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Learning a new motor task is a complex cognitive and motor process. Especially
early during motor learning, cognitive functions such as attentional engagement, are
essential, e.g., to discover relevant visual stimuli. Drawing participant’s attention towards
task-relevant stimuli—e.g., with task instructions using visual cues or explicit written
information—is a common practice to support cognitive engagement during training
and, hence, accelerate motor learning. However, there is little scientific evidence
about how visually cued or written task instructions affect attentional brain networks
during motor learning. In this experiment, we trained 36 healthy participants in a
virtual motor task: surfing waves by steering a boat with a joystick. We measured
the participants’ motor performance and observed attentional brain networks using
alpha-band electroencephalographic (EEG) activity before and after training. Participants
received one of the following task instructions during training: (1) No explicit task
instructions and letting participants surf freely (implicit training; IMP); (2) Task instructions
provided through explicit visual cues (explicit-implicit training; E-IMP); or (3) through
explicit written commands (explicit training; E). We found that providing task instructions
during training (E and E-IMP) resulted in less post-training motor variability—linked to
enhanced performance—compared to training without instructions (IMP). After training,
participants trained with visual cues (E-IMP) enhanced the alpha-band strength over
parieto-occipital and frontal brain areas at wave onset. In contrast, participants who
trained with explicit commands (E) showed decreased fronto-temporal alpha activity.
Thus, providing task instructions in written (E) or using visual cues (E-IMP) leads to
similar motor performance improvements by enhancing activation on different attentional
networks. While training with visual cues (E-IMP) may be associated with visuo-
attentional processes, verbal-analytical processes may be more prominent when written
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explicit commands are provided (E). Together, we suggest that training parameters
such as task instructions, modulate the attentional networks observed during motor
practice and may support participant’s cognitive engagement, compared to training
without instructions.

Keywords: motor learning and control, cognitive neuroscience, neural biomarkers, variability, attention/working
memory, EEG oscillations, instructions and feedback

INTRODUCTION

Motor learning is a complex cognitive and motor process leading
to relatively permanent behavioural and neural changes (i.e.,
brain plasticity; Krakauer, 2006). Fitts (1964) defines three stages
of motor learning: the cognitive, associative, and autonomous
stages. In the early cognitive and associative stages—where
task rules are inferred and appropriate sequences of actions
determined and refined—cognitive engagement (e.g., attention)
is essential for motor learning. Attention plays a critical role
in discovering relevant visual stimuli (selective visual attention)
and generating effective and controlled responses (executive
attention). However, real-life training scenarios present vast
amounts of simultaneous stimuli (auditory, visual, etc.), which
compete for the trainees’ limited attentional resources. While
motor learning is considered to rely on implicit/procedural
processes (Shea et al., 2001; Vidoni and Boyd, 2007), coaches can
help trainees focusing their attention on task-relevant stimuli,
typically, using instructions.

It has been shown that, when faced with the same motor task,
proficient performers (in the autonomous stage) tend to manifest
more extensive, associated, and detailed explicit knowledge about
the given task than low skilled performers in the cognitive and
associative stages—e.g., during ball throwing (Martini and Shore,
2008), and tennis practice (McPherson and Thomas, 1989). This
cognitive advantage generally results in an enhanced motor
performance—e.g., during tennis practice (Del Villar et al., 2007)
or golf putting (Masters, 1992). Providing task-related explicit
knowledge about the task rules to trainees during motor training
seems to accelerate motor learning in ecological—e.g., in golf-
putting (Hardy et al., 1996)—and computer-simulated motor
tasks—e.g., in an anticipation-coincidence task (Albinet and
Fezzani, 2003). For instance, using explicit written instructions
about the correct movement patterns required to master golf
putting swing enhances motor performance during the first
stages of learning (Hardy et al., 1996). Further, trainees with
tactical knowledge before the task training starts—e.g., attack and
defence tactics in soccer (Cardoso et al., 2019)—show reduced
cognitive effort when taking game-related decisions, compared
to trainees without prior tactical knowledge. Therefore, providing
explicit knowledge of the task rules may help participants to draw
their limited attentional resources towards task-relevant stimuli
and boost their motor performance (Albinet and Fezzani, 2003).

Apart from providing (e.g., written) explicit knowledge of
the task rules, providing visual cues during training may help
drawing participants’ attention towards the task features/stimuli
relevant to master the skill (Poulter et al., 2005; Wolpert
et al., 2011). For example, participants trained to identify

soccer penalty kick patterns using visual cues—e.g., highlighting
postural hallmarks of the penalty kicker—showed more task-
relevant eye fixations and recalled more features regarding these
optimal patterns (Poulter et al., 2005). Importantly, in a more
recent study, D’Innocenzo et al. (2016) found that the visuo-
attentional advantages associated with visual cues enhance motor
learning—i.e., golf trainees who were provided with visual cues
during golf swing practice outperformed trainees who trained
without visual cues.

Together, studies have shown that instructions—using a
combination of explicit commands and visual cues to enforce
task rules during training—support motor performance and
learning (Janelle et al., 2003), potentially by supporting early
cognitive engagement. However, to date, less is known about
the influence of visual or explicit written task instructions
on attentional brain networks. Nevertheless, knowing how
task instructions could be provided to optimally support
early cognitive-attentional processes may be crucial to design
better training routines. For example, the engagement of
motor learning-related attentional networks could be enforced
by instructions that explicitly inform participants about the
underlying task rule, or by visually cueing relevant stimuli
during training, allowing participants to learn the task rule
more implicitly.

In this study, we aim at investigating the effect of providing
task instructions in written or using visual cues during
training on motor performance and attentional brain networks
using electroencephalography (EEG). Alpha-band strength is a
promising neural marker of various types of attentional processes
involved during motor learning. More efficient visuo-attentional
processes are linked to a decrease in cortical activity over
posterior brain areas (Lee et al., 2012), as reflected in increased
EEG alpha-band power (7–15 Hz) (Palva and Palva, 2007;
Del Percio et al., 2009; Klimesch, 2012). Further, researchers
have consistently reported neural modulations of the amplitude
and topographical distribution of EEG alpha-band activity
during cognitive tasks (Albares et al., 2014) when attention is
refocused by using instructions—e.g., with visual cues (Haegens
et al., 2012; Payne et al., 2013; Schneider et al., 2019) or
explicit written instructions (Samaha et al., 2018; van Duijn
et al., 2020). In particular, when a motor task involves visuo-
attentional processes—e.g., when visual cues are provided —,
alpha-band activity modulation over parieto-occipital areas has
been observed (Payne et al., 2013). Likewise, in sports settings
(e.g., golf or table tennis), when verbal working memory is
required—e.g., when explicit verbal instructions are provided —,
EEG alpha-band activity over frontal and temporal areas is
modulated (Zhu et al., 2011a; Buszard et al., 2016).
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So far, the alpha-band related EEG-based studies on
visuomotor attentional processes have focused on: (1) simple
stimulus-response paradigms analysing electrode-level event-
related spectral changes (Thut et al., 2006; Haegens et al., 2012;
Payne et al., 2013; Albares et al., 2014; Schneider et al., 2019) or (2)
discrete complex motor tasks (e.g., laparoscopic surgery or table-
tennis; Zhu et al., 2011a; Buszard et al., 2016) analysing electrode-
level spontaneous activity. Concretely, electrophysiology studies
showed that neural firing occurs at troughs of the alpha-band
waves (Haegens et al., 2011; Klimesch, 2012), relating increased
alpha-band power with periods of low neural excitability,
which support attentional and working memory processes
(Palva and Palva, 2007; Klimesch, 2012). Despite the fact that
changes in particular attentional demands are reliably associated
with alpha changes at particular scalp sites, the functional
role of local (electrode-level) alpha-band strength modulations
is ambiguous and generally oversimplified in the literature
(Palva and Palva, 2007; Klimesch, 2012). However, literature
investigating attentional networks (i.e., event-induced scalp-
wide spatio-temporal dynamics) during complex visuomotor
tasks is missing. In this study, we conducted a spatiotemporal
analysis of event-elicited scalp electric fields (Murray et al.,
2008). In doing so, we avoided the methodological limitations
of the “traditional” event-related potential (ERP) analyses, which
usually focus on known components of interest occurring at
predefined sites and periods of interest (Murray et al., 2008).
Spatio-temporal analysis methods make it possible to identify
the different electrical scalp-field spatial and temporal properties
related to different experimental conditions (Michel et al., 2009),
supporting researchers to pinpoint statistically different cortical
generators or networks that produced the condition-specific
electric scalp fields (Michel et al., 2009; Koenig et al., 2011).

