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Abstract
The response to neoadjuvant therapy can vary widely between individual patients. Histopathological tumor regres-
sion grading (TRG) is a strong factor for treatment response and survival prognosis of esophageal adenocarcinoma
(EAC) patients following neoadjuvant treatment and surgery. However, TRG systems are usually based on the estima-
tion of residual tumor but do not consider stromal or metabolic changes after treatment. Spatial metabolomics anal-
ysis is a powerful tool for molecular tissue phenotyping but has not been used so far in the context of neoadjuvant
treatment of esophageal cancer. We used imaging mass spectrometry to assess the potential of spatial metabolomics
on tumor and stroma tissue for evaluating therapy response of neoadjuvant-treated EAC patients. With an accuracy
of 89.7%, the binary classifier trained on spatial tumor metabolite data proved to be superior for stratifying patients
when compared with histopathological response assessment, which had an accuracy of 70.5%. Sensitivities and
specificities for the poor and favorable survival patient groups ranged from 84.9% to 93.3% using the metabolic
classifier and from 62.2% to 78.1% using TRG. The tumor classifier was the only significant prognostic factor
(HR 3.38, 95% CI 1.40–8.12, p = 0.007) when adjusted for clinicopathological parameters such as TRG (HR 1.01,
95% CI 0.67–1.53, p = 0.968) or stromal classifier (HR 1.86, 95% CI 0.81–4.25, p = 0.143). The classifier even
allowed us to further stratify patients within the TRG1–3 categories. The underlying mechanisms of response to
treatment have been figured out through network analysis. In summary, metabolic response evaluation outperformed
histopathological response evaluation in our study with regard to prognostic stratification. This finding indicates
that the metabolic constitution of the tumor may have a greater impact on patient survival than the quantity of
residual tumor cells or the stroma.
© 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

Neoadjuvant chemoradiotherapy or chemotherapy is
associated with a significant survival benefit for patients
compared with surgery alone and has become the stan-
dard of care for most patients with resectable esophageal

and gastroesophageal-junction adenocarcinoma [1–4].
Preoperative treatment has the effect of tumor- and
nodal-downstaging, which can increase the prospect of
complete resection [5,6]. Despite the advantages
achieved through multimodal therapy, the outcome of a
significant proportion of patients with advanced
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esophageal adenocarcinoma (EAC) remains unsatisfac-
tory. Insights into the tumor’s constitution and its molec-
ular composition after neoadjuvant treatment are
valuable for defining risk groups and in order to improve
future therapies for patients with a poor response.

A commonly used method to assess the response to
neoadjuvant therapy is histological tumor regression
grading (TRG), which, in addition to the presence or
absence of lymph node metastases, is an important clini-
cally prognostic indicator for treatment response and sur-
vival prognosis [7–11]. With regard to TRG, several
systems have been proposed in gastrointestinal malignan-
cies aiming to categorize the extent of regressive changes
after cytotoxic treatment by estimating the amount of
residual tumor and the degree of therapy-induced fibrosis.
Thereby, the regressive tissue changes in resected tumor
observed after neoadjuvant therapy can range from
complete regression to varying amounts of a vital
residual tumor. In addition, it has been suggested that
the assessment of the tumor metabolic activity using
18-fluorodeoxyglucose-PET ([18F]FDG-PET) may help
to further improve risk stratification of patients [12]. How-
ever, the use of single determined parameters such as
tumor glucose uptake or tumor size can be limited in their
accuracy for patient response evaluation [13]. To date, no
study has addressed the potential of classifiers based on
metabolites and their spatial distribution within the tumor
to distinguish patients who would benefit from neoadju-
vant EAC treatment from those who would not. Spatial
metabolomics has already shown promise as a tool to gain
new insights into neoplastic progression to EAC [14], for
the assessment of surgical resection margins [15], or for
investigating tumor heterogeneity [16].

In the present study, we investigated whether spatial
metabolomics analysis could improve the assessment of
treatment response compared with the histopathological
TRG. High mass resolution matrix-assisted laser desorp-
tion/ionization Fourier-transform ion cyclotron resonance
imaging mass spectrometry (MALDI FTICR IMS) was
used to spatially detect metabolites within tissue sections
with high sensitivity and specificity. The metabolite fea-
tures in tumor and stroma tissue compartments were sep-
arately investigated with respect to their relevance for
therapy response evaluation of EAC patients and used to
train random forest classifiers. In univariate and multivar-
iate survival analyses, we evaluated the metabolic-based
stratifications with regard to their prognostic power in
comparison to established clinicopathological parameters.
In addition, the classifier was confirmed to be specific for
neoadjuvant treatment using an independent cohort of pri-
mary resected EACs as a reference.

