q = ZuQ™", Q' -Q" =2y (" -q")" . (4.58)
Extracting the renormalisation of the scalar axial current from (4.57) gives
(L' — RY) = Z5 (1" — RAPe — (1 Z51) orePere, (4.59)

where 9O = 9HOP¥® footnote 16 This equation reflects the fact that the axial anomaly
mixes the scalar axial vector current with the derivative of the pseudoscalar current 9,,0.
We can see explicitly that the xyPT Lagrangian is invariant under a change of the QCD
renormalisation scale, provided that it is written in terms of the renormalised singlet meson

field [109]
~ _‘I) I _q)bare
@_1<@ fo) —iZ, (@ i ) (4.60)

as well as the renormalised LECs

bo = Zpbg™e, mo = Zymg>e, 14 Ay = Zy(1 + Ab¥e) | (4.61a)
Hy = Z2HP™®, 14 Ay = Z2(1 + Abae) | (4.61D)
The scale-dependent values of the renormalised LECs by, mg, and Aq2 can now be fixed

by computing xPT observables in terms of the renormalised currents M = M (uqep) and
LF — RF = (L* — R*)(uqep). Of course, this renormalisation procedure only eliminates

The currents Jiny = {©, L" + R*, L* &+ R"} do not renormalise and are therefore scale-independent in
QCD [109], [section 6.6 in 208].
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divergences associated with the strong interaction. We emphasise that the yPT action
written in terms of the above fields and LECs still has to be renormalised as usual when
accounting for loop corrections starting at NNLO. As a result, one has to distinguish be-
tween the renormalisation scale of XPT p,pr and the renormalisation scale of QCD puqep,
which are not necessarily the same. In general, the renormalised LECs and parameters
depend on both scales. Here and in the remainder of section 4.4, we only consider the
dependence on pqcp, and so we suppress the dependence on p,pr in the notation.

In the following, we apply the above renormalisation procedure to the egw or eyy
suppressed currents J = {S,,, [, T, f)fL, Hli, H, s}, and absorb their scale dependence
into the values of the free parameters x. The upshot of this prescription is that, when
matching xPT to QCD without the charm quark , we can freely choose the renormalisation
scale uqep, even choosing a value well above the charm quark mass. Of course, this would
not work if we were to attempt to match yPT to perturbatively computed low-energy
observables in QCD, since choosing a large renormalisation scale pugcep > m. would mean
that we neglect precisely the non-perturbative contributions on the QCD side that dominate
the physics of the strong interaction at low energies. However, this is not an issue when
matching yPT to the results of non-perturbative computations, such as those done in

lattice QCD, where no expansion in w™!

is made. In fact, the scale pqep = 2GeV is
a standard choice when computing low-energy observables such as the quark masses and

condensates in lattice QCD with and without the charm quark [128, 148, 165].

4.4.2 xPT realizations of QCD operators

To establish a point of contact between xYPT and QCD that does not rely on a perturbative

1 we use a standard technique employed e.g. in [105-107, 109-112], and

expansion in w™
construct a set of well-defined LERs for QCD gauge-singlets as functional derivatives of the
path integral with respect to the external currents. For the sake of completeness, we outline
the general procedure and then summarise the resulting xPT LERs that are relevant to

the subsequent discussion.

Constructing low energy realisations. In general, the expectation value of any local,
gauge invariant QCD operator O; that couples to an external current J; is

B 0ln ZQ[Jj]

tr O; = , 4.62

O(w)p = (462)
where the von Neumann density matrix p encodes the state of the system,

ZolJj] = /Dgopexp(iSQ[cp] +i/d4a: Jj(a:)Oj(:c)> (4.63)

is the generating functional in the presence of external currents J;, and ¢ symbolically
denotes the quark and gluon fields. The yPT generating functional approximates the
QCD generating functional for small §,

In Zg[J;] = In Zy[J;] + O(6™) . (4.64)
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o 1 2 3

J H, % © L, R, Q@ M I T,
5k 0 0 1/2 0 1
O 0, 9, w Q Q, T Q Q Qu
snk 1 2 3/2 3 2

Table 11. Order in § at which we evaluate the LERs. The first row shows the order in § at which we
evaluate the yPT generating functional, the second row shows the ¢ scaling of the external current,
and the final row shows the resulting order in  for the LER. While a momentum suppression o< 92
counts towards the scaling of the external currents, a large n. suppression does not, because it
is associated with the structure of the QCD diagrams that couple to the external current rather
than with the current itself. The order in § at which we evaluate the yPT generating functional
is chosen such that we include the leading nonvanishing contribution for each operator. For Q, we
also include NLO contributions, since these enter at LO into the approximate factorised expressions
for the four-quark operators. Note also that the product of operators does not scale as the sum of
their individual suppressions. For instance, Q,Q" o< n29? o §, rather than §3/2 x §3/2 = §°, as
one might naively expect.

If an external current scales as J;(z) o 8%, then inserting this relation into the expectation
value (4.62) gives

0Sy
0J;

tr0y(a)p = 20U lgjé [;] 2

+0(6"F) =tr =p+ O(6"F) . (4.65)

Since this has to hold for any physical choice of p, one finds the LERs

65y
Y

Oi(z) +0(5" ) . (4.66)

Operators. The LERs of the colour singlet Lagrangian (2.10) and the quark bilinears
(2.21) associated with the L,, R,, M, and © currents are well established. At leading
order in §, they are [105, 107, 109, 184, 209]

_ 1 m2/\
QM:_nglM Q,u:_fggTng7 Q:—§fgbog, w:_ifgnif@' (4'67)

The LO contributions to @, and Qu count as order dn., while the LO contribution to Q
counts as order n.. In order to estimate the four-quark coefficients 2 at order 9*n2, which
is the first non-vanishing order, it is necessary to also track NLO corrections to the LER
of Q that count as 9°n.. This gives the expression

Q=573 (1+2Q0) g, (4.68)

where
1

AQNLO — 2](3

(45U, U™ + 2bo (4LsM +2H, M) ) + :é — emw (HpA +hec.)
(4.69)
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Note that this expression differs from it’s SU(3) counterpart by the appearance of the term
proportional to Ay, which does not exist in SU(3) xPT [105-107].

We apply the same technique to obtain LERs for operators associated with the egw
and eyy suppressed currents. We find that the LERs of the colour singlet Lagrangian (2.4)
and the quark bilinears (2.29) associated with the T,,, I, and S, currents are

_ -1
Q" = —fo (P UPUY + v + R™)) g, Q= fihorrg, T =-Tu. (470)
At NLO, the LER of the scalar quark bilinear Q is

Q= fito (e +2G"0) g (471)

where

~ 1 2 o~ )~ H@ ~
NLO _ D " M t r
AQNLO — 7 (" ULU" + 200 (k! M + 5 M) ) + el (4.72)

Finally, the LERs of the octet quark quadrilinear (2.52) and (2.57) associated with the H,
currents are

.1 o~
0.5 = 5.3 (K& (UUM + w7 (UM U+ o (M + MT) ) (4.73)
where © = +, —, 7, s, and the LER of the 27-plet quark quadrilinear (2.58) associated with
the .6l+ current is

1
2n970) 5 = 3 forar (nUFSULL + (ng — 1)UMIULS) . (4.74)
Lagrangians. Using the above LERs, one obtains approximate yPT expressions for var-
ious individual contributions to the QCD Lagrangian

£y = cif +cg, Ly =Ly, cy =", £y =Ly . (4.75)

Note that the mass-like four-quark octet term contributes not only to the LER of the
four-quark Lagrangian, but also to the LER of the mass Lagrangian.

4.4.3 Determination of selected parameters
, ki, KM+ kM’ and k. As mentioned in the

Y
. . . . . 2
introduction to this section, we do not estimate the five parameters x2, ki — g}/ k%

xT

We now estimate the 22 x parameters k7,

and k%, which couple YPT to the I and T#” currents at order egwd>, and leave this work
to future investigations. To illustrate the use of the LERs and to prepare for the estima-
tion of the four-quark parameters ¥, we first discuss two well-known computations that

match xPT to the lattice QCD predictions for the quark condensates and the topological
susceptibility of QCD.
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Quark condensates. The LER for the quark bilinear @ eq. (4.68) relates the parameters
bp and 4Lg — 2H» to the values of the chiral quark condensates (2.6). In the isospin
conserving limit my, mq — muyq = (Mmy + mq)/2, one obtains the xPT predictions [105,
106]

Yud = fibo + bimua (4Ls + 2Hs) | S = fibo + bgms (4Ls + 2H2) . (4.76)

The quark condensates are proportional to by and degenerate at LO. Their splitting is
captured at NLO by the parameter 4Lg + 2H>. Using the lattice values of condensates in
eq. (2.6) yields the estimates

Sud — Mg Y
by = ”}32( nj T; dd)s = 47 (387 & 13xp & 2312¢) MeV = NNLO (4.77a)
0 s u
Y — N, -
ALg + 2H, = m = (47) 72 (0.48 £ 0.022xp & 0.261¢) £ NNLO . (4.77b)
0 s T u

While by depends on the QCD renormalisation scale in the same way as Y.q and g, the
dependence cancels in the expression for 4Lg + 2H5, which depends only on the renormal-
isation scale independent ratio of the quark condensates (2.7). Since Lg can be estimated
from the n-meson mass splitting and mixing angle, cf. eqgs. (4.35) and (D.22), the above
expression can be used to estimate the value of the counter-term parameter

2(47)2 Hy = 0.27 4 0.0336xp % 0.261,; &= NNLO . (4.78)

This parameter does not enter directly into perturbatively computed S-matrix elements,
but it is needed for the large n. estimate of the four-quark parameters x3.

Topological susceptibility. The LER of the quark condensate can be combined with
the LER of w eq. (4.67) and relation eq. (2.12) to express the topological susceptibility
(2.11) as a combination of yPT parameters. Since diagrams with internal quark loops do
not contribute to the QCD path integral at zeroth order in the large n. expansion, QCD
behaves similar to a pure YM theory with no quark fields in this limit. Hence, a direct
estimate of the topological susceptibility using the LO LER (4.67) for w yields an estimate
for the quenched susceptibility [109, 148, 149, 152]

2
Xo = f220 = (188.1 4 2.4exp)* MeV? £ NNLO . (4.79)
nf
Combining this result with the LO estimate of the quark condensate eq. (4.76) and relation

(2.12), one obtains the estimate

f§_me  (m7h) 2 L _ /o (4.80)

3
= e — J— _|_ ,
x mi bo mg  mZ  2m3% —m2  (76.9 4 1.3ex,)* MeV* + NNLO

for the topological susceptibility of QCD, which lies within the error bars of the lattice
result (2.11). See appendix D.1 for the definition of the pion and kaon mass parameters

my and mg.
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Flavour singlet contribution. We estimate the three new £, coefficients that appear
in the S,, contribution to yPT by following the strategy used in [106, 210, 211], where the
trace of the QCD stress-energy tensor (2.65)

BsY =—To— LY +Lo+LyH— LY +2L5 (4.81)

has been used to express the gluon-kinetic term T as a linear combination of the trace
of the stress-energy tensor and the other terms in the QCD Lagrangian. Using the yPT
expression for the trace of the stress-energy tensor (4.53) as well as the LERs for the other
terms in the Lagrangian (4.75), this gives the LO LER of the gluon-kinetic term

BT = Ly — LY — LG +2L{ - T

= 2L+ 3L 4 (L + LD+ £)7) 5 (ch + L) (4.82)
In principle, the contribution to the trace of the stress-energy due to the quark masses
receives a further correction associated with their anomalous dimension [157, 158, 160],
and we expect the same to hold for the contributions due to the other external currents.
However, since the term Dg“’ has to be independent of uqgcp, we can choose to evaluate
the above relation at a sufficiently large renormalisation scale pgcp > 1GeV, where the
impact of quantum corrections to the external current contributions to the stress-energy
tensor is small due to asymptotic freedom. With this choice, and provided that we also
evaluate S, (uqcep) at the same scale, the above relation becomes a valid approximation.
In addition, the S-function at this scale is well-approximated by its leading term 5 =
Bo + O(w™(uqep)). Hence, choosing to evaluate relation (4.82) at puqep > 1, the seven
coefficients that appear in Lagrangian (4.47) are given as

0

Y B’
While the coefficients k0%, kM , ,%HD2, and kM are known [106], the coefficients H’QDQ,

w w w w
@2

r
o, and k,, are a new result.

K

Chromomagnetic contribution and quark gluon condensates. We estimate the
parameter kp and the linear combination K;IM + /1%/[/ by matching the yPT prediction for
the condensate of the chromomagnetic quark bilinear Q to the quark-gluon condensates
eq. (2.32). Using the LERs (4.70), the condensates are given as

Yas o
(4m)>

EG d /
ue — fgbolﬂ“ —i—bgmud (Ii%/[ + K%J) ,

) fabokr + bims <'€IM +/‘6%4) - (4.84)

The 47 enhancement of the condensates is a consequence of definition (2.28), in which we
have not included the loop factor into the operator, but written it as an explicit contribution
to the Lagrangian. Matching this prediction to the lattice and QCD sum rule values of the
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condensate from eq. (2.33), one obtains the estimates

MsLGud — MudBGs

KT = = 1.21 4+ 0.06¢xp + 0.061,t £ NNLO . 4.85a
r AiPT f3bo(ms — muya) P fat ( )
/ Ygs— X
M M Gs — 2Gud 9
= =—(4 .20 £ 0.004¢xp £ 0.3115¢ = NNL .
KT + Kp AiPTb%(ms mp—— (47) 77 (0.20 £ 0.0046xp £ 0.31154 0O)
(4.85b)

The negative prefactor of /flM + n%/[/ and the fact that its value is consistent with being
zero reflects that Y ¢ has been estimated to be slightly smaller than ¥gyq, while its value
is consistent with both condensates being equal to each other within their error bars.

Four-quark contributions. Written in terms of the parameters j and the Wilson

coefficients c¢,;, the octet and 27-plet coefficients in the four-quark Lagrangian are given as

hyi 4VS]LVu [ (cﬁi + (nf + 2)6;41-) — £, (c9; + e + 4ty c5i + 4&2064 , (4.86a)
h27i == 4‘/Suvudl'€27n:iiclm s Cii = Cyj + Cki » (486b)
where ¢ = 0, 1, and 2. Following the convention introduced in section 3.3.2, we denote the
SM Wilson coefficients as h, = h,g and ¢, = ¢,9. See also sections 2.1 and 4.3.1, where
we define these coefficients. Since the coefficients h,; have to be independent of the QCD
renormalisation scale, the scale dependence of the Wilson coefficients cancels with the scale
dependence of the thirteen xj parameters.
The large n. factorisation rule (2.14) can be used to estimate the parameters at LO
in § [110, 111]. The main idea is to combine the vacuum saturation hypothesis eq. (2.14)
with the LERs of the quark bilinears (4.67) and (4.68) to obtain approximate large n.
realisations for the octet and 27-plet operators. These can then be compared with the
exact LERs for the four-quark operators (4.73) and (4.74) that have been obtained by
varying the yPT with respect to the ﬁf and H, currents. The resulting approximate large
n. realisations for the octet operators are

1 — —~ S
i =3 fot (4L5 (UMU) + (ALs + 2Hz) bo (M + M) ), 0,3 = f{U"U,,, (4.87a)

—S 2 S 1 S
0 5=/ (mU”dUu T ons <UHUM>d> 0% =f3 ( PO+ — onf + (UFUL); ) , (4.87b)

8
and the approximate large n. realizations for the 27—plet operator is

1 1
Ofst = u“iu - — | U*5U,° . 4.87
l du fO ( 4n8> Mu+ fO ( 47”L§_> d%¥pu ( C)

where (o) = < A§>f. Matching these expression to the exact LERs (4.73) and (4.74), one

7

obtains the LO estimates & [110, 111]

_ _ 1 4 _ nay
Rp =2, H;:T 5 Ryt = — = 2, (4.88a)
g ng
4 4 1
E_ — E"F =—=—, _E_ = —— = 4’ 4.88b
1 1 n¢ 3 8 8— ( )
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and

1 b2
R = 5 fO 4L5 = 2.00 £ 0.16xp & 0131, (4.89a)
0

1
Ry = 272 (4L8 +2H) = 1.45 £ 0.106xp £ 0.8}, - (4.89Db)
0
The remaining parameters ry
the parameters /@t’r and kg7 are renormalisation scale independent, while the xy run as
b~ 32 24/ fo This is consistent with the scale dependence of the SM four-quark Wilson

coefficients: in the large n. limit, the ¢; coefficients with ¢ # 6 are in fact renormalisation

vanish in the large n. limit, £ = 0. In this approximation,

scale independent, while c¢g remains scale-dependent and runs as by 2 [107, 212, 213]. This
running of c¢g, which we have absorbed into the values of the Ky, is the physical cause
behind the enhancement factors b3 / f& of the singlet operators and cancels the suppression
associated with the factors Ls and 2Lg + Hs.