With this work, we aimed to shed some light on the scalp-
wide modulation of attentional brain processes and resulting
motor performance changes after training with different task
instructions. We ran an experiment with 36 healthy participants
who trained a complex visuomotor task [i.e., a task with high
demands on attention, memory, and processing capacity together
with motor execution (Wulf and Shea, 2002; Basalp et al.,
2021)]: to surf a virtual boat on waves as fast as possible using
a joystick, i.e., an attention and planning task. Participants
were randomly allocated to three different training groups that
differed on the received task instructions enforcing different task-
relevant stimuli: (1) letting the participants surf freely (implicit,
IMP), (2) providing them with written instructions on how to
correctly align the boat with the wave (explicit, E); and (3)
implicitly instructing them to move correctly using visual cues
(explicit-implicit, E-IMP). We hypothesized that providing task
instructions (i.e., in the E and E-IMP groups) would support
attention (i.e., the ability to perceive task-relevant stimuli) during
training, enhancing motor performance pre-post training. Such
attentional facilitation would be reflected in topographic pre-
post training changes of increased alpha-wave strength and
better motor performance after training than practicing without
task instructions (IMP group). Finally, we expected to observe
a generalization of the skills gained during training (Schmidt
and Lee, 2011) when E and E-IMP participants are challenged
with a different task: avoiding obstacles while surfing waves,

i.e., a reaction task. Although the results of this work do
not have a direct implication for surfing/sailing training, our
investigation contributes to gaining a better understanding of
the potential neural and behavioural benefits of enforcing task-
relevant stimuli using visual cues or written commands in
applications where instructions are commonly used (e.g., sports
training and neurorehabilitation).

MATERIALS AND METHODS

Participants
Thirty-six healthy volunteers (14 women, aged 20–59 years,
µage = 27.9 yrs.; σage = 6.64 yrs.; gender and age balanced
across groups, p > 0.05) participated in the study. Thirty-
one participants were right- and five participants left-handed
as assessed by the Edinburgh Handedness Inventory (Oldfield,
1971). All participants were naive to the virtual surfing task. Up to
38 % of participants reported prior experience with virtual reality
(VR), and 41 % had experience in video gaming. One participant
had a sailing license and three more had some experience with
sailing. Previous experience with VR, video gaming, and sailing
was balanced across groups (p> 0.05).

All participants provided written informed consent before
participation in the study. The studies involving human
participants were reviewed and approved by the local Ethics
Committee (ref.: 2018-01179) and the Swiss Agency for
Therapeutic Products (Swissmedic ref.: 10000432). The study is
registered in ClinicalTrials.gov (NCT04759976) and EUDAMED
(CIV-19-01-026764) under the title “Optimize motor Learning
to Improve Neurorehabilitation” (“OnLINE”). No potentially
identifiable human images or data are presented in this study.

Experimental Setup
Participants sat comfortably on a chair, resting their chin on a
chin rest while performing the virtual surfing task developed in
Unity (Unity Technologies, United States). They controlled the
orientation of the virtual boat by rotating the vertical axis of a
joystick (mechanical angle limits: [−15◦, 15◦]; model: J-UK-17;
Logitech, Switzerland) with their dominant hand (Figure 1). The
height and position of the chin rest (not visible in Figure 1),
chair, joystick, and computer screen were adapted to participants’
hand dominance and controlled across participants. Participants’
neural activity was recorded using a 256-channel Hydrogel cap
and EGI Net Amps amplifier (Electric Geodesics, United States).
EEG data acquisition was synchronized with the virtual surfing
task via a parallel port.

Virtual Surfing Environment
To address our research question, we required a comparably
complex visuomotor task that resembles a real-life scenario. We
sought a novel lab-based virtual motor task that allowed us to
repeat and record many EEG trials during practice and perform
event-related spatio-temporal analysis with enough statistical
power. For this, we needed to keep participants engaged during
the complete duration of the experiment. As such, we required
a challenging and cognitively engaging real-life task to ensure a
long learning curve of a complex motor task with a cognitive

Frontiers in Neuroscience | www.frontiersin.org 3 December 2021 | Volume 15 | Article 755721

https://clinicaltrials.gov
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-755721 December 7, 2021 Time: 12:30 # 4

Penalver-Andres et al. Instructions Modulate Performance and Attention

FIGURE 1 | Experimental setup: participants sat comfortably on a chair and
controlled a virtual surfing boat by rotating a joystick. The rotation of the
joystick is denoted as γz .

component: an underlying task rule (“aligning the boat to the
direction orthogonal to the wave rim in order to surf faster
toward the finish line”). Surfing is a real-life motor task that
requires focused attention to external task-related stimuli (i.e., the
incoming waves) besides a timely and accurate heading motor
command to catch as many waves as possible to increase the
distance covered while surfing. Therefore, we propose a novel
stimulus-response paradigm: a virtual surfing task.

Participants were asked to surf a boat on a wavy sea in a
virtual environment using a joystick (Figure 1). The environment
dynamics, which include the interaction of the boat with the
water/waves, are rendered with the open-source software from
the Crest-OceanRenderer community.1 The dynamics of the
Crest-OceanRenderer software include gravity, buoyancy (i.e.,
floating force), and translation/rotational drag (i.e., fluid friction
between the boat and water). The wave height and frequency
of appearance are controlled across participants. The wave
directions (angle ω in Figure 2D) are randomly selected from a
pre-set of angles, with increments of 5◦, within the range [60◦,
120◦] w.r.t. the x-direction of the global coordinates frame.

Participants could gain boat acceleration by surfing the waves.
The magnitude of the boat forward acceleration aw (in m.u./s2,
where m.u. stands for “maritime units”) depends on the boat
pitch angle (angle ϕ in Figure 2B) according to the following
equation:

aw (i)

=



aw (i− 1)+ cs · ϕ + 0.1, ϕ ∈
[
15
◦

, 90
◦]

aw (i− 1) < 20 m.u./s2

20, ϕ ∈
[
15
◦

, 90
◦]

aw (i− 1) ≥ 20 m.u./s2

aw (i− 1)−5 ·cs · ϕ + 2, ϕ /∈
[
15
◦

, 90
◦]

aw (i− 1) > 0 m.u./s2

0, ϕ /∈
[
15
◦

, 90
◦]

aw (i− 1) ≤ 0 m.u./s2

(1)

1https://github.com/wave-harmonic/crest

where i represents each iteration step in the virtual environment
and cs [0.17 m.u./(s2

·
◦)] is an empirically selected coefficient

that increases the boat acceleration when the pitch angle (ϕ)
is within

[
15
◦

, 90
◦]

, and decreases otherwise. Please note that
the translational drag modeled within the Crest-OceanRenderer
environment acts on top of Eq. (1) and reduces the boat’s
acceleration due to friction forces.

The boat pitch angle ϕ is proportional to the wave slope
and inversely proportional to the absolute alignment error
β (t) = |ω (t)− α (t)|, where α(t) is the boat longitudinal
direction angle w.r.t. the x-direction of the global coordinate
frame and ω(t) is the wave direction angle w.r.t. x-direction of
the global coordinate frame (Figures 2B,D). Thus, the smaller the
alignment error was, the larger the boat pitch angle ϕ became, and
following Eq. (1), the more the boat acceleration increased. Note
that the boat only accelerates when the boat pitch angle is larger
than 15◦. The time when the pitch angle just reaches this 15◦ is
denoted as the incoming wave onset (Figure 2A).

Participants could control the direction of the boat to reduce
the alignment error by rotating the joystick about its vertical axis
(γz in Figure 1). The angle of the joystick is mapped to a steering
torque about the local boat yaw axis (i.e., the z component of the
boat local frame, in green; Figure 2B) as:

| Eτs| = γz · cR (2)

where the value cR = 0.27 N ·m.u. / ◦ was empirically selected.
Altogether, to accelerate the virtual boat, participants needed

to learn to reduce their alignment error, referred to as the
underlying task rule.

Motor Tasks and Experimental Design
The experiment consisted of three phases: Baseline, Training,
and Retention (Figure 3). Participants were asked to complete
two different test tasks during Baseline and Retention: a free
surfing task (Horizon Task) and an obstacle avoidance surfing task
(Obstacle Task). For a clearer understanding of the tasks, please
see Supplementary Video 1.

The Horizon Task (HT) consisted of surfing the waves as
fast as possible to a finish line (placed 2,500 m.u. ahead of the
initial boat position on the global y-direction; Figure 2D) by
catching as many waves as possible. Participants could see the
boat current speed on a speedometer located next to the boat. The
exact command provided to the participants before each HT task
was: “You will surf with a boat on the sea. Surf as fast as possible to
the finish line.”

During the Obstacle Task (OT), participants had to surf the
boat as fast as possible to the finish line (as in the HT) while
reacting immediately to avoid obstacles (stone blocks). To avoid
the collision with the obstacles, participants had to be attentive
at incoming wave onset (stimulus) and to either readily steer the
boat at least 20◦ away from the wave direction when the obstacle
appeared (reaction task) or align toward the wave direction when
no obstacle appeared. The videogame interface presented the
obstacles suddenly at incoming wave onset 10 m.u. from the boat
current position along the wave direction (Figure 3), to limit
planning processes. The obstacles were randomly presented on
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FIGURE 2 | Virtual surfing environment and motor performance metrics for the Horizon Task (HT). (A) The boat could accelerate when an incoming wave reaches
the boat. (B) The magnitude of the boat forward acceleration depends on the boat pitch angle (i.e., forward tilt ϕ). Note that the boat pitch angle is maximal when
the alignment error β is minimal, i.e., when the participant aligns the boat pointing toward the wave direction. We depicted the x-direction of the global and boat local
frames in red, the y-direction in blue, and the z-direction in green. (C) Catching a wave results in a speed increase. The trial-averaged speed profile along the time is
plotted, taking all participants’ trials together. The mean and standard deviation of the speed across trials are represented by the solid blue line and the shaded area,
respectively. The wave onset (time = 0 s) is marked with a vertical dotted line. (D) An exemplary incoming wave reaches the boat close to the finish line
(checkerboard pattern). The dotted arrow represents the wave direction w.r.t. the x-direction of the global coordinate frame (angle ω). The dashed arrow represents
the longitudinal boat direction w.r.t. the x-direction of the global coordinate frame (angle α). Performance metrics: the mean boat speed was computed as the mean
boat horizontal speed (on the horizontal XY-global coordinates plane) within an interval of 150 ms until 6.4 s after incoming wave onset (namely, Time of Interest, ToI).
The mean alignment error (β̄), the distance surfed on the wave toward the finish line (D), and the joystick variability during the ToI were also computed.

