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a b s t r a c t 

Relating brain dynamics acting on time scales that differ by at least an order of magnitude is a fundamental 

issue in brain research. The same is true for the observation of stable dynamical structures in otherwise highly 

non-stationary signals. The present study addresses both problems by the analysis of simultaneous resting state 

EEG-fMRI recordings of 53 patients with epilepsy. Confirming previous findings, we observe a generic and tem- 

porally stable average correlation pattern in EEG recordings. We design a predictor for the General Linear Model 

describing fluctuations around the stationary EEG correlation pattern and detect resting state networks in fMRI 

data. The acquired statistical maps are contrasted to several surrogate tests and compared with maps derived by 

spatial Independent Component Analysis of the fMRI data. By means of the proposed EEG-predictor we observe 

core nodes of known fMRI resting state networks with high specificity in the default mode, the executive control 

and the salience network. Our results suggest that both, the stationary EEG pattern as well as resting state fMRI 

networks are different expressions of the same brain activity. This activity is interpreted as the dynamics on (or 

close to) a stable attractor in phase space that is necessary to maintain the brain in an efficient operational mode. 

We discuss that this interpretation is congruent with the theoretical framework of complex systems as well as 

with the brain’s energy balance. 
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. Introduction 

The human brain is one of the most complex systems we know. It
onsists of about 10 11 elementary building blocks - the neurons, each of
hem connected with 10 3 to 10 4 others, which constitutes an enormously
arge network. The total length of the connections (the sum of all axon
nd dendrite lengths) is about 10 million kilometers ( Schelter et al.,
008 ), which suffices to wrap more than 200 times around the equator.
otwithstanding, it is an extremely sparse network, considering that less

han the 10millionth part of all possible connections are actually real-
zed. In order to ensure an efficient information transfer between dif-
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erent (probably distant) brain regions, a special network topology is re-
uired ( Bassett and Bullmore, 2006; Bullmore and Sporns, 2009; Eguiluz
t al., 2005; Sporns et al., 2000 ). This is realized via a hierarchical ar-
angement of feedback loops, beginning from the microscopic level of
odules consisting of a few neurons to the macroscopic scales like the
halamo-Cortical system, with non-linear interactions within and be-
ween the hierarchical levels ( Buzsaki, 2006 ). 

The complexity of the neural network is also reflected in its dynam-

cal features, like the existence of scaling laws ( Eguiluz et al., 2005;
raiman et al., 2009 ) and in particular its highly non-stationary nature
 Andrzejak et al., 2012 ). Ever changing internal conditions as well as
ontinuously alternating external stimuli in addition to dynamical noise
omponents provoke unceasing transitions between qualitatively differ-
nt spatial synchronization patterns of neural populations. 
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All above mentioned properties are typical for many complex adap-
ive systems, and, counter intuitively, they are capable to generate char-
cteristic structures that are surprisingly stable in time ( Hastings, 1984;
ünnix et al., 2012; Schneider and Somers, 2006; Wollin and Perry,

004 ). These structures may act as a kind of dynamical scaffold around
hich a system evolves. 

Evidently, such a dynamical backbone within otherwise highly non-
tationary signals is of major importance for the understanding of the
orresponding system. Studying its properties may reveal fundamental
rinciples of its complex dynamics, similar to the attractor topology of
ynamical systems in phase space. Apparently, also the brain encoun-
ers preferential dynamical states, whose underlying network seems to
perate close to a critical point ( Beggs and Timme, 2012; Chialvo, 2010;
raiman et al., 2009; Linkenkaer-Hansen et al., 2001; Tagliazucchi et al.,
012 ). 

Functional magnetic resonance imaging (fMRI) has revealed stable
nteraction patterns in the resting brain, the so called resting state net-
orks (RSN) ( Buckner et al., 2013; Damoiseaux et al., 2006; Seitzman

t al., 2019; Van Den Heuvel and Pol, 2010; Zang et al., 2012 ) like
he Default Mode Network (DMN) ( Raichle et al., 2001 ), the Salience
etwork (SN) ( Menon and Uddin, 2010 ), the Sensory-Motor Network

SMN) ( Biswal et al., 1995 ) or the Executive Control Network (ECN)
 Seeley et al., 2007 ) to mention some of the most prominent ones. The
tudy of these dynamical networks opened new avenues of brain re-
earch, illuminating fundamental aspects of the basal brain dynamics. 

A potential problem of fMRI measurements is the slow hemodynamic
esponse that only allows indirect assessment of neuronal processes on
ong time scales, i.e. on the order of several seconds ( Cordes et al., 2000 ).
owever, most of the brain activity occurs on time scales that are orders
f magnitude faster, i.e. occur within fractions of a second. These pro-
esses are much better captured by electroencephalographic recordings
EEG), which may register the electrical brain activity up to the kilohertz
ange. Thereby not only much faster spectral components, which are re-
ponsible for a plenitude of interesting processes can be investigated,
ike for instance higher cognitive functions ( Ba ş ar et al., 1999; Bressler
nd Tognoli, 2006; Kaiser and Lutzenberger, 2005 ). Unfortunately, also
he non-stationarity of the signals is notably increased. 

Still, in Corsi-Cabrera et al. (2007, 1997) pronounced and tem-
orally stable cross-correlations were detected in EEG of healthy
omen during rest. In repeated measurements over weeks or even
onths the authors reported high within-subject reliability. Further-
ore, the results were homogeneous across each subject group. Also, in
ramer et al. (2011) stable templates have been found in intra-cranial
EG of epilepsy patients employing graph theoretical measures. 

Further, the authors of He et al. (2008) reported a stable correlation
attern during wakefulness, slow wave, and rapid eye movement sleep
s assessed by electrocorticograms of five epilepsy patients. It turned
ut that the slow cortical potentials demonstrate a correlation structure
imilar to the spontaneous fluctuations of blood oxygen-level dependent
BOLD) signals. This is an important observation because it provides a
irect link between the electrical brain activity and changes of the blood
xygen levels. 

In Müller et al. (2014) focal onset seizures were studied using scalp
EG, concentrating on the peri-ictal transition, i.e. epochs before, during
nd after seizure occurrence. In contrast to the expectation, the authors
ound a pronounced non-zero average correlation pattern during the
re-ictal, ictal and the post-ictal periods, which in addition turned out
ighly similar for the three conditions, in spite of the crucial dynamical
hanges during the peri-ictal transition. Furthermore, the observed pat-
ern was generic in the sense that also across different subjects a high
imilarity of the average correlation pattern was observed. 

Finally, in Olguín-Rodríguez et al. (2018) scalp EEGs, recorded un-
er quite different conditions like, whole night sleep of healthy subjects,
pen and closed eyes of healthy young and elderly adults as well as fo-
al onset seizures of epilepsy patients have been considered. Analysis
ed to the conclusion that (i) the average cross-correlation matrices es-
2 
imated separately for different physiological (as well as pathological)
tates are extremely similar, and (ii) this pattern is generic in the sense
hat it is (almost) subject independent. Taking the evidence in these
ontributions together, averaging over EEG epochs belonging to differ-
nt physiological states (like e.g. different sleep stages) is justified. In
he following, we denote the resulting average cross-correlation matrix
s ”Stable Correlation Pattern ” (SCP). 

In sum, in slow hemodynamic processes as assessed by fMRI as well
s in fast electrical brain activity measured by EEG surprisingly stable,
eneric interrelation patterns have been found. According to these ob-
ervations, the RSN and the SCP appear to constitute a dynamical back-
one, that coordinates the brain activity to respond appropriately to
ver changing conditions. 

We hypothesize that if the variations of the SCP and BOLD fluctua-
ions in resting state fMRI are different manifestations of the same phe-
omenon, simultaneous EEG-fMRI measurements ( Gotman et al., 2006;
an Graan et al., 2015; Nunez and Silberstein, 2000; Ritter and Vill-
inger, 2006; Wiest et al., 2015 ) should be an appropriate tool to inves-
igate their mutual relationships using the General Linear Model (GLM).