Moving beyond the large n. limit, we expect that the resulting corrections to the k¥

Y
coefficients should depend only on the operator that is being factorised,

KZ: = kxﬁ; , Ko7 = kovRar . (4.90)

Since the 27-plet contribution proportional to ko7 is obtained by factorising the same
combination of QCD operators as the symmetric octet contribution proportional to Hy,
we also expect ko7 = k™. Keeping only contributions from ci;, c2;, and cg;, the resulting

predictions for the octet and 27-plet coeflicients can be written as

Etel,, ke, b2
hsi V Vad 124 20 4 ALy S kScei | 4.91
2 su ( 2n§_ + ong + fo C6i ( a‘)
1 2
hii = — VI Vaa | K cly — ke + 4L5 kicei | (4.91b)
ng 13
b2
hyi = 2VsuVud (4Lg + 2H>) fo kice; (4.91c)
0
na7 N +1
hori = 4VSTuVu " 21@*0121- : (4.91d)

The correction factors k¥ can be fixed by matching them to kaon decay amplitudes.
Neglecting electromagnetic contributions, the experimentally determined amplitudes for
K — 7w decays [144]

AKY = 7t77) = (277.22 £0.120p) eV,  AKT — 777%) = (18.18 £ 0.04eyp) €V,

(4.92a)

A(K? — 797%) = (259.18 + 0.22,) €V . (4.92b)
They can be parameterised as [111]

A(K® = mta) = Ay + Agjo A(K* = 7ta0) = %Ag . (4.932)

AK? = 7%7°) = Ay g — 2455 . (4.93b)
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The amplitudes A;/, and Az, are associated with Al = 1/2 and Al = 3/2 transitions,
respectively. In the limit my, mq — myq, they are [171]

m2 —m2 1 m2 —m25
Aijp = EEWKZIT (hs + 3h27) ; Az /e = EW —L-——" " hay . (4.94)

Hence, the absolute values and relative phase of the complex currents are

|hg| = 2.23 + 0.09,yp = NLO, arg hg — arg hay = (45.03 £ 0.77exp)° £ NLO,
(4.95a)
|har| = 0.0425 + 0.0018yp + NLO . (4.95D)

The final parameter h; can be fixed by matching it to K — v decays [112], which
results in

hy = (0.37 £ 0.05exp ) g » |hi| = 0.82 £ 0.12¢,p = NLO . (4.96)

Finally, inverting equations (4.91), one obtains

2 1 )
‘/;J{lvudk_CIQ = §h8 + §h27 — hl R V:{lvudkscﬁ = 4{2()2 <3h8 — 2h27 + 2h1) R (497&)
0

5
Vi Viak T el = hot - (4.97Db)

Therefore the absolute values are

VSLVudk—C;Q’ = 0.69 % 0.13ex, = NLO, (4.98a)
ViiVaak™* ey | = 0.106 4 0.0056, + NLO, (4.98b)
Vi Vaak™c| = 0125 4+ 0.013¢x, % 0.0151,; + NLO . (4.98¢)

Since the values of the SM Wilson coefficients are well known even at relatively low scales,
such as puqep = 1GeV [179], this relation makes it possible to extract estimates for the
correction coefficients k. In turn, these can be used to constrain the shape of the portal
Wilson coefficients c1;, c2;, and cg; with ¢ = 1, 2 using bounds on the corresponding hy;
obtained from searches for hidden sector induced meson transitions. Keep in mind that we
have considered only the leading contributions have for example neglected the impact of

the penguin operators associated with cs;, c4;, and cs;.
4.5 Transition to the physical vacuum
The two SM mass like terms (4.37b) and (4.40b) contain the tadpole contribution

iegw fobo

/ S !/ —1 d
S hy (m, @ e, b=y — Rp (m; 7G>s o (4.99)

LY+ L™ D

which generates a finite VEV for the PNGB matrix ®. When computing purely hadronic
kaon decay rates in the SM such as K — 7w and K — nww, diagrams that contain tad-
pole vertices exactly cancel with the other contributions from the mass-like terms (4.37b)
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and (4.40b), so that the final transition amplitudes do not depend on hj [42, 114, 115].
This reflects the fact that the mass-like terms can be eliminated entirely defining a rotated
meson field [114]

g =WigWw', (0]g'10) =1 . (4.100)

Accounting for the impact of the chromomagnetic dipole Lagrangian (4.37b), which is often
neglected [114], the appropriate rotation matrices are

W — e~ il@nd7+8LX¢) _ 1 + O(egw) W — eilarA7+B8rAe) _ 1 + O(egw) (4.101)

where the angles ay, /g and Br /g defined by

féi = (’iz = — tan(arg hg)) , (41023)
ms £ m m

lap +1B8L| £ lar +1Br| = arctan(eEWyhg|s d) ~ epw|hy| (1 + 2d) , (4.102b)
ms + mq ms

measure the size of EW contributions to the light quark masses. After this field redefinition,
the entries of the diagonalised quark mass matrix

m' = Wmo(h,))W , o(x) =1—egw (a:)\g + h.c.) (4.103)

correspond to the experimentally determined quark masses. In general, using the redefined
external currents

M,:m,—I—S;n:W(MO( g—FSb)—i—Ewaips'y)W . (4.104)
and
—_ 7-i~ . —_
L,=wiL,w, R,=WRW', O =0+i(nWW) . (4.105)
in place of the original ones, the net effect of the field redefinition is two-fold: i) both
mass-like terms E{]I M and Ell} are eliminated from the yPT Lagrangian, being reabsorbed

into M’ and ii) while these mass-like term still contribute to Yy, in contrast to (4.83),
they now contribute with new relative prefactors of

UM _ M i M :50 : (4.106)

The rotated mass and octet Lagrangians are
. = ciP* 4 op>* (4.107a)
oM = ’%22()01\7’ the,  LHM - —EEWQfgl”)Hb <ﬁ’ + WZ +he,  (4.107b)

while the rotated G g singlet contributions to the xPT Lagrangian are
L350 = Sy Tygnt LBV = 5 1BV, (4.108)
where
BoTpse = 2L8 +3L3" + 4, BoYuEY =2 (Ll + M) Aoy =2ch
(4.109)
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4.6 Expanded Lagrangian

The final Lagrangian that captures the LO interactions between the light mesons and each
of the external currents is

LEO = Ly + Ligs + LWV + LBV 4 o] BV (4.110)
where the strong contributions are
v =LY + LT+ LY v = Ligs + (4.111)
and the egw suppressed contributions are
A 8 e o I o s S o A A W b))

The individual terms are given in Lagrangians (4.12), (4.19), (4.29), (4.38), (4.107) and (4.108).
To ease the application of this result to phenomenological computations, we decompose
the Lagrangian into individual contributions that mediate either purely hadronic meson
interactions or the coupling of xPT to specific combinations of the SM and portal currents.
Although the final yPT Lagrangian contains interactions with both one and two photons,
we restrict ourselves to explicitly listing interactions with at most a single photon field. This
is sufficient for capturing a large number of interesting hidden sector induces transitions,
such as e.g. ™ = YYgark-

Order 62. The gauged kinetic Lagrangian (4.12) 552 contains the ungauged kinetic
Lagrangian

Lo = i 5 () (4.113)
and couples the mesons to the photon current via the interaction
A N
LY = f3 (up (7 —10)); (4.114)

It also couples the mesons to the hidden currents V" and /‘7;!‘ via the interactions

LV = g2 <V}'“uu>f , J - <V’“?Au>f : (4.115a)
LoV = f2 <i7;ﬂuy>f , v =3 (V, ’~|A“>f . (4.115b)

The rotated mass Lagrangian (4.107b) and the anomaly Lagrangian (4.19) contain the
purely hadronic mass-terms

cm = o 32[’0 !

2,2
+he., of — _Jomog (4.116)
2n¢

and couple the mesons to the complex scalar S/, current and the pseudoscalar Sy current
via the interactions

2,72
Lpm = fObOS’ +he s = 107055, (4.117)
nf
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Order §3. The order §2 contribution to the rotated singlet Lagrangian (4.108) couples
mesons to the S, current via the interactions
S
L1855 = Fw (2(£5 +£3%) + 3Ly +4£8) (4.118)
0
and the WZW Lagrangian (4.29) couples mesons to the hidden currents V" and V#. The
coupling to V}" is mediated by the Lagrangians

2n
nVy . =2le . W, v, p, o
Lnevi — 4!(27T)26W,m< V) (4.119a)
2n, 1
VIA _ / ~v . —~ . ~
Lot = 74!(2;)26#1,,)0 <Vl“ ({IZ’J + 2rA",u"} —iu (I} —F)u’ —i{l} — rx,upu”}) >f ,
(4.119b)

and the coupling to V}# is mediated by the Lagrangians

2n —~
neVe i . W, v, p. o
Lu = 4!(27r)26“”P"< iV, v >fv (4.120a)
2n — 1
VA y o
EZ = W;)QE#VPU <‘/7/M ({2'2;) —|—’f’[j\p’u¢7} —iu (lg —?Q)U,U _ l{lA _ rA,u”uU}) >f
(4.120b)

Order egwd. At this order, the kinetic-like Lagrangians (4.40) and (4.44) that appear
in the rotated four-quark Lagrangian (4.107a) generate additional contributions to the
kinetic-like term

2
2 €
£ = IO (G ), 4 ) + e (4.121a)
2
2 EEW
L9 = —Tfohw (neu, Ut + (ng — Duy,Suts) + hee. (4.121b)

and couple the mesons to the photon current via the interactions

2
€ ~ ~
LhoA _ _%fo (hs ({u, ™ — B35 4+ B S, + hee. (4.122a)
erw 2 - - -
£ = B (5 — )R+ Fa 0+ (g — 1) (P, 0%+ 2740 + e
(4.122b)

They also couple mesons to the hidden vector currents V;* and V/# and the hidden scalar
currents Sg, S1, Sp, and So7. Neglecting strangeness conserving contributions generated by
interactions involving V;*¥, the coupling to V}"* is mediated by the octet terms

2

4= I (v ) + e (4120)
2

£ = BT () hiFad ) + e (1.123b)
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and the 27-plet terms

Gwa EEWf
528‘6 == h27nfu#dvu3 +hc., £f)AVz == —BWJo h27nfrAudV +he . (4.124)

The coupling to V,** is mediated by the octet terms

2
hov, _ €BWJ{ v > v %
e = IR (0 WY (W 4 udTF)) fhe, (41250)
2
hAV, _GEWfo gt = s = s{rp
LMV = - ER0 (s ({V7sFan =t ), + MiFad V) +hec., (4.125b)
and the 27-plet terms
2
€ G
£ = 0 (o (1,390 V) (4.1262)
+(nf - 1) (Vuguuu + uMd ru)) + h.c.
2
EZAVT _ _EE\;/fo . (nf (Vl:fi(?Au Ia,)t + "Audv ) (4.126b)
+(ne = 1) (V7 §Faus +FaulVis) ) + bee. .

Finally, the coupling to the S, currents with y = b, 1, 8, 27 is mediated by the octet terms

2

ngs _ _fE\;/fO (Ss (uu™yy + S1utdu,) + hee. (4.127a)
2

£85 = P (53 7h) — 1) + SiFhu) + e (1127)

and the 27-plet terms

2
£ =~ g (uul + (e — D) + b (41282)
2
€EEW ~ ~ -~
£ = P05, (e (w7 — 1) ) + (e — 1) (Fagfus + wdP5)) + e
(4.128b)

Order egwd?. At this order, the gauged kinetic Lagrangian (4.12) couples the mesons
to the photon the weak-leptonic charged currents via the interactions

EAW _fO < rAu>f ) ng = —f02 <u#|€V>f . (4.129)

It also couples the mesons to the hidden current /V\;“ via the interaction

LV = g2 <Wlm>f . (4.130)
The rotated singlet Lagrangian (4.108) couples mesons to the S, current via the interactions
E/SWEW 25 (ﬁha 5262 + LZ{)A + cz&A + L;hm) , (4.131)
0
where
2h
prhm % o (70 + ﬁﬂi +he. (4.132)
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Order egwd3. At this order, the rotated singlet Lagrangian (4.108) couples mesons to
the S, current via the interactions

25,
[ISEW _ BS (L2 4 £2% 4 7). (4.133)
0

where

3b
L) = %ﬁpﬁ +h.c. (4.134)
The dipole Lagrangian (4.38) couples mesons to the hidden currents V¥, V# and T# via

the interactions

T9? _ CEW D2 /Zmv TV _ €EW LR /FH
L, = 7 K <TT uuul,>f+h.c., L, = To K <TT IAW>f—|—h.c., (4.135a)
LTV — E%V,{g? (T2 (up(1aw = Fav) + (Iap —?Aﬂ)uy)>f +he. (4.135b)

Finally, the WZW Lagrangian (4.29) couples mesons to the hidden currents V/* and V.
The coupling to V" is mediated by the term

n 2n, v o v o 14 o
Lot = 4!(2w)2’€uupa<‘/2“ {7, u”} — 1wl u” —i{ly, uu’})) (4.136)

and the coupling to V* is mediated by the term

P — /1
LY = e (V2 (GO0} i~ (fwu})) L (@

5 Portal interactions of the light pseudoscalar mesons

In this section, we illustrate the information encoded inside the yPT action derived in
the previous section by extracting a set of concrete interactions. In particular, we expand
the xPT action in terms of the meson matrix ® in order to extract the bilinear and
trilinear terms that are induced by the hidden messengers and that contribute to meson
decays with at most one SM meson in the final state. These decays are among the primary
channels for production of hidden particles at fixed target experiments, such as K+ — 7ts;,
K+ - 1*¢,, and 70 — ~yv,. They also include invisible decays of neutral mesons into light
hidden fields, which can be constrained with collider or fixed target observations, such
as [85, 214].

In section 5.1, we list the portal interactions that result from expanding the portal
xPT Lagrangian up to quadratic order in the meson matrix ®. Whenever relevant, we
additionally show the contributions that originate from the SM xPT action. We refer to
appendix D for a more detailed discussion of the expansion procedure. In section 5.2, we
then evaluate the flavour traces extracted in section 5.1, and provide the interactions that
couple the individual singlet and octet mesons to flavour blind hidden sectors.

The SM xPT Lagrangian mixes the neutral singlet and octet mesons with each other,
so that they do not coincide with mass eigenstates of the theory. The diagonalisation
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procedure used to construct the mass eigenstates and the corresponding mixing angles is
well established and reported in appendix D.1 for sake of completeness. In addition, cer-
tain one-meson portal interactions mix the SM mesons with the hidden spin 0 messenger.
At LO in eyy, it is not necessary to diagonalise these interactions, which can be treated
perturbatively when computing microscopic scattering and decay rates. To facilitate com-
putations in which it is necessary to re-sum the mixing, we present an explicit computation
of the mixing angles between SM gauge eigenstates and messengers in appendix D.2.

5.1 One- and two-meson interactions

Here we list the one- and two-meson interactions, as described above. In general, the
one-meson interactions mix the SM mesons with hidden sector particles or mediate non-
hadronic decays into some combination of leptons, photons, and hidden particles. The
two-meson interactions mediate semi-hadronic decays with a single meson in the final state.
Due to the mixing between mesons and messenger particles, pure SM interactions with two
or three mesons can also contribute to processes with messenger fields in the final state.
Therefore, whenever relevant, we list the pure SM terms contributing to such processes.

Order 62. At this order, the photon Lagrangian (4.114) encodes the SM two-meson
interaction

LY = —1(vi[®,0,®]) (5.1)

which mediates radiation of virtual photons. This interaction also contributes to decays
with associated photon production, such as ¢; — ¢;vsi and ¢; — ¢jyv,,.

The kinetic-like Lagrangians in (4.115) couple xPT to the portal currents V}** and V;*
via the one-meson interactions

Eng =—fo <W/M8uq)>f J Egvr = fo <V;,Mau‘l’>f J (5:2)

and the two-meson interactions

i i
£§>¥l -9 <V;N[¢7aﬂ¢]>f ) ﬁg‘;T 9 (VI!'[®,0,®]) , (5.3a)
1 1
ﬁgyl - 5 <V2M[¢7 [¢7 VAM]]>f ? Eéyr - 5 <V;“Iu[¢’ [¢7 VA'U’]]>f : (53b)

The one-meson interactions mediate decays such as ¢; — €,&, and ¢; — £,135;. They are
also responsible for invisible neutral meson decays into hidden particles. Even though these
channels are not directly measurable experimentally, their relative weights compared to
decays with invisible SM final states constrain the coupling of mesons to NP, complementing
the constraints obtained from decays that feature observable SM final states and hidden
fields. The two-meson interactions mediate decays such as ¢; — ¢;sis1, ¢; — ¢4, and
¢; — ¢jyv,. The decay ¢; — ¢;yv, producing a photon receives contributions from both
(5.3a) and (5.3b). However, diagrams that contain the interaction eq. (5.3a), which does
not involve photons directly, also have to contain a SM interaction (5.1), which radiates
the required photon. If the hidden sector contains secluded neutral particles X, which
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can act e.g. as DM and interact with the SM only via the hidden field, the two-meson
interactions can also give rise to decays mediated by an off-shell messenger exchange, such
as ¢; — quvz — QZ)JYX

The quark-mass Lagrangian in (4.116) couples xPT to the imaginary and real parts
of the portal current S/, via the one- and two-meson interactions

L =~ fobo (@ Im S, ), , Lop =3 (@ Res),) . (5.4)

These one-meson interactions are similar to the one in (5.2), which couple xPT to V; and
V., and mix the SM mesons with the hidden spin 0 messenger and mediate neutral meson
decays into hidden spin 0 particles. The two-meson interactions mediate decays such as
¢i — ¢js, and ¢; — ¢jsps;. Like the interactions (5.3), they can also give rise to decays
with photons in the final state, such as ¢; — ¢;s7, as well as decays into secluded particles
X that are mediated by an off-shell messenger exchange, such as ¢; — ¢;st — ¢; X X.

Finally, the anomaly Lagrangian in (4.116) couples xPT to the portal current Sy via
the one-meson interaction

2
£ = f,"08,0, (5.5)
ng

which mixes the singlet 71-meson with the spin 0 messenger.