50 % of incoming wave trials (Obstacle trials), while in 50 % of
the incoming waves, no obstacles were presented (Non-Obstacle
trials). Thus, the OT was used to assess whether participants
would transfer the ability to steer the boat to catch waves, gained
during training, into steering the boat and avoiding obstacles. The
exact command provided to participants before each OT task was:
“You will surf with a boat on the sea. Surf as fast as possible to the
finish line and avoid the obstacles.”

Participants performed the HT twice during Baseline and
Retention tests, followed by two OTs (4–5 min per task).
Participants were exposed to ∼36 incoming waves (i.e., trials)
per phase and task.

After a short break after Baseline (∼2 min), participants were
randomly allocated to one of three different training groups (i.e.,
Task Instruction Type; Figure 3). Visual cues (i.e., floating buoys)
appeared at incoming wave onset to create the training tasks.
These visual cues provided information regarding the timing of
an incoming wave onset.

The videogame interface also presented written instructions
on the computer screen before each training task. Instructions

were written using bold black 64 points Arial font over a
white background and were displayed until the participant
confirmed having read the full text and was ready to start
the task. All participants, independently of the allocated Task
Instruction Type group, were first provided with a written
common command: “You will surf with a boat on the sea. [. . .].
Catch as many [. . .] buoys as possible without losing speed.” In
two training groups, we supplemented this command to cue the
required steering direction to gain speed (i.e., the underlying
task rule) by either providing visual cues (E-IMP group) or
explicit written commands (E group). The resulting training
tasks (Figure 3), corresponding to three Task Instruction Types,
differed in how explicitly the underlying task rule was provided.

Implicit Learning Without Instructions (IMP)
During training without instructions (IMP), single randomly
coloured floating buoys appeared, at incoming wave onset, at one
over six possible random locations over a semi-circumference of
radius 25 m.u., centred 40 m.u. ahead of the boat in the wave
direction, spanning from −90◦ to 90◦ w.r.t. the wave direction,
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FIGURE 3 | Study protocol overview. Different written explicit commands and visual cues were provided during each phase/task. During Baseline and Retention,
participants completed the HT and the OT. During training, all participants were instructed to: “Try to catch as many buoys as possible without losing speed.”
Depending on the Task Instruction Type, participants received different further instructions. Participants in the IMP group had no explicit information about the
underlying task rule; they were just compelled to catch the buoys. Participants in the E group were compelled to catch the buoys while having the underlying task
rule disclosed in written: “When you feel the wave behind you, point the boat straight to the wave direction to keep your speed high.” Participants in the E-IMP group
were explicitly instructed to “catch the green buoys” and to “avoid the red buoys” to experience caught and missed waves, respectively.

where 0◦ corresponds to the wave direction. With this buoy
distribution, we intended that participants would experience
how the boat reacts (accelerates/deaccelerates) when aligning
or misaligning the boat direction w.r.t. the wave direction. The
exact command provided to participants in the IMP group before
each training task on the computer screen was: “You will surf
with a boat on the sea. Catch as many buoys as possible without
losing speed.” No further explicit information was disclosed to
participants about the underlying task rule to accelerate the boat.

Explicit Written Instructions (E)
During training with written instructions (E), single buoys were
placed as in IMP. Before each training task, participants were
provided with the following explicit command displayed on the
computer screen: “You will surf with a boat on the sea. When
you ‘feel’ the wave behind you, point the boat straight to the wave
direction to keep your speed high. Catch as many buoys as possible
without losing speed.” With this explicit written instruction, we
intended to disclose the underlying task rule, uniquely to E
participants. We checked before the Training phase that all
participants understood what “pointing the boat straight to the
wave direction” meant.

Explicit-Implicit Visual Cues (E-IMP)
During training with visual instructions (E-IMP), green “Go”
buoys and red “No-Go” buoys were randomly presented on
incoming wave trials and placed 10 m.u. ahead from the
boat on the wave direction (50 % “Go” and 50 % “No-Go”
buoys). The exact command provided via computer screen to

participants in the E-IMP group before each training task was:
“You will surf with a boat on the sea. Catch the green buoys
and avoid the red buoys without losing speed.” Participants
were explicitly instructed to “catch the green buoys” and to
“avoid the red buoys” with the intention that only E-IMP
participants would implicitly experience the boat heading angle
needed to catch and miss waves, respectively. Importantly, green
buoys were placed straight towards the wave direction so that
participants would experience a speed increase (i.e., catch a wave).
Conversely, red buoys were also placed straight in the wave
direction, but as they were meant to be avoided, participants
had to align the boat orthogonal to the wave direction to
decrease their speed.

Each training task contained 36 incoming waves (trials) in
which a floating buoy was presented. Participants performed the
training task (∼ 7 min) three consecutive times.

After a short break (∼2 min), participants performed a
Retention test with the same sequence of HT and OT tasks
as during the Baseline. In addition, before, after, and between
each phases, an EEG resting-state measurement (8 × 30 s Eyes
Opened–Eyes Closed resting-state EEG) was performed. The
total duration of the experiment was around 1.5 h.

The study’s primary outcomes are behavioural and
neurophysiological analyses of the HT and the OT during
the Baseline and Retention phases. These datasets can be found
in a freely and openly available Zenodo-hosted repository
(Penalver-Andres et al., 2021). The datasets of the Training
phase and resting-state measurements are out of the scope of this
publication.
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Data Processing and Statistical Analysis
Behavioural Data
Recording and Time of Interest
Kinematic data of the boat and joystick input were recorded
at ∼50 Hz in Unity. Due to the uneven sampling rate, data
were linearly interpolated at 50 Hz. To capture the participants’
performance while surfing the waves in the HT, we first inspected
our dataset to determine the Time of Interest (ToI), i.e., the time
interval within which we computed the performance metrics
(Figure 2C). To determine the ToI, we first calculated the time
to maximum boat speed on the horizontal XY-global coordinates
plane (Figure 2D) across participants by taking Baseline and
Retention HT trials together. The median and confidence interval
(CI) of the time to maximum speed was 5.17 s (3.6–6.4 s) after
incoming wave onset across all HT trials and participants. To
account for the inter-subject variability, we selected a rather
large conservative ToI by choosing the upper bound to be
6.4 s. We set the ToI lower bound at 150 ms after incoming
wave onset to account for the participants’ visuomotor reaction
times (Laming, 1968). In the OT, the ToI was extended from
0 to 7 s after incoming wave onset to capture the entire
obstacle avoidance process, i.e., from obstacle detection to surfing
around the obstacle.

Performance Metrics
Given the novelty of our task—as opposed to classical stimulus-
response paradigms—using conventional performance variables,
such as detection or reaction time was not possible (Haegens
et al., 2011; Payne et al., 2013; Schneider et al., 2019). Our
novel, real life-based paradigm requested to find behavioural
metrics that would quantify the potential cognitive-attentional
advantages of different training strategies. As such, we selected
meaningful task-specific performance metrics based on those
previously employed to assess motor learning in literature (i.e.,
velocity, error, and variability; Basalp et al., 2021). Employing
the boat velocity, steering error, and joystick variability (for the
HT) and additionally the detection-reaction metrics (for the OT)
provides a good overview of the participants’ task performance
before and after training, which we expected to be supported
by attentional processes, especially early during training (Poulter
et al., 2005; D’Innocenzo et al., 2016; Cardoso et al., 2019).

In the HT, participants were asked to “surf as fast as possible
to the finish line.” Thus, the mean boat speed [mean (v)], was
computed as the mean boat speed on the horizontal XY-global
coordinate plane (v =

√
v2

x + v2
y , being vx and vy the x and y

components of the boat velocity, respectively) within the ToI.
The boat speed data were low-pass filtered with a second-order
Butterworth filter (cut-off frequency of 5 Hz) to filter out the
medium-frequency components of the speed signal resulting
from the participants’ variable joystick commands. The filtered
speed signal was employed to calculate the upper bound of the
ToI (i.e., the time of maximum/peak speed).

Since the wave direction varied between waves (within the
[−30◦, 30◦] range), and therefore, aligning the boat to the wave
direction did not always result in advancing in a straight line to
the finish line, we also calculated how much the boat advanced in

the y-direction of the global coordinate frame toward the finish
line during the ToI (distance surfed toward the finish line;
D =

∣∣∣pt=6.4 s
y − pt=0.15 s

y

∣∣∣, where py is the boat position along the
y-direction of the global coordinate frame, orthogonal to the
finish line, at t = 6.4 s and t = 0.15 s from incoming wave onset;
Figure 2D).