Materials and methods

Ethics and patient sample size
This study was conducted on two retrospective patient
cohorts of neoadjuvant-treated and primary resected
EAC cases collected between 1990 and 2011 at the

Institutes of Pathology of the University of Bern
(Switzerland) and the Technische Universität München
(Germany). Tissue samples of these cohorts had been
processed into formalin-fixed and paraffin-embedded
(FFPE) tissue microarrays (TMAs) as described previ-
ously [17]. In brief, tissue cores were annotated by a
pathologist (RL) on FFPE tissue blocks/slides, punched
out, and transferred into a TMA format as follows: three
cores of the tumor bed from each neoadjuvant-treated
and six cores from each primary surgical resected case.
Within the neoadjuvant-treated EACs (n = 144),
59 patients had been treated with platinum/5-fluorouracil
(5-FU) and 85 patients with 45 Gy + platinum/5-FU,
followed by esophagectomy after completion of the
neoadjuvant therapy. The second cohort comprised
patients (n = 64) who had undergone primary surgical
resection without neoadjuvant chemotherapy or radia-
tion. To take into account that the neoadjuvant-treated
EACs were UICC-classified as pT3 and pT4, we
selected only these categories from the primary resected
EAC cohort for reasons of comparability. Clinicopatho-
logical characteristics of the patients, such as (y)pTNM
categories and resection status, were determined accord-
ing to the eighth edition of the UICC/AJCC TNM classi-
fication [18]. The resected specimens of neoadjuvant-
treated EACs were classified according to Becker TRG
[5,7]. The basis was the complete histologic examination
of the entire tumor bed. To calculate the specificity, sen-
sitivity, and accuracy of TRG, responders were classi-
fied as TRG1a, 1b and non-responders as TRG2,
3. The classification into these groups has previously
been demonstrated to be prognostically indicative [19].
Overall survival (OS) was calculated from the day of
surgery. The usage of FFPE-embedded tumor material
for research was approved by the local ethics commis-
sions (Kantonale Ethikkommission Bern, Switzerland,
200/14 and Medizinische Fakultät of the Technische
Universität München, Germany, 2056/08).

Tissue processing and Fourier-transform ion
cyclotron resonance (FTICR) MALDI IMS analysis
Tissue preparation steps for the MALDI IMS analysis
were performed as previously described [20,21]. In
brief, FFPE TMAs were sectioned at a thickness of
4 μm (Microm, HM340E; Thermo Fisher Scientific,
Waltham, MA, USA) and mounted onto indium tin
oxide (ITO)-coated glass slides (Bruker Daltonik, Bre-
men, Germany) pretreated with 1:1 poly-L-lysine
(Sigma-Aldrich, Munich, Germany) and 0.1% Nonidet
P-40 (Sigma-Aldrich). Prior to MALDI matrix applica-
tion, FFPE sections were adhered by incubating the slide
for 1 h at 70 �C, followed by deparaffinization in xylene
(Carl Roth, Karlsruhe, Germany) (2 � 8 min), and air
drying. Spray coating of tissue sections with
9-aminoacridine (9-AA) hydrochloride monohydrate
(Sigma-Aldrich) matrix at 10 mg/ml in 70% methanol
(Sigma-Aldrich) was conducted using a SunCollect™
sprayer (Sunchrom, Friedrichsdorf, Germany). The
matrix was applied in eight passes (ascending flow rates
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of 10, 20, 30 μl/min for layers 1–3, and of 40 μl/min for
layers 4–8), using a line distance of 2 mm and a spray
velocity of 900 mm/min.
Metabolites were detected in negative-ion mode on a

7 T Solarix XRFT-ICRmass spectrometer (Bruker Dalto-
nik) equipped with a dual ESI-MALDI source and a
Smartbeam-II Nd:YAG (355 nm) laser. Data acquisition
parameters were specified in ftmsControl software 2.2
and flexImaging (v. 5.0) (Bruker Daltonik). Mass spectra
were acquired coveringm/z 75–1100. The instrument was
calibrated externally with L-arginine (Sigma-Aldrich) in
the ESI mode and internally using the 9-AA matrix ion
signal (m/z 193.0771) as lock mass. The laser operated
at a frequency of 1000 Hz using 100 laser shots per pixel
with a pixel resolution of 60 μm.