In many applications fluctuations in EEG-power have been used in
rder to relate fast electrical brain activity with the notably slower BOLD
ignals ( Britz et al., 2010; Goldman et al., 2002; Horovitz et al., 2008;
ann et al., 2010; Laufs et al., 2003; Neuner et al., 2014; Portnova et al.,
018; Prestel et al., 2018; Rajkumar et al., 2018; Samogin et al., 2019 ),
ometimes using frequency components up to 50 Hz ( Mantini et al.,
007 ). However, it was shown that slow modulations of respiration and
eart rate below 0.1 Hz may strongly influence the results ( Chen et al.,
020; Yuan et al., 2013 ), certainly an undesired effect. 

In contrast, in the present study we investigate the response of BOLD-
MRI to a functional network predictor calculated from bivariate inter-
elations between EEG signals measured at different electrodes and thus
epresenting a functional network. Note that this is conceptually differ-
nt to e.g. using fluctuations in topographic maps of spectral EEG power
 Labounek et al., 2019 ) or the power fluctuations originated by the so
alled microstates ( Britz et al., 2010; Michel and Koenig, 2018; Rajku-
ar et al., 2018 ), which as a univariate quantity calculated for each

lectrode separately does not reflect signal interrelations without fur-
her assumptions. We hypothesize that the intrinsic fluctuations around
he SCP in EEG predict activation maps similar to known RSNs of BOLD-
MRI. 

. Materials and methods 

.1. Subjects 

Since the SCP has previously been identified as a rather generic
attern with topology insensitive to pathologies ( Müller et al., 2014;
lguín-Rodríguez et al., 2018 ), 53 patients with epilepsy were included

n our study, see Tab. S1 of the Supplementary Materials for details. The
nclusion criteria were the presence of epileptiform EEG activity, visible
n scalp EEG recordings, and referral for simultaneous EEG-fMRI at the
niversity Hospital Bern, Switzerland (Inselspital). Thirty-one patients
ere female. The mean age ± SD of the group was 36.2 ± 13.4 years
nd their age ranged from 15 to 68 years. The epilepsy syndromes were
linically evaluated by the referring physicians and included: ideopathic
eneralized epilepsy (IGE, 13 patients), mesial temporal lobe epilepsy
MTLE, 13 patients), lateral temporal lobe epilepsy (LTLE, 12 patients),
rontal lobe epilepsy (FLE, 9 patients), parietal lobe epilepsy (PLE, 3 pa-
ients). One patient was diagnosed with West syndrome and one with
uvenile myoclonic epilepsy (JME), while another patient had not yet
eceived a diagnosis. 

This study was approved by the Ethics Committee of the Canton of
ern (approval no. 2017-00697) and all patients signed informed con-
ent. All clinical decisions were made prior and independent from this
etrospective data evaluation. 
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.1.1. Paradigm 

All EEG and EEG-fMRI measurements were performed at resting state
ith eyes closed. During the recordings outside the scanner, patients
ere intermittently asked to open their eyes for 20 s to facilitate the

dentification of the effect of eye movements. 

.2. MRI 

.2.1. Setup and data acquisition 

A Siemens Magnetom Trio TIM MR Scanner (Erlangen, Germany)
ith magnetic field strength 3 Tesla was used for MRI data acquisition
ith a 32-channel head coil. Image acquisition was performed in supine
osition and head motion was minimized by fitting foam pads between
ead and coil. Scanner noise was reduced by using ear plugs. 

All subjects underwent T2 ∗ -weighted functional imaging while si-
ultaneously recording EEG (see Section 2.3.1 ). BOLD data were reg-

stered with a standard echo planar imaging (EPI) sequence with the
ollowing MR parameters: repetition time (TR) 1980 ms; echo time (TE)
0 ms; flip angle 90 °; inversion time (TI) 910 ms; voxel size 3.0 mm
3.0 mm × 4.0 mm; field of view (FOV) 192 mm (matrix size 64 ×

4); slice thickness 4 mm. A total of 𝑁 𝑣𝑜𝑙 = 460 functional volumes were
ecorded for each patient (total recording time 15 min 11 s). To avoid
ontamination of the EEG recordings, the helium pump of the MR scan-
er was temporarily switched off during this time. 

For anatomical co-registration three-dimensional T1-weighted im-
ges were obtained in sagittal direction using either the Modified Driven
quilibrium Fourier Transformation (MDEFT Deichmann et al., 2004 )
equence or Magnetization Prepared Rapid Acquisition Gradient Echo
MP-RAGE Held et al., 1995 ). In both cases the voxel size was 1.0 mm
1.0 mm × 1.0 mm. 

.2.2. MRI preprocessing 

Processing of the MRI data was carried out using FSL (FMRIB’s Soft-
are Library, www.fmrib.ox.ac.uk/fsl ), provided by the Functional MRI
f the Brain (FMRIB) Analysis Group at University of Oxford, UK. FMRI
as analyzed with FEAT (FMRI Expert Analysis Tool), version 6.00. The
oundary-based registration (BBR) algorithm ( Greve and Fischl, 2009 )
as used to register the functional data to the high resolution structural

mage. We applied FLIRT ( Jenkinson et al., 2002; Jenkinson and Smith,
001 ) and FNIRT ( Andersson et al., 2007a; 2007b ) to register the high
esolution structural MRI to standard space templates for group analy-
es. Motion correction was accomplished by MCFLIRT ( Jenkinson et al.,
002 ), the slice-timing correction was performed by Fourier-space time-
eries phase-shifting, non-brain removal was carried out by means of
he brain extraction tool (BET) ( Smith, 2002 ), spatial smoothing was
ccomplished using a Gaussian kernel with full width at half maximum
FWHM) of 6 mm. The data was temporally high-pass filtered with a
aussian-weighted least-squares straight line fitting with time constant
= 55 . 5 s. 

.3. EEG 

.3.1. Set up and recording 

The EEG of all patients was first recorded outside the scanner (du-
ation 10 min) and then inside with simultaneous acquisition of BOLD-
MRI (duration 15 min 11 s). Two MR compatible EEG systems were
sed. Both amplifiers were battery-powered and connected through op-
ical wires to the data acquisition PC so that the patients’ security was
uaranteed ( Lemieux et al., 1997 ). The EEG caps of both acquisition
ystems contained the electrodes of the international 10-10 system as a
ubset. 

A BrainAmp amplifier (Brain Products, Gilching, Germany) was used
n 44 patients (patient group A) with an EasyCap and 92 EEG electrodes.
n addition, two electrodes were placed under the left and right clavicles
o record the electrocardiogram (ECG) and two electrodes were placed
elow the eyes to record the electrooculogram (EOG). The electrode
3 
mpedances were kept below 20 k Ω and the electrode at position 𝐹 𝑧 
as used as recording reference. The signals were amplified, band-pass
ltered between 0.1 and 250 Hz and digitally stored for offline analysis.
ampling rate was 5 kHz. 

In the nine patients of group B a GES 400 MR amplifier (Electrical
eodesics Inc., EGI, Eugene, OR, USA) was used with a 256-channel
ydroCel Geodesic Sensor Net and a Quadtrode CV (Invivo, Orlando,
L, USA) for ECG recording. The electrode at position 𝐶 𝑧 was used as
eference during recording. Sampling rate was 1000 Hz because lower
ampling rates result in aliasing in the scan-pulse artifact, which makes
roper correction impossible when recordings of EEG and fMRI are not
ynchronized. 

.3.2. EEG preprocessing 

Before preprocessing, the EEG was visually inspected and channels
ith increased impedance and permanent artifacts were discarded from

urther analysis. When EEG and BOLD-fMRI are recorded simultane-
usly inside the MR scanner, the EEG signal is corrupted by two kinds
f artifacts, the gradient artifact ( Allen et al., 2000; 1998 ) and the bal-
istocardiogram (BCG) ( Christov, 2004; Niazy et al., 2005; 1999 ). To
emove them, the EEGs acquired inside the MR scanner were post-
rocessed with the average artifact subtraction method of the FMRIB
lug-in ( https://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin/ ) for EEGLAB
 https://sccn.ucsd.edu/eeglab/index.php , Delorme and Makeig, 2004;
annetti et al., 2005; Niazy et al., 2005 ) including fitting and subtraction
f optimal basis functions (OBS) derived from the first three principal
omponents of the artifact residuals. Then a 4th-order Butterworth low
ass filter was applied with a cut-off frequency at 40 Hz. The filtered
EG was down-sampled to 250 Hz and the reference was recomputed
o the median of all artifact free channels in order to minimize defor-
ations of the functional network ( Rios et al., 2019 ). Finally, the EEG

ecordings were filtered in the range of 0.5 Hz - 25 Hz in order to di-
inish the influence of physiological noise and possible muscle artifacts

 Whitham et al., 2007 ). More recently alternative approaches to EEG
rtifact reduction in simultaneous EEG-fMRI measurements have been
roposed in Abreu et al. (2018) , Mayeli et al. (2021) . 

