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A B S T R A C T   

Background: Accurate quantification of daily steps in a cardiovascular patient population is of high importance 
for primary and secondary prevention. While sensor derived step counts have been sufficiently validated for hip- 
worn devices and commercial wrist-worn devices, there is a lack of knowledge on validity of freely available step 
counting algorithms for raw acceleration data collected at the wrist. 
Research question: How accurate are step-counting algorithms for wrist worn tri-axial accelerometers in a cardiac 
rehabilitation training setting? 
Methods: Two step counting algorithms (Windowed Peak Detection, Autocorrelation) for tri-axial accelerometers 
(Axivity AX-3), were tested. Steps were recorded by chest-mounted GoPro video cameras as gold standard. 
Cardiovascular patients without neurological impairments enrolled in an ambulatory rehabilitation program 
were recruited. Recordings were performed during one 45–90 min outdoor physical therapy session of which 5- 
min segments of six movement categories, namely Walking, Running, Nordic, Stairs, Arm Movement [AM] With 
[+] and Without [-] Walking [W] were identified and analyzed. Mean absolute difference and mean absolute 
percentage error [MAPE] with regard to true steps measured from video are reported to report accuracy. 
Results: Training sessions of 22 patients were recorded and analyzed. Steps were overestimated during AM-W and 
underestimated during Walking, Running and Stairs. Windowed Peak Detection algorithm was more accurate 
during AM+W and AM-W and Autocorrelation performed better during Nordic. A MAPE of close or below 10% 
was achieved by both algorithms for the categories: Walking, Running, Stairs and Nordic. 
Significance: Both algorithms provided accurate results for estimation of step counts in a controlled setting of a 
cardiovascular patient population. The quantification of daily number of steps recorded by wrist-worn accel
erometers delivering raw data analyzed by freely available algorithms is a cost-effective option for research 
studies.   

1. Introduction 

Cardiorespiratory fitness is a well-established and valid surrogate for 
cardiovascular (CV) risk in healthy people as well as in patients with CV 
disease [1]. A minimum of 150 min of at least moderate-intensity 
physical activity has been recommended to the general population as 
well as to CV patients to maintain health and prevent primary and 
secondary cardiovascular disease [2]. In addition, a minimum of 
7000–10000 steps per day have been suggested to be appropriate for 
older adults as a general health recommendation [3–5]. Consequently, 
physical activity has been added to patient risk stratification for 

suffering a further CV event [6–8]. This has led to the increased clinical 
and scientific interest in the quantification of physical activity over the 
last two decades. With the technological progress in inertial sensors, the 
use of objective physical activity measuring devices like activity 
trackers, smartwatches and smartphone applications have recently 
become the assessment method of choice. 

Several studies that have linked disease progression and activity 
levels and/or steps in CV patients already exist. One study in hyper
trophic cardiomyopathy patients has found an association between 
disease severity and daily step count but not activity counts [9]. In 
addition, number of steps, physical activity and functional mobility have 

* Correspondence to: Centre for Preventive Cardiology, Department of Cardiology Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, 
Switzerland. 

E-mail address: Prisca.eser@insel.ch (P. Eser).  

Contents lists available at ScienceDirect 

Gait & Posture 

journal homepage: www.elsevier.com/locate/gaitpost 

https://doi.org/10.1016/j.gaitpost.2021.11.035 
Received 21 May 2021; Received in revised form 15 September 2021; Accepted 24 November 2021   

mailto:Prisca.eser@insel.ch
www.sciencedirect.com/science/journal/09666362
https://www.elsevier.com/locate/gaitpost
https://doi.org/10.1016/j.gaitpost.2021.11.035
https://doi.org/10.1016/j.gaitpost.2021.11.035
https://doi.org/10.1016/j.gaitpost.2021.11.035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gaitpost.2021.11.035&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gait & Posture 92 (2022) 206–211

207

all been shown to be good predictors for hospital readmission or mor
tality in CV patients [10–13]. In a recent position paper on wearables, 
the European Society of Cardiology (ESC) has stated that there are still 
gaps in knowledge on methods or algorithms which translate data from 
continuous fitness trackers into meaningful information for primary and 
secondary prevention [14]. Therefore, there is increasing interest in 
identifying the best metrics to quantify physical activity by objective 
measuring methods. Furthermore, there is a need to determine the ac
curacy and validity of such accelerometer-based outcome measures. 