Immunophenotype-guided imaging mass
spectrometry
The SPACiAL workflow was used as previously
described to automatically annotate tumor and stroma
regions in EAC tissues [16]. In brief, after MALDI
IMS analysis, the 9-AA matrix was removed from the
TMA tissue sections using 70% ethanol (Carl Roth) for
5 min, followed by immunohistochemical staining of
the very same tissue sections. TMAs were stained by
immunofluorescence using antibodies specific for Pan-
Cytokeratin cocktail Plus [AE1/AE3+8/18], 1:75 (Cat#
CM162c; Biocare Medical, Pacheco, CA, USA) and
vimentin, 1:500 (Cat# ab92547; Abcam, Cambridge,
UK). Signal detection was conducted using fluores-
cence-labeled secondary antibodies purchased from
Thermo Fisher Scientific, including anti-rabbit IgG
DyLight 633, 1:100 (Cat# 35563) and anti-mouse IgG
Alexa Fluor 750 antibody, 1:200 (Cat# A-21037).
Nuclei were identified using Hoechst 33342 (Thermo
Fisher Scientific). Regions positive for pan-cytokeratin
were defined as tumor. Regions negative for pan-
cytokeratin but positive for vimentin were defined as
stroma. In total, tumor cells in 144 patient samples and
stromal compartments in 140 samples could be anno-
tated in the neoadjuvant EAC cohort using these selec-
tion criteria. Fluorescence-stained TMAs were imaged
automatically using an AxioScan.Z1 digital slide scan-
ner (Carl Zeiss, Göttingen, Germany) equipped with a
20� magnification objective, and visualized using
ZEN 2.3 blue edition software (Carl Zeiss). Images were
exported as TIF files.

Peak picking and metabolite annotation
MALDI IMS data were loaded into SCiLS Lab
(v. 2020b Pro, Bruker Daltonik). The mass spectra were
root-mean-square normalized, and 6945 picked peaks
were exported as imzML files for further data processing
and subsequent bioinformatics data analysis using an in-
house Python 3 pipeline as described previously [16].
Metabolites were annotated based on accurate mass
matching (≤ 10 ppm) of the spectrometric m/z values to
HMDB and KEGG databases allowing M � H,

M � H2O, M + K � 2H, M + Na � 2H, and M + Cl
as negative adducts.

General statistical analysis
Statistical analyses were performed in R [22] and Python
3.7 [23]. Comparisons between groups and categories
were performed using the rank-based Mann–Whitney
U-test and Spearman rank-order correlation for continu-
ous data. The resulting P values were adjusted with the
Benjamini–Hochberg correction (Python 3.7, StatsMo-
dels 0.9.0). Univariate analysis for overall survival
encompassed Kaplan–Meier analyses and log-rank tests
(R, ‘survival’ package; Python 3.7, lifelines 0.24.8). The
intensity threshold dividing high and low abundances
was determined for each molecular compound by calcu-
lating the log-rank test of each possible split and ensur-
ing robust results by verifying similar results for
nearby intensity splits. Unless stated otherwise,
P values below 0.05 were considered significant for all
statistical tests.

Random forest classifier
Prior to the training of the random forest classifier, fea-
tures were filtered based on the significance level that
they reached in the log-rank test (p < 0.01). The feature
selection step is a common procedure to identify relevant
candidate metabolites from mass spectrometric data for
the learning task, minimizing performance losses of the
learning algorithm used [24].

A leave-one-out cross-validation approach was used
to predict short- or long-term survival patients (Python
3.7, scikit-learn 0.21.3). The training data sets comprise
patients from the short-survival group, defined as uncen-
sored patients who survived for less than 48 months after
surgery (n = 31), and the long-term survivors, compris-
ing all patients who survived for longer than 48 months
(n = 47). For the leave-one-out cross-validation
approach, 200 random forest classifiers were trained
per patient and the final prediction was chosen based
on a majority vote for each of the 144 patients. The per-
formance of the classifier was evaluated by calculating
the accuracy, as well as the sensitivity and specificity.
The sensitivity (true positive rate) measures the classi-
fier’s ability to correctly classify positive samples. It is
calculated as the proportion of positive samples that are
correctly identified. The specificity (true negative
rate) measures the classifier’s ability to correctly classify
negative samples. It is calculated as the proportion of
negative samples that are correctly identified. The
importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature
(Gini importance).