The boat alignment error was calculated as the mean absolute
alignment error β during the ToI (Figure 2D). Alignment errors
close to zero reflect the participant’s ability to perform the
underlying task rule (“point the boat straight to the wave direction
to keep your speed high”).

The joystick variability was computed as the standard
deviation of the joystick rotation about its vertical axis (γz).
This metric quantifies the variability of participants’ steering
commands while surfing the waves.

All metrics were computed by pooling Hit and Missed Wave
trials together. A trial was considered as Hit Wave trial when
the participant caught an incoming wave, i.e., when the mean
boat speed during the ToI increased w.r.t. to the instantaneous
boat speed at the start of the ToI (v0 = vt=0.15 s). Otherwise, the
trial was considered a Missed Wave trial. A slight decay of the
mean boat speed (2 % of v0) was allowed to account for the
deaccelerating effects of the drag on the boat.

The same kinematic metrics were computed during the OT
for Obstacle trials. For the OT, two additional metrics were
computed to characterize the ability of participants to avoid
collisions: success rate and obstacle avoidance inability. In the
OT, four possible trial outcomes are possible: (1) true positive,
i.e., the participant misaligns the boat to avoid obstacle collision;
(2) true negative, i.e., the participant keeps surfing when no
obstacle appears; (3) false positive, i.e., the participant misaligns
the boat although no obstacle appears; and (4) false negative,
i.e., the participant does not misalign the boat when an obstacle
appears. The success rate, a typical stimulus-response paradigm
metric was calculated as the ratio of total true positives and
true negatives divided by the total number of trials. This metric
characterizes the correctness of participants’ actions, i.e., whether
participants misaligned the boat to avoid the obstacle and
did not misalign the boat when there was no obstacle. To
further characterize participants’ obstacle avoidance inability,
the ratio of total false negatives divided by the total number of
trials was computed.

Statistical Analysis
The average of each kinematic performance metric across all
trials (for the HT) and Obstacle trials (for the OT) during
each test phase (i.e., Baseline and Retention) was computed per
participant. The success rate and obstacle avoidance inability
metrics (for the OT) were calculated with both Obstacle and Non-
Obstacle trials. The pre-post training change (i.e., from Baseline
to Retention) in the performance metrics was computed for
each participant (Figure 4 and Table 1).

Differences in Baseline performance across groups (factor
Task Instruction Type: E, IMP, E-IMP) were tested for each
performance metric (Kruskal-Wallis H-Test, KW-H, p > 0.1).
Wilcoxon signed-rank test (WSR) was used to test whether
each group significantly changed a performance metric pre-
post training. Assumptions for parametric testing were checked
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using normality tests (Kolmogorov-Smirnov, p < 0.05) and
Homogeneity tests (Levene’s test, p> 0.05).

To test between-group (Task Instruction Type) differences
in performance change after training, Retention minus Baseline
datasets were compared using parametric or non-parametric
tests, when applicable. For parametric testing, One-way ANOVA
was used followed by post-hoc t-tests with Tukey-Kramer
multiple-comparison correction. Otherwise, Kruskal-Wallis
H-Test was used combined with post-hoc Bonferroni-Holmes
corrected Mann-Whitney U tests (MW-U). The significance
level was set to α< 0.05 for all tests.

To report descriptive statistics, we employed the mean and
standard deviation (SD) when data were normally distributed and
the median and inter-quantile range (IQR) otherwise. To report
effect size, rCohen′ s d is provided when significant contrasts were
detected. Behavioural data processing and analysis of the HT were
performed using Python 3.7.1 and libraries Matplotlib, NumPy
1.15.4, pandas 0.23.4, statsmodels 0.9.0, and SciPy 1.1.0. Matlab
(MathWorks, United States) was used to process and analyse
the data of the OT.

Electrophysiological Data
Preprocessing
EEG data were sampled at 1,000 Hz and preprocessed offline
following the standard procedure implemented in the Matlab-
based toolbox Automagic (Pedroni et al., 2019). We included 186
electrodes with a high signal-to-noise ratio in the preprocessing,
excluding electrodes at array boundaries heavily confounded with
muscle artifacts in the neck, maxillary, mandibular, and eyebrow
areas (Supplementary Figure 1). Preprocessing consisted of line
noise removal (50 Hz), average reference and band-pass (between
0.1 and 40 Hz) filtering using the EEGLAB function eeg_filtnew
(Delorme and Makeig, 2004), and detection of bad channels
using the toolbox PREP (Bigdely-Shamlo et al., 2015) called
from Automagic. In addition, ocular artifacts (i.e., eye blinks and
movements) were regressed out from the continuous signal using
the signal of eye-neighbouring electrodes, which were marked
as eye oculography (EOG) channels (for more information
about the algorithm, please refer to Parra et al., 2005).
Finally, previously detected bad channels were interpolated using
spherical interpolation with EEGLAB function eeg_interp.

Electrophysiological Metrics
Electroencephalography single-trial epochs ranging from
1,000 ms pre-stimulus (i.e., incoming wave) onset to 1,000 ms
post-stimulus onset were extracted from the preprocessed data.
At Baseline and Retention, an average of 43 ± 10 (for the HT)
and 69 ± 19 (for the OT) single-trial epochs were extracted
for each participant (with no statistical differences found across
groups). Temporal-Spectral Evolution (TSE) (Thut et al., 2006)
of the alpha-band (7–15 Hz) signal reflecting alpha wave strength
was extracted for the time window [−1 s, +1 s] from incoming
wave onset across all electrodes for each single-trial epoch.
For this, the EEG single-trial epoched data were band-pass
filtered (7–15 Hz), rectified and low-pass filtered using a cut-off
boundary of half of the low-cut frequency. This procedure
provides a smoothed electric scalp amplitude (µV) map for the

signal contained in a specific frequency band which is a positive
definite across time points, informing about the topographic
distribution of alpha-wave strength. The single-trial TSE was
averaged per participant (belonging to a specific Task Instruction
Type), Trial Type (Hit/Missed Wave in the HT; Obstacle/Non-
Obstacle in the OT), and Phase (Baseline/Retention) using
EEGLab Toolbox (Delorme and Makeig, 2004).

Statistical Analysis
Statistical analyses were conducted using Ragu for Matlab
(Koenig et al., 2011). Differences in the alpha-wave topographic
distribution for the time window [−1 s, +1 s] relative to
incoming wave onset were tested with a mixed-measures
topographic ANOVA (TANOVA; Koenig et al., 2011; Habermann
et al., 2018) with the between-subject factor Task Instruction
Type (E, IMP, E-IMP) and the within-subject factors Phase
(Baseline, Retention) and Trial Type (Hit/Missed Wave in the
HT; Obstacle/Non-Obstacle in the OT). TANOVA is based on
randomization statistics (here, 5,000 permutations per data point
were used) and tests for significant differences in topographic
distribution (p < 0.05 for all electrophysiology-related statistics),
indicating if different sources (i.e., brain networks) were active
between factor levels. TANOVAs were initially computed for each
time point and thresholded at a 5 % p-value. To control for
multiple testing across time points, the duration of continuous
periods of sub-threshold p-values corresponding to a 5 % false-
positive rate were estimated (Koenig and Melie-García, 2010).
Only sub-threshold periods with durations larger than this
critical duration (279 ms for HT and 316 ms for OT) were further
analysed. For the subsequent analyses, the data were averaged
within these windows and single TANOVAs on these averages
were computed and reported.

In the case of a 3-way Phase × Trial Type × Task Instruction
Type interaction effect, we conducted post-hoc one-factor
pairwise TANOVA comparisons of Trial Type contrast maps in
the averaged time window showing significant interaction effects.
The Trial Type contrast maps were defined as the subtraction
of the alpha-wave topographic distributions of different Trial
Types in each task—e.g., Hit Waves minus Missed Waves (for
the HT). These contrast maps characterize the learning of the
task as the neural distance between the two bifurcation sides
(i.e., Hit/Missed Wave or Obstacle/Non-Obstacle, respectively,
for the HT and the OT) (Chadick and Gazzaley, 2011). Thus,
the alpha-wave topographic distribution contrasts reflect the
differentially active parts of attentional networks responsible
for participant’s Trial Type discrimination skills (namely, visuo-
attentional spatial acuity; Montagna et al., 2009), which we
expected to be modulated as a function of Task Instruction
Type after training.