There are several commercial devices (e.g., Fitbit, Garmin, Apple 
Watch, etc.) for measuring physical activity on the market. These 
products are equipped with displays and applications to motivate the 
user to be more active. Furthermore, there are devices with built-in al
gorithms for research on physical activity, like the Actigraph (ActiGraph 
Corp., USA) or the Geneactiv (Activeinsight Ltd., UK) movement sen
sors. Due to the built-in algorithms, these devices automatically calcu
late time spent in different activity zones as well as steps per day, which 
do not require any additional post-processing but are subject to smaller 
or larger errors depending on the measured activities [15–18]. Devices 
without built-in algorithms are cheaper but deliver only raw accelera
tion data, which need to be analyzed with external or custom-built al
gorithms. However, having access to the raw accelerometer data allows 
self-tailored data analysis that may be more appropriate to address 
specific study questions. One of the devices without built-in algorithms 
is the Axivity AX-3 (Axivity Ltd., Newcastle, UK), which is used in the UK 
Biobank study [19]. 

Several open-source packages are available to measure activity do
mains, e.g. by GGIR [20] and the UK Biobank algorithm [21]. Step 
counting algorithms are based on the time domain, the frequency 
domain, or machine learning. There have been several validation studies 
on new or improved step counting algorithms [22–24] and studies 
comparing different algorithms [25,26]. The current gold standard for 
step algorithm validation is video recording of the participants to 
determine the true number of steps. Many of these validation studies 
have focused on the correct detection of steps during standardized 
walking exercises in a laboratory. Only few studies have validated 
step-counting algorithms in a daily living setting [18,27,28], which is 
time consuming and tedious as large video files have to be watched and 
analyzed. The predefined acceptable limits for measurement accuracy in 
a laboratory setting is ± 3% and the acceptable limit for accuracy in 
free-living settings is ± 10% [29–31]. So far, step counting algorithms 
have been validated for the Axivity device worn at the lower back and 
the hip [15,27], but none have been validated for this device worn at the 
wrist. The accuracy of step algorithms is usually higher when measuring 
at the lower back, the hip, the thigh or the foot [25,32,33]. While 
wrist-worn devices have a lower accuracy for step measurements, they 
are more feasible for long wearing periods of several days or weeks [34, 
35]. 

The aim of the present study was to validate two different easily 
implementable and freely available step-counting algorithms for tri- 
axial wrist-worn accelerometer data (Axivity AX3) in the setting of a 
physiotherapy session of a cardiovascular rehabilitation program. 
Similar to a typical training session, 5-min bouts of different activities 
were assigned to defined movement categories. An open-source 
Windowed Peak Detection algorithm and an Autocorrelation algo
rithm were selected to derive steps from the raw acceleration signal. The 
sensor-derived number of steps was compared to the true amount of 
steps from the video recordings. 

2. Methods 

2.1. Subjects 

This study was a prospective cross-sectional study, which has been 
approved by the Ethics committee of the canton of Berne (2020–01861). 
The study participants were recruited from the cardiac rehabilitation 

program at the Physiotherapy Department of the University Hospital 
Berne. Patients without neurological impairment, who participated in 
outdoor physiotherapy training sessions (45–90 min) were invited to 
participate in this study. All participants were informed about the study 
procedure and general data protection regulation prior to the session 
and signed a written informed consent. 

2.2. Experimental procedure 

Activities performed during the outdoor physiotherapy sessions 
included the following typical activities: walking (Walking), Nordic 
walking (Nordic); stair climbing (Stairs), arm movements while walking 
(AM+W), arm movements without walking (AM-W), and jogging 
(Running). The AM+W category mostly consisted of arm movements 
like arm swinging while walking, lifting knee to elbow and skipping. The 
AM-W mostly consisted of strengthening exercises such as push-ups on a 
wall, squats, and arm exercises with weights, but sometimes included a 
few steps in between exercises. The therapists devised their own pro
grams for the training sessions. 

2.3. Devices 

A GoPro video camera (GoPro Inc., San Mateo, CA, USA) was 
mounted in front of the chest and pointed at the legs and feet of the 
participants (Fig. 1). The video images were recorded at 30 frames/s 
with 1080 pixels and with the field of view setting on wide. The training 
session was recorded as a continuous video file. 

An Axivity AX-3 device (Axivity Ltd., Newcastle, UK) was worn on 
the non-dominant wrist and was set up with the open-source software 
AX3 GUI V43 [36] designed for Axivity devices. The devices recorded 
tri-axial acceleration of + /- 8 g at 50 Hz during the complete training 
session. The accelerometer time was synchronized with the computer 

Fig. 1. GoPro camera setup.  
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time stamp during the device set-up. 