.3.3. EEG predictor 

To estimate the stationary correlation pattern ( Müller et al., 2014;
lguín-Rodríguez et al., 2018 ) we calculated the temporal, zero-lag
ross-correlation matrix of the preprocessed EEG signals by a running
ime window with zero overlap, corresponding to the acquisition peri-
ds of the 𝑛 th functional volume (duration 1980 ms) of the BOLD-fMRI
equence yielding 𝑇 = 495 EEG samples per window ( 𝑛 = 1 , … , 𝑁 𝑣𝑜𝑙 ).
he correlation matrix represents a time-dependent functional network
nd is estimated by 

 𝑥𝑦 ( 𝑛 ) = 

1 
𝑇 

𝑛𝑇 ∑
𝑡 =( 𝑛 −1) 𝑇+1 

𝑋̄ ( 𝑡 ) ⋅ 𝑌 ( 𝑡 ) (1)

here 𝑋̄ and 𝑌 denote any pair of the 𝑁 𝑐ℎ EEG channels, that
ere window-wise normalized to mean zero and standard deviation
ne. In order to obtain the SCP we followed the procedure used in
üller et al. (2014) and calculated the mean correlation matrix 

𝐶𝑃 𝑥𝑦 = 

1 
𝑁 𝑣𝑜𝑙 

𝑁 𝑣𝑜𝑙 ∑
𝑛 =1 

𝐶 𝑥𝑦 ( 𝑛 ) . (2)

rom 𝐶( 𝑛 ) the square matrix SCP inherits the properties of having di-
ension 𝑁 𝑐ℎ , being real and symmetric. In addition, all diagonal ele-
ents are equal to one. 

If 𝐶 𝑥𝑦 ( 𝑛 ) has a nonzero value, in the limit 𝑇 → ∞ there is a true sim-
larity between signals 𝑋 and 𝑌 and one supposes that the brain activi-
ies generating these signals are functionally interrelated. However, for
nite 𝑇 , numerical estimates of 𝐶 𝑥𝑦 ( 𝑛 ) also have nonzero values. The
orresponding probability distribution 𝑃 ( 𝐶) is symmetric around zero
nd its width increases with decreasing 𝑇 . This probability distribution

http://www.fmrib.ox.ac.uk/fsl
https://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin/
https://sccn.ucsd.edu/eeglab/index.php
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epends on the frequency content of the signals 𝑋 and 𝑌 , since a given
 might be short for slow frequency components ( 𝑇 contains only a
ew or no complete oscillations) or long for fast activity ( Müller et al.,
011 ). This phenomenon is called “random correlations ” in the litera-
ure ( Laloux et al., 1999; Plerou et al., 1999 ). However, due to the sym-
etry of 𝑃 ( 𝐶) these contributions cancel on average. In consequence
𝐶𝑃 𝑥𝑦 is not contaminated by random effects but rather reflects station-
ry genuine correlations. We will come back to this issue in the discus-
ion section. 

Similarities between two matrices 𝐴 and 𝐵 were estimated by 

𝑖𝑚 ( 𝐴, 𝐵) = 

2 
𝑁 𝑐ℎ ( 𝑁 𝑐ℎ − 1) 

∑
𝑦>𝑥 

𝐴̃ 𝑥𝑦 ⋅ 𝐵̃ 𝑥𝑦 (3)

here the tilde denotes normalization of the upper triangular elements
o zero mean and unit variance. Due to this normalization, this similarity
easure is insensitive to the variance or constant offsets of the matrix

lements and purely quantifies the topological similarity between the
atrices. As EEG predictor for the BOLD signal we estimated the temporal

imilarity (ts) between the EEG correlation matrix 𝐶( 𝑛 ) of Eq. (1) and the
CP matrix of Eq. (2) : 

𝑠 ( 𝑛 ) = 𝑠𝑖𝑚 ( 𝐶 ( 𝑛 ) , 𝑆𝐶 𝑃 ) (4)

.4. Relating EEG and BOLD networks 

.4.1. General linear model 

By means of the General Linear Model (GLM), we studied the rela-
ionship between temporal variations of the EEG network (i.e. the tem-
oral similarity measure 𝑡𝑠 ( 𝑛 ) of Eq. (4) after convolution with the hemo-
ynamic response function (HRF)) and the BOLD signals. The statistical
nalysis was carried out using FSL’s FILM with local auto-correlation
orrection ( Woolrich et al., 2001 ). The design matrix of the GLM was
omposed of 28 variables, the EEG predictor and 27 confounding vari-
bles. The confounding variables were: the 6 motion parameters (3
ranslation and 3 rotation variables, output of MCFLIRT Friston et al.,
996 ), their 6 discrete temporal derivatives, their 6 squares and the 6
iscrete temporal derivatives of the squares, yielding a total of 24 co-
ounding variables altogether. Finally, we added the mean signals of
he white matter (WM) and the cerebro-spinal fluid (CSF) as well as the
iscrete temporal derivative of the EEG predictor. The EEG predictor
nd it’s derivative were convolved with the HRF modeled by a double
amma variate. To calculate the contrast of our analysis, only the pre-
ictor of Eq. (4) was given weight one, whereas the 27 confounding
ariables were given zero weights. 

The group analysis was performed by a multi-subject GLM, cor-
ected for multiple comparisons using FSL’s randomise algorithm, a
on parametric permutation inference tool ( Beckmann et al., 2003;
oolrich, 2008; Woolrich et al., 2004 ) with 5000 permutations thresh-

lded at 𝑍 ≥ 3 . 1 and a cluster-corrected significance threshold of 𝑃 ≤ . 05
 Worsley, 2001 ). 

.4.2. Independent component analysis 

For later comparison of the statistical maps obtained by the GLM,
e also assessed the resting-state networks (RSN) of the BOLD sig-
als by means of a spatial independent component analysis (ICA). We
sed probabilistic ICA ( Beckmann and Smith, 2004 ) as implemented
n MELODIC (multivariate exploratory linear decomposition into inde-
endent components) Version 3.15, part of FSL. By eye inspection, we
etermined that 25 RSN’s represented a better separation between the
ost reported functional networks. So, after preprocessing (masking of
on-brain voxels with FSL-BET, normalizing voxel time series to zero
ean and unit variance, whitening and projection into a 25-dimensional

ubspace using PCA, the pre-selected choice of spatial components),
he observations were decomposed into sets of vectors which describe
ignal variation across the temporal domain (time-courses) and across
4 
he spatial domain (maps). This was achieved by optimising for non-
aussian spatial source distributions using a fixed-point iteration tech-
ique ( Hyvarinen, 1999 ). The time-courses were not used in this work
nd the spatial maps were divided by the standard deviation of the resid-
al noise ( Beckmann and Smith, 2004; 2005 ) in order to obtain normal-
zed z-score maps. Like the GLM maps the ICA maps are displayed at
hreshold 𝑍 ≥ 3 . 1 . For group ICA we concatenated the fMRI data of all
atients in time dimension. 