We focused on three specific contrasts of interest. First, to test
whether groups presented different attentional networks during
Baseline, we conducted post-hoc one-factor pairwise TANOVA
comparisons across the Baseline alpha-wave Trial Type contrasts
between Task Instruction Type. Second, to detect if attentional
brain networks significantly changed pre-post training, we
compared Retention and Baseline alpha-wave Trial Type contrast
maps within each Task Instruction Type group (panel B in
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Figures 5, 6). Finally, to investigate differences in attentional
networks linked to training with different Task Instruction
Type, alpha-wave Trial Type contrast maps were compared via
post-hoc one-factor pairwise TANOVA comparisons between
Task Instruction Type on baseline-normalized (i.e., Retention–
Baseline) contrast maps (panel C in Figures 5, 6). To visualize
significant TANOVA effects, we computed electrode-wise t-tests
of the significant contrasts and displayed this as topographic
maps, highlighting electrodes that reached a threshold that would
correspond to an uncorrected p-value of 5 % (t > 2.36; t-maps;
Koenig et al., 2011) in Figures 5B,C, 6B,C. Note, however, that
the statistical hypothesis testing was not based on these t-maps
but solely on the TANOVAs.

RESULTS

Behavioural Data
Effect of Task Instruction Type on Motor Performance
Changes in Horizon Task
Participants’ motor performance (i.e., mean speed, distance
surfed toward the finish line, alignment error, and joystick
variability) did not differ across groups at Baseline (factor: Task
Instruction Type; Kruskal-Wallis H-test, p> 0.1).

All groups significantly increased their mean speed on the
waves after training (Figure 4A and Table 1; WSR, p ≤ 0.05). No
difference between groups was found in the mean speed pre-post
training change (Table 1).

Participants in the E and E-IMP groups significantly improved
the distance surfed toward the finish line on the wave after
training (Figure 4B and Table 1; WSR, p < 0.05). However, we
did not find a statistically significant effect of Task Instruction
Type on the pre-post training change of distance surfed toward
the finish line (Table 1).

Only participants in the E-IMP group tended to reduce their
alignment error after training (Figure 4C and Table 1; WSR,
p = 0.05). However, we did not find a statistically significant effect
of Task Instruction Type on the alignment error change pre-post
training (Table 1).

Finally, participants in the E and E-IMP groups reduced
their joystick variability significantly after training (Figure 4D
and Table 1; WSR, p < 0.01). We found a significant effect of
Task Instruction Type on the joystick variability change pre-
post training (Figure 4D and Table 1; Kruskal-Wallis H-test,
χ2 = 10.82, p = 0.004). In particular, the IMP group reduced
the joystick variability significantly less than the E-IMP (Mann-
Whitney U test, U = 19, p = 0.003, rCohen′ s d = 1.46) and E groups
(Mann-Whitney U test, U = 27, p = 0.01, rCohen′ s d = 1.04).

Effect of Task Instruction Type on Motor Performance
Changes in Obstacle Task
Participants’ Baseline performance metrics did not differ
significantly across Task Instruction Type in the OT (Kruskal-
Wallis H-test or one-way ANOVA, p> 0.1).

Participants in the E-IMP group increased the mean speed on
the wave pre-post training (Table 1; WSR, p = 0.02). We only
found a statistical trend for an increase in the mean speed in

the IMP group (Table 1; WSR, p = 0.07). The IMP and E-IMP
groups also increased the distance surfed toward the finish line
(Table 1; WSR, p ≤ 0.05) from Baseline to Retention in the OT.
Only participants in the E-IMP group significantly reduced the
alignment error pre-post training (Table 1; WSR, p = 0.005).
However, no significant effect of Task Instruction Type was found
in any of the kinematic metrics (Table 1).

Conversely, participants in the IMP group significantly
decreased their success rate pre-post training (Table 1; WSR,
p = 0.02). We found a main effect of Task Instruction Type on the
success rate [Table 1; one-way ANOVA, F(2, 33) = 4.74, p = 0.02].
Post-hoc tests revealed that the participants in the E (Tukey-
Kramer t-test, t = 2.56, p = 0.02, rCohen′ s d = 1.63) and the E-IMP
(Tukey-Kramer t-test, t = 4.90, p = 0.04, rCohen′ s d = 1.50) groups
increased their success rate significantly more than participants
in the IMP group.

In the same line, participants in the IMP group increased
(without reaching statistical significance) their obstacle
avoidance inability pre-post training (Table 1; WSR, p = 0.07).
No statistically significant differences were found between
groups (Table 1).

Electrophysiological Data
Effect of Task Instruction Type on Attentional
Networks During Horizon Task
We investigated differences in alpha-wave topographic
distribution using a mixed-measures Phase × Trial Type × Task
Instruction Type TANOVA. In the interval comprising −130 ms
pre-stimulus to 170 ms post-stimulus (i.e., incoming wave onset),
we found a continuous period with a significant (p < 0.05)
Phase × Trial Type × Task Instruction Type interaction effect.
The duration of this effect was larger than 95 % of the duration
of such effects that one would expect under the null hypothesis
(Koenig and Melie-García, 2010), making it unlikely that the
finding can be explained by multiple testing. The TANOVA
test in the averaged [−130 ms, 170 ms] period rejected the null
hypothesis (p < 0.001). Thus, we found a significantly different
modulation of attentional networks observed post-training
across Task Instruction Type depending on the Trial Type. Thus,
the remainder of the post-hoc pairwise TANOVA comparisons
comprises only the averaged [−130 ms, 170 ms] time interval.

At Baseline (Figure 5A, right column), these post-hoc tests
only resulted in one significant difference between E and E-IMP
groups, based on one-factor pairwise TANOVA comparisons
of Trial Type contrast maps across Task Instruction Type
(p = 0.04; less alpha-wave strength in E-IMP compared to E
group over frontal and parieto-occipital areas). At Retention,
the corresponding post-hoc one-factor pairwise TANOVA
comparisons of Trial Type contrast maps also differed between
E and E-IMP groups; however, the effect pointed in the
opposite direction (p = 0.03; more alpha-wave strength in E-IMP
compared to E group over frontal and parieto-occipital).

Further, we tested if attentional brain networks significantly
changed pre-post training within each group (Figure 5B).
Participants allocated in the E group showed a significant
change in attentional brain networks pre-post training
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FIGURE 4 | Changes in performance metrics [mean speed (A), distance surfed towards the finish line (B), alignment error (C) and joystick variability (D)] pre-post
training for the HT, per metric and group: whiskers show the data ranging 1.5 times inter-quartile range above the upper or below lower quartiles, boxed horizontal
solid lines represent the median values and box vertical boundaries represent the inter-quartile range of the metric pre-post training changes. Positive values
represent a pre-post training increase. Between-group (horizontal connectors) and within-group (above boxplot) significant differences (p < 0.05) are marked with *.

(p = 0.01; less alpha-wave strength at frontal, right
parietal-temporal, and left parieto-occipital sites during
Retention as compared to Baseline). Similarly, participants
in the E-IMP group showed pre-post training changes in
observed attentional networks, yet those did not reach
the significance threshold (p = 0.10; more alpha-wave
strength at frontal, occipital and right parietal sites during
Retention compared to Baseline). Conversely, participants
allocated in the IMP group showed no significant differences
in alpha-wave Trial Type contrast maps when comparing
pre-post training.

Finally, to investigate if Task Instruction Type modulated
the observed pre-post training changes in attentional brain
networks, alpha-wave Trial Type contrasts were compared

between Task Instruction Type based on baseline-normalized
(i.e., Retention–Baseline) contrast maps (Figure 5C). The three
resulting contrasts between groups were all significant or at
least approached statistical significance (p < 0.05). Group
E-IMP showed a stronger pre-post training increase in parieto-
occipital and frontal alpha wave strength than the E group
(p = 0.006; more alpha-wave strength at frontal, occipital
and right parietal sites post-training). Compared to the IMP
group, the E-IMP group tended to show a stronger pre-post
training increase in parieto-occipital alpha wave strength than
the IMP group (p = 0.07; occipital sites). Finally, participants
in the E group showed a stronger pre-post training decrease
in occipital and frontal alpha wave strength than the IMP
group (p = 0.02).
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TABLE 1 | Pre-post training behavioural changes within-group and between-group comparisons.

Pre-post training changes within group Between group tests

IMP E E-IMP KW (p-value)

HT Task

Mean speed 0.94 (0.37–1.91) m.u./s
10.0 (0.02)*

1.53 (0.47–3.53) m.u./s
4.0 (0.006)**

1.78 (0.19–2.79) m.u./s
6.0 (0.009)**

0.91 (0.61)

Distance surfed
toward finish line

3.24 (−3.24–8.21) m.u.
25.0 (0.27)

10.91 (3.87–22.92) m.u.
6.0 (0.01)*

16.63 (−0.77–23.82) m.u.
9.0 (0.02)*

3.06 (0.22)

Alignment error 4.46 (−5.47–11.60)◦

30.0 (0.48)
−1.21 (−15.57–0.85)◦

19.0 (0.12)
−3.81 (−15.36–0.02)◦

14.0 (0.05)•
3.81 (0.15)

Joystick variance −2.27 (−4.74–6.80)◦

38.0 (0.94)
−8.4 (−16.31–−4.31)◦

3.0 (0.005)**
−8.69 (−5.03–−0.09)◦

0.0 (0.002)**
10.82 (0.004)**

OT Task

Mean speed 1.41 (−0.19–4.22) m.u./s
16 (0.07)•

1.11 (−1.84–2.64) m.u./s
32 (0.59)

1.01 (0.57–2.79) m.u./s
11 (0.02)*

0.66 (0.72)