Cox proportional hazards regression analysis
Multivariate survival analyses were performed using
Cox proportional hazards regression (Python 3.7, life-
lines 0.24.8). For the classifier comparison to primary
resected surgical EAC tissues, the Cox proportional
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hazard model was calculated for individual metabolites
using the parameters defined for the neoadjuvant classi-
fier. Hence, the previously calculated optimal intensity
thresholds separating short- and long-term survivors
were applied on primary resected tissues.

Spatial correlation metabolic networks
The spatially resolved abundances of all metabolites
were used to calculate their spatial correlation using the
pairwise Spearman rank-order correlation (Python 3.7,
SciPy 1.2.0). The resulting P values were adjusted with
the Benjamini–Hochberg correction (Python 3.7, Stats-
Models 0.9.0) and filtered (p < 0.05). The resulting cor-
relation coefficients were visualized in metabolic
networks using Cytoscape (v. 3.8.0). All networks were
visualized using the edge-weighted spring embedded
layout and the absolute value of the correlation
coefficient.

Results

Histopathological tumor regression
and clinicopathological characteristics
The histopathological classification of the neoadjuvant-
treated patient cohort by TRG according to Becker was
as follows: 29 patient-resected specimens showed a
complete tumor regression (TRG1a: 20.2%), 39 a subto-
tal tumor regression (TRG1b: 27.1%), 28 a partial
response (TRG2: 19.4%), and 48 patients were without

evidence of a treatment effect (TRG3: 33.3%). The clin-
icopathological characteristics are detailed in supple-
mentary material, Table S1. In univariate analysis,
TRG (p = 0.009) was found to be significantly indica-
tive for the overall survival (OS) of neoadjuvant-treated
patients. Other clinicopathological variables including
ypT (p < 0.0001), ypN (p = 0.01), the presence of dis-
tant metastasis (p = 0.0005), and incomplete re-
section status (p < 0.0001) were found to have a
negative impact on survival. The Kaplan–Meier survival
curves of TRG and lymph node metastasis are shown in
supplementary material, Figure S1A,B.

Spatial metabolomics improves the assessment
of treatment response compared with tumor
regression grading
We used our recently published SPACiAL metabolo-
mics approach of immunophenotype-guided imaging
mass spectrometry to identify molecular features with
potential prognostic value (Figure 1) [16]. Patient tissue
sections were automatically segmented into tumor and
stromal tissue compartments by multiplex immunohisto-
chemistry, resulting in 10 775 spectra for the tumor class
and 11 240 spectra for the stroma class. Approximately
7000 distinct molecular features were detected in tissues
of all patient samples. In total, 495 metabolites were
found to be predictors of OS according to annotated
tumor cells, and 868 hits were found for the stroma
region. There was an overlap of 109 metabolites found
in both tissue components, demonstrating that automatic
separation of regions of interest led to a distinguishable