Order 3. At this order, the singlet Lagrangian (4.118) couples xPT to the portal current

S,, via the one-meson interactions

2
[iSe = Swgpn o = Jomogg (5.6)
Bo nf

and the two-meson interactions

S., .
L = & (2(£5 +£52) +3L53 +4£5: ) | (5.7)
where
o2 1 m 0 m% 2 m bo 2
L= 5 (0u@0"®),  Lhp=-500% L= (®m) . (58)

The one-meson interactions (5.6) mix the singlet 7; with spin 0 messenger particles, but
this mixing is negligible because it is strongly suppressed by the QCD theta angle. The
two-meson interactions eq. (5.7) are similar to the one in (5.4). They mediate decays into
spin 0 messengers, such as ¢; — ¢;s; and ¢; — ¢;7vsk, as well as decays into secluded
particles X, such as ¢; — ¢; X X.

The WZW Lagrangians (4.119a) and (4.119b) couple xPT to the portal current V}*
via the one-meson interaction

7= g )
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and the two-meson interactions

£ = G L (VGBI [0.0°0]) 200 R)) (510

Finally, the WZW Lagrangians (4.120a) and (4.120b) couple xPT to the portal current
V# via the one-meson interaction

neVi A €uvpo 3 po m
L = —(P Vit 11
[ (47T)2f() 4 < {VA > U }>f ’ (5 )

and the two-meson interactions

Ll = S (VI BV 0,00} + 4{[0, ], 0°@) — [0, (v, 0" 8}

(5.12)

The one-meson interactions egs. (5.9) and (5.11) mediate decays such as ¢; — v, and
di — Y&, while the two-meson interactions (5.10) and (5.12) mediate decays such as
¢i — ¢jyv,. Notice that the WZW action is the only contribution that mediates non-
hadronic meson decays with a spin 1 messenger particles in the final state. In particular,
the order §° Lagrangians (4.22) to (4.27), which one may expect to do so, do not mediate
such transitions.

Order egwd. At this order, the octet Lagrangians (4.121a) and (4.122a) encode the
strangeness-violating SM two-meson interactions

chy = —GETW (hs (0, D DY, + hy 0" ®30,P) + h.c., (5.13a)
£has = _ 6Eivhg ({0,®,[®,vA]}5 + he. . (5.13b)

The 27-plet Lagrangians (4.121b) and (4.122b) encode the additional strangeness-violating
SM two-meson interactions

[ EETW hor (ng0 @9, ®5 + (ng — 1)9, L0 ®%) + hec. (5.14a)
£ = =1 B hyr(ng — 1) (([®, V450" 95 + ,04(®,v4])3) +he. . (5.14D)

These interactions mix kaons with pions and n-mesons, and also mediate decays such as
¢i = ¢jlaly, where both charged leptons are of the same flavour. Similarly to (5.1), the
latter interactions also contribute to decays with associated photon production, such as
¢i — ¢;vs; and ¢; — ¢;yv,. The octet Lagrangian (4.123) couples xPT to the portal
current V' via the strangeness-violating one-meson interactions

Lhovi = % (hs (V14 + VIS) + M V) 9,05 + hec., (5.15)

and the strangeness-violating two-meson interactions
£hov — iGETW (s (V44 VI%) + W) ([@, 0,05 + hec. (5.16a)
£V = eEW (s (V14 + VIS) + haV/) ([0, [0, va, ] + b (5.16b)
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The 27-plet Lagrangian (4.124) couples xPT to the portal current V" via the strangeness-
violating one-meson interaction

L = EEWfO harnsVIta,®,5 + h.c. (5.17)

and the strangeness-violating two-meson interactions

£ = EEthmfv U ([®,0,]) + hec., (5.18a)
LAY — 6E"thmfv U ([®, [®, vl + hec. . (5.18b)

The octet Lagrangian (4.125) couples xPT to the portal current V¥ via the strangeness-
violating one-meson interaction

LoV = —% (hs (V24 +VES) + hV) 9,08 + b, (5.19)
and the strangeness-violating two-meson interactions
chave — GETW (2hs ({[®, V¥], 0,0} (5.20a)
+ (hs (V4 + V) + B V) ([@,0,0]5) + bec,
L' = X (2hs ({0, V2], [0, vaul} (5.200)

+ (hs (VIS + V) o V) ([, (@, va,]]);) + hec.

The 27-plet Lagrangian (4.126) couples xPT to the portal current V* via the strangeness-
violating one-meson interaction

LoV _eEVQVfO nghorVEC0, @5 + hec. (5.21)
and the strangeness-violating two-meson interactions
LhaVr — EETWh27 (g ([®, au¢]>s Vs (5.22a)
+2(ns — 1) (([®, VE]) 10, P75 + 0, P5([®, VL])7)) + hec.
£33 = B hag (ng ([, [@, va,]]); VA (5.22D)

+2(nf—1)(<[¢’Vm]>3<[¢a"ﬁ]>i+<[¢7VAH]> ([®, V7)) +hee. .

The one-meson interactions egs. (5.15), (5.17), (5.19) and (5.21) are similar to the one-
meson interactions in (5.2) and (5.4) and mediate only invisible decays. The two-meson
interactions egs. (5.16), (5.18), (5.20) and (5.22) are similar to the interactions (5.3), (5.10)
and (5.12). They mediate decays with photons in the final state, such as ¢; — ¢;vyv,, as
well as decays into secluded particles X, such as ¢; — ¢;v), — ¢ XX.

Finally, the octet Lagrangian (4.127) couples xPT to the portal currents S, via the
strangeness-violating two-meson interactions

£a2s EEW (Ss (9, D)@ + 510" ®39,P) + h.c., (5.23a)

L5 =i GETWSS ({0,®, [®,v4]}Y, + hec., (5.23b)
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while the 27-plet Lagrangian (4.128) also couples xPT to the portal currents S, via the
strangeness-violating two-meson interactions

—1

LeS = —GETanSw <6M¢38“¢3 + ”fnaucbugamfl) +he., (5.24a)
f

L8 = —i EETW(nf —1)So7 ([®,Vi]10" &5 + 0, [®,Vi]’) + hec. . (5.24b)

These interactions are similar to the two-meson interactions in (5.4). They mediate decays
such as ¢; — ¢jsg, ¢; — ¢jspy, and ¢; — gijX, with secluded particles X in the final
state.

Order egwd2. At this order, the kinetic Lagrangian (4.129) encodes the SM one-meson
interactions

£§>W =—fo <|LVLV8;L¢>f ) ﬁéw = —1ifo <|€V[¢>VAM]>f ) (5-25)
and the SM two-meson interactions
i 1
L2 = —5 (v [®,0,®]) , Ly =5 (@ [@va ]l - (5.26)

The one-meson interactions mediate non-hadronic charged meson decays such as ¢; —
LqVq, while the two-meson interactions mediate semi-hadronic three-body decays such as
¢i = ¢jlqv,. The kinetic Lagrangian (4.130) couples xPT to the portal current V# via
the one-meson interaction

LYV =1 fo (VE[®, ) (5.27)
and the two-meson interaction

LYY =~ (VE®, [®, Iy, ]]) (5.28)

N | =

The one-meson interactions mediate decays such as ¢; — f,14v,, while the two-meson
interactions mediate decays such as ¢; — ¢;€1pv,,. The singlet Lagrangian (4.131) couples
xPT to the portal current S,, via the one-meson interaction

S, b
e =S, = B (@) b, (529)
and the two-meson interactions
£ = %2 (cam+2 (£47 + £h2* + 87 + £32)) L = GEVZI’O hy ({®2,m} ) + hee. .

(5.30)

The one-meson interaction eq. (5.29) is similar to the one meson interaction (5.6) and mixes
neutral kaons with the hidden spin 0 messenger. However, in contrast to interaction (5.6),
the mixing here is not suppressed by the QCD theta angle, and therefore not in general
negligible. The two-meson interactions (5.30) are similar to the two-meson interactions in
(5.4) and (5.24) and mediate decays such as ¢; — ¢;js, ¢; — ¢;sp7y, and ¢; — ¢; X X.
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Order egwd3. At this order, the singlet Lagrangian (4.133) couples xPT to the portal
current S, via the one-meson interactions

Sw
£/S E2 (E(?W ng + E;}’)) , E}; = —ewaoboliF <¢ Im’y>f s (531)

and the two-meson interactions

£y + ooV + L ) , Ly, = MK,F <<I>2 Re'7>]c . (5.32)

S,
1Sw _
Lo = 2

el
The one-meson interactions that involve the dipole current + are similar to the interactions
(5.4), (5.6) and (5.29) and mix neutral kaons with the hidden spin 0 messenger. The one-
meson interactions that involve the weak leptonic charged current lj;, mediate decays such
as ¢; — Lqpsj. The two-meson interactions (5.32) mediate decays such as ¢; — ¢;si,
bi = disky, ¢i — $; XX, and ¢; — ¢;lavpsk. The tensor Lagrangian (4.135) couples xPT
to the portal current T#" via the two-meson interactions

£ = GJECW WP (TH0,80,®) +he., L5 = ;Efw wp (T (@, [@, v ]]); + bec.,
0 0
(5.33a)

LIV = IG?—W K2 (TH (01D [®, vy, ] + [, va,]0" D)) + hec. . (5.33b)
0

These interactions mediate decays such as ¢; — ¢jys, and ¢; — @jyysg. The WZW
Lagrangian (4.136) couple xPT to the portal current V" via the one-meson interactions

£ = e (U Y 53

and the two-meson interactions

W = (Z;;Q;g% (VI (M7, [®, 0" O} + 20°B1,07 B — 2{0° B ®, Iy })), . (5.35)

Finally, the WZW Lagrangian (4.137) couple xPT to the portal current V* via the one-
meson interactions

NV, W €uvps 1 po v
= — (@A, VI .
E(I) (47T)2f0 4 < { Ws Vr }>f ’ (5 36)

and the two-meson interactions

LYW (6“35}2' (VE ({17, (0,07 @]} + 40°B1, 07 ® — A{0PB @, 1%, })) . (5.37)

The one-meson interactions (5.34) and (5.36) mediate decays such as and ¢; — v, l.1s,
while the two-meson interactions (5.35) and (5.37) mediate decays such as ¢; — ¢;lqVpvy.
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5.2 Flavour-blind hidden sectors

In this section, we focus on the coupling of xPT to flavour-blind hidden sectors and evaluate
the xyPT flavour traces to provide the one- and two-meson interactions in terms of the
singlet and octet meson eigenstates g, ng, m1, 7, K+, K9, i Mixing between the g,
ng, and 1, gives rise to the physical mass eigenstates 7°, 1, and 7/, while K° and K are
diagonalised into the two physical mass eigenstates Kg and KV.

The hidden sector is flavour blind only if the EW scale PETs are flavour blind. After
integrating out the heavy SM particles, the resulting strong scale PETs can still violate
quark-flavour due to virtual W-boson exchanges. Hence, the octet contributions to corre-

sponding strong-scale portal currents are given as

S, =ASLS+Ads A V= AV the.,  VE=0, T =TW = (538)

s¥ms

where S/,5, S!,4, VI'S, and T#” capture the contributions due to W-boson exchanges, so
that they are suppressed by a factor of egy. This also implies that we can replace the
primed currents in (4.105) with their unprimed counterparts. At order egyy, the right-
handed current V,* in current (3.32) does not receive any contributions from higher dimen-
sional operators. Hence, it has to be flavour blind even at the strong scale, and its octet

contribution vanishes.

Order 82. After evaluating the flavour traces, the SM two-meson photon interactions
(5.1) are

L = —ieA! (7*8,m™ + KF,K7) . (5.39)

The corresponding kinetic-like interactions (5.2) and (5.3) that couple yPT to the portal
currents V" and V** become

m

£ = oV e = VO +he), L] = foVrOTe (540w)
and
o - 1 <v“d ( “3,Kt + K°3 (”8 3778)> —h. > 5.41
@2 2 1s\T Ou + B NG /6 C. ] ( a)
L= —eA, (VK 7~ +he.) . (5.41b)
The mass-like interactions (5.4) that couple yPT to the portal current S/, become
LI5m = — fobo Tm an% ~ fobo ((ImS},)¢K + hee.) (5.42)
and
b 1
£ == Resy, (5 (w4 +02) +rm + KOK + KO
ne

_ %0 ((Re s/ )4 (K*w + KO (2313 — % — :}%)) + h.c.) . (5.43)

Finally, the anomalous interaction (5.5) that couples xPT to the portal current Sy becomes

L5 = fom3Se (5.44)

m
it
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Order 3. After evaluating the flavour traces, the singlet interactions (5.6) and (5.7)
that couple xPT to S, become

L = ‘2:459 : L = ‘;: (2(£% +£32) + 3L +4£5) (5.45)
where the SM Lagrangians
0 fomge%, £, _ _”;%nf (\%)2 : (5.46)
and
L% = % (073075 + Dm0 + Oum ) (5.47a)

+Omtorn + 0,KTO K™ + 9,K°0"K"

b —
= = ((mly 4 mima o+ (o, + m) KK+ (mly + m) KK

o (G s ) o (e ) (2 )
(5.47D)

are identical to the SM Lagrangians in (5.6) and (5.8). The WZW interactions (5.9)
and (5.10) that couple xPT to the portal current Vl“ become

2n, eﬁ
A L SReClu (guy (T8 L T8 ) (geyrd g0 4 ) 4
ch S (av <f+\f) (a vd 0 4 .c.) : (5.48)
and

LNVlA:imCeFW <V“< F0'nT + KOUK ) — neVi (KO?)’” <7T83’78>>) .

@2 3(47r>2nffo \/§ \/6
(5.49)

Finally, the WZW interactions (5.11) and (5.12) that couple xPT to the portal current V,*
become

2n.eF
NV:A _ cCL py 78
Fo (47r)2foa v <f+ f) (5.50)
and
inceﬁ,, U QU
[,NVT _W%:}QV“( +8 s +K+6 K ) . (551)

Order egwd. After evaluating the flavour-traces, the SM octet interactions eq. (5.13)
are

chy = EEQW (hga#wcf) ™+ "K° <h88 ( 7 f)+nfh1 f>)+h.c.,
(5.52a)

hOA _ EEEW , (8 ot

L i hsA (7~ 0uK*) +he. . (5.52b)

9 =
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The SM 27-plet interactions eq. (5.14) are

£ = EEW EW e <nfa# (\[ + \[> 8, K° + (nf — 1)8uw8“K+> +he,  (5.53a)

£0% = eeEW hor(ng — DA, (77 0"K ") +he. . (5.53b)

Since the octet contribution to the left-handed portal current V}* is generated by diagrams
that involve virtual W-boson exchanges, it counts as Vf x egpw. At order egw, the latter
and the octet contribution V¥ to the right-handed portal current V,* can be both neglected
in the 27-plet interactions (5.17), (5.18), (5.21) and (5.22), which then vanish. The octet
interactions (5.15) and (5.16) that couple xPT to the singlet portal current V" become

£ GEVQVthﬂ/I“auKO +he., (5.54)
and
r£hovi _ eEthV ( ) K++< s _ T8 )8 KO> +h.c. (5.55a)
¢ : V6 V2 ’
v = QGSW hVFA K 7™ +he. . (5.55b)

The octet interactions (5.19) and (5.20) that couple xPT to the portal current V# become

£ = P g, KO e (5.56)
and
rhove _ _ ﬂhlv <7r a KT+ < 8 T8 > 0 KO) +h.c., (5.57a
g NG )
v = _efgw hVFEA K ™ +hee. . (5.57b)

The octet interactions (5.23) that couple xPT to the portal currents S, become

£ = - <588“K+8 . (5.58)
+OH KO (—S ) ( + ) + n§S10 )) + h.c.,
V2T VG R
£ =~ “%SSAM (7= 8uK*) + e (5.58b)

Finally, the 27-plet interactions (5.24) that couple xPT to the portal currents S, become

926 _ _CEW 0 UE nf—1, _ n
£¢2 = —TnfSQ’? (3MK 8” (\/7 + \/7> + e 8N7T 8#[{ > + h.c. s (5593)
L5 = =i ¥ (e = 1)SorAm IK T +huc. (5.59b)
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Order egwd2. After evaluating the flavour traces, the SM one- and two-meson charged-
current interactions (5.25) and (5.26) are

o g (lgvgamﬁ FIE K+ h.c.) , (5.60a)
LAY =i foeA, (l R L (g h.c.) : (5.60Db)
and
ow _ _i K ou + Kt K ) 1
L 5 (IWd (27r 8 \f + 8 (5.61a)
TR (ﬁaMKO ~K*0, (\f + 33%)) - h.c.> :
AW + 78 +70
CAY = eA ( (2 KR ) (5.61D)

+1, 2 (K+ (\[ + 3:}87> +7T+KO> + h.c.) :

The singlet interactions (5.29) and (5.30) that couple xPT to the portal current S,, become

IS0 _ Ow o ahm S thim | hOA bo? hoA
I %25 oL =% 2(Lm 42 (+Lh8 4 LN+ £ + £, (5.62)

where the SM Lagrangians

Lhm = —j %hb(m; —m})K® + h.c., (5.63a)
b
Ly = GE\Z ©he (mly + m]) <K+7r‘ K° (\[ + \f)) the. (5.63b)

are identical to the SM Lagrangians in (5.29) and (5.30).