Distance surfed
toward finish line

15.92 (−3.43–32.93) m.u.
14 (0.05)•

6.51 (−6.89–37.55) m.u.
62 (0.36)

11.55 (8.27–22.07) m.u.
3 (0.005)**

0.62 (0.73)

Alignment error −5.07 (−10.82–4.04)◦

22 (0.18)
−7.00 (−9.73–2.86)◦

20 (0.14)
−10.50 (−12.55–−2.78)◦

3 (0.005)**
1.71 (0.42)

Joystick variance −1.31 (−5.52–6.64)◦

36 (0.81)
−1.42 (−3.94–2.56)◦

31 (0.53)
−6.17 (−12.08–2.69)◦

20 (0.14)
2.81 (0.25)

Success rate −13.14 (13.50) %
11 (0.02)*

4.74 (19.88) %
45 (0.67)

3.27 (10.42) %
51 (0.38)

†4.74 (0.02)*

Obstacle avoidance
inability

10.15 (−1.22–16.74) %
62 (0.07)•

−10.66 (−21.28–11.87) %
25 (0.30)

−7.52 (−17.47–4.39) %
21 (0.17)

2.00 (0.37)

Descriptive statistics: Mean (standard deviation) or median (25 % quantile–75 % quantile) range are reported. Within-group comparisons: Retention-Baseline
differences that reached statistical significance are marked with bold values. Wilcoxon signed-rank p-values are reported. Between-group comparisons: Metrics with
Retention-Baseline differences that show an effect of Task Instruction Type are shaded in gray. Kruskal-Wallis H-Test statistic (†One-way ANOVA χ-squared) is reported
Test statistic values are marked in italic with p-values written in brackets. (•p < 0.1, *p ≤ 0.05, **p ≤ 0.01). “◦” stands for degrees.

Effect of Task Instruction Type on Attentional
Networks During Obstacle Task
Identical analyses were performed on the OT dataset. We
investigated differences in alpha-wave topographic distribution
using a mixed-measures Phase × Trial Type (i.e., Obstacle–
Non-Obstacle) × Task Instruction Type TANOVA. In the time
interval the interval comprising −50 ms pre-stimulus to 350 ms
post-stimulus (i.e., incoming wave onset), we found a significant
(p < 0.05) Phase × Trial Type × Task Instruction Type
interaction effect. The TANOVA test in the averaged [−50 ms,
350 ms] period rejected the null hypothesis (p = 0.03). Thus,
there was a significantly different modulation of attentional
networks observed pre-post training across Task Instruction
Type depending on the Trial Type. Noteworthy, this latter this
latter interval overlapped in time with the previously reported HT
interaction effect. As the interval of interest was more extensive
than 95 % of the durations of significance expected under the null
hypothesis, we can confidently state that our results are robust
against multiple comparisons-related biases. The remainder of
the post-hoc pairwise TANOVA comparisons comprises only the
averaged [−50 ms, 350 ms] time interval.

At Baseline (Figure 6A, right column), post-hoc one-factor
pairwise TANOVA comparisons among Trial Type contrast
maps did not significantly differ across Task Instruction Type
(p ≥ 0.053). Further, we tested if attentional brain networks

significantly changed pre-post training within each group
(Figure 6B). Participants allocated in the IMP and E groups
showed no significant difference in alpha-wave Trial Type
contrast maps pre-post training. Participants allocated in the
E-IMP group tended to change the pre-post training attentional
brain networks (p = 0.06; less alpha-wave strength at bilateral
fronto-temporal and parieto-occipital electrodes).

Finally, to investigate if task instructions modulate the
attentional brain networks observed, alpha-wave Trial Type
contrast maps were compared between Task Instruction Type
based on baseline-normalized (i.e., Retention–Baseline) contrast
maps (Figure 6C). Participants in the E-IMP group showed
nearly significantly (p ≤ 0.057) different pre-post training
changes in attentional networks when compared to IMP and E
groups (Figure 6C shows significant electrode comparisons and
corresponding post-hoc comparison test): Group E-IMP showed
a stronger pre-post training decrease in parieto-occipital and
frontal alpha wave strength than the IMP and the E groups.

DISCUSSION

In this study, we investigated how providing different (visually
cued or written) task instructions during training affects
participants’ attention while performing a virtual surfing motor
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FIGURE 5 | Alpha-wave Trial Type contrast maps (Hit-Missed waves). (A) The alpha-wave Trial Type contrast maps at Baseline and Retention are depicted for each
Task Instruction Type (micro-Volts shown). (B) The Retention–Baseline contrast is depicted for each Task Instruction Type (micro-Volts shown). (C) The
Baseline-normalized between-group t-maps are depicted (t-values shown). Colour coding for panels (A,B) is depicted at the bottom of the figure in micro-Volts. All
scalp maps present the electrode positions overlaid. Electrodes marked with full circles correspond to the 10–20 EEG electrode convention. In panels (B,C),
time-averaged TANOVA p-values are shown for each contrast. Additionally, electrodes with |t-value| > 2.36 (i.e., significance threshold) are depicted with in yellow *.

task. We used two motor tasks in a virtual environment: free
surfing (HT) and obstacle avoidance surfing (OT) tasks.

Providing Instructions About the
Underlying Task Rule Improves Motor
Performance in the Free Surfing Task
In the free surfing task HT, we found that participants trained
with explicit written instructions (E) and with explicit visual
cues (E-IMP) significantly improved their surfing performance
pre-post training. In particular, participants in the E and
E-IMP groups decreased the joystick variability from Baseline to
Retention to a significantly greater extent than the IMP group.
However, the within-group pre-post training changes found
mainly in E and E-IMP groups in the other kinematic variables
(distance surfed on the waves, alignment error, and mean speed)
were not found to be significantly different across groups.

Along with the improvements observed in all groups, we
found that training with explicit instructions resulted in less
variability of the motor command to control the boat direction
(i.e., participants in the E and E-IMP group significantly
reduced the joystick variability pre-post training) to a greater
extent than the IMP group. Small motor variability has been
consistently associated with the expert stage of motor learning,
while more variable movements are characteristic of the early
stages of motor learning (Cohen and Sternad, 2009; Dhawale

et al., 2019). Thus, the higher joystick variability observed in
participants in the IMP group, compared to other groups, could
reflect that they were still in the relatively early stages of the
learning process during Retention, probably still embarked on
the search for an underlying task rule to skilfully achieve the task
(Albinet and Fezzani, 2003).

The enhanced performance observed in the E and E-IMP
groups after training is consistent with previous literature
showing that visual cues and explicit commands support motor
learning (Hardy et al., 2001; Albinet and Fezzani, 2003; Janelle
et al., 2003; Wolpert et al., 2011; D’Innocenzo et al., 2016). The
pre-post training motor performance improvement observed in
the E and E-IMP groups in the free surfing task may result from
enforced top-down processes that draw participants’ attention
toward task-relevant stimuli. For example, in the study of Poulter
et al. (2005), participants who were instructed to pay attention
to specific postural aspects of a soccer penalty kicker enhanced
their accuracy in predicting the shot direction compared to
uninstructed participants. Poulter et al. (2005) suggested that
explicit instructions support a quicker transition between the
early cognitive and the later associative and autonomous stages
of motor learning.

Further, training without knowledge of the underlying rules
is linked to lesser declarative knowledge generation (i.e., an
understanding that can be verbalized, e.g., “aligning the boat to
the wave direction propels the boat faster”), compared to training
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FIGURE 6 | Alpha-wave Trial Type contrast maps (Obstacle–Non-Obstacle Waves). (A) The alpha-wave Trial Type contrast maps at Baseline and Retention are
depicted for each Task Instruction Type (micro-Volts shown). (B) The Retention–Baseline contrast is depicted for each Task Instruction Type (micro-Volts shown).
(C) The Baseline-normalized between-group t-maps are depicted (t-values shown). Colour coding for panels (A,B) is depicted at the bottom of the figure in
micro-Volts. All scalp maps present the electrode positions overlaid. Electrodes marked with full circles correspond to the 10–20 EEG electrode convention. In panels
(B,C), time-averaged TANOVA p-values are shown for each contrast. Additionally, electrodes with |t-value| > 2.36 (i.e., significance threshold) are depicted with
yellow *.

with explicit written (Koedijker et al., 2007, 2011) or visual
(D’Innocenzo et al., 2016) instructions. Therefore, knowledge of
the task acquired via (visually cued and written) task instructions
may support participants’ attentional focus on task-relevant
stimuli to generate effective and controlled responses (Poulter
et al., 2005), potentially accelerating motor learning.

The command provided before training to all training
groups instructed participants to catch (or avoid) as many
buoys as possible (primary goal: accuracy) without losing speed
(secondary goal: speed). Thus, the specific order of the commands
equally enforced accuracy over speed across all training groups,
potentially facilitating learning, as it has been shown that getting
quicker in the movement does not imply getting better at a task
(Batmaz et al., 2016). Therefore, we do not expect speed-accuracy
trade-off effects to have differently impacted our training groups.
The HT in baseline and retention tests did not enforce accuracy
(no buoys were added), while in the OT the instructions were
reversed, compared to the training tasks, i.e., participants were
instructed to surf as fast as possible and avoid obstacles. We chose
to enforce speed over accuracy in both test tasks to resemble
a regatta scenario (i.e., the time to reach a finish line is the
typical qualifying criteria) and to evaluate whether participants
complied with the underlying task rule. Although the initial
skill level of the participants might also influence our results

(Marchal-Crespo et al., 2009, 2015), we did not find differences in
the performance metrics between training conditions at baseline,
and therefore, our findings are unlikely explained by different
skill levels across groups.