2.4. Data processing 

The video was scanned for one 5-min continuous or two 2.5-min 
continuous segments of each movement category. The beginning and 
end of each identified segments as well as individual steps during these 
segments were manually labeled with CowLog 3.0.2. [37], which is a 
video annotation tool that returns the corresponding timestamps of the 
labeling. The resulting file was then processed to display the steps per 
second for the segment of interest. 

The raw acceleration data was exported as a .csv file using AX3 GUI 
V43. The raw unfiltered accelerometer data was resampled at 15 Hz 
using linear interpolation by the resample function from the GGIR R 
package (2.1–0), to reduce computational load. After resampling, the 
acceleration signal was used as input for two different step-counting 
algorithms. 

2.5. Algorithms 

2.5.1. Windowed peak detection 
For calculation of steps from the acceleration signal, a Windowed 

Peak Detection (WPD) algorithm designed according to Gu et al. was 
used [22]. The WPD algorithm scans for peaks in the acceleration signal 
and applies various constraints, e.g. peak magnitude and distance to 
previous peak, to eliminate false peaks. The remaining peaks are coun
ted as steps. The algorithm used can be found on GitHub [38] and is 
designed to be used in combination with the GGIR R package [20]. The 
default values of the algorithm were adjusted manually to improve the 
algorithm’s accuracy during preliminary testing with 5 sequences of 
1000 steps at different cadencies. The input variables for the algorithm 
and the components of the algorithm are illustrated as flow chart in  
Fig. 2. 

2.6. Autocorrelation 

As a second algorithm, an autocorrelation (AC) algorithm designed 
according to Rai et al. was used [24]. AC algorithms utilize the repetitive 
nature of walking. Windows of the signal are correlated with subsequent 
windows for different window sizes (resulting in different time lags) 
which are set according to prevailing frequencies in walking. If one of 
the calculated auto correlational coefficients surpasses a set threshold 
value, the movement state is identified as walking and the correspond
ing time lag is stored. The input variables were set according to pre
liminary testing. The components of the algorithm are visualized in  

Fig. 3. As a starting point, an algorithm from GitHub designed to work 
with Contiki microcontrollers was selected [39,40]. This algorithm was 
altered to run without the controller and to deliver the optimal time and 
the motion state as an output value. When the motion state was walking, 
two steps were calculated for every detected time lag. 

2.6.1. Statistical analysis 
The mean cadence was calculated by dividing the number of steps 

counted from the video file by the time for each bout of interest and 
expressed it as [steps/min]. For each segment, the difference in steps 
counted from video and the steps derived from the algorithms was 
computed. The mean difference as well as the mean absolute percentage 
error (MAPE) was calculated according to the following formula for each 
movement category and for each algorithm over the segments of all 
patients. 

MAPE =
1
n

∑n

t=1

⃒
⃒
⃒
⃒
At − Ft

AT

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒

Where At indicates the true number of steps at time t (video) and Ft 
indicates the derived number of steps at time t (algorithms). 

Additionally, the standard deviation (SD) and coefficient of variation 
(CV) was calculated for each movement category and algorithm. For the 
statistical analysis, R studio (Version 1.0.1093, R Studio, PBC) and R 
(4.0.3) was used. 

3. Results 

3.1. Participant characteristics 

Twenty-two cardiac rehabilitation patients participated in the pre
sent study between February and April 2021. The study participants 
were a representative sample of heart patients performing ambulatory 
cardiac rehabilitation (unpublished data). The average age was 
56.6 ± 9.0 years and the average BMI was 27.8 ± 4.9 kg/m2. Peak VO2, 
a measure of cardio-respiratory exercise capacity, was 22.1 ± 6.0 ml/ 
min/kg, which corresponded to 87.5 ± 20.1% of the predicted value 
[41]. The most common reason for participation in the cardiac reha
bilitation program was coronary heart disease with a recent coronary 
infarction (n = 16). Additionally, there were patients participating in a 
preventive rehabilitation during cardio toxic chemotherapies (n = 3), a 
patient with hypertensive cardiomyopathy (n = 1), a patient with 
valvular cardiopathy (n = 1) and one patient who suffered a type A 
aortic dissection (n = 1). 

Fig. 2. Flowchart describing the Windowed Peak Detection algorithm.  
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3.2. Movement categories and their physical intensity 

Due to the individual exercise program of each physiotherapy session 
and the fitness level of the patient, not all movement categories were 
available for all patients. The number of available segments and mean 
segment length per movement category are shown in Table 1. The 
movement categories Walking, Stairs and Nordic had a mean cadence of 
over 100 steps/min which corresponds to at least moderate physical 
activity according to Tudor-Locke et al. [42]. The Running category 
corresponded to vigorous physical activity with a mean cadence of over 
130 steps/min. Cadences for each movement category are displayed in 
Table 1. 