.4.3. Comparing statistical maps derived by GLM and ICA 

In order to quantify the similarity between the statistical maps ob-
ained by the GLM based on the EEG predictor and the RSNs derived
rom ICA, we calculated the voxel-wise true and false positives and neg-
tives of the positive and negative activations of GLM coinciding with
 chosen ICA map. For GLM and ICA maps the same threshold 𝑍 ≥ 3 . 1
as chosen. From the confusion matrices we calculated the diagnostic
dds ratio (DOR) ( Glas et al., 2003 ) and Matthews Correlation Coeffi-
ient (MCC) ( Chicco et al., 2021 ) as accuracy quantifiers that are known
o show only weak dependence on the prevalence of activated voxels,
.e. the class imbalance. As secondary (but prevalence dependent) accu-
acy quantifiers we also report sensitivities (also known as recall) and
pecificities as well as positive predictive values (PPV, also known as
recision) and negative predictive values (NPV). 

Sensitivity (specificity) quantifies the fraction of voxels inside (out-
ide) the RSN map of the ICA (i.e. the “target ”) that are activated (non-
ctivated) by the GLM (i.e. the “prediction ”). Conversely, PPV (NPV)
s the fraction of all activated (non-activated) GLM voxels that fall in-
ide (outside) the RSN map of the ICA. All these quantifiers fall in the
nterval [0 , 1] . For example, PPV ≈ 1 means that almost all voxels acti-
ated by the GLM belong to a particular RSN. The DOR measures the
ffectiveness with which GLM activations determine the RSN by taking
he ratio of the odds of a voxel being activated if it is part of the RSN
elative to the odds of being activated if it is not part of the RSN. Values
re between zero and infinity and only DOR ≫ 1 represent useful agree-
ent between prediction and target. MCC is the Matthews correlation

etween binary GLM activation and binary RSN membership. It ranges
etween −1 and +1 . 

.4.4. Statistical evaluation 

The original group analysis consisted of 53 single-subject statistical
aps due to a personal EEG predictor, see Section 2.4.1 . To rule out

tochastic effects on our analysis of combined EEG and BOLD-fMRI data
see below) we applied three tests. Two of them were based on different
inds of surrogate predictor time series and the third on a permuta-
ion test. For each test, we generated six surrogate predictors, meaning
hat for each test 318 single subject analyses were performed altogether.
his choice represented a compromise between numerical precision and
omputational effort. 

Test 1, Shuffle Surrogates: We used random shuffles of the original
EG predictors to test the null hypothesis that the statistical maps ob-
ained by EEG predictors is different from uncorrelated noise . This test
reserves the amplitude distribution of the original EEG predictors and
llows to document the existence of temporal structure in the BOLD re-
ponse to our EEG predictors. 

Test 2, IAAFT Surrogates: In order to disprove spurious activation
ue to auto-correlated noise (e.g. large power in low frequencies), iter-
tive amplitude-adjusted Fourier transform (IAAFT) ( Lancaster et al.,
018; Schreiber and Schmitz, 1996; 2000 ) surrogates of the EEG pre-
ictors were generated, conserving the amplitude distribution and the
ower spectrum of the original predictors while randomizing the Fourier
hases. 

Test 3, Permutation Surrogates: Finally, we generated six random per-
utations of the patients’ EEG predictors, viz. estimating the BOLD ac-

ivation of one patient due to the EEG predictor of a randomly chosen
ther subject avoiding repetitions. 
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Fig. 1. Stationary Correlation Pattern of broad-band EEG . In panel (a) the SCP of 

patient 𝐴 08 is displayed in matrix form and in panel (b) in network form. The 

diagonal elements of the matrix representation were set to zero manually to im- 

prove visibility. Network nodes are given by the electrode locations and links 

represent the association strength 𝑆𝐶𝑃 𝑥𝑦 between node pairs. We assumed that 

a “distance ” 𝑑 𝑥𝑦 between two signals 𝑋 and 𝑌 is inversely proportional to the 

absolute value of the association, i.e. 𝑑 𝑥𝑦 = 1∕ |𝑆𝐶𝑃 𝑥𝑦 | and calculated the “be- 

tweeness ” as the percentage of shortest paths crossing a particular node ( “node 

betweeness ”) or link ( “edge-betweeness ”). To increase clarity of the network 

representation, only 15% of the edges are displayed according to largest edge 

betweeness. Network nodes and edges are represented by the same color scale. 

The edge color indicates the value of the matrix element 𝑆𝐶𝑃 𝑥𝑦 , whereas the 

node color indicates the node-betweenness of the full network. 

3

3

 

d  

b
 

E  

t  

c  

fi  

p

Fig. 2. SCP universality - distribution of matrix similarities. Columns 1 to 3 show 

the boxplots of similarity values for the comparison of SCP obtained for different 

conditions. Comparison is made within all the SCP of different patients inside the 

scanner (IS, 53 ⋅ 52∕2 = 1 , 378 values), inside versus outside (IS vs. OS, 53 2 = 2809 
values) and outside the scanner (OS, 53 ⋅ 52∕2 = 1 , 378 values). The 4th column 

(group “Sz ”) corresponds to the SCP of epilepsy patients ( 10 ⋅ 9∕2 = 45 compar- 

isons) from Müller et al. (2014) and columns 5 and 6 make direct comparison 

with our recordings outside and inside the MR scanner ( 10 ⋅ 53 = 530 compar- 

isons each). 
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. Results 

.1. EEG network and predictor 

In this work we concentrate on reporting results for the EEG pre-
ictor calculated from the 19 electrodes of the 10–20 EEG system and
road-band filtering. 

Fig. 1 a shows the SCP matrix of patient 𝐴 08 calculated according to
q. (2) and Fig. 1 b displays its network representation. In this single pa-
ient recording the interrelation pattern found in Müller et al. (2014) is
onfirmed apart from the difference that a slightly altered electrode con-
guration was used (19 instead of 15 electrodes, see Section 1.2 of sup-
lementary materials for EEG configuration details). 
5 
To assess the influence of scanner artifacts on the SCP also on the
roup level we calculated SCP matrices of Eq. (2) from all EEG record-
ngs outside and inside the scanner (two times 53 matrices altogether).
or direct comparison with Müller et al. (2014) , the pairwise matrix
imilarities Eq. (3) for the 15-electrode configuration are displayed as
oxplots in Fig. 2 (corresponding cumulative density functions for the
9-electrode configuration are provided in the Supplementary Materi-
ls). Compared to matrix similarities between the SCPs of EEGs recorded
utside the scanner, those recorded inside the scanner are shifted to-
ards smaller values even after the pre-processing. However, in general
e observe a high similarity in all cases (only 10% have a correlation

oefficient smaller than 0.5) and the null hypothesis of vanishing sim-
larity can be rejected with high certitude. The SCPs calculated from
EGs recorded inside and outside the MR scanner were also very sim-
lar to those obtained in previous studies ( Müller et al., 2014 ) under
ifferent experimental as well as physiological conditions, see last two
olumns of Fig. 2 . We conclude that despite scanner effects the generic
CP is still clearly identifiable after pre-processing also on the group
evel. 

The temporal evolution of the elements of the cross-correlation ma-
rix Eq. (1) and the EEG predictor Eq. (4) of patient 𝐴 08 and broad-band
ltering are displayed in Fig. 3 , illustrating the high stability of the cor-
elation pattern over time. The EEG predictor 𝑡𝑠 ( 𝑛 ) of Eq. (4) fluctu-
tes mainly between 0.8 and 0.95 and never drops below 0.55, a value
hat still indicates a very close match between the temporal correlation
atrix 𝐶( 𝑛 ) and the stationary pattern SCP. Fluctuations of the spatial

orrelation structure remain small and matrix elements almost never
hange sign, such that the overall topology of the correlation matrix is
lmost always conserved over the whole time course. Rearrangements
f the correlation matrix between minute 1 and 2 as well as around 8
nd 14 min after the start of the recording (top panel) are well reflected
y transient drops of the EEG predictor (bottom panel), indicating a re-
uced agreement with the SCP displayed in Fig. 1 . Note, however, that
he overall pattern of the SCP is still clearly recognizable even in these
eriods, see Fig. S3 of the Supplementary Materials. 