Order egwd3. After evaluating the flavour traces, the singlet interactions (5.31) and (5.32)
that couple xPT to the portal current S, become

S, S,
Sw _ Pw ow AW Sw w ow AW
L = %2(% +LaV L)), L= 7/802(%2 LY+ L)), (5.6)
where the SM Lagrangians
E’dy) = —egw fobokr (Im ’Y)SKO + h.c., (565)
v _ _cewho - 0< )> L
L, ) r(Rev)d (K - K 73 + G +h.c., (5.66)

are identical to the SM Lagrangians in (5.31) and (5.32). The tensor interactions (5.33)
that couple xPT to the portal current T#” become

L9 = 2 W D (Re TH (a Kto,m — 0,K°), ( n 778)) fhe, (5.67a
fO ( ) 1 12 \/‘ \/‘ ( )
£y = _CEW LRp (Re T#)d2K 7~ + hec. 5.67b
¢ fO T /S
LI = “JFW K27 A (I TV )30, (2K%77) + hee. . (5.67c)
0
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The WZW interactions (5.34) and (5.35) that couple yPT to V" become

2n.€
LNVW . _Zetuvpe guyzv 1oy et Krgm™ + hee. 5.68
o = e (I T b 0%

and

N%W_lnceuupai w [ pou +8Y 0 g8y 78
N T SR (72 (e 97me0 59" (48 %))

1078 (27#3”\@ + K+§”K°) — 318 (2ap\/8§a%+ + a@ﬁa@”)

—3hys <8p ( 5t 3?) PKT+ 8%*8”1(0) + h.c.) . (5.69)

Finally, the WZW interactions (5.36) and (5.37) that couple xPT to V,* become

NVeW _ TeCuvpo guyw UK + 10757 4 . 5.70
@ 3(4m)2nefo " ( " i C) ’ (70

and

NV, W _ iNc€uvpo 1 pau( + 8V 70 + ( 778)>
LY = V<| AR R

|f"’u (27# a”ﬁ + KT 5”1(0) — 31,8 (200\/%0%# + 8”K+8"KO>

(ap ( 7 3\7;%) K+ 8”77*8"](0) + h.c.) . (5.71)

6 Meson interactions of hidden sector models

In this section, we apply the results of sections 4 and 5 to compute generic transition
amplitudes for golden channels used to search for NP in meson experiments. This step
serves first to validate our results with preexisting computations and second to exemplify
their use to compute meson decays involving a hidden particle. We consider one example
for each messenger type that is captured by the PET framework:

Spin 0 messengers The decay KT — 7ts; is a smoking gun process for ALP searches
at kaon factories, see e.g. [81, 84]. It can be especially relevant within the context of
interpreting the recent KOTO excess [215]. Scalar, pseudoscalar and complex scalar
messengers couple to the YPT Lagrangian via a large variety of external currents. As
a result, this type of process clearly demonstrates the power of the PET framework to
perform global parameter scans instead of considering only one specific SM extension
at a time.

Spin % messengers The decay K+ — (*¢, is a key signature for light HNL searches [79,
83]. If &, is a HNL, the computation of the transition amplitude is straightforward,
as the HNL couples to the SM only via its mixing with neutrinos [8-13]. After
diagonalising this mixing, the HNL couples to QCD via a single operator that mirrors
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the leptonic charged current interaction in the SM. Up to leading order in agy and
the 47 counting of NDA, this operator is also the only one that couples QCD directly
to a completely generic spin % messenger. Since we do not diagonalise the portal
interactions, we keep track of both the mixing and the charged current operator. As
discussed in section 3.1.2, this means that the final decay amplitude also captures
hidden sectors that contain a non-trivial secluded sector in addition to the messenger
field. The net-effect is that the mixing angles 6y; in eq. (6.60), which measure the size
of the HNL amplitude, are replaced with effective mixing angles 0, in eq. (6.56) that
measure both the impact of the mixing of &, with neutrinos and the direct production

via the four-fermion operator.

Spin 1 messengers The decay 7% — v, is a smoking gun process for dark photon
searches, see e.g. [82]. If v, couples to xPT like a vector particle in a parity conserving
theory, such as in common models of dark photons, the parity-odd WZW action
generates the only contribution to the decay amplitude. A priori, one might expect
that the parity-even order 63 contributions to the YPT action in Lagrangians (4.22)
to (4.27) can mediate neutral pion decays ™ — va,, into messengers a,, that couple
to xPT like axial-vectors in a parity conserving theory. However, as mentioned below
eq. (5.12), this does not occur. For this reason, the dark photon decay amplitude
actually encompasses the production of generic spin 1 messengers.

To summarise, our decay amplitudes for hidden (pseudo-)scalar messengers, HNLs and
dark photons capture the production of generic hidden spin 0, % and 1 messengers to LO
in agm, €eew, and the NDA 47 counting.

6.1 Charged kaon decay to charged pions and hidden scalars

*s; into spin 0

We compute the transition amplitude for charged kaon decays K* —
messengers s;. These decays can be induced via seven out of the ten portal currents that
are contained in the portal yPT Lagrangian. To compute the complete generic decay
amplitude, we first consider decays mediated by each of these currents individually, and
compute the leading contributions to the corresponding partial decay amplitudes. We then
sum these contributions to obtain a universal expression.

In general, the § and egyw scaling behaviour of each partial amplitude can be different
for each of the seven portal currents, and the final result for the decay amplitude will
mix contributions of different order in § and egw. For instance, a quark-flavour violating
contribution to the current Re S, x eyys; induces an amplitude in eq. (6.15a) that formally
scales as eyyé?, with no suppression due to egy, while the currents &,  eyy s;/v induce
an amplitude in eq. (6.15a) that scales as eUVe%/V%,é , and the current S, x eyy s;/v induces

an amplitude (6.15b) that scales as eUVe%/V%,52. In the case of the S, and &, currents,

the additional e]{:/vzv suppression results from the fact that the underlying EW scale portal
operators are of dimension five rather than dimension four. When considering a specific
SM extension, it may be possible to neglect the higher order contributions if they appear

in conjunction with lower order contributions. However, to capture the coupling of xPT to
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fully generic hidden sectors, it is necessary to keep track of all contributions, since a priori
a hidden sector can couple to xPT via any one of the portal currents.

6.1.1 Single scalar portal current contributions

In section 3.3.2, we have given the complete list of portal interactions that contribute to
each external current at LO. The relevant contributions that mediate K* — n¥s; decays
are those with exactly one hidden spin 0 messenger and no other SM or hidden fields,

euv 1 €UV

S, = ch“si, S D euv <cf'” + 635;282> Si, S, = bsiT} Si s (6'13)
€UV €UV

Sy = Tczsosiv Sy =euv (Adczsd +ASch ) 5 Sr = bri v o (6.10)
€UV

S = f)liT 55 . (6.1c)

Since 02 / v? o egwd, the second term in S,, induces amplitudes that are suppressed by
an additional factor egwd compared to the contributions generated by the first term. In
the following, we simplify the expressions by approximating my,, mq — Mmuq and e =
muda/ms — 0. Matching to yPT and transitioning to the physical vacuum, this gives the
modified currents

S/ = euv ( Sm 4 cSm 82> si + O(E%W, ez) , Sy = hyieU—Vsi, (6.2)
v
where the parameters hy; are given in equation (4.91), and

cf'm = efm + 2emw [ (MIAT = AL ) e — byl efm g

— VT (X + he) + epwir (€A + g AD) +O(. ) . (63)

The strength of strangeness-violating contributions to S;, is measured by the Wilson co-

efficients
,S'md J— S77Ld S’lﬂd
¢y =¢"g — €Ew (thes c;"g+ 7hbz - ﬁrcva ) , (6.4a)
ISms __ ms 2h S’ms Smd mShT Y 6.4b
¢ Ma=¢6"q T EEw b (&€ s —C T d &, bi T RTCsq | - (6.4b)

6.1.2 Relevant interactions

At tree-level, K* — 7%s; decays are mediated by portal interactions with either one or
two mesons. The former give rise to indirect production via mixing of the messenger with
the SM mesons, while the latter give rise to direct production. Both types of interaction
are listed in section 5.1.

We first consider the case of indirect production via the process depicted in the diagram
in figure 10a. The one-meson interactions mix the hidden scalar with the neutral SM
mesons, and contribute to K — n%s; decays via off-shell K+ — 7#t70* K+ — 7#n* and
K* — 7%0/* transitions, in which the neutral meson subsequently oscillates into the hidden

scalar. Hence, the diagram in figure 10a contains two vertices: i) a trilinear SM vertex with
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(a) Production via mass mixing. (b) Direct production.

Figure 10. Feynman diagrams for the K* — 7%s; process.

one K*-leg, one m¥-leg, and one neutral meson leg, and ii) a one-meson portal interaction
that captures the meson to hidden scalar mixing. The expressions for the trilinear SM
interactions are known, and can be extracted from the SM yPT Lagrangian by following
the procedure that we summarise in appendix D.3. The resulting Lagrangian is

0
1 EEW T + _
K 2 iwis s T K .
Lrro = 2f0 (VK \[+3VK77\[+3VK7]\[> (65)
where we have defined the functions
1
Vicrr = 1 [(hg + 7h27)87r08[( — 5h2787r087r— — (hg + 2h27)87r76K] , (6.6&)
1
Vicen = 55 [(8hs + 6hor) 0 Oxc (6.6b)

—(hs + 3V2tyhy — 3ho7) 0,0k — (2hs — 3v/2tyh1 + 9hor)Oydx| |
[(3hs + 6har) 0O

—(hs — 3\/§t;1h1 — 3h27)8n8]( — (2h8 + 3\/§t;1h1 + 9h27)87787r} .
(6.6¢)

1
VKTI"I]/ = msn

Notice that there is no K*7TK? SM vertex. Therefore, we do not have to keep track of the
mixing between the neutral kaons and the messenger. This also means that we can neglect
EW contributions to type ii) interactions. The hidden currents Im S/, and Sy induce the
only relevant type ii) vertices, given within the interactions (5.4) and (5.5). Extracting the

vertices, one obtains

s, eovmdfoct” ' 1
Ly = — (cn\/?: - 877\/3) Si, (6.7a)
Egm D —eyv.fobo (cs”r\?;oi + csm% + Csm':}%> si + O(egw) , (6.7b)
where the Wilson coefficients are
Cor = ImeP™Y — Tm e5™ 4, (6.8a)
Com = —8y Tm ™ \} (Imc ™o+ Im c;gm —2Im cSmS) , (6.8b)
Cs;y = CpIm m \} ( ™+ Tmemd — 2Tm cSms> . (6.8¢)
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We now move on to the case of direct production via the process depicted in the
diagram in figure 10b. This diagram consists of a single trilinear portal vertex with one
K%*-leg, one n¥-leg, and one hidden spin 0 messenger leg. The hidden current Re S,
induces the vertices

Lo > % oK R, da? ;+ O 6.9
_EGUV CKrs; T 66625 s; + (EEW), (6.9)

which are part of the interactions (5.4), where

Cins; = Ree?™d 4 T ((m{f}( —m2)Rec™ + mi Reci™d — m? Re cf’":) Ot nr
€ Mud + M
- % (th, (escf’"g — €€} ’"ST +eim 3*) + T Sy — kp ( + CZSB)) . (6.10)
v
The hidden currents Sy induce the vertices
euve
£258 +£28 > —“VEW (i 1 (ng — Do) si0m MK (6.11)

2v

which are encompassed by the interactions (5.23) and (5.24). Finally, the S, current
induces the vertices

L% 5 GUVZEﬁVOVCS (Rym3c K7™ = (hs + (ng — Dhag) 0" K+ 0,7 ) 5;. (6.12)
which are given within the interactions (5.30). These vertices contribute at order ¢° rather
than order §2 due to the large n. dependence of the § function, which scales as By ~ ne.
As mentioned below eq. (5.6), S,, induces also a one-meson vertex that mixes the n; singlet
with the messenger. However, this interaction is suppressed by the QCD 6 angle and is
always negligible with respect to the above trilinear portal vertices.

6.1.3 Partial decay width

In summary, the hidden currents Im S], and Sy couple to xPT via bilinear one-meson
portal interactions, while the hidden currents Re S),,, S, and the S, couple to xPT via tri-
linear two-meson portal interactions. Putting everything together, the complete transition
amplitude can be decomposed as

A(K+ — 7r+8i) = -Adirect + Amixing . (613)

The amplitude for direct production via the trilinear interactions is

Adirect - A&Le + Ah + Aw y (614)
where
euyvb m? EUVE
Ape = === (cmsl Re c§5;S;> , A = TRV, (6.15a)
Sw
Aw = % (R - Xo) - (6.15b)
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The quantities
X-—l(h~+( — Dhar;) (m3 2 _m? 6.16
i =5 (hs ng 9o7i) (Mm% + mi — m? (6.16)

measure the dependence on the octet and 27-plet coeflicients hg; and ho7;. Following the
discussion in appendix D.2, the amplitude for indirect production Amixing can be written
in terms of the generic meson-to-messenger mixing angles

2
boCs; bocs;n + cf" Sn%
Ors; = €UVf07m2 ; Ons; = €uv fo - (6.17a)
boCs.yy — e mg
Oy s; = €uv fo Sm2 L (6.17b)
s mn’
This results in
-Amixing = -A;IIH + ~A9 €2EJZN (Qws, VK7r7r + 91732 VKTI”I] + ‘977 Si VKTFT] ) . (618)
0
In momentum space, and evaluated on-shell, the functions (6.6) become
1
Vicrs = g [5h27(2mK m?2 — m2) + (2hs + har)(m> mZ)} , (6.19a)
Vier = = f [(2hs — 3V2tyh1 + 9hor) (2mF — m? — m2) (6.19b)
~(4hs + 3v2tyh1 + 3hor) (m? — m2)| |
_ ~1 m2 — m2
Vicwy = 12[ [(2h8+3\ft hy + 9har)(2m% — m2 — m2) (6.19¢)

—(4h8 — 3\/§t;1h1 + 3h27)(m§ — mi)} .

All of the above amplitudes are determined entirely by m? % m2, and m?2, with no remaining
angular dependence. The resulting partial decay width is

1 2

NKT = 7ts;) = 87Tpr(xﬂ,zs) AKT = 7ts)| (6.20)
where the phase-space factor is
1—2r — x5\ 2 m2
P(Tr, ) = \/() — Xps, T = — (6.21)
S 2 S (2 m%{
and the squared amplitude is
2
AK* = 7%s)| = [Re AP + [Im A%, (6.22)
where
b2 m2 c So.) 2
UV 0 Spnd EW 9
|IRe A| 1 Re <cKﬂ8i — copis v;> + == boo ( 50 (X ng)> ,
(6.23a)
1 EEW 2
|Im .A| — GUVbO Im CKns; T —— 7 (67rsZVK7r7r + enSZVKﬂ-n + 97] s VKT(’V] ) (623b)

~ 81 —



Hence, the decay width reads

b 2
DKt — ats) =2mmy (6UV 0 ) p(xr, xs)

2 dmrmyg
5 gm? - S ) 2
m S i j /
‘Re (CKmi — i 1}2> + 60711 (Xz + 2% (X(] — hme>>
€EEW

+ ‘Im CKns; T (‘971'51- Viken + 97751- VKﬂ'T) + 077'51‘ VK7r77’)

euv fobo

2
> . (6.24)

6.1.4 Flavour-blind hidden sectors

Starting from the results given in the previous section, we derive the full amplitude squared
for K* — n%s; decays in the case of flavour-blind portal interactions. For such portal
interactions, the Wilson coefficients (6.8) and (6.10) simplify to

Comr =0, Coy = —Sp TmcP™ | Csp = CpIm m (6.25)
and
Re ckrs; = EW (hs + (ng — 1)har — hy) Re cf’" (6.26a)
ng
2
Spmd myg kr
+ Reci s — €EEW ([)Ul) Re hbi — ? Re (C’Z'%S + C;-st)> )

/

_ he Sim mic kr v v
Im cxrs; = €BW (m (1—2e)Ime)™ + oo Im hy; — > Im (Czﬁs — Ci@d) , (6.26b)

while the mixing angles become

2

Sp€nys; Cpn€nys; m

— n-ms — n-ms _ S, Se 'O
9775i = —2712 N 9,7/51. = 2712 y  Ems; — erfo bo Im C; mo— C, — . (627)

mg — my mg — m”]' v

6.1.5 Explicit portal currents for specific hidden sector models

PETs including hidden spin 0 fields can be motivated from a broad range of BSM models
and are realised for instance in models of DM (see e.g. [216-221]), inflation (see e.g. [222,
223]), naturalness (see e.g. [224-229]) and baryogenesis (see e.g. [88] for references). Spin
0 particles can be grouped into several categories, depending on their portal interactions
with the SM at the EW scale. We briefly summarise these categories and describe how the
PET procedure can be applied to each of them. Additionally, we provide the relevant PET
operators at the GeV scale, and their connection to the hidden currents, for ALPs and real
scalar models, which are among the most studied realisations of light spin 0 messengers.