3.3. Validation of step count 

The differences of the number of sensor-derived steps to the gold 
standard are shown in Fig. 4. The results are given for both algorithms in 
each movement category. Differences in steps to the number of steps 
from the videos ranged from − 73–38 steps (− 11 to 82%) for WPD and 
− 62–73 steps (− 9 to 144%) for the Autocorrelation algorithm 
(Table 1). Steps were underestimated by both algorithms in the Walking, 
Running and Stairs movement categories and overestimated in the AM- 
W category. Derived number of steps by the WPD algorithm were lower 
than derived steps from the AC algorithm for all categories. For AM+W, 
steps were slightly overestimated by the AC algorithm, while the WPD 
algorithm was more accurate. Differences between algorithms were 
largest for Nordic for which the WPD algorithm underestimated the 
steps and the autocorrelation algorithm slightly overestimated the 
number of steps. Especially with the AC algorithm, the inter-patient 
variability was larger for the AM categories. 

The MAPE for Running, Nordic, Stairs and Walking were below 10% 
for the AC algorithm (Table 1). For the WPD algorithm only the MAPE 
for Stairs and Walking were below 10%, while the MAPE for the Running 

and Nordic categories were slightly above 10%. The MAPE of both al
gorithms were significantly higher for tasks that contained arm move
ments, such as AM+W and AM-W. The MAPE for AM-W was inflated 
because of the significantly lower number of true steps (68) compared to 
the other movement tasks (540). 

4. Discussion 

This validation study of two step counting algorithms quantifying 
accelerations measured by wrist-worn Axivity AX3 during outdoor 
physical therapy sessions with cardiac patients showed relative accuracy 
with a MAPE of < 10% for most movement categories. This study pro
vides validity data for movements typical during daily living activities in 
middle-aged cardiac patients free from neurological impairment. The 
two step counting algorithms chosen based on simplicity and free 
availability can analyze any 3-dimensional raw acceleration data and 
our validity results are applicable to any wrist-worn device that mea
sures 3-dimensional accelerations recorded at similar frequencies. 

Both algorithms resulted in low errors for Walking. The Autocorre
lation algorithm showed better accuracy for Stair, Nordic and Running 
than WPD, however, WPD was more accurate for movement categories 
including arm movements. The WPD algorithm is less likely to count 
false steps mainly due to the variance and magnitude threshold that is 
implemented by the WPD but absent in the Autocorrelation algorithm. 
However, it underestimates true steps when there are irregular peaks in 
the signal that do not originate from steps. For example, during Nordic 
walking the interaction of hand (pole insertion) and foot peak leads to 
irregular compound signals with peaks of double amplitude and some 
peaks in sequence with irregular phase shifts. These peaks of irregular 
amplitude lead to true peaks being marked as false peaks and an un
derestimation of steps. The Autocorrelation algorithm performs well 
during rhythmical activities such as walking at a steady pace. On the 
other hand, it tends to overestimate steps during activities with 

Fig. 3. Flowchart describing the Autocorrelation algorithm.  

Table 1 
Absolute and relative difference to true number of steps (video recordings) for the two step counting algorithms and six movement categories. Shown are means 
(standard deviations).   

Video Windowed Peak Detection Autocorrelation 

Movement category 
(n) 

True steps Average segment length 
[s] 

Cadence [steps/ 
s] 

Mean difference 
[steps] 

MAPE [%] Mean difference 
[steps] 

MAPE [%] 

Walking (20) 545 (90.7) 319.1 (52.6) 102.5 (6.9) -14.9 (28.6) 4.1 (3.7)* -19.2 (35.5) 5.8 (4.2)* 
Running (5) 673 (168.9) 304.2 (63.2) 132.3 (13.3) -73.4 (28.7) 11.2 (4.5) -61.6 (32.4) 8.7 (3.1) 
Nordic (14) 559 (48.2) 323.5 (24.3) 103.8 (8.2) -57.0 (47.6) 10.9 (7.1) 4.5 (41.2) 5.2 (4.9) 
Stairs (20) 536 (114.7) 304.4 (60.7) 106.5 (15.1) -42.6 (37.9) 7.5 (5.7) -27.7 (37.4) 6.4 (7.2) 
AM+W (18) 386 (131.7) 312.5 (53.2) 73.5 (17.9) -18.6 (71.9) 17.0 (13.0) 45.4 (99.1) 24.3 (24.7) 
AM-W (22) 68 (45.3) 314.9 (48.5) 12.5 (7.5) 37.6 (58.5) 81.7 (76.0) 73.2 (70.6) 143.6 ± 128.4) 