The EEG predictor derived from the 19 electrodes of the 10–20 sys-
em was compared to analog definitions calculated from different elec-
rode selections. First, to exclude the potential influence of artifacts due
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Fig. 3. Temporal evolution of the correlation pattern in broadband EEG. The top panel shows the vectorized correlation matrix 𝐶 𝑥𝑦 ( 𝑛 ) of patient 𝐴 08 over the 460 time 

windows, the color bar indicating the value of the matrix elements. The middle panel displays the EEG predictor defined in Eq. (4) , whereas the bottom panel shows 

its shape after whitening and convolution with the HRF. 
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Fig. 4. Single-subject maps of GLM and ICA for patient 𝐴 08 . Both statistical maps 

were thresholded at 𝑍 ≥ 3 . 1 and are displayed in neurological orientation (i.e. 

the left hemisphere appears on the left of the image). 

Fig. 5. Group statistical maps for the EEG predictor. Positive activation (red) and 

negative activation (blue) of group GLM analysis are displayed in neurological 

orientation after thresholding at 𝑍 ≥ 3 . 1 . Coordinates: X = 6 | Y = -67 | Z = 38. (For 

interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
o eye and head movements, we restricted the analysis to the 15 elec-
rodes of the 10–20 system excluding positions 𝐹 𝑝 1 , 𝐹 𝑝 2 , 𝑂 1 and 𝑂 2 . In
ddition we studied the EEG predictor calculated from the EEG signals
ecorded at all 255 electrodes of the Geodesic cap (except 𝐶 𝑧 , which was
sed as recording reference). The Pearson correlation between the EEG
redictors of these three electrode configurations was generally high,
ee Fig. S1 of the Supplementary Materials for the 19-electrode con-
guration. For patient 𝐴 08 the values were 𝑟 (15 , 19) = 0 . 95 , 𝑟 (15 , 255) = 0 . 81
nd 𝑟 (19 , 255) = 0 . 85 . The densely packed EEG sensors of the Geodesic cap
ecord redundant brain signal information on neighboring electrodes,
hich in turn leads to excessively high estimates for the correlation co-
fficient. This justifies restriction of the presentation of our results to the
CP derived from the subset of 19 electrodes used in the international
0/20 system. 

.2. GLM analysis 

Statistical maps of the single-subject GLM analysis of patient 𝐴 08 
ased on the broad-band EEG predictor are shown in Fig. 4 as 𝑍-score
aps. Using the same threshold 𝑍 ≥ 3 . 1 the positive GLM activation

red) is almost completely located inside the ICA map corresponding to
he DMN identified in the same subject. 

Fig. 5 shows the group-wide statistical maps, denoted as positive and
egative activation in relation to a positive or negative contrast of the
EG-predictor. We observed positive activation in precuneus, medial
rontal and inferior parietal and temporal regions. Negative activation
ncludes temporal and insular regions as well as parts of the anterior cin-
ulate. A complete report of the positive and negative activation regions
ccording to the Anatomical Automatic Labeling (AAL) atlas ( Tzourio-
azoyer et al., 2002 ) is compiled in Tables S2 and S3 of the Supplemen-

ary Materials. 
The statistical maps of surrogate tests are shown in Fig. 6 . The top

anel displays the (positive) activation for the three surrogate-based
ests in different colors. Negative activation provoked by the same sur-
ogate predictor is shown at the bottom panel. When displaying these
6 
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Fig. 6. Statistical maps for group analysis of surrogate predictors. 

All the panels were thresholded at substantially lower 𝑍 val- 

ues than in Fig. 5 to yield the same number of activated brain 

voxels (i.e. 9748 positively and 7721 negatively activated vox- 

els). For positive activation (panel a) the threshold was set at 

Z ≥ 1.5 for the shuffle surrogates (yellow), at Z ≥ 1.9 for IAAFT 

surrogates (red), and at Z ≥ 1.5 for the permutation surrogates 

(blue). For negative activation (panel b) the threshold was set 

at Z ≥ 1.5 for the shuffle surrogates (yellow), at Z ≥ 1.7 for IAAFT 

surrogates (red), and at Z ≥ 2.3 for the permutation surrogates 

(blue). Images are shown in neurological orientation. Coordi- 

nates: X = 6|Y = -67|Z = 38. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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Table 1 

Agreement between the group statistical maps of positive 

GLM activations of the EEG predictor and RSNs derived 

from ICA. Abbreviations: RSN, resting state network; DOR, 

diagnostic odds ratio; MCC, Matthew’s correlation coefficient; 

Sens., sensitivity; Spec., specificity; PPV, positive predictive 

value; NPV, negative predictive value. 

RSN DOR MCC Sens. Spec. PPV NPV 

1 5.203 0.174 0.137 0.97 0.39 0.891 

2 9.323 0.249 0.208 0.973 0.413 0.93 

3 1.67 0.041 0.064 0.961 0.199 0.871 

4 0.123 -0.066 0.006 0.952 0.017 0.877 

5 1.987 0.049 0.076 0.96 0.145 0.922 

6 3.27 0.082 0.117 0.961 0.131 0.956 

7 1.496 0.029 0.06 0.959 0.147 0.897 

8 0.628 -0.023 0.028 0.956 0.059 0.908 

9 0.081 -0.065 0.004 0.953 0.01 0.892 

10 0.133 -0.05 0.006 0.955 0.01 0.927 

11 0.05 -0.052 0.002 0.955 0.004 0.933 

t  

b  

p  

o  

i  

s  

P  
aps using the same threshold as in Fig. 5 no significant voxels were
bserved. In order to achieve the same number of activated voxels as for
he positive and negative activation due to the original predictor (9748
nd 7721 at Z ≥ 3.1) Z-values were notably reduced. After this reduction
he activation patterns appear incoherent and do not resemble any of
he known RSN maps. 

.3. Comparison: GLM vs. ICA 

Eleven RSNs were identified by visual inspection of the group ICA
esults, among them the default mode network (DMN) ( Greicius et al.,
003; Raichle et al., 2001 ), the salience network (SN) ( Menon and Ud-
in, 2010 ) and the executive control network (ECN) ( Seeley et al., 2007 ).
uantifiers for agreement of positive and negative activations of the
road-band EEG predictor with the eleven RSNs are compiled in Tables 1
nd 2 . The strongest agreement (highest DOR) of positive activation to
he EEG predictor was found for the DMN and superior part of the ECN.
egative activation agreed strongest with SN. 

A group comparison of the positive activations of the EEG-predictor
ith RSN01 (resembling the superior part of the ECN) and RSN02 (re-

embling the DMN) is provided in Fig. 7 a. The same comparison between
egative activations of the EEG predictor and RSN04 (resembling the
N) is displayed in Fig. 7 b. Like in the case of the single subject analy-
is ( Fig. 4 we observe that the GLM-maps fell almost completely inside
he statistical maps obtained by ICA and only a small percentage of the
ctivated voxels was outside the ICA-RSN. 

This visual impression is quantitatively confirmed by different accu-
acy quantifiers provided in Tables 1 and 2 . A general observation is
7 
hat specificities and NPVs were close to one, indicating that the num-
er of true negative voxels was much larger than the numbers of false
ositives and negatives, respectively. In contrast, PPVs and sensitivities
f RSN01, RSN02 and RSN04 were only moderate or even low, indicat-
ng that the number of true positive voxels was comparable to or even
maller than the number of false positives and negatives, respectively.
ositive and negative GLM activations of the EEG predictor were most
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Fig. 7. Statistical maps of group GLM and group ICA. Panel (a) 

shows the maps for the DMN (blue-white) and ECN 𝑠 (cyan) ob- 

tained by ICA, and the positive activation map obtained by the 

EEG-predictor (red-yellow, same data as shown in Fig. 5 ). Co- 

ordinates: X = 6|Y = -67|Z = 38. Panel (b) shows the SN (yellow) 

obtained by ICA and the negative activation map obtained by 

the EEG predictor (blue-cyan). Coordinates: X = 0|Y = -7|Z = 2. 

All panels are shown in neurological orientation and thresh- 

olded at 𝑍 ≥ 3 . 1 . (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version 

of this article.) 

Table 2 

Agreement between the group statistical maps of negative 

GLM activations of the EEG predictor and RSNs derived 

from ICA. Abbreviations: RSN, resting state network; DOR, 

diagnostic odds ratio; MCC, Matthew’s correlation coefficient; 

Sens., sensitivity; Spec., specificity; PPV, positive predictive 

value; NPV, negative predictive value. 