ALPs. ALPs are PNGBs associated with the spontaneous breaking of an approximate
global symmetry. Hence, they arise in a multitude of theoretically well motivated models,
ranging from string theory (see e.g. [230-232]) to QCD. The original axion field is the
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PNGB of the Peccei-Quinn symmetry [16-19], which has been introduced in order to solve
the strong CP problem and is broken by the axial anomaly of QCD.!7

Depending on the underlying theoretical model, ALPs can have theoretically un-
constrained couplings with the SM gauge bosons and derivative couplings with the SM
fermions. The latter couplings can be traded for non-flavour blind Yukawa couplings, as
described in appendix A.2. Up to dimension five, the most general Lagrangian before
EWSB is given by [93, 233-236]

. . 1 1
Lo = Ly 4 ghertal LA = D000 a + Smga® (6.28)
Here a is the ALP field and the portal interactions are

a . _ ~
cgortal _ ]T (waw,W'uV + CBB;LZ/B'MV + CGG/J,I/G:LLV

a

+ (icuqul + caqdH' + coleH! +hc.)) , (6.29)

where f, is the energy scale associated with the ALP and the ¢; (with ¢ = G, W, B)
and ¢; (with i = u, d, e) are scalar and matrix valued Wilson coefficient in flavour space,
respectively. For models that comply with minimal flavour violation, the coefficient ma-
trices in the Yukawa interactions are aligned with and of comparable strength as the SM
Yukawa matrices y;. All coefficients have been defined after using the EOM for the Higgs
and fermion fields in order to eliminate the derivative interactions of the ALP, for details

see [93, 235, 236]. For QCD axions, the mass term is generated by the QCD quark conden-
2

sate, so that f,m, o mz,

while for generic ALP models, both the scale f; and the mass
term m, are free parameters of the theory. The mass term is part of the Lagrangian de-
scribing the internal structure of the hidden sector, which we do not need in our procedure,
and it is listed here only for completeness. Considering the portal Lagrangian (6.29), we
recognise that all terms can be matched to the spin 0 portal operators defined in table 2.
Hence, the relevant currents that drive the phenomenology of ALPs at the EW scale are
given by
a a a
Sp = x4 So = ca Si = ex 4 6.30
n =Xy 7 p=exg, o 630
where we have used eyy = v/f,, after confronting eq. (6.29) with the pertinent PETSs in
table 2. Comparing with eq. (6.1), the resulting portal current that couple QCD to ALPs
at the strong scale are
v T — e L — (s do ) v
S D csmfaa, S, = bxfa , Sp= Csefa . Sy = ( aCaq +}\Sads) faa, (6.31a)
where we have used the EOMs for the ALP to resorb the 9?/v? contribution from the
general expression in (6.1) into cg,,. In addition, the term in Lagrangian (6.29) that
contains the photon field strength tensor gives rise to the Primakoff effect [237], which our
work does not modify.

17Tt has been long thought that axions in the MeV range were excluded, however this might not be the
case. We refer to [20] for a critical overview of bounds on MeV axions.
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The axial current Sy and the imaginary part of the Yukawa current S, mix the ALP
with pions and n-mesons, and give rise to ‘indirect’ production via diagram 10a. The
remaining currents give rise to ‘direct’ production via diagram 10b. For models that comply
with minimal flavour violation, the coefficients ¢g,,, ¢J;, and c;lls are aligned with and of
comparable size as their SM counterparts,

v o
ves,, ~m, vedy ~ ma, veg M (6.32)

In xPT, one finally obtains the currents

S = c’Smfﬁa + O(e%w, eg) , Sy = hyfg , (6.33)

/Sm

where the coefficient ¢/ is defined like its generic counterpart c;

in eq. (6.3), except
with the generic Wilson coeflicients replaced according to

S | S L a2 Sm S s 5 vy o
(ci +c82iv28>—>c , Gl =, gy = ey cq. ™ Cs hyi = hy . (6.34)

i ids s
Hence, the complete amplitude for K* — 7% a decays is
_A(K+ — 7I'+CL) = Adirect + -Amixing ) (635)

where the direct contribution is

bov EEW
Adirect = Af?{le + Ah = _EcKﬂ'a - EXO 3 (636)
while the indirect contribution for production via meson-to-axion mixing is
Amixing = A™ + Ay = — 1 Y (0 Vicrr + OpaVicwn + OyyaV, 6.37
mixing — m T 9—_127f0(7ra Knr T na K7r77+ n'a Kwn’)v ( . )

where the mixing angles are now

2 2
0 fo bovcar 0. _ fo bovcay + cs,misy, 0., — fo bovea,y — cs,miey
ra = F g Opa =" 5 5 o Oy =7 5 5 . (6.38)
fams —m2 fa mg —my fa mg — my,

The coefficients cir, and c,x are defined like their generic counterparts cxr; and ¢y, x in
egs. (6.8) and (6.10), except that the Wilson coefficients are replaced according to (6.34).
If the Wilson coefficients in Lagrangian (6.29) are aligned with the SM Yukawa couplings,
as it is usually the case, all amplitudes above are of the same order and equally contribute
to the decay rate. However, for flavour-blind ALPs with ¢x ~ 1 in (6.30), the amplitudes
ARe and A™ are much bigger than the other two and dominate the decay rate.

We note that the indirect amplitude encompasses e.g. the production amplitude of

proper QCD axions given in [20], where the authors have neglected the 27-plet contributions

2

2 m2 — 0. In this approximation, the

o ho7 as well as the finite pion and axion masses m
function Vi, vanishes, and the resulting expression becomes independent of the axion-to-

pion mixing angle 6.
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Light real scalar fields. This type of field can appear in a huge variety of BSM models,
ranging from DM models, where the scalar is protected by a Zy symmetry (see e.g. [238,
239]), to models for baryogenesis (see e.g. [88]), and two Higgs-doublet models (2HDMs)
(see e.g. [240, 241]), such as the inert doublet model, see e.g. [242]. Additionally, there are
interesting candidates in SUSY with R-parity conservation, such as the saxino, which is
the scalar R-odd component of the axion superfield. The saxino mass is typically of the
same order of the gravitino mass, however there are models in which it can be naturally at
a low scale, see i.e. [243]. The most common hidden Lagrangian can be cast as

) ; 1
Es — Egndden + Egortal7 Egndden — Qausaus + )\82 + )\/83 + )\//84, (639)

where the A denote the self-couplings, however, being part of the hidden Lagrangian they
are not relevant for the PET approach. The portal interactions are

s

2
cportalz%sD,uH’i‘DuH+ <O[18+O{252+Oj\353> HTH+%S (HTH)

+2 (ieuqul' + cagd + coleH' +he.)+ W sWou W 4 LB, B + 5 56 GH
(6.40)

where the «ay, the cx with X = W, B,G, and the ¢, with x = u,d, e are dimensionless
Wilson coefficients and coefficient matrices, respectively. The self- and portal-couplings
involving an odd number of scalar fields are only present if the scalar field does not obey
a Zo symmetry. The PET framework is suitable for n equal spin hidden messengers,
hence it can describe several cases, such as: i) a single hidden scalar messenger, which is
even under the symmetry of the secluded sector and arises for instance in simplified DM
models [244], ii) a DM candidate which is odd under the Zy symmetry, the typical example
being the singlet scalar Higgs portal model [245, 246], and iii) models with Z,, symmetries
(see e.g. [247] for DM models). Depending on the symmetries of the model, the real scalar
s can mix with the SM Higgs boson or assume a non-zero VEV, however we will not discuss
these possibilities here. Typically, the scalar portal Lagrangian (6.40) only includes terms
up to dimension four, while we include here also EW scale terms of dimension five using
the PET approach. A term which is especially relevant for light scalar fields is the coupling
with the gluon field strength tensor, which is present for instance in theories with a dilaton
field, see e.g. [248].

In order to demonstrate that the generic decay amplitude (6.13) encompasses and is
consistent with standard computations, we apply this general result to the case of light
Higgs production in charged kaon decays K* — 7*h. We compare our results with those
obtained in [106], where h is considered to be the SM Higgs boson, and [249], where it is
taken to be the lightest Higgs particle of a 2HDM model. The computation in [106] was
performed before the discovery of the top-quark and the Higgs boson, so that the Higgs was
still allowed to be lighter than the charged kaons. In general, a light Higgs boson, with a
mass my < mg, couples to QCD at the strong scale directly via quark Yukawa interactions,
and additionally via effective hGG and hgqgq vertices, which arise after integrating out the
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heavy SM DOFs. Translating these interactions into the hidden current picture, the only
non-vanishing Wilson coefficients in egs. (6.2) and (6.3) are [106, 249]

S 1 d s
eyve,™ = Y (nm — MghdsA§ — mudfigs)\ﬁ) . €uve® =2Kkg, euvhy = —2kwhy,

(6.41)

where k = diag (Ky, k4, kq)- The coefficients k, and kq measure the coupling of the Higgs-
particle to the up-type and down-type quarks in the SM, respectively. In the case of a
light 2HDM Higgs-particle, one has kg = (2ky + kq)/3, while the remaining k, are free
parameters. In case of the SM Higgs boson, one has [106]

Ky =Kd=KkKag=kw =1. (6.42)
The constant kqs ~ egw is determined by matching the low energy theory to the EW scale
description. In general, it can be parameterised as [249, 250)]
2

m
= (6.43)
Ay

Kds = 2 Z Vjuvusxuf(xu) ; Ly,

u=u,c,t

and f(z,) is a model dependent function. For the SM Higgs-particle, assuming x, <
(47)~2, and neglecting the running of the Wilson coefficients between the EW and strong
scales, one has f(z,) = 3/4 [106]. In the case of the 2HDM, the corresponding expression
is known, but quite complicated. It can be found e.g. in [250-252]. Using eq. (6.41), the
coefficient (6.10) becomes

m2 m%{ 2
€EUVCKrs; = 7(/€u — Iid)eEw(hg + (’nf — 1)h27) + (2€EW/€th — Fﬂds) +0 (es) . (6.44)
2?)b0 ’Ub()

The overall K* — 7% h decay amplitude receives contributions from the partial ampli-
tudes A}}f, Ay, and Ay, all of which mediate direct production. There is no meson-to-Higgs
mixing because the Higgs is a scalar, rather than a pseudoscalar, particle. One obtains

Re m%{ m?r
Ay = o (Kas — 2kwerwhy) — E(liu — ka)eew(hg + (nf — 1)hay) , (6.452)
2 2 .2
A= S5 s+ (n = har) (1 + m”2m> : (6.45b)
v m2.
A, = B2 (g ey (g e 650

Thus, the full amplitude is

2 2 2
+ +py — Mk | (EW _ RG h ~“1Dh 14 Mm — s
AKT = 77h) = — [( 5 50>6EW( g+ (nf—1hor) | 1+ m
2

m K K
ew(hs + (ng — 1)har) "o — 2ep (;Vhb - ﬁfhg> + ﬁdS] . (6.46)
K

_'_’{d — Ru
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(a) Direct production. (b) Production via mass mixing.

Figure 11. Feynman diagrams for the K+ — ¢(+¢, process.

This result encompasses the one given in [249], where the contributions from the 27-plet
and chromomagnetic operators have been neglected, which amounts to replace hoy — 0
and hj — hp.'8 Using the values (6.42), one also obtains the result given in [106]."

Pseudoscalars. Pseudoscalar particles are predicted in many extensions to the Higgs
sector, see e.g. [253, 254] and the recently proposed relaxion field (see e.g. [228, 255]), and
have more general characteristics as compared to ALPs. The latter are restricted by being
PNGBs, while generic pseudoscalar particles can couple to the SM via additional portal
operators at the EW scale, most notably a direct coupling with the Higgs boson. In this
sense, these particles combine features that arise in both ALPs and light scalar models.

Complex Scalars. As explained in section 3, PETs can describe complex scalars as a
combination of two distinct real spin 0 fields that can be either scalar or pseudoscalar. There
are several interesting models with light complex scalar fields, see e.g. [256]. Additionally,
complex scalars commonly arise in SUSY models, such as the sgoldstino [257-264], which
can naturally be in the MeV mass range, the sneutrino [265-269], which appears in the
minimal supersymemtric Standard Model (MSSM), and the additional complex scalar field
introduced in the next-to-minimal supersymemtric Standard Model, see e.g. [270] for a
review.

6.2 Charged kaon decay to charged leptons and hidden fermions

In this section, we compute the transition amplitude for production of a generic fermionic
messenger &, in charged kaon decays K+ — ¢*¢, at LO in 4.

6.2.1 Relevant interactions

At tree-level, K+ — (*¢, decays are described by the two types of diagrams, depicted in
figure 11: i) diagrams with a single trilinear one-meson K* — ¢*¢, portal vertex that
directly couples YPT to hidden sectors, and ii) diagrams with one trilinear K+ — ¢*1, SM
vertex and a second vy, — &, portal vertex that indirectly couples xPT to hidden sectors
by mixing the SM neutrinos with the fermionic messenger. The relevant portal current

18T [249] the amplitude is expressed in terms of 2gy = kas, ke = 2kc/Bo, 78 = emwhs/4, and
:yig = EEwhl /4.
191 [106] the amplitude is written in terms of the quantities £ = Kz;s, k = 2/Bo, 1 = eewhs, and

Y2 = eEwho.
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contributions to type i) diagrams are those with exactly one hidden spin % messenger and
one charged lepton. Using the list of portal currents in section 3.3.2, the only contribution is

Vo —- 6UV kAL €1z, +hee., (6.47)

where e and céST are doublets in flavour space that capture the coupling to both e* and p*.
The corresponding vertex mediating charged kaon decays is encoded inside the kinetic-like
one meson portal interactions (5.2), leading to

LoV = _cuvfo L T e KT (6.48)

2 us ba

To compute diagrams of type ii), we have to specify both the neutrino to hidden fermion
mixing vertex and the trilinear SM vertex. The mixing vertex is given as

Liye, = —€uvv (Cpatla +huc.) (6.49)

where v and ¢ are doublets in flavour space that capture the mixing of both v, and v,.
The trilinear SM vertex is encoded inside the kinetic-like one meson interactions (5.25),

leading to

LoV = f OV“Sa KT N vjate, . (6.50)
b=e,n

6.2.2 Partial decay width

The vertices (6.47) to (6.49) are written in the two-component notation of [129]. Applying
the Feynman rules for the two-component spinor notation [129, 271] to compute the two
types of diagrams illustrated in figure 11, one obtains the full decay amplitude

_A(K+ — gz_fa) = Adirect + -Amixing ) (651)
where the partial amplitudes are
6vao L _
2 CusTba T(p§7 35)‘7#3/(1% 3@) pMK ) (652a)

€vao o

-Adirect = -

Amixing = i baVas Y(Pe, 5¢)00T,y (e, se) PP (6.52b)

and the functions z(p, s) and y(p, s) are the polarisation spinors for two-component fermion
fields. The resulting helicity-summed partial decay width is

2
Chy Vs

L
us,ba

2
F<K+ €+§a> = 2mmg (eréEw4 f > (mg,%’g) c

g

where the phase-space factor is

p(xe, ze) = (w +xg — (20— fﬂs)2) \/(Hé_ng — TyTg - (6.54)
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In terms of the partial decay width for the process K+ — ﬁl'fvb, this is

DKt = 4f¢) =T(Kt — E;“yb)wwba\Q : (6.55)
p(x¢,0)

where the SM partial decay width and the effective mixing angle are

L
CpaV Ciis,ba
(Kv+ — €+I/b> = 27TmK <€EW4 f ) |Vu5’ p(wg, ), gba = €UV ( 7:’2 + VI;:) .

(6.56)

6.2.3 Explicit portal currents for specific hidden sector models

Gauge singlet fermionic hidden fields are common in BSM models. In the SM, left-handed
neutrinos are the only fields without a right-handed partner. Therefore, it is natural
to consider that such fields exist, but have so far not been observed due to their feeble
interactions with SM fields. One or more right-handed neutrinos can be added to the SM
and can play an important role in several mechanisms of BSM physics, via their mixing
with ordinary neutrinos. They can be used to generate neutrino masses (via one of the
seesaw mechanisms), are required in leptogenesis models, and can act as DM. Since the
nature of (right-handed) neutrinos is not known, the hidden messengers can be either
Majorana or Dirac particles. The latter case is described in our framework by two hidden
Weyl fermions. For reviews on the plethora of BSM models with right-handed neutrinos we
refer to e.g. [63, 65, 272]. Many BSM models with right-handed neutrinos are commonly
embedded into SUSY theories, see various realisation of type-I and inverse seesaw, e.g. [273—
277].

As an example for a model with HNLs, we consider the type-I seesaw model. The
minimal type-I seesaw Lagrangian couples the SM to a pair of two sterile Majorana neu-
trinos [8-13],

tal hidd hidd
‘CV — Lgor al | »C,jl en’ £V1 en _

(Pj iavi - Mijﬁif]) + h.c. , (657)

DN =

where
crortal — e il H 4+ hec. (6.58)

Here, M;; = Mj; denotes the sterile neutrino Majorana mass matrix, and y,; is the cou-
pling strength of the sterile neutrino Yukawa interactions. Without loss of generality,
M;; = diag(My, Ms). The sterile neutrinos do not couple directly to QCD, and the only
contribution to the EW scale portal currents is

Eo = —VilYlia - (659)
At the strong scale, this interaction generates the mass-mixing
Lgortal — —YialilaV + h.c., (6.60)

so that eyvvcy; = vy,,. Hence, the effective mixing angle is just the physical mixing angle
between the SM neutrino and the sterile neutrino, 6y; = vy;,/M;.
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Figure 12. Feynman diagram for the 7% — ~vv# process.

Another category of hidden fermionic fields is given by the axinos, which are SUSY
partners of the axions, see e.g. [278, 279]. They are unrelated to the neutrino sector, unless
R-parity violation is allowed. Axinos can be produced for instance by gluon fusion or in
neutralino decays, which are useful mechanisms for searches in beam dump experiments or
at colliders, and can be naturally in the MeV mass range, see e.g. [280].

6.3 Neutral pion decay to photons and hidden vectors

In this section, we consider anomalous neutral pion decays into hidden spin 1 messengers,
- Yvu, at order 8. Unlike in the previous sections, we now include EM contributions
up to order agy. However, we neglect all EW contributions that are suppressed by factors
of egw, as this process is flavour conserving.