Visual Cueing and Written Instructions
Engage Different Learning-Related
Attentional Networks
To investigate whether task instructions affected attentional
networks, we analysed the average global alpha-band
topographical distribution within the EEG recordings. Decreased
alpha-band power has been traditionally linked to enhanced
neuronal processing of stimuli in primary sensory and association
cortices—e.g., visual stimuli and occipital alpha-band activity
(Thut et al., 2006)—while increased alpha-band power seems
to help to suppress task-irrelevant stimuli (Haegens et al., 2011;
Klimesch, 2011, 2012; Payne et al., 2013). Although the role of
the amplitude of alpha-band oscillations is yet undeciphered,
i.e., whether these oscillations represent irrelevant-stimuli
suppression or relevant-stimuli enhancement, there is enough
evidence that large-scale alpha-band networks are the backbone
of top-down modulated attention (Palva and Palva, 2007; Britz
et al., 2010; Jann et al., 2010; Zanto et al., 2011; Klimesch,
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2012). To avoid controversial interpretations, we focused on
global topographic changes, which can be directly interpreted
as the engagement of distinct brain networks (e.g., Lehmann
and Skrandies, 1980), instead of local alpha-band modulations.
Nevertheless, we chose to report regional activation patterns for
descriptive purposes.

In support of our behavioural data, we found that the
task instructions modulated the engagement of attentional
networks during training. The E and E-IMP groups changed
the average topography of the alpha-band wave amplitude pre-
post training (although in the E-IMP group did not reach
statistical significance).

In the E-IMP group, we found increased alpha-band
amplitude over the frontal and parieto-occipital areas pre-post
training. The best explanation for this distribution is that those
areas correspond to the frontoparietal network of visual attention
(FPN; Parr and Friston, 2017). It is known that the prefrontal
cortex, the premotor cortex, the frontal eye field, the intraparietal
sulcus, and the posterior visual areas are part of this network.
Several studies (Buschman and Miller, 2007; Zanto et al., 2010;
Chadick and Gazzaley, 2011; van Driel et al., 2017; Nydam et al.,
2018) have shown that the prefrontal cortex communicates via
long-range alpha-band wave coupling with other FPN areas.
Two functions are associated with such long-range coupling:
(1) filtering task-related visual stimuli (Bressler et al., 2008;
Del Percio et al., 2009; Chadick and Gazzaley, 2011; Haegens
et al., 2011; Payne et al., 2013; Horschig et al., 2014; Schneider
et al., 2019), and (2) controlling whether saccadic eye movements
become exploratory (to detect new task-relevant stimuli) or
exploitatory (toward task-relevant stimuli) (Astafiev et al., 2003;
Chadick and Gazzaley, 2011; Brosnan et al., 2020; Gaillard et al.,
2020). Under this framework, we can conclude that participants
in the E-IMP group could have relied on FPN-mediated processes
during training (Bressler et al., 2008; Payne et al., 2013; Schneider
et al., 2019), enhancing their performance after training (Astafiev
et al., 2003; Brosnan et al., 2020).

In the E group, we observed a pre-post training decrease of
the alpha-band power predominantly over the right temporal
and central-frontal areas. Temporal brain areas have been linked
to working memory processes (Palva et al., 2011; Buszard
et al., 2016) and central-frontal areas to motor planning
processes (Albares et al., 2014). These areas are known to
operate coupled via alpha-band waves (Buszard et al., 2016).
Furthermore, learning a motor task with explicit instructions
has been related to higher working memory demands than
implicit learning (i.e., without explicit instructions). In several
studies (Zhu et al., 2011a,b; Buszard et al., 2016; van Duijn
et al., 2019), higher working memory demands linked to explicit
instructions were reflected in an increased co-activation of the
motor and verbal-analytical areas compared to implicit learning,
in the alpha-band spectrum. In these studies, no behavioural
differences were found between explicit and implicit motor
learning. Additionally, alpha-band suppression (higher neural
activation) has been linked to working memory-related networks
(Klimesch, 1996; Jann et al., 2010). Participants performing
a sustained visual attention task showed alpha-band power
suppression over parieto-occipital areas when participants are

informed about the task rule that encodes the presentation of
visual stimuli (van Driel et al., 2012). The authors link this
finding to a verbal working memory-supported “refocusing”
of attention when competing stimuli are presented (van Driel
et al., 2012, 2017), similarly to the floating buoys presented to
E participants during training. Therefore, under this evidence,
the most feasible explanation is that the processing of written
instructions required joint functioning of motor, visual, or verbal-
analytical areas involved in supporting working memory of the
task rule during motor learning.

Participants in the IMP group showed no consistent changes
in the alpha-band sources pre-post training. Thus, their
attentional processes did not differ consistently from that of
the Baseline, possibly impacting their ability to discriminate
and select the correct movement patterns needed to catch or
miss a wave. Two interpretations are possible. First, participants
in the IMP group might have deployed several training
strategies involving different neural processes, which yield no
consistent significant pre-post training changes. Inconsistent
strategy selection could result from IMP participants having no
other means to learn the task but exploring the environment to
infer a rule. Alternatively, participants in the IMP group may have
needed a longer time to master the motor task and, thus, involve
the required attentional resources. A slower learning rate could
explain why we did not find consistent neurophysiological pre-
post training changes in the IMP group. As opposed to explicit
learning, slower learning rates in implicit learning have been
consistently reported in the literature, especially during the early
stages of motor learning (Janelle et al., 2003; Poulter et al., 2005).

Comparisons between groups showed that training with
explicit visual cues (E-IMP) potentiated alpha-band strength
over visual-attentional brain areas, namely frontal and parieto-
occipital areas, compared to training with explicit written
instructions (E; Figure 5C). As opposed to E-IMP participants,
we observed that participants in the E group showed a
trend for relatively decreased alpha-band power over the
right temporal, left parieto-occipital, and central-frontal areas.
Despite the different neurophysiological trends in each group,
both groups improved their motor performance. This finding
must be interpreted with care. Already at Baseline, we found
that E participants showed enhanced alpha-band activity over
frontoparietal areas when compared to E-IMP participants.
However, at Retention, the trend was inverted, i.e., E-IMP
participants showed an enhancement of alpha-band power over
frontal and parieto-occipital areas compared to E participants.
Therefore, our neurophysiological and behavioural data suggest
that training with different task instructions (E-IMP and E)
may engage different neural processes during training—visuo-
attentional processes (linked to frontal and parieto-occipital
regions, in the E-IMP group) and verbal-analytical processes
(linked to areas, such as the right-temporal and central-frontal
regions, in the E group)—, both supporting motor performance.

Finally, leaving participants to freely explore the task dynamics
(IMP) led to significantly different responses after training than
letting participants know some instructions about the task (E
and E-IMP). The E-IMP participants enhanced the alpha-band
power over left fronto-temporal regions relatively more than IMP
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participants. In turn, IMP participants showed a slighter decrease
of alpha-band power over right frontotemporal areas when
compared to E participants. This activation pattern—i.e., alpha-
band power decreased over fronto-temporal areas and increased
over parieto-occipital regions (Figure 5B)—lends support to the
idea that both visuo-attentional and verbal-analytical processes
could support learning by self-driven exploration (IMP group),
typical of earlier stages of learning as seen in the relatively higher
joystick variability shown by IMP group.

A broad literature corpus provides evidence about the
neurophysiological implications of local alpha-band power
(Haegens et al., 2011; Klimesch, 2012) and synchrony (Palva and
Palva, 2007), as well as the functional link of alpha-band power
and attentional/working memory processes (Palva and Palva,
2007; Klimesch, 2012). However, the interpretation regarding the
functional role of increased or decreased local alpha-band power
is ambiguous in the literature, and therefore, our conclusions
remain speculative in that domain. This study provides,
instead, new insights into the role of alpha-band topographic
distributions on attention. In the light of our results, we can
conclude that different event-related alpha-band topographic
modulations (i.e., locally and globally increased/decreased
average alpha-band power) may represent task-related changes
in attentional networks linked to different instruction modalities
(i.e., visual or written), which are processed in distinct neural
networks, supporting participant’s perception of task-relevant
stimuli and motor performance (Liao and Masters, 2001; van
Duijn et al., 2020).

Limited Behavioural and
Neurophysiological Skill Transfer
Observed in an Obstacle Avoidance Task
Although participants in the E-IMP group significantly increased
their speed and distance surfed toward the finish line and reduced
their alignment error at the OT (as also observed in HT), this
ability to surf waves did not result in significant improvements in
their success rate during OT, nor reduced their obstacle avoidance
inability after training. The IMP group increased the distance
surfed toward the finish line in OT (contrary to what we observed
in HT), at the cost of reducing their success rate after training
(significantly more than the E and E-IMP groups). At Retention,
participants in the E group did not show any significant changes
in any of the performance metrics with respect to Baseline.
Overall, pre-post training changes were not significant across
groups, except for the success rate metric.