*Standard deviation of mean absolute percent error (MAPE) corresponds to the coefficient of variation (CV) 
AM+W, arm movement while walking; AM-W, arm movement without walking 
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repetitive arm movements, which are performed at a frequency similar 
to walking frequencies. Both algorithms can be a valid option for 
quantifying number of steps, however, for research quantifying steps 
mainly during walking activities, an AC algorithm leads to more accu
rate results, while for research quantifying steps during activities that 
contain arm movements and irregular stepping movements, a WPD al
gorithm is better suited. 

Our results are comparable to findings from literature. The study of 
Chen et al. investigated the accuracy of step counts from three com
mercial wristband monitors (Fitbit Flex, Garmin Vivo fit, Jawbone UP) 
during walking at different speeds, six different activities including stair 
climbing and two sitting tasks.[28] Our tested algorithms had compa
rable accuracies to the above-cited commercial devices during the 
walking and the stair climbing tasks, with all the commercial devices 
having an absolute percentage error (APE) ranging from 2.5% to 9.6% or 
lower for walking at different speeds. Both devices had an APE below 
10% for stair climbing, with the Jawbone UP at the dominant wrist as an 
exception. Likewise, the commercial devices also overestimated steps 
during non-walking tasks with arm movements [28]. While this leads to 
an overestimation of true steps, number of steps is often used as surro
gate measure of physical activity. Even in the absence of steps, arm 
movements constitute also a form of physical activity. 

A recent review article of Fuller et al. summarized step counting 
validation studies with mostly wrist-worn commercial devices 
(including also studies on hip, collar-and ankle worn devices) [43]. 
Compared to their review, our tested algorithms scored similarly or 
slightly worse compared to the investigated commercial devices in a 
laboratory setting for normal walking tasks. With 91% of the commer
cial devices underestimating or overestimating steps with a mean per
centage error (MPE) below − 3% or above + 3% and only 9% of the 
commercial devices having a MPE between − 3% and 3%. In a real-life 
setting, most of the commercial devices had a lower accuracy than the 
algorithms tested by us with 45% of the devices having a MAPE below 
10% and 55% of the devices having an error higher than 10%. 

The main limitations of this study was the setting of a physiotherapy 
session with activities of structured exercise which are not reflective of 
other activities of daily living. To assess the validity for daily-life ac
tivities, longer measurements in a real-life setting would be necessary. 

Additionally, the performance of the tested algorithms is specific for the 
gait speeds used in this study and cannot be applied to other speeds. 
Unfortunately, only few of our participants were fit enough to run, 
which is why the sample size for Running was small. Further, the stan
dard deviation of the cadences during Walking was small and our results 
are not applicable to a more fragile or neurologic population with 
greater within-subject standard deviations of walking speed. 

However, the analyzed movement categories contain different 
physical activity intensities and movements in a semi-constraint setting. 
There is more variability in the data compared to scripted movements in 
a laboratory setting, which makes the data more comparable to every- 
day activities than experiments in a laboratory setting. Both algo
rithms had good accuracy and low variance in the walking activity. 
Further, both algorithms showed a low error for all other movement 
categories. Consequently, both algorithms are valid alternatives for 
quantification of daily activity compared to commercial activity 
trackers. 

5. Conclusion 

In this study, an alternative to commercial devices for objectively 
measuring physical activity in cardiac patients for primary and sec
ondary prevention was presented. For this purpose, two open-source 
algorithms adapted to a tri-axial accelerometer were tested and vali
dated in outdoor cardiac rehabilitation training sessions. The tested al
gorithms resulted in sufficiently accurate calculation of steps in a cardiac 
patient population during structured physical exercise. The over
estimated steps during movement categories with excessive arm move
ments may be more reflective of energy consumption rather than actual 
steps. Based on the diverse movement categories that were included, 
advantages and disadvantages of the two algorithms were shown. 
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Fig. 4. Boxplot showing the absolute difference in steps of each algorithm to the gold standard for the different movement categories. Boxes show 1st to 3rd quartile 
and the whiskers extend from the hinges to the largest/smallest value within 1.5 interquartile range. The black bar in the boxes displays the median. Filled data points 
mark values outside the 1.5 interquartile range. 
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