6.3.1 Relevant portal current contributions

The relevant portal current contributions are those with a single hidden vector field. Using
the list of portal currents in section 3.3.2, the only contributions of this type are

V! O egyelot, VH = eyyelor (6.61)

Figure 12 depicts the only relevant Feynman diagram. In principle the process can be
mediated by two types of diagrams: i) diagrams with a trilinear 7° — 4y SM vertex and
a mixing vertex that makes the SM photon oscillate into a hidden spin 1 particle, and

ii) diagrams with a direct trilinear 7°

— ~yv, portal vertex. Choosing an appropriate
operator basis, there is no type i) diagram, since the kinetic mixing term can always
be eliminated from the theory using the SM EOM, in favour of a coupling to the SM
fermion fields. As a result, only the diagram of type ii) contributes to the decay amplitude
0 — yv,. This interaction vertex arises from the anomalous WZW contribution, which

enters at order 6.

6.3.2 Partial decay width

The interaction corresponding to the diagram in figure 12 is contained in Lagrangian (5.9).

By extracting from it the contribution with a singlet pion, one obtains
_ne 1 4\ T8 =
Eﬂ;)fyv = gm (QVU/Jyﬁ —|— ‘/U:U‘Vd) ﬁeFﬂyy (662)
where Vi = V' + V# and the photon field is canonically normalised. Using expressions
(6.61), one has

Vi =euy (el + k). (6.63)
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The above expression implies that the WZW does not couple neutral pions to the axial-
vector current V¥ = VE“ — V#. This is to be expected, since the WZW mediates parity
violating transitions, while neutral pion decays into a photon and a hidden axial-vector
would conserve parity. The partial decay width for 70 — yv,, decays is

D(n® = yv) =

<1 - :Zg’) |A(0 — )|, (6.64)

16mm, 2

where the square amplitude is

2
(nc EUV) QEM

0 2 _ (e —~EM
|A(m0 — o) 3anfe) in

2l + ek + (e eyd]” (m2 - m2)" . (6.65)

In terms of the partial decay width for the process 70 — v it reads

2 3
(7 = qv) = 220 (7° — 47) (1 — m2> , (6.66)
mﬂ'
where
Ne OEM Mo 2(cl + k) 4 (R 4 b
(0 s o) = 2 W(C ) _ v PO T TEN g 67
(m ¥Y) ™m 3 dm 4anfy €eff = €UV % (2(]1111 i qg) ( )

are the SM partial decay width and the effective mixing parameter.

6.3.3 Explicit portal currents for specific hidden sector models

Relatively light vectors states (i.e. below the GeV scale) that are very weakly coupled to the
SM fields represent attractive physics targets for experimental searches at the cross-over of
the intensity and high-energy frontiers. In the literature there are several proposals, with
different motivations, for vector portal models. The simplest realisations do not charge the
SM fields under the new gauge group related to the hidden vectors, giving rise to kinetic
mixing portals. An attractive alternative is given by gauging certain combinations of SM
fields under the new U(1), in order to achieve for instance anomaly free or UV complete
models. Examples of the latter models are the B — L or the L, — L; anomaly free models,
see e.g. [281-286]. For a broad overview of the different models, physics motivations and
experimental constraints, we refer to the reviews [63, 256, 287].

Here, we consider the simplest dark photon model, which is QED-like, from [288, 289],
with a single hidden vector v,. The hidden Lagrangian is given by

. ) 1 1
hidden rtal hidden v 2
L, = Lhdden 4 pportal Ly = _EF,M E, + imvvuv“, (6.68)
and the portal interaction is
cpertal — —gFWF,’w . (6.69)

In this equation, € is the kinetic mixing parameter between the hidden vector and the
photon and F;’w is the field strength tensor of the hidden vector. We show part of the
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hidden Lagrangian, however, this is not needed for our purposes. First, it is not actually
relevant how the dark photon acquires a mass. This can be achieved by the spontaneous
symmetry breaking of the symmetry to which the dark photon is associated, requiring a
dark Higgs, or could be achieved via the Stiickelberg mechanism [290, 291], if the symmetry
is a U(1). As long as the dark Higgs is heavier than the yPT scale and is integrated out,
eq. (6.65) is not modified by the mass generation mechanism. Second, we remain agnostic
about the remaining particle content of the hidden sector, which might include fermionic
states X, charged under the new U(1), that couple only to the dark photon (we already
mentioned this possibility in section 5.1). A model similar to (6.69) that couples to the
hypercharge instead of the EM charge is obtained by substituting the QED U(1) with the
hypercharge U(1) field in the SM.

The expected branching ratio (BR) for the process 7 — v, is known, see e.g. [82],
and is equivalent to eq. (6.65), which can be seen by rewriting the kinetic mixing La-
grangian (6.69) in terms of the portal operators using the SM EOM. Afterwards, the dark
photon field couples to QCD via the neutral current interaction

cpertal <v; (Q“ + Qu) >f , v, = eequy, . (6.70)

Hence, eyy(ck + cff) = eeq, and therefore e = e.

7 Conclusion

In this paper, we have developed a framework of PETs, which extend EFTs associated
with the SM by coupling them to generic hidden messenger fields with masses at or below
the characteristic energy scale of the relevant EFT. This framework enables the coupling
of SM fields to light hidden sectors while remaining largely agnostic about the internal
structure of the hidden sector, which can include secluded particles that do not couple
directly to the SM but interact with each other and the messenger fields. It also accounts
for the coupling to heavier hidden sectors via the inclusion of higher dimensional operators
in PET Lagrangians. Throughout the paper, we have focused primarily on hidden fields
with masses at or below the strong scale, for which there are extensive searches at intensity
frontier experiments. However, we emphasise that the PET framework, and in particular
the portal SMEFTs we derived in section 3, also capture messengers that are much heavier,
as long as their mass is within the regime of applicability of the corresponding EFT.
Using the PET framework, we have first constructed EW scale and strong scale PETSs
that couple SMEFT and LEFT to a messenger of spin 0, %, or 1. The resulting portal
SMEFTs encompass all available portal operators up to dimension five, while the portal
LEFTs additionally encompass all dimension six and seven operators that contribute to
quark-flavour violating transitions at LO in egw, agm, and the NDA 47 counting scheme.
We have found that all portal SMEFTs conserve baryon number, and that the spin 0 and
1 messenger portal SMEFTs conserve lepton number. In the case of spin % messenger,
the portal operators can violate lepton number by one unit, |AL| < 1. Additionally, this
messenger does not couple to any of the quark fields or the right-chiral charged lepton

fields, while the spin 1 messenger only couples to pairs of quarks and leptons with identical
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chirality, so that it cannot act as a separate source of chiral symmetry breaking. We used
all these properties to constrain the portal LEFTs, so that the resulting LEFTs should be
understood as a low energy approximation of the corresponding portal SMEFTs, where the
heavy SM DOFs have been integrated out.

We have parameterised the coupling of QCD to hidden sectors at the strong scale in
terms of ten external currents J € {Q, ©, M, L*, RF T T, §;, 9, N}, and used a
spurion analysis to derive the corresponding PETSs that couple the hidden messengers to the
U(3) version of yPT, which contains a 1; singlet meson in addition to the light pseudoscalar
meson octet of SU(3) xPT. The spurion analysis is the standard technique used to embed
xPT in the remainder of the SM at LO in agy. Hence, the coupling of yPT to the currents
O, M, L*, and R", which capture the impact of photons, the light SM leptons, and the
QCD theta angle in the SM, is well understood [105, 109, 149, 183-187, 197]. Similarly,
the coupling of xPT to T#" has been studied in [203].

Here, we have extended the spurion technique to also account for the space-time depen-
dent external currents I, £;, 9., Hs, and 2. The SM contributions to all these currents are
constant, and the SM contribution to the current 2 = w + S, is the inverse fine-structure
constant of QCD w o g5 2. Since strong interactions are integrated out when constructing
xPT, only the portal contribution S, can appear in the xYPT action. .S, encompasses e.g.
the coupling of xPT to a light Higgs boson h via the interaction hG,,G"", previously
studied e.g. in [106]. We generalise that description to account for the coupling of xPT to
a fully generic current S,,. The constant SM contributions to the dipole current I' and the
four-quark currents ), are usually included into xPT by appealing directly to the transfor-
mation behaviour of the QCD dipole and four-quark operators under global quark-flavour
rotations [42, 114-117]. Since it is difficult to generalise this transformation behaviour ap-
proach to space-time dependent external currents, we have used the more powerful spurion
approach. In order to include the four-quark currents ), into the power counting for U(3)
xPT, which is defined via a simultaneous expansion in momenta 9> and large n., we have
generalised the standard QCD large n. counting formula.

The final xPT Lagrangian contains 27 free coefficients x € {xf, K7, Ky, £} In order
to make it possible to constrain interactions in the portal LEFTs using bounds on hidden
sector induced meson transitions, we have estimated 22 of these coefficients using a number
of well-established techniques for the non-perturbative matching of xyPT to QCD. Four of
the seven coefficients k,,, which measure the coupling of xPT to the S, current, have
already been estimated by using the anomalous trace relation of the QCD stress-energy
tensor (2.65) [106]. Using this strategy, we have fixed the remaining three coefficients.
The thirteen ¥ coefficients, which measure the coupling of xPT to the octet and 27-plet
currents 9, 9,, and 9, are well known in the large n. limit [107, 108, 110-112, 205, 206].
However, corrections that appear for finite n_ ! are known to be important when estimating
the strength of the four-quark operators in the SM, and we expect the same to be true for
the four-quark operators in the portal sector. Hence, we have adapted the strategies used
in [106-108, 112, 205], and obtained improved estimates for the k¥ coefficients by matching
them to experimental values of the octet and 27-plet coefficients hg 1 27. Finally, we have
estimated the coefficients xr and m%/[ + /ﬁ{yﬂ, which measure the coupling of xPT to the
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dipole current I', by matching the xPT prediction for the vacuum condensates of the QCD
dipole quark bilinear (2.29) to the corresponding lattice values in (2.32).

To facilitate the application of our results, we have listed all one- and two-meson
interactions that arise from the LO portal xyPT action. We have then computed the most
general transition amplitudes for three golden channels, which are used to constrain the
coupling to hidden sectors in fixed-target experiments: i) K + ot i) K + 5 0*¢,, and
iii) ¥ — fva.QO For the spin 0 messenger, we have computed a universal decay amplitude
and connected it to simple realisations of ALPs and scalar portal models. For spin % fields,
we have mapped our generic decay amplitude to the case of HNL by rewriting it in terms of
a generalised effective mixing angle. We have also connected our comprehensive expression
for the spin 1 messengers to the case of QED-like dark photon model by using the photon
EOM to express the kinetic mixing operator in terms of our portal operators.

Outlook. The work we have presented in this paper opens up several potentially in-
teresting avenues for further investigation, which range from formal improvements of the
PET framework to theoretical work to expand its regime of applicability and further to a
number of relevant phenomenological applications.

In this paper, we have focused primarily on completing a minimal version of portal yPT
that can be used to make concrete predictions for meson decays at intensity experiments,
and have left open some questions that need to be addressed in order to complete the
PET framework. For instance, one has to connect the EW and strong scale PETs in
order to constrain the shape of portal Lagrangians at the EW scale by means of low-
energy experiments. This connection can be established e.g. via an explicit procedure of
successive matching and running, where the Wilson coefficients for each portal interaction
are run down from the EW scale (1 ~ v) to the strong scale (¢ < me), while integrating
out each heavy SM DOF as it becomes inactive. Further, it is necessary to complete
the matching between the strong scale PETs and yPT by determining the remaining
coeflicients related to the external currents I' and T#”. This is an unavoidable procedure
to relate meson scattering and decay amplitudes induced by these two currents to the
corresponding dipole operators in QCD.

In addition, there are several avenues that can be pursued to extend the PET frame-
work by expanding the range of models that it is able to capture. First, it is possible
to include e.g. portal operators up to dimension six at the EW scale, which would allow
for describing a larger class of DM models. Second, one can construct PETs for hidden
sector models with higher spin messengers or with multiple messengers. In appendix B.2,
we have already constructed portal SMEFTs for spin % and 2 messengers, but it remains
to construct the corresponding portal LEFTs at the strong scale, as well as the result-
ing portal xPT Lagrangian at LO. Finally, while the PETs we have constructed already
account for the possibility of multiple messengers with identical spin, for a fully general
description of models with multiple portals, it might be interesting to add portal operators
that encompass hidden fields with different spin.

20Recall that the fields s;, &, and v, denote generic spin 0, spin % and spin 1 messengers, respectively.
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Finally, one can apply the PET framework to make predictions for various experimental
setups besides the low-energy fixed target experiments that have been the focus of this
work. For instance, EW scale PETs can be used to constrain hidden sectors at collider
experiments, e.g. at the LHC, similarly to how SMEFT is being used to constrain the
coupling to heavy new sectors, and to make predictions for flavour physics experiments,
such as LHCb [292], or for beam dump experiments, such as SHiP, which produce an
enormous amount of heavy D- and B-mesons. In order to apply the PET approach to
heavy meson physics and a wide range of other experimental setups, it will be useful to
construct PETs that extend a large class of EFTs in the SM, such as HEFT, HQET,
NRQCD, and SCET.

In the long term, this program of building and linking various PETs at many different
energy scales will make it possible to perform a truly global parameter scan, which could
be used to constrain light hidden sectors in a very general way, as it will combine differ-
ent observations at the EW scale, from flavour physics experiments, and from intensity
experiments. This goal will require the ability to compute a large variety of amplitudes
for a wide range of distinct hidden-sector induced transitions. In order to simplify this
task, it is thus sensible to implement the various PETs into tools that automatise Feynman
rules, such as FEYNRULES [293], and to produce model files for software packages, such as
MADGRAPH [294], MADDM [295, 296] and MapDuwmp [297], which are able to compute the
matrix elements and the necessary theoretical predictions.

Acknowledgments

We are very grateful to Marco Drewes and Jean-Marc Gérard for fruitful discussions and
the feedback they have provided all along the preparation of this work. We thank Eduardo
Cortina Gil, Anthony Francis, Martin Hoferichter, Ken Mimasu, Urs Wenger and Uwe-Jens
Wiese for useful discussions. Chiara Arina has been supported by the Innoviris ATTRACT
2018 104 BECAP 2 agreement. Jan Hajer has been supported by the Fonds Spéciaux de
Recherche (FSR) incoming postdoc fellowship of Université catholique de Louvain (UCLou-
vain) and is now supported by the Schweizerischer Nationalfonds zur Foérderung der wis-
senschaftlichen Forschung (SNF) under the project Ne 200020/175502. Philipp Klose has
been partially supported by the UCLouvain FSR funding scheme and the Innoviris AT-
TRACT 2018 104 BECAP 2 agreement, and is now supported by the SNF under grant
Ne 200020B-188712.

A Construction of portal effective theories

In this appendix we describe the techniques we use to construct EW and strong scale PETs
that extend an EFT of the SM by coupling the SM DOFs to a hidden messenger that is
lighter than the characteristic energy scale of the relevant EFT. We summarise the NDA
power counting scheme, and give a number of well-known reduction techniques used to
obtain a minimal basis of independent portal operators for each PET.
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A.1 Naive dimensional analysis

After integrating out the heavy SM DOFs, the strong scale PETs may contain portal
operators with dimension larger than five. The higher dimensional operators are suppressed
by powers of egy = 02 / A%M. In addition, operators that receive contributions from tree-
level diagrams at the EW scale theory will be suppressed by loop factors of (47)~!. These
loop factors can be integrated into the power counting using NDA [175-178]. The NDA
counting scheme assumes that the EFT Lagrangian can be written as [176]

L=L7+Y"¢0;, (A.1)

where the ¢; are Wilson coefficients and the O; denote effective operators of dimension
d; > 4. The renormalisable Lagrangian £9=* contains gauge interactions with couplings
gi, Yukawa interactions with couplings v;, ¢° interactions with couplings k;, and ¢* inter-
actions with couplings \;. Assuming that the kinetic part of the Lagrangian is canonically
normalised, NDA stipulates that the Wilson coefficients ¢; are expected to be of order one,
or smaller, if the O; are normalised as

o () () () () () (5 ()™
(A.2)

where A is a high-energy scale associated with a small momentum expansion in powers of

e x /s/A, ¢ and ¢ denote bosonic and fermionic fields present in the effective theory, and
p? stands for any light mass scale (i.e. it includes both derivatives d  p and light masses
m o p).

The NDA power counting is self-consistent in the sense that an arbitrary diagram with
insertions of higher dimensional operators normalised according to (A.2) is renormalised
by operators with the same 47 normalization. That is, the Wilson coefficients mix as [176]

dei ch ) (A.3)
J

which implies that the Wilson coefficients should satisfy ¢; < 1, even if the underlying UV
theory is strongly coupled [178]. If the UV theory is weakly coupled, the Wilson coefficients
may be much smaller than one, ¢; < 1, so that the 47 power counting of NDA can be broken
by strongly hierarchical values of the Wilson coefficients, which could potentially satisfy
4me; < cj for certain i # j.