Participants trained without instructions (IMP) may have
prioritized reaching the finish line (“surf as fast as possible”) over
avoiding collisions, explaining the reduced success rate of the
IMP group in the OT compared with the other groups. Therefore,
instructions provided using visual cues (E-IMP) and in written
(E) might help in harmonizing both aims of the task: reaching
the finish line as fast as possible without sacrificing the success
rate in avoiding the obstacles, as opposed to training without
instructions (IMP). Additionally, the OT task, by design, imposes
requirements on participant’s ability to avoid obstacles (“[. . .] and
avoid the obstacles”), which is lacking in the HT. Therefore, we

could argue that training with instructions (E-IMP and E groups)
provided a certain advantage, settling an accuracy over speed
trade-off when exercising in the OT. However, all conditions were
designed to equally prioritize accuracy over speed.

Similar to the HT, our neurophysiological findings suggest
that task instructions modulated the pre-post engagement of
average attentional networks in the obstacle task. We found
nearly significant differences in the networks present in the
E-IMP group pre-post training in the obstacle avoidance
task on the neurophysiological level, showing a trend toward
decreasing alpha-band power over bilateral frontal-lateral and
parieto-occipital clusters. Such topographical distribution did
not qualitatively resemble the networks observed during the HT
(i.e., increased frontal and parieto-occipital alpha-band power).
Instead, the decreased occipital alpha-band power could reflect
active neuronal processing, for example, in visual areas (Palva
and Palva, 2007), in charge of perceiving the obstacles during
the OT. However, provided we only found a statistical trend, the
interpretation of our findings remains limited.

Taken all together, the transfer of the skills to an obstacle
avoidance task was limited. We expected that participants would
exploit the learned underlying task rule (i.e., to accelerate the
boat by steering toward the wave direction at incoming wave
onset) to also halt the boat to avoid obstacles (assessed in the
OT). However, the OT (forced decision-making reaction task,
i.e., choosing between heading straight or fully misaligning the
boat) was, perhaps, too different from HT (steering toward a
continuum of possible direction angles, i.e., a planning task) and
the training tasks (steering toward floating buoys with enough
time to plan, i.e., a planning task), preventing transfer of the
acquired skills. McDougle and Taylor (2019) have shown that
the distance between trained and untrained target positions can
predict the angular error w.r.t. untrained positions. Therefore, the
differences between the training and HT tasks with respect to the
OT, and not the different instructions used during the training
phase, might have determined the low transfer of skills between
the different tasks.

Study Limitations and Future Research
Opportunities
In this study, we observed differences in behavioural and
neural changes that are related to providing vs. not providing
task instructions while practicing a motor task on a relatively
small participants’ sample size (i.e., 12 participants per group).
The inter-individual variability in our kinematic data might
have prevented us from detecting significant between-group
differences in more metrics. Thus, studies with higher sample
sizes are needed to make more sensitive analyses. In addition,
more training sessions and long-term retention tests are
necessary to study the effect of different instructions on attention
and motor performance at later stages of motor learning, i.e., at
the autonomous stage (Fitts, 1964).

Although we chose to show visual cues to all participants,
regardless of the group they were allocated to, participants in
the E-IMP group were presented with different visual stimuli: the
buoy colour was either green or red (instead of a random colour)

Frontiers in Neuroscience | www.frontiersin.org 15 December 2021 | Volume 15 | Article 755721

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-755721 December 7, 2021 Time: 12:30 # 16

Penalver-Andres et al. Instructions Modulate Performance and Attention

and had a meaning (namely, to avoid or catch a buoy) that for
this group would also result on missing or catching the wave, as
the buoys were placed close in front of the boat and only in the
wave direction. On the one hand, the buoys provided information
about the correct alignment to catch a wave. On the other
hand, training to avoid a wave would, perhaps, provide richer
information about the boat-wave interaction (e.g., compared to
always catching a wave). Therefore, participants in the E-IMP
group may have experienced a type of training that resulted in
increased saliency of the wave compared to participants in the
E and IMP groups. As such, the similarity between the E-IMP
training (i.e., catching or avoiding buoys) and the OT task (i.e.,
avoiding appearing obstacles) could also explain why E-IMP
participants showed mild behavioural and neurophysiological
pre-post training changes in the obstacle avoidance task (OT).
However, the similarity between the OT and the E-IMP training
task did not result in a general advantage on the participants’
performance in OT when compared to the E and IMP groups.

The alpha-band frequency ranges (7–15 Hz) chosen for our
analyses overlap with two potentially confounding signals present
in human EEG: spindles and mu-rhythms. The spindles—
an increased spontaneous (non-time-locked) daytime global
alpha-band oscillation in the 7–15 Hz spectral band—are
thought to reflect mental fatigue (Lopes da Silva, 1991;
Klimesch, 2012). Because we focused on time-locked (i.e., event-
related) modulations of alpha-band oscillations, the continuous
spontaneous alpha-band activity should be canceled out in our
analyses, making it implausible that our observations reflect
mental fatigue. Further, the mu-rhythms—commonly observed
during motor preparation and execution strictly over electrodes
neighbouring the hand knob area at the central sulcus (∼10 Hz;
Pfurtscheller, 1992; Pfurtscheller et al., 1996)—are also within
the frequency range of interest used in this study. However, our
analyses show an event-related topographical modulation of the
alpha-band oscillations occurring around incoming wave onset,
unlike mu-rhythms registered several seconds after cue onset
(Pfurtscheller et al., 1996). Therefore, our findings likely reflect
attention-mediated alpha-band modulations rather than motor-
or fatigue-related neural activity.

Our novel stimulus-response paradigm aims to be closer
to real-life than simpler stimulus-response tasks. However,
this novelty comes with few limitations: potential subject-
specific strategies might explain the variability observed in our
results, the need to come up with a task-specific behavioural
analysis, difficulties in obtaining a strong statistical effect size,
or the presence of other potential confounding factors, such as
movement artifacts in the EEG signal. We tried to overcome these
limitations associated with the complexity of our paradigm via
careful study design.

Although we tried to control the speed-accuracy trade-off
among groups during training with our instruction design,
it is still possible that inter-individual differences influenced
how participants prioritized speed vs. accuracy or other
strategy-related factors, e.g., surfing style or risk-taking character.
We could not appreciate a generalization of the skills acquired
during training to another virtual task: the obstacle avoidance
task. Further experiments that control the variety of potential

strategies that participants can follow to fulfil the tasks (both in
HT and OT) could complement and confirm our contribution
despite reducing the ecological validity.

Although we selected a complex visuomotor task that
resembles real-life surfing, the task is still a lab-based virtual
paradigm, which misses important task-related sensory
information from real-life settings (e.g., vestibular and haptic
sensory information) (Özen et al., 2020). Moreover, participants’
hand movements in our paradigm were rather small to avoid
EEG artifacts. Therefore, the direct transfer of our findings
to a real-life setting is limited. Nevertheless, our lab-based
virtual simulation of a real-life task has important applications
in motor training. In our study, we found that providing
instructions that enforce the task rules may be the best approach
to enhance participants’ motor performance. However, how
the underlying task rule is enforced seems to be secondary.
For example, task rules could be enforced by instructions
provided prior to training (e.g., coaches could help trainees
focusing their attention on task-relevant stimuli, typically using
explicit instructions), but also presented during training using
visual cues (e.g., using commercial virtual and augmented
reality displays).

These findings are of great interest for the design of
better training routines in real-life scenarios where task
instructions and/or visual cues may be employed, e.g.,
sports training, surgical training, and simulator-based
education. Additionally, the novel task design employed
in our study is proof of the feasibility of the application
of complex real-life visuomotor tasks to measure event-
related neural activity. Thus, we encourage researchers to
explore well-known neural correlates in real-life paradigms
in order to assess the transferability of basic neuroscience
principles into real-life scenarios, bridging the gap between
the lab and real-life settings. Finally, the alpha-band spatio-
temporal dynamics pre-post training could be exploited, for
example, to discriminate between poor and good performers.
Thus, explicit knowledge and visual cues enforcing the
task rule could be provided during training, depending
on the trainees’ visuo-attentional or working memory
capacities, to support motor learning to optimally support
motor learning.

CONCLUSION

In conclusion, to the best of our knowledge, this study is the
first to investigate the effect of task instructions about the
underlying task rule on motor performance and neural correlates
of attention. We found that providing task instructions seems
to boost learning of a virtual surfing task, compared to letting
participants surf freely. Nevertheless, providing task instructions
in written or using visual cues leads to similar improvements in
performance by relying on different attentional networks. On a
neurophysiological level, we found differences between explicit
visual cueing linked to (top-down) visuo-attentional processes
and explicit written commands related to verbal-analytical
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processes, compared to the activation pattern observed after
training the task without instructions. Although our findings
do not have a direct implication for surfing/sailing training, the
results of our work contribute to gaining a better understanding
of the neural and behavioural effects of enforcing underlying
task rules using visual cues or written commands in applications
where instructions are commonly used to improve motor
(re)learning, such as sports training and neurorehabilitation.
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