RSN DOR MCC Sens. Spec. PPV NPV 

1 0.083 -0.063 0.003 0.962 0.012 0.875 

2 0.013 -0.056 0.001 0.963 0.001 0.912 

3 0.234 -0.053 0.009 0.962 0.035 0.864 

4 31.91 0.378 0.22 0.991 0.772 0.904 

5 1.196 0.009 0.04 0.967 0.095 0.919 

6 0.002 -0.042 0 0.965 0 0.951 

7 1.971 0.048 0.059 0.969 0.184 0.898 

8 3.075 0.087 0.084 0.971 0.223 0.914 

9 1.892 0.044 0.057 0.969 0.176 0.899 

10 0.262 -0.037 0.01 0.964 0.02 0.928 

11 0 -0.049 0 0.964 0 0.933 
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ften found inside the RSNs but only rarely outside. They represent only
ore regions of the RSN templates, not their entirety. 

. Discussion 

Using simultaneous EEG-fMRI recordings from 53 epilepsy patients,
e found that the cross-correlation structure of resting-state EEG record-

ngs is remarkably stable over time, and that its temporal fluctuations
orrelate with those of known RSN derived from fMRI. Our analyses
uggest that there is a core dynamical structure of large-scale brain net-
8 
orks that can be reliably recovered across multiple spatial and tempo-
al scales. 

The strategy of the numerical analysis was based on previous find-
ngs in EEG data, where the stationary correlation pattern has already
een reported ( Müller et al., 2014; Olguín-Rodríguez et al., 2018 ). This
xtremely stable, pronounced correlation structure proved independent
rom the physiological state and generic in the sense that very similar
verage patterns have been encountered across subjects and in all classic
EG bands. Here we could show that the same pattern can be identified
n simultaneous EEG-fMRI after removal of scanner related artifacts on
he EEG. 

Dynamical aspects are reflected by tiny transient deviations from the
CP, see e.g. Fig. 3 and reference ( Olguín-Rodríguez et al., 2018 ). On the
ther hand, also RSN identified by fMRI studies, represent templates for
rain dynamics ( Raichle, 2006 ). Their mutual synchrony is highly non-
tationary and subject to changing cognitive processes like introspection
r externally oriented tasks ( Benedek et al., 2014a; Ellamil et al., 2012;
ink et al., 2009; de Manzano and Ullén, 2012 ). The fact that also in
MRI experiments it was found that activity during rest and task ori-
ntated activation pattern closely match and that even during rest a
ultitude of different RSN’s are continuously active ( Smith et al., 2009 )

onstitutes a first hint that both phenomena are closely connected. 
Based on these findings we have used network features of fast neu-

onal activity captured by EEG measurements in order to predict RSN
s assessed by slow metabolic resting state activity. Specifically, we
ested the hypothesis that fluctuations (see Eq. (4) ) around the SCP of
q. (2) should generate activation maps similar to RSNs when used as
 predictor for the BOLD signal. So far, the vast majority of studies of
imultaneous EEG-fMRI have concentrated on fluctuations of spectral
ower in different frequency bands ( Britz et al., 2010; Goldman et al.,
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002; Horovitz et al., 2008; Jann et al., 2010; Laufs et al., 2003; Mantini
t al., 2007; Neuner et al., 2014; Prestel et al., 2018; Rajkumar et al.,
018; Samogin et al., 2019 ), which is a univariate property and does
n general not directly reflect interrelations between different brain re-
ions. 

Relative changes of the spectral power may influence our
orrelation-based predictor only indirectly through so-called “random
orrelations ” ( Laloux et al., 1999; Plerou et al., 1999 ) caused by the
nite size of the data window used for the numerical estimate. High
ower in slow frequencies enhance random correlations ( Müller et al.,
011; Rummel et al., 2010 ). Given that their distribution is symmet-
ic around zero, they cancel when averaging over long data segments,
hich has been used to construct a genuine cross-correlation matrix
 García et al. (2013) ). In consequence, the pattern of the SCP defined
n Eq. (2) is not affected by random correlations, but estimates taken
ver short time windows like the predictor defined in Eq. (4) can be. It
oes not only account for interrelations between signals but may carry
nformation about relative changes of their power distribution as well –
lthough in an indirect fashion. 

It was previously shown that slow modulations (below 0.1 Hz) of
espiration as well as the heart rate variability correlate notably with
EG power in the 𝛼-band ( Chen et al., 2020; Yuan et al., 2013 ). This
ffect is even more pronounced at rest with closed eyes. Hence, using
nivariate measures like EEG power might be biased by physiological
uctuations, which in turn may distort the prediction of RSN via the
LM. In contrast, the approach proposed here is based on network prop-
rties derived from interrelations between EEG time series ( Jann et al.,
009; Jann et al., 2008; Wiest et al., 2013 ) and thus presents a new per-
pective to link network activities acting on very different time scales. In
ddition, slow wave EEG activity has been eliminated by an appropriate
igh pass filter with cut-off frequency 0.5 Hz before further analysis. 

Despite analyzing simultaneous EEG-fMRI recordings in patients
ith epilepsy, the present study does not make any statements about the
ature of this disorder. Our justification to answer our general research
uestion using patient data is that previous studies have found large sim-
larities between the SCP derived from scalp EEGs of epilepsy patients
nd healthy subjects, regardless of analyzing preictal, ictal or postictal
EG or different physiological states like e.g. sleep stages ( Müller et al.,
014; Olguín-Rodríguez et al., 2018 ). To observe potential differences
e expect to require larger and more homogeneous groups than avail-
ble for our study as well as EEG-fMRI recordings from healthy subjects.

However, even when the SCP derived from EEG is not affected by
he epileptic pathology, it was shown that RSN derived from fMRI sig-
als do undergo specific deformations ( Centeno and Carmichael, 2014;
otman, 2008; Pittau et al., 2012; Zang et al., 2012 ). This finding might
xplain the low sensitivities reported above. Hence, conducting a similar
tudy with a sufficiently large cohort of healthy subjects would be highly
esirable to investigate generic and condition specific aspects further. 

.1. EEG predictor vs. ICA 

Statistical maps obtained by the EEG-predictor almost always fell in-
ide the maps of RSNs derived from spatial ICA of BOLD-fMRI data and
nly small regions were located outside, see Figs. 4 and 7 for results
n the single-subject and group levels, respectively. In particular, high-
st agreement of positive activations was observed for the ECN (RSN01,
OR > 5) and the DMN (RSN02, DOR > 9), whereas negative activation
as strongly associated with the SN (RSN04, DOR > 31), see Tables 1 and
 . In particular, for negative activation and the SN a PPV = 0.77 was
ound, meaning that 77% of the voxels that showed significant negative
ctivation in response to the EEG predictor were indeed also associated
ith negative correlates of the SN. For positive activation the corre-

ponding fraction was 39 and 41% for the ECN and DMN, respectively.
Across all RSNs we observed high specificities and NPV, whereas

ensitivities and PPV were only moderate or even low. High specifici-
ies and NPVs are explained by low prevalence, i.e. the large number of
9 
rain voxels compared to the number of voxels involved in GLM activa-
ions and RSN maps. In consequence, the number of false positives and
egatives was small compared to the large number of true negatives.
PVs were in general larger than sensitivities, sometimes much larger.
his is explained by a smaller number of false positives than false neg-
tives, meaning that more voxels inside the RSN maps are missed than
ctivated outside the RSNs in response to the EEG predictor. 

We contrasted these results by the activations in response to three
ifferent methods to generate surrogate predictors representing the null
ypothesis that the findings occurred by chance. For all types of sur-
ogates we obtained sub-threshold, randomly distributed and mutually
nconsistent activation maps covering the whole brain, which did not
oincide with any of the known RSNs. 

The EEG-predictor was derived from an extra-cranial measurement
t large distance from the system generating the signals and with several
erturbing layers in between (skin and muscles, cranium and cerebro-
pinal fluid), which act as a temporal low-pass filter and diminish the
ignal to noise ratio. However, this measurement is used for the model-
ng of activity even deep inside the brain. Hence, it is conceivable that
egions with slightly less intense power are hardly modeled by distant
urface estimates of fast processes. Therefore, we expected in advance
ather low sensitivity values (i.e. a considerable amount of false nega-
ives) for our procedures, like those reported in Tables 1 and 2 . 