When using the NDA counting scheme to discriminate between portal operators at
the strong scale, we specifically count (47)~! suppression factors associated with loops in
the EW scale diagrams that generate each strong scale operator. Since the renormalisable
d = 3, 4 operators in the strong scale theory are generated by tree-level diagrams at
zeroth order in egw, their normalization should not contain any explicit factors of 4.
This requirement implies that the small portal coupling eyy has to be associated with a
factor (4m)~!, so that e.g. an operator eyygqqs; scales as (47)Y rather than (4m)'. This is
completely analogous to the (47)~! suppression that has to accompany each SM Yukawa
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coupling. In view of our choice gauge field normalization, which ensures that the covariant
derivatives D, = 0, —iA, are independent of the gauge couplings, the SM photon field
strength tensor needs also to be associated with a factor of (4w)~!. In principle, this
reasoning also applies to gluon field strength tensors, but the corresponding factor of (47)~*
does not result in any relative suppression, since gs/4m is not a small parameter in the
non-perturbative regime of QCD. Therefore, we do not keep track of the factors of 4=«
associated with the gluon field strength tensor. Summarising, we normalise each portal
operator at the strong scale as follows,

o (6 () () ()
4 4 A3y A%, ASK/[Z

19(ns+nv+n§/2) \Ms 1 Ty ng
" (1) €uv (477.91) 4mv; 47, (A4)
47 4 \ Asm Asm A§1</12

where g\ stands for SM fermions, and p ~ D,,, m now denotes either a covariant derivative

or a light mass scale. The function

1 =z>1
Hax) = A5
(z) 0 <1 (A.5)

measures how many hidden fields the operator contains. If it contains more than one
hidden boson or more than two hidden fermions, the operator has to have been generated
by EW scale diagrams that contain at least one hidden sector interaction, and according to
the general NDA counting scheme this interactions has to be associated with suppression
by at least one factor (47)~1.

A.2 Reduction techniques

In general, a naive listing of all available operators at each order in the power counting
contains a number of redundant operators that can be expressed as a linear combination
of other operators at the same or higher order in the power counting. In the following, we
list a number of standard reduction techniques that we use to identify minimal bases of
portal operators without redundancies: further details on these reduction techniques can
be found in [29, 298-300] and references therein.

Algebraic identities directly associate operators with each other. In our analysis, we
use

« Bianchi identities that relate the covariant derivatives of field strength tensors V+¥.
One has
DFVYP 4 DYVPE + DPVRY =0 . (A.6)

In particular, these identities imply that

0 (DPVIY 4 2DHVYP) =0, D,V =0 . (A7)
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o Fierz completeness relations that relate products of fermion bilinears [298, 299].
These are often given in terms of four component fermions, see for instance [299]. In
the two-component notation of [129], the Fierz identities we use take the form

1 1
%% @Z)c"/)d = 5 @Z}awd @Z}c"l}b ‘1‘1 @Zjaa,uz/‘vbd 1l}c5“”¢b ) (A'Sa)
1 1
ol wlvh = 5 wivh wlo] +7 dlowv) vie ], (A.8D)
and
DITuy Yol = 2 Il paby (A.9a)
Vi Yioh e = — Yiguba ict s (A.9b)
¢a0';ﬂ/}g %U“Tﬁg = - Tlﬁaffm/)jl ¢cau¢z ) (AQC)
as well as
YaTutba Ylo" v =0, (A.10)
and finally
Yt Y170 = 3 atba W — 13 Va0 T (Alla)
vl vl = 5 wlea vl — 12 wima wlom e (A11b)

Partial integration can be used to rearrange (covariant) derivatives within the opera-
tors, assuming that the fields vanish at infinity.

Field redefinitions of the shape

o(z) = o(x) — " fl¢](x) (A.12)

where € is a small parameter of the theory and f[¢](x) is a polynomial that depends only
on powers of ¢ and its derivatives evaluated at x, can be used to eliminate operators
proportional to the zeroth order EOM for the effective DOFs that appear at order €™ [29,
178, 301, 302]. The repetition of this procedure at each order in € makes it possible to
eliminate operators proportional to the zeroth order EOM at all orders in e.

A.3 Standard Model equations of motions

In this section, we collect the EOMs for the SM fields we use throughout this work.

A.3.1 EOMs at the electroweak scale
At the EW scale, the SM EOMs for fermions are

il = y.eH , i e =yl HY (A.13a)
i g = yyuH + ygdH , i Pu =yl Hd, ipd =yt Hd, (A.13b)
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where the y; (i = e, u, d) denote the SM Yukawa coupling matrices. The EOMs for SM
bosons are given by

D?H = (m? = N H|*) H — efylt — d'y}q — (cq)tyuu, (A.14a)
8,B" = 3"y vty +iynHI D H (A.14b)

all f
(DW= ¢t i DY+ 17T 1y + qfo" T g, (A.14c)
2(D,GM )" = ule Ny + Wo N, + o Nodg + di5" \¥d, | (A.14d)

where € is the SU(2); totally anti-symmetric tensor, the index x denotes objects that
transform as members of the adjoint representation of SU(3)¢, and the A* are GM matrices
acting on triplets in colour-space.

A.3.2 EOMs at the strong scale
At the strong scale, the EOMs for SM fermions are given by

11361 meze 1lDdz = mdzaj s llDuz = mdiﬂj7 ilﬁVi = O’ (A15a)
i P; = mee] i Pd; = mgd! i Du; = mgiu! (A.15Db)

At the same scale, the EOMs for SM bosons are

2 (D,G")" = ul 5" N uq + T5" A\ + .57 Ny + di77 Ad, (A.16a)
light f

where gy is the EM charge of the fermion in question.

For the PETs we construct, it is possible to combine the strong scale EOMs with the
other reduction techniques to eliminate all operators with at least one covariant derivative
acting on a SM fermion. Considering a generic Weyl fermion v, with mass m, and gauge
charges ¢,, and a field strength tensor V*¥, we get

D,DPhy = (1212 —a 1JWVW> by 22, <m§ + qa;aWVW) Ya (A.17)
and further
0" (vuByan) = 50" (v | B + 0B | )
Lo _or (wa [BG“ - a“ﬁ] wb) + (i DY O*) (0T utbp) (A.18)
BN, — i (my + ma) O" (Pt + Yac” ) + (1 DYO) (YaTuuthy) |
and

Op (Ve D) = 10, (zpa {U“lb + Dot — D - Bu} ¢b>

EOM

(A.19)
—— (mp +mq) Oy (@lﬁﬂipb + %U’@Z) + (i DNOM) (Yatp)
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and

1 1
@ (DpwaDp¢b) = 50 (Dpd}a) qu;z)b + 50 (Dp¢a) D”d}b

P 20(D%60) ty— SO (DP0y) — 5 (D,000, (buth)  (A.20)
EOM, 2 (D20) whaty + 5 (2 + mf) Ovraty,

and

O (Dyn0™ Do) = 50 (4 [fbi) = Dy ) =10 (v, |5 - DB, | )
RSN lmamboﬂl U}b —10 (Do Dphy)

(A.21)

as well as

ol g (w 7, ;ﬂpb) oL ! (WL {UWJD lDUW} 1/11;)
PL ol @; [a,ww + wa,w] wb) + PO L (Y [00 + 00, )

EOM v — — _ i _ A
— O[M } (mbwga,uuwz - ma%%u%) + 5 (%%%) Dp@pa .
(A.22)
A.3.3 Quark EOM including external currents

To compute the trace of the QCD Hilbert stress-energy tensor (2.65) in the presence of
generic external currents, we include these currents into the quark EOMs. Therefore, they

are
b
i = (Mg + (Th, +T7G) " g+ Ll o"q") (A.23a)
V|2 .
| v\;d (290" ! 40,00 +9,20"a" G,0; —5.8%° ') .
i g} = (M q= (T +TGuw)o™q + R,p“@*)a (A.23Db)

V 2
+ |U‘25d < Tcaaun TCU 19b +f)scan CITC T) .

B Electroweak scale portal operators

In this appendix, we first collect the redundant EW scale portal operators for messengers

3

with spin 0 and 1, and then present the portal operators for messengers with spin 3

and 2.

727

B.1 Redundant portal operators with messenger field up to spin one

The operators listed in table 2 form a complete basis in the sense that it is impossible to
further reduce the number of independent portal operators by using the standard reduction
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techniques discussed in appendix A.2. In particular, we have used the SM EOM to minimise
the number of derivatives appearing within each operator, but for certain applications, it
may be more convenient to work with alternative bases of portal operators. To facilitate
this, we list below the redundant EW portal operators that can be constructed in PETs
based on SMEFT, and show which techniques were used to trade them.

The redundant spin 0 portal operators are

0,0, 5iB" & 0,,8,0,B" &5 5,0,0,B" =0, (B.1)
as well as
Osi(H'DyH) <% s (H'D2H — h.c.) (B.2a)
d%si|H|? LS 8Msi8”|H|2 & (HTDQH + h.c.) + non-redundant (B.2b)
and

_ PI PI PI
8“82-(]20“% > siql]qu, c'?#siujla“ub — squlDub, Gﬂsidla“db Yl t sidllbdb, (B.2¢)

8M8i€:rl§u£b <ﬂ> siﬁllDﬁb, BMSZ'QZO'“G{, <E> sie:g]Deb . (B2d)

Notice that the remaining operators (HTD?H +h.c.) and v D1, on the right-hand side of
these expressions can be replaced with Yukawa type portal operators using the SM EOMs.
The only redundant spin % portal operators are

DuflﬁufaﬁT +he &5 ¢t e, H + non-redundant , (B.3)

where the remaining operator on the right-hand side can also be replaced with Yukawa
type portal operators using the SM EOMs.
Finally, the redundant spin 1 portal operators are

&,vug"” N 0#8,,1?“” =0, Oyv, B" N v, 0, B" (B.4)

where the only remaining operator v,0, B*” can also be replaced with Yukawa type portal
operators using the SM EOMs.

Finally, we already argued in section 3.2 that the number of independent portal op-
erators given in table 2 can be further reduced by using the EOMs proper to the hidden
sector. However, these EOMs depend strongly on the internal structure of the latter, the
modelling of which is beyond the scope of this paper.

B.2 Rarita-Schwinger and Fierz-Pauli fields

Here we briefly discuss the case in which the SM couples to hidden % Weyl fields & () with
i =1, 2 or to a spin 2 field ¢*”. Without loss of generality, we take ¢ = t/, = 0, since the
scalar DOF t couples to the SM via the operators collected in table 2. Table 12 collects the
complete list of portal operators up to dimension five for both spin % fermion and tensorial
messenger fields.
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d Higgs Yukawa + h.c. Fermions Gauge bosons
4 Qlﬁ“&,fﬁ
Z‘ gau§g|H|2 (8”§au)€b}zﬁ faufbuB'uy
T o HP (O™ HT Eap ] By
h.c. 92 faungM{IT gaua'upgfl;gup
gauEuVEbDVHT gaug'upfll;Bup
Eaaaﬁgb,@BupEaﬁuy

3 t, B*

t B*Y
t“”D#HTDZ,H t“”qaawjubﬁ (autuy)qla”qb tWG’“pG’;
t"D,H'D,H " Qoo udpH (0, )ul o¥up b GHPGY,

(0, ") (HTD, H) t"lgoenH — (0Mt,,)dlovdy twGHP Gy,
(autw)ﬁjﬁ”ﬁb tWG’“pGZ
; ((")“tw)ejla”eb %VWW’“’WPV
s ("t )@ T @ L WHW S
(ﬁﬂfuy)ula”ub L WHPW

(0" )dly o dy tu B B

(0" ) LT tu B By

(Outul,)e:flayeb tuw B’ By
tu B | H ?
t.,B"|H|?

Table 12. List of all portal operators up to dimension five that couple SMEFT to hidden spin %
fermionic fields £# and tensor fields t#¥. The first column specifies the type of portal, the second
column denotes the dimension d of the portal operator and the remaining columns label the SM
sectors to which the hidden field couples. In the case of the vector-fermion PETs, each operator
is supplemented by its Hermitian conjugate. The bold operators couple to the strong sector of
the SM.

A standard example of hidden spin % fields coupling to the SM model are the gravitinos
appearing in supergravity models. Although their precise mass depends on the details of the
model, they can easily be much lighter than the other supersymmetric particles [303, 304],
leading to interesting phenomenology [305-307], and placing it into the regime of PETs.

Broadly speaking, there are two separate energy ranges in which spin 2 messengers
constitute viable extensions of the SM. On the one hand, in extra-dimension models, see
e.g. [308-311], besides the massless zero mode, higher order graviton excitations are inter-
esting portals for NP, and their allowed mass range lies in the TeV scale [312-314]. They
can be described by portal SMEFTs at high-energy colliders [315, 316] or for models of TeV
scale DM [317]. On the other hand, bimetric theories of gravity [318, 319], called bigravity,
feature an new massive interacting spin 2 state. This new boson can be a DM candidate.
However, either its mass range is beyond the sensitivity of intensity experiments, lying
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below the eV range, see [320], or it lies in the MeV range but its interaction strength with
ordinary matter is so negligible to make a detection hopeless, see [312, 321, 322]. Finally,
models with hidden spin 2 glueballs have been proposed [323, 324], but in this case the
prospects for detection in the mass range of interest would also be low. However, we do
not preclude the possibility of a viable theory involving those fields which can be detected
by light meson factories.

C Portal operators at the strong scale

In this appendix, we give a complete basis of both strangeness conserving and violating
portal operators at the strong scale that are suppressed by at most a factor of eyy/ v3 while
respecting the general restrictions outlined in section 3.3. In particular, we assume that
the strong scale PETs are a low energy limit of a corresponding portal SMEFT, and also
include operators that are sub-leading in the (47) counting of NDA. The relevant leading
strangeness violating QCD operators are listed in table 4, and the sub-leading strangeness
violating operators are given in table 5. For spin 0 and % mediators, the relevant portal
operators may be of dimension d < 7, while for spin 1 mediators, the portal operators are
of dimension d < 6. This basis is constructed using the reduction techniques summarised
in appendix A, see also [300] for additional details.

We follow the two component notation in [129] for fermionic fields, and distinguish
between portal operators with either zero, two or four fermionic fields. To list the operators,
it is convenient to define stand-ins for various SM SU(3). colour gauge singlets. For SM
fermions, we define the following neutral pairs

(qq)o € {ﬂaub, Eadb} o (WY)o € {(a9)o; Caes} (ih)o € {(ah)g, vamn}

(C.1a)
(qTqT)O € {ﬂlul, ajzdl]:} ’ (WTZ% € {ujzubv djzdbv elebv (WWO € {(1/}“/})67 Vl’/b} )

ﬂlﬂby EZ,EEH éj‘zéb} )

(C.1b)

and the following charged pairs
(49)+ € {Tadly, day} (') € {dfuy, dym, el } (C.2)
(qTqT)_ € {EZdT, EZuZ} , (szp)_ € {uidb, Ufﬂb, Vleb} , (C.2b)

where the indices run over all available flavours at the strong scale (a, b = u, d, s for quarks,
a, b = e, p for charged leptons and a, b = ve, v, v, for neutrinos) and the subscript specifies
the total electric charge of each fermionic pair. For the gauge bosons, we indicate their
field strength tensors with

Vi e {F* G"} . (C.3)

For operators with more that one occurrence of V*”, we adopt the convention that all of
these instances denote the same field strength tensor within each operator. For instance,
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the object V#*V,,, may denote F**F,,, or G"' G, but not F*'G,,,. The Fierz completeness
relations (A.8), (A.9) and (A.11) reduce the number of independent four-fermion operators.
We can then restrict ourselves to products of the colour singlets (C.1) and (C.2) without loss
of generality. For operators without quarks, we can further restrict ourselves to products
involving only the neutral singlets (C.1).

C.1 Scalar portal

At order eyy/ v3, the scalar portal operators can be of dimension seven or less. We list all
portal operators that include at most two hidden real scalar fields (s; with i = 12).

Zero-fermion operators can contain either one, two, or three field strength tensors.
The operators with one field strength tensor are

s; Oysj Oysy FM 5; Oysj Ousi P (C.4)
The operators with two field strength tensors are
s (Vi VI o sisy (Vi VI sisjse (Vo V)., si (DpVi, DPVIY) (C.5a)
5 <VWX7’“’>C . sis <VWX7/“’>C . sisisk <VW17W>C s <DPVWD”X7’“’>C . (C.5b)
The operators with three field strength tensors are
si (GLGhGE) 5 (GLGhGE) (C.6)

Two-fermion operators can contain at most a single SM field strength tensor. The
operators without field strength tensor may contain no more than two derivatives. The
operators with zero derivatives are

si(¥¥)o 585 (V)o si8jsk(YP)o sisjsksi(P)o - (C.7)
The operators with one derivative are
sidus; (VT si s;0usk (V100 . (C.8)
The operators with two derivatives are

si(V)o $i0%s;(11h)o Opsi OMsj (Vo - (C.9)

The operators with a single SM field strength tensor and no derivatives are

si(Youw V" Yo, 885 (VT V¥ P)o . (C.10)
The operators with a single SM field strength tensor and one derivative are

Dysi (V1T V)0, Bysi (W, V) . (C.11a)

All the operators above are accompanied by their Hermitian conjugate.
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Four-fermion operators cannot contain any derivatives or field strength tensors. They
are

si(WTe ) (ViT)o,  si(wTe ) (Wiew)-,  si(ag)o(a'a o,  si(aq)+(a'qh)-,
(C.12)

plus Hermitian conjugates. The operator s;(1)"1) ()17 ,1))_ contains only combinations
with either two or four quarks. Using the Fierz identity (A.9), combinations with four
leptons can be eliminated in favour of operators contained within s;(¢1a#)o(¥17,1)0. At
order egw, there are no operators s;(11)(¢Y)) or s;(¢o"” ) (Y7 ,,1), since these involve
at least two chirality flips for the SM fermions, suppressing them further by an additional
factor of \/egy X my/v.

C.2 Fermionic portal

At order eyy/ v3, a fermionic portal particle can couple to the SM via operators up to
dimension d < 7. These operators can contain either two or four fermions. As before, it is
sufficient to list portal operators with two hidden left-handed Weyl fermions &; with ¢ = 1,
2 to account for both Majorana and Dirac fermionic fields in general.