An additional reason for the notably low sensitivity values observed
y us might be due to the influence of physiological noise provoked by
low modulation of respiration variations and heart rate changes in a
ange below 0.1 Hz. Even after applying correction schemes described
n the method section, the fMRI-recordings might carry the influence of
low physiological fluctuations, given that such activity shows a certain
imilarity with the neural activity of RSN ( Chen et al., 2020 ). 

By such a mechanism the ICA-estimations might become enlarged,
n turn reducing the sensitivity values of the GLM predictor. 

.2. Interrelation between networks 

We found that deviations from the SCP correlate with key-nodes
f the DMN. This is in keeping with the DMN’s prominent role during
esting-state experiments. It is supposed to be active during self gener-
ted thoughts and internally directed cognition, such as mind wandering
 Mason et al., 2007 ), future thinking ( Schacter et al., 2012 ) or mental
imulation ( Buckner and Carroll, 2007 ), but it was also shown that the
MN is engaged during creative assignments ( Benedek et al., 2014b;
ink et al., 2009; McMillan et al., 2013 ). To all these processes different
odes of the DMN may contribute in different proportion; for instance,
he precuneus during divergent thinking ( Benedek et al., 2014a; Fink
t al., 2014; Takeuchi et al., 2011 ), while the inferior parietal lobule dur-
ng linguistic exercises ( Fink et al., 2009 ), the left inferior parietal cortex
hen generating creative uses for given common objects ( Benedek et al.,
014b ). 

Contrary to that, the ECN is engaged in externally directed tasks that
equire working memory ( Curtis and D’Esposito, 2003 ), memory encod-
ng ( Blumenfeld et al., 2011 ), response inhibition ( Aron, 2007 ), or cogni-
ive control processes ( Dreher and Berman, 2002 ) but was also shown to
e active during divergent thinking ( Beaty et al., 2015 ) or other creative
emands like musical improvisation as well as drawing ( Ellamil et al.,
012 ). 

Consequently, it is thought that DMN and ECN act in opposition to
ach other, such that when one network increases activity the other one
iminishes power ( Fox et al., 2005; 2009 ). The alternate activity pat-
ern of both large scale networks seems to be mainly moderated by the
ight anterior insula, a core region of the SN ( Menon, 2011; Menon and
ddin, 2010 ), which is supposed to be responsible for the orientation of
ttention ( Bressler and Menon, 2010; Goulden et al., 2014; Menon and
ddin, 2010; Sridharan et al., 2008 ). 

At the first glance, our results seem contradictory given that we
ound a simultaneous positive activation in parts of the DMN and ECN,
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hereas parts of the SN showed significant negative activation in re-
ponse to our EEG derived predictor. However, the purely modular per-
pective that DMN and ECN should always be anti-correlated due to
pparently different, specific duties they have to fulfill, is possibly too
igid and does not account for the high flexibility of brain dynamics.
ven neuronal populations of primary sensory areas of the cortex have
een shown to be cross-modular ( Ghazanfar and Schroeder, 2006 ) and
he idea that different brain areas are responsible for the execution of
pecific tasks, which are accomplished almost independently from oth-
rs, is probably not quite realistic ( Fuster, 2000 ). By using graph the-
retical techniques it was explicitly shown in Beaty et al. (2015) that
he DMN correlates with the ECN as well as with the SN, but during
ifferent episodes of task performance. 

Since the brain permanently generates the maximal possible num-
er of space-time patterns (see Section 4.3 ), also brain networks should
upport and contribute to this diversity ( Sporns and Kötter, 2004 ). In
onsequence, it is conceivable that different areas of a network con-
ribute with different strength to distinct tasks (see e.g. Bressler and
enon, 2010; Preti et al., 2017 ) and references therein). Furthermore,

t has been suggested that different frequency bands of the electrical
rain activity measured by EEG are related to different areas of resting
tate networks ( Jann et al., 2009; Jann et al., 2010; Mantini et al., 2007;
amogin et al., 2019 ). 

Hence, the finding that like the DMN also the ECN is involved in
arious creative exercises, is a strong hint that both networks may also
ooperate in order to fulfill certain demands, viz. they may synchro-
ize as observed by us. The simultaneous positive activation of vox-
ls in parts of DMN and superior ECN in the present study is proba-
ly related to mind wandering, in particular unaware mind wandering
 Christoff et al., 2009 ) and could be related to future thinking and cre-
tivity ( Beaty et al., 2015 ). So far, we succeeded to prove that fluctua-
ions around the SCP serve well as a predictor for RSN. But it remains
n open question, whether this is just an incidental finding linking phe-
omena operating on very different time scales, or, whether the SCP
as a deeper physiological meaning. In the next two sections we discuss
 possible interpretation of the SCP. Considering physical systems that
ould lead to observations like the SCP, we relate it to more established

heoretical frameworks. 

.3. Complexity and criticality 

Thermodynamic systems at (or close to) the critical point of a sec-
nd order phase transition ( Chialvo, 2007; Chialvo, 2010; Cocchi et al.,
017; Fraiman et al., 2009 ) produce the largest possible set of different
patio-temporal structures. This is expressed by power law distributions,
hich implies that the system is scale free, meaning that it does not ac-

ount for a typical scale (in whatever units) ( Kello et al., 2010 ). This
aximal variability is by far not amorphous, but regulated by strong

orrelations of maximal length, spanning over the entire system. 
These characteristics for the vicinity of critical points - a huge va-

iety of different space-time patterns and power law distributions as
ell as far-reaching stable correlations like the ones observed in this
ork - are indeed observed in brain dynamics: Even at rest the brain is
ever resting but permanently active ( Fox and Raichle, 2007; Raichle,
006; Raichle, 2011; Smith et al., 2009 ) and this resting state activity is
y far not erratic. It is well established that goal directed tasks require
pecific spatio-temporally synchronized neural activity ( Singer (1993) ).
owever, also at rest brain dynamics spontaneously creates transient

ynchrony in neural populations before these patterns decay or provoke
valanches of synchronization ( Beggs and Plenz, 2003; Cocchi et al.,
017; Linkenkaer-Hansen et al., 2001; Palva et al., 2013; Tagliazucchi
nd Chialvo, 2011; Yang et al., 2012 ). The size as well as lifetime distri-
ution of synchronized patterns follows with high precision power laws
 Fraiman et al., 2009; Tagliazucchi et al., 2012 ), which implies that
he brain creates continuously the maximal possible set of synchronized
pace-time structures, a behavior that is substantiated by empirical data
10 
n both in-vitro ( Beggs and Plenz, 2003; Beggs and Timme, 2012 ) as
ell as in-vivo experiments ( Petermann et al., 2009 ), by means of fMRI,
EG and EEG measurements ( Fraiman et al., 2009; Linkenkaer-Hansen

t al., 2001; Tagliazucchi et al., 2012 ). This high variability at all spatial
nd temporal scales is contrasted by the observation of the SCP observed
n EEG-recordings ( Müller et al., 2014; Olguín-Rodríguez et al., 2018 ),
hich reflects strong and far-reaching correlations and is in contrast to

he naive expectation of tiny average correlations between highly non-
tationary and noise contaminated time series. 

The strongly correlated ongoing neural activity with maximal vari-
tion of the production of space-time structures provides a compromise
etween excitation and inhibition in a self-organized fashion as typical
or a complex adaptive system ( Singer, 2013 ) at a critical point ( Poil
t al., 2012; Poil et al., 2008 ). The huge variability of neural activa-
ion patterns assures segregation, while integration requires strong long
ange correlations. At the critical point, a finely tuned balance between
egregation and integration is achieved, which in turn assures a very
ffective information processing. 

In particular, for the brain those far-reaching correlations are vitally
mportant, because they avoid that just by chance a space-time pattern
f synchronized neural activity is produced that causes undesired cor-
oral or mental actions. This mechanism assures a robust dynamics but
imultaneously allows for maximal variability ( Yang et al., 2012 ), which
s certainly required, given that the brain permanently adapts its dy-
amics to external stimuli as well as to ever changing internal condi-
ions governed by (control) processes. The hierarchical organization of
rain structures ( Buzsaki, 2006; Vidaurre et al., 2017 ) substantiates this
icture. In conclusion, the observation of the SCP does not imply com-
lexity or that the brain dynamics occurs close to a critical state, but if
rain is a complex system and operates close to a critical point, a pattern
haring the features of the SCP would be a consequence. 

.4. Attractor activity and transient dynamics 

Inspired by previous results ( Olguín-Rodríguez et al., 2018 ) we de-
igned the GLM-predictor capable to detect several RSNs with high
pecificity. Transient dynamical features are expressed by tiny excur-
ions from the SCP, which in turn, are reflected by slow metabolic dy-
amics of cortical and subcortical regions. A possible interpretation is
hat the SCP as well as the known RSNs constitute a dynamical scaffold
ike an attractor in phase space of a dynamical system ( Singer, 2013 ),
here external impulses provoke (comparably small) deviations from it.
iewing the brain as a complex dynamical system, possibly combined
ith a notable stochastic component, but still with pronounced phase

pace structure, fits precisely to our empirical findings. 
This scenario is also consistent with the so called “brain’s dark en-

rgy ” ( Raichle, 2006 ), viz. the high energy consumption of the brain
ven at rest, which is by an order of magnitude disproportional com-
ared to its small fraction of the whole body mass. Up to 80% of this
nergy is expended by neural signaling processes, while the energy in-
rease related to a typical task-related response is in general tiny (of
he order of 1%) ( Raichle and Mintun, 2006 ). From this point of view
he brain is operating autonomously, while processing of sensory infor-
ation only interferes marginally. Hence, if the SCP is associated with

he ongoing intrinsic activity, one should expect that task related dy-
amics only cause small modulations of this generic correlation struc-
ure and that in general terms the topology of the functional network
hould be preserved, as already reported in Müller et al. (2014) , Olguín-
odríguez et al. (2018) and confirmed in the present work. 

But the brain is hardly ever moving within the set of state space
ectors constituting the attractor in phase space. It is much more con-
eivable that this system evolves permanently with a kind of transient
ynamics, because alternating internal parameters as well as external
timulation push it continuously away from attractor trajectories. How-
ver, considering the tiny influence of such variations on the energy
onsumption, one can expect that also the excursions from the attractor
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tructure remain considerably small. The overall high correlation with
he SCP shown in Fig. 3 as well as model calculations on the basis of
oupled dynamical systems, provided in the supplementary material of
lguín-Rodríguez et al. (2018) , strongly supports this conjecture. This

mplies, that not the correlation estimates themselves are most conve-
ient for the description of transient dynamics like cognitive processes
r epileptic seizures, but the interesting dynamical features are proba-
ly much better encoded by deviations from it. Preliminary results pre-
ented in Olguín-Rodríguez et al. (2018) are already pointing in this di-
ection. Hence, fluctuations around as well as deviations from average
tationary structures reflect the response of the system to e.g. a visual
timulus or a cognitive task. 

Pathologies, on the other hand, should then manifest themselves
n deformations of the attractor in analogy to e.g. deformations of
he RSN as already abundantly reported ( Bressler and Menon, 2010;
enon, 2011; Pievani et al., 2011 ). This should also affect the SCP,
eaning that, one might expect (possibly small) deformations in certain
eurological disorders and further it might develop with age. Study-
ng these questions is reserved for future research. Furthermore, the
ommunication between RSNs could be distorted as e.g. reported in
anoliu et al. (2014) , where it was found that the interaction between
MN and ECN has been significantly altered in patients with schizophre-
ia, in comparison to a control group. This was traced back to an aber-
ant activity of the anterior insula, a core node of the SN (see also
arstaller et al., 2021 ). 

Also the transient behaviour could be distorted, viz, the system
ould react in an exaggerated fashion, such that fluctuations around
table structures could be excessively large, or, conversely, the system
ould loose sensitivity and fluctuations could be significantly diminished
 Preti et al., 2017 ). In fMRI such findings have been already reported. In
arrett et al. (2013) , Grady and Garrett (2014) it was even considered

hat the “moment to moment brain variability ” in BOLD signals could
ave a predictive meaning, such that a high variability was associated
ith a better cognitive task performance and was found to be systemat-

cally higher in young adults in comparison with elderly subjects. These
esults were confirmed recently ( Boylan et al., 2021; Millar et al., 2020 ).
n the other hand, a decreased BOLD signal variability has been found

n patients with Alzheimer’s disease and correlated with cognitive de-
line ( Zhang et al., 2020 ). Finally, variability increased with develop-
ent, which was observed in EEG ( McIntosh et al., 2010 ) and MEG

 Mi š ic et al., 2010 ). Enhancement of the brain’s dynamical repertoire
xpressed by an apparently noisy stochastic component was attributed
o an enhanced capacity for information processing. 

. Conclusions 

Based on a quantitative analysis of 53 simultaneous EEG-fMRI
ecordings we established a direct link between networks of fast EEG
ctivity and slow metabolic processes at rest. Motivated by fundamen-
al principles of dynamical systems theory we used fluctuations around
 pronounced average correlation pattern of EEG-recordings as a GLM-
redictor for the BOLD signal. This GLM-predictor describes RSNs de-
ived by independent component analysis with high specificity by de-
ecting agreement with the DMN and networks related to attention like
he ECN and the SN. Furthermore, the interrelations between the SN and
MN-ECN are in agreement with previous studies ( Fox et al., 2006; Fox
t al., 2005; Fox et al., 2009; Hellyer et al., 2014; Menon, 2011; Menon
nd Uddin, 2010; Sridharan et al., 2008 ). We interpret these findings as
ossibly associated with mind wandering ( Christoff et al., 2009 ), future
hinking and creativity ( Beaty et al., 2015 ). 

The fact that tiny but permanent fluctuations around the linear SCP
erve well as a GLM-predictor for RSN is congruent with the paradigm
hat the brain is a complex adaptive system that operates close to a
ritical point ( Chialvo, 2007 ), and provides additional empirical evi-
ence for the so called “brain’s dark energy ” and the small extra energy
11 
onsumption during task performance and cognition ( Raichle, 2006;
aichle, 2011; Singer, 2013 ). 

Nonlinear fluctuation properties of the signals have been considered
n Portnova et al. (2018) . Given the nonlinear nature of the brain dynam-
cs, we feel that predictors derived from such nonlinear analyses could
erve as promising tools for EEG-fMRI-studies that might illuminate so
ar unknown features. 

The results of the present study imply that RSN of slow metabolic
ctivity and the SCP found in much faster electrical brain activity as as-
essed by scalp EEG recordings, are just two sides of the same coin. Ac-
ording to the interpretation given in Olguín-Rodríguez et al. (2018) and
n line with the empirical findings of the brain’s energy balance ( Raichle,
006; Raichle, 2011; Singer, 2013 ) it can be understood as a kind of
hadow of the brain’s attractor dynamics. Then, if the attractor evolves
ith lifetime, the SCP could be age dependent and diseases could be ex-
ressed by possible deformations of the SCP, similar to findings in fMRI
esting state networks ( Bressler and Menon, 2010; Grady and Garrett,
014; Marstaller et al., 2021; Menon, 2011; Pievani et al., 2011 ). Fur-
hermore, if non-stationary dynamical features are expressed by (tiny)
xcursions around these stable structures, pathological behaviour could
lso be due to distorted fluctuation properties. In fMRI studies this hy-
othesis was partly confirmed ( Boylan et al., 2021; Garrett et al., 2013;
rady and Garrett, 2014; Millar et al., 2020; Zhang et al., 2020 ), but
EG or MEG-studies pointing in this direction are still sparse ( McIntosh
t al., 2010; Mi š ic et al., 2010 ). We hope that the present contribution
otivates future research in this spirit, acknowledging that apparently

tochastic behaviour is not necessarily associated to noise components. 
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