Two-fermion operators can contain either zero, one, or two SM field strength tensors.
The sole operator without field strength tensors is

VaSi - (C.13)
The operators with one field strength tensor are
VO & FM &iT W& FM &G, D¢ FH VaO D&M (C.14)
and
VJ;END,,&-FW ) giTEMD,,ij“”, §i0up DD EFYP | 1,5, D, DFEEYP, (C.15a)
vig D,&F"Y o, DG 60,,D,DMEEYP . 1,e,,D,DPGEY? . (C.15D)
The operators with two field strength tensors are

Vs (V"Vir)e s &6 (V" Vi) o &y (VEVP) o vaoua (VEV?) | (C.16a)

c

v (V¥ Vi) o & (V" Vi) Gou&y (VEV™) o v (VEV?) . (C.16b)

C

All operators are accompanied by their Hermitian conjugate.

Four-fermion operators can contain at most one derivative. The operators without
derivatives can be either of the scalar-scalar type or of the vector-vector type. The former
are

giﬁj Vaf ) aaub ecfi ) (Wﬂ)é) Vafi ) (wa,ul/‘/})é] VGENV&. ) (C'17a‘)
(i) &k (Vo) &E; (C.17b)
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and
(we)o viel (we)o €€ Tady ef] - (C.17¢)
The vector-vector type operators are
viohe; o, digtu ez, ulotdy elTus . WiTup)e viote . (C18a)
(WiTuv)o €l . (C.18b)
The operators with one derivative are

W1Fuh)o vaD &, (W1Gu0)0 vad™ Do, (W1Gu0)0 &DME,  (WTTu)0 & DL,

(C.19a)

iy, e.D"; digtuy ed™ D&,  Elotve Dyt €T &0 DEL,
(C.19b)

viohe; €Dk, VT, £ D&

(C.19c¢)

All operators are accompanied by their Hermitian conjugate.

C.3 Vector portal

At the EW scale, spin 1 messengers do not couple to SMEFT via operators of dimension five,
hence the corresponding low energy portal Lagrangian can only contain interactions that
are suppressed at most by a factor of €/ v? rather than e / v3. At order € / v?, hidden (axial-)
vector mediators couple to the SM via operators of dimension d < 6 only. Therefore, there
are no portal operators with four SM fermions, since they would be at least of dimension
seven.

It is convenient to define

ov = 0v,, UV = Oy Uy = Og003 Vpv = 2€0p00°07 . (C.20)

Zero-fermion operators can contain either one or two SM field strength tensors. The
operators with one field strength tensor are

Vv, Y v, MU, F7P vyv“vﬂpﬁl’p , DTy 2 (C.21a)
VP00, FHY v, FYP v, V10, FYP ", FY (C.21b)
and
vV, FM V0 0P FHY vua%,,FW , (C.22a)
8111)#,,}7”“’, U#,,vpapf”‘”, Uu(?zvl,ﬁ’“’ . (C.22b)
The operators with two field strength tensors are
VP, (VI Vi), . v 0" (VPV,,). . ov (VV). (C.23a)

v v, <V‘“"~/W>C ;o vv” <V“p‘~/p,,>c ,  Ov <V’“’1~/W>C ;O <V“p‘7pl,>c . (C.23b)
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Two-fermion operators can contain a scalar-valued, vector-valued, or tensor-valued
SM fermion bilinear. The operators with scalar- and tensor-valued fermion bilinears are

vpvp(ww)o 9 87}(@“/’)0 9 UMV (wﬁ,‘“’d})o I (024)

plus Hermitian conjugates. The operators with vector-valued fermion bilinears are

Uu(d)TEuw)Oa 6uu(¢TEuDV'¢)07 UH(¢TEV ;uﬂ/})Oa Uuuvy(¢T6#¢)0, (0'253)
Vo (WTT Yo, v (WTF DY)y, (T Viw)o, v’ ($iEHp)e,  (C.25b)
T’ (PTatp)e,  (C.25¢)

and
dvv, (ViFHp)o *v, (1T )0 (C.25d)

D Expansion of the xPT building blocks

In this appendix we provide details about the expansion of the chiral Lagrangians in terms
of light mesons and hidden particle states. This material covers the necessary steps to
derive the results of section 5 and provides the reader with the necessary tools to use the
results obtained in section 4 and section 5 for their own calculations.

The matrix u, and the hatted external currents X e {M,T, T"} and Y € {I?iu,
EW} can be expanded as

= 1
X—gX—(1+ q>—7<1>2—7<1>3 )X, D.1a
fO 2f0 6f0 ( )
1
Y=gYg =Y+ [0,Y] - —[0,[0,Y] - =[®[0[®Y]]+..., (DIb)
Jo 213 6fo
1
_ T
u, =ig0,g' = 8<I>+ ®,.0,® ,(@,0,P)]+... . (D.1c)
1% 1% f 2f0 [ ] 6f0 [ [ o H
Using the definition of the meson matrix ®
18 4 My + +
1 sV T Ko m
— s
K- K’ —am
V6
one obtains the individual contributions
(B4 I8)2 et r + KT K- 2w+%+K+FO T KO+ RCH(TE - I8
o2 — 27~ 24K K° T (L - I8 KOK Kt —KO(ﬁJr%) , (D.3a)
K4 K- (f f) 7T+K_7FO<L\/8§+7) K+K-+KK’ +4(7&)2
7+ 8+ KT8, K- 27t 8, B+ K 5, K +d KO—K+6H(%+3"—%)
[®,0,0] = 20 5 TS A KOG, K —rt Bur + KO8, K —Kt 8 K09, (T -3 1)
K8, +K— 8, (ZB+328)  —rt,K +K 5,34 -18) ~K+9,K~—K°§,K"
(D.3b)
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The interactions involving the SM photon current are

0 —7t —K*t
(@, ri]=eAV [ 7= 0 0 , (D.4a)
K= 0 0
—2(ntr+KYK") 2w+%+K+fo K+ (328 4+ 28 )4+ KO
(@, [®,r]] = —eA#| 27 ZE+KK° 2t 2K+ 7~ . (D.4b)
K~(3B4+38)4r K 2rt K- KT K

Finally, for interactions involving the hidden current V., one has

0 7T+(V7‘uu_vrdd)_K+V’rsd K+(Vruu_v'rss)_7r+vrds
—0
[V»,‘,(D] — 7l'_(Vrdd_Vruu)'f‘K'_Vrds K Vrds_KOVrsd KO(Vrdd_Vrss)'FVrds(L\/%_:i%)
_ _ _ —0 _ ng T8 0 _70
K (Vrss Vruu)+7r Virsd K (Vrss Vrdd)+ 3\@ 72 Vrsd K Vysa—K Vigs
(D.5)

D.1 Standard model meson phenomenology at NLO

We summarise the diagonalisation procedure for the U(3) xPT mesons and compute the
resulting meson masses and decay constants at NLO. We use the approximation m.,, m}; —
mud = (M), +m})/2, which neglects the mixing between the neutral pion and the two 7-
mesons and we also neglect EM corrections for the charged meson masses, which are of
order agy o €2. These EM contributions are given by

APM — 2, —m2, APM — (14 (0.84£0.25,,)) AEM, (D.6)

where the correction factor captures the impact of NLO contributions [325, 326]. We use
the EM contributions in combination with the measured values of the meson masses [144]

Myt = (139.57039 £ 0.00017¢p) MeV,  myex = (493.677 £ 0.013¢xp) MeV,  (D.7a)
Mo = (134.9768 % 0.0005¢x,) MeV myo = (497.611 £ 0.013¢,) MeV . (D.7b)

Meson decay constants. The part of the NLO Lagrangian that mediates charged meson

decays is
oW mow 7 2Lsbo 1
Lo" + Ly = —fo (ly0.®) — 7o (hy{m, 0,®}), . (D.8)
The resulting predictions for the meson decay constants are
fr m2 3 [k mi 3
%_1+4L5—g+0(6), %—1+4L5—g+(9(5), (D.9)
or equivalently
m2 fr —m?2 — —
PRI kb gheh oy
my — mz ma my
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where

2 2 2 2 2 EM
ms = myo, 2mie = M+ + Mo — A, (D.11)

are the charged meson masses without electromagnetic contributions. To fix the values of
the parameters fo and Ls, we use the measured values of the meson decay constants [144]

Jr = (65.1 % 0.6cxp) MeV, Jre = (77.85 £ 0.15¢xp) MeV . (D.12)

Hence, one obtains the estimates
fo = (63.9 4 1.2¢x, £ NNLO)MeV,  4(47)?Ls = 0.66 £ 0.04¢xp, = NNLO . (D.13)
Masses and mixing angles. After diagonalising the neutral kaon sector via the field

redefinition

V2KY = KO+ K, —iV2KY =K' - K", (D.14)

one obtains from the Lagrangians (4.116) the mass term

1
E/ P L0 = —mintnT —miKTK T — 3 (m27r0 + m% (K22 + ng) + 772Tm%2772) .
(D.15)
The NLO predictions for the pion and kaon mass parameters are

bomud ) s b

bo(m!, u
B) e = 0+ maa) <1+4L80(ms+md>
0

15

m2 = bymuq (1 +8Lsg ) , (D.16)

while the prediction for the mass matrix of the n-meson doublet 7o = (g, 71)” is

2 2
2 _ [ Mg Mgy _< 2 AKw) Agr  —V20kr 3
M = = | Mk — Loxo+ +0(8), (D17
<m7278771 m7271> K 2 22 —\/EAK7r Mg ( ) ( )

where the quantities

2 4L
M%(:mﬁ(—i—?)(m%( m)(A2+3f8( 2 _mz>), M2 = m? — 2Asm% , (D.18a)
0
4L
Agr == (mK m)(l—A2+4f28m%(> (D.18b)

depend on the kaon and pion masses as well the three parameters mg, Ao, and Lg. The 79
mass eigenstates are

n=cyns — Sy, 1N =cym + Syns, m?7 + m%, = tr 'm7272 , m%m%/ = det m?h , (D.19)

and their mixing is determined by

2 2 44 2 2,44 2 2142
o my, +myty o my, + myty e (my, —my)t; (D.20)
8 4 ’ m 4 ) " .
1+, 1+,
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where the sine, cosine, and tangent functions of the 7 mixing angle is indicated by s,, ¢,, and
t,, respectively. In order to fix the values of the free parameters we fit the above predictions
to the experimentally obtained values for the 7-meson masses and mixing angle [144, 327]

my, = (547.862 + 0.018,p) MeV ty = —0.29 + 0.09xp , (D.21a)
My = (957.78 = 0.060xp) MeV (D.21b)

Hence, one obtains the estimates

mo = 47(76.3 & 1.40yp = NNLO) MeV Ay = 0.814 + 00230, = NNLO, (D.22a)
4(4m)2Lg = 0.215 % 0.033p &= NNLO . (D.22b)

Finally, using eq. (D.16) to fix the values of the parameters bym,q and bgms, results in

VDo = 47(10.68 £ 0.080y, = NNLO) MeV (D.23a)
Vbomg = 47(50.95 & 0.28.yp, = NNLO) MeV . (D.23b)

Weak interaction induced kinetic mixing. When computing matrix elements for
quark-flavour violating transitions, one also has to account for kinetic mixing due to weak
corrections, which is captured by the quadratic part of the octet and 27-plet Lagrangians

W@+ L3 =~V ((hs + (ng = Dhar) 9,K " 0"n 41 c)

K9
— egw (— Re hg + nfRe hor) O \/58“ \/»

0 0

T
— egw (—Im hg + nsIm ho7) O “Sgr
M\/E \/‘
[n¢ Re hy2e,, + (— Re hs + n¢ Re hor)] 9 o, KL gn 1
— egw |nf Re h12ey,, — e hg + nf e hay
m \/‘ f
[n¢ Im 22,0 + (— Im hs + ng Im hy7)] 9, 0, 258 g 1
— €EEW |Tvf LI [v] 2Epy — 1mng -+~ nf lm noy
nnm f f
'
+ €EEw nfReh1+(—Rehg+nfReh27)6 L@“
[ 7777] #\/‘ \/‘
+ epw [nfIm hy + (— Im hg + ngIm hoy) £,y ] O &3“77—/ (D.24)
O s s :
To LO in egw, these interactions can be diagonalised via the field redefinitions
nt [ EEW 0 m2. O+ 5 at
— |1 K T , D.25
<K+> I T T A Kt (D-25)
0 _ 0
T 0 mi6le 0 0 i
KL EEW —m209 K 02><2 —m20 K —m2,9 'K KL
K% | = |15xs + —— (A et o o K% |, (D.25b)
0 mKoenK 0 0
n 2 T n
o i 0 mKOHn/K 0 0 o
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where the mixing angles are

Opctnr = s 1_m7ri (hs + (nf — 1)hor) | (D.26a)
b= — <nf Re hy 25y + (— Rehs + ng Re hay) (1 + am,)> (D.26b)
My — Mo \nflmhi2er, + (—Imhg + neIm har) (1 + exy)
b = — 1 : <nf Re h12¢,,7 + (— Rehg 4 n¢ Re har) (1 — 357”7)) (D.260)
mico — my \nflmhy2e,, + (= Im hg + ns Im har) (1 — 3ezy)
O = — 1 i (nf Rehi + (— Re hg + ngRe hay) (3eqy + ey ) (D.264)
Mo — My, \nelmhy + (—Imhs + neImhor) (3emy + py)

D.2 Mixing between mesons and scalar messengers

In section 6, we compute a generic K™ — 7ts; decay amplitude by treating the bilinear
portal interactions perturbatively. In some instances, it may be necessary to resum these
bilinear interactions by diagonalising the portal Lagrangian. Following this strategy, one
obtains additional portal interactions generated by both SM and internal hidden sector
interactions, the size of which is measured by meson to hidden particle mixing angles.

In general, the bilinear interactions that couple xyPT to hidden sectors are

2
1
LI 4+ £30 = — fobo (®Tm 8!, + Jorg g, —5®es +he, (D.27)
where qbg = (m, K%, Kg, n,1n), sT = (s1, s2,...), €= (€1, €2, ...), and
12 (I c/Smd + Im c’Sm(SO
Sm Sim
& = euv fobo | s (I ¢y —Imej 3) (D-28)

2 SG
Csin T Snup, vbo G

Sa
Csim’ — C%bo i

L
V3
1

V3

)
)

The coefficients ¢, x and ¢/ are given in egs. (6.1) and (6.

hidden Lagrangians

Ehidden ») —*ST(BQ + m)s

the mass-mixing matrix is

LD —

%o

S

3 (67) () (7).

8).

For canonical quadratic

This matrix can be diagonalised using a unitary field redefinition

1 4
9T

bo

S

()=

J<%)+o@g

, m = diag(m3,m3,...) (D.29)
M = diag (m%,m%(, m%(,m%,mf] ) . (D.30)
0=(0,0q,...), (D.31)
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where 6 is a solution of the matrix-valued equation
e=0m— M6 . (D.32)
Assuming that all of the s; share the same mass ms; = m;, one obtains
0= (m21-M) ¢ (D.33)

D.3 Trilinear Standard Model vertices used in the K* — ©%s; decay

The hidden currents Im S,,, and Sy contribute to the generic K + gt

Feynman diagrams that contain a SM three-meson vertex with one charged kaon leg,

s; amplitude via

one charged pion leg, and one neutral meson leg, with the neutral meson subsequently
oscillating into a hidden scalar. The SM three-meson vertices are encoded by the kinetic
Lagrangian (4.113), the octet Lagrangian (4.121a), and the 27-plet Lagrangian (4.121b),

Loz =L+ £30 + L35 (D.34)
where
2= 1 9,80,000). =0, (D.35)
2fo
Lo = —iEW (hs ({0, ®, [®, 4 ®]}Y, + hy ([®,8,®]5, "®) + h.c., (D.35h)
£ = IEW har (30,05, 0"®)" + 20,4 [d, 0 ] (D.35¢)

+3[®,0,050 0! + 2[®, 0,019 %) + h.c.

Evaluating the flavour traces, the relevant terms with one K, one 7+, and one neutral

meson are
Lo3 D Lire = £K7r<1> + £K7r<1> ) (D.36)
where
L3 = IZ?ZV {hg (30— O+ — Oy Dper — 2030 ) %Kﬂr— (D.37a)
+hs (Opes Ong — Op+0r—) ljifw
+3hy (B, Orc+ — Oy, O )\77[ 7 K| +he.,
L2 = —ijj,zv har [(7a7r8(9K+ — 500y — 20, Ogc+) Ew “K* (D.37b)
—3 (30,30 — 20, O+ — O Opc+) %W‘K+ the. .
Diagonalising the Lagrangian, one obtains the final interactions
Liro = Linr + Lkry + Lkmy (D.38)
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where

Lire = _IEW [(hs + Tha7)0,005c+ — Bha10,00, - (D.39a)
0 0
—(hs + 2hy7) O+ O] Kﬂf% :
ﬁKﬂn = —lfl%cn [(3h8 + 6h27)3K+87r7 — (hg -+ 3\/51577]11 — 3h27)6,78K+ (D.39b)

ﬁKﬂ’n’

y
—(2h8 — 3\/575,7]11 + 9h27)8n87r7} K*trn % R
S, [(3hs + 6har) g+ - — (hs — 3v/2t, b — Bhar)Oy g+ (D.39c)

——s
4fy "

/
~1 + -1
—(th + 3\/§tn hi + 9h27)({9n/87r7} K'n % .
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