Figure 1. Multiplex immunohistochemistry-guided imaging mass spectrometry for metabolic analysis of tumor and tumor stroma.
(A) Representative of all three channels of a fluorescence-stained tissue core. White represents the tumor marker (pan-cytokeratin), red
the stromal marker (vimentin), and blue the Hoechst channel highlighting the cell nuclei. (B, C) Single channel images of pan-cytokeratin
and vimentin used to annotate and separate tumor and stroma cells by fluorescence imaging. (D) Schematic representation of the spatial
correlation image analysis (SPACiAL) for extracting mass spectra from regions of interest. (E) Juxtaposition of the overall mean spectrum from
tumor (white) and stroma (red) regions, represented as mean intensity and intensity difference. Scale bar: 100 μm.
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Figure 2. Random forest (RF) classifiers based on metabolites from tumor and stroma tissue components result in individual risk stratification
of patients after neoadjuvant treatment. Forest plots of log2 hazard ratios with 95% confidence intervals obtained for the best performing
classification to separate patients into metabolic responding groups for (A) tumor and (B) tumor stroma. The plots are ordered according to
the importance of individual metabolite features. (C, D) Kaplan–Meier survival analyses, as a function of the metabolic subtype of the tumor
and stroma classifiers, were used to assess differences in patient overall survival. (E) In comparison, the histopathological tumor regression
grading and survival of patients stratified according to responders (TRG1a-1b) and non-responders (TRG2-3). (F, G) Diagnostic performance
summarizing the sensitivity, specificity, and accuracy of the tumor and stroma classifiers. (H) Diagnostic performance of TRG. P values less
than 0.05 were considered significant. 3HIAc, 3-hydroxyisovalerylcarnitine; CMP-neu5GC, CMP-N-glycoloylneuraminate; C42-PGP,
C42-phosphatidylglycerolphosphate; dADP, deoxyadenosine diphosphate; GDP-glucose, guanosine diphosphate glucose; GlcNAcP, N-ace-
tyl-glucosamine phosphate; (Iso)leucyl-Ile, (iso)leucyl-(iso)leucine; Leu-Leu-Leu, trileucine; TG, triglyceride.
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number of hits in the molecular output between tumor
and stroma. The random forest classifier was then trained
separately on metabolite features within tumor and
stroma regions. The classifiers with the top 50 metabo-
lites ranked by feature importance and log2 hazard ratio
are presented for tumor in Figure 2A and for stroma in
Figure 2B. The top feature (m/z 249.0331) in the tumor
classifier is 33% more important than the top feature
(m/z 238.7930) in the stroma classifier. Among the top
50 metabolites in the tumor classifier, 18 metabolites
were significantly different between chemotherapy and
chemoradiotherapy. In univariate analysis, the metabolic
classifiers exhibit significant prognostic power for tumor
(p = 10�8) and for stroma (p = 7 � 10�6) (Figure 2C,
D). In addition, the significance values of individual
metabolites were compared with the performance of
the classifiers (supplementary material, Figure S2). The
survival classifier achieved an accuracy of 89.7% for

tumor metabolites and 82.7% for stroma metabolites.
The tumor classifier achieved a sensitivity of 89.4% for
short survival and 90.3% for long survival and a specific-
ity of 84.9% and 93.3%, respectively (Figure 2F). For
the stroma model, the sensitivity was 86.7%with a spec-
ificity of 79.3% for patients with short-term survival and
the sensitivity was 76.7% with a specificity of 84.8% for
patients with long-term survival (Figure 2G). Testing a
classification approach that includes metabolites from
both tissue compartments, tumor and stroma, did not fur-
ther improve patient stratification compared with the
tumor-only classifier (supplementary material,
Figure S3). To evaluate the metabolic classifiers, we
used histopathological TRG as a benchmark. In univari-
ate analysis, the Becker TRGswas related to OS (supple-
mentary material, Figure S1A); this becomes even more
obvious when TRGs are classified into responders
(TRG1a–1b) and non-responders (TRG2–3)
(p = 0.006) (Figure 2E). According to this classifica-
tion, TRG achieves an accuracy of 70.5% in survival
prognosis (Figure 2H). The sensitivity of TRG classifi-
cation ranges from 69.6% to 71.9% and the specificity
from 62.2% to 78.1% for patients with short-term and
long-term survival, respectively. Compared with TRG,
the tumor classifier thus achieves a 15–20% higher sen-
sitivity, specificity, and accuracy (Figure 2F,H). In mul-
tivariate analysis, the classifier for tumor was the only
significant factor for OS (HR 3.38, 95% CI 1.40–8.12,
p = 0.007) in comparison to TRG (HR 1.01, 95% CI
0.67–1.53, p = 0.968), ypT (HR 1.19, 95% CI 0.83–
1.70, p = 0.351), lymph node metastasis (HR 1.11,

Table 1. Multivariate analyses incorporating clinico-morphological
parameters into the model demonstrated that the random forest
(RF) tumor classifier is a significantly independent factor to predict
survival.
Covariate HR 95% CI P value

RF tumor 3.38 1.40–8.12 0.007
RF stroma 1.86 0.81–4.25 0.143
TRG 1.01 0.67–1.53 0.968
ypT 1.19 0.83–1.70 0.351
ypN 1.11 0.81–1.52 0.521
Distant metastases 1.47 0.69–3.13 0.318

The value in bold is statistically significant.

Figure 3. Random forest classifiers applied to subgroups of the TRGs enable further patient stratification. (A) Kaplan–Meier analyses signif-
icantly distinguished long-term from short-term survivors within TRG1b and TRG3, while TRG2 could not be stratified significantly. Patients
with a pathological complete response (TRG1a) were excluded from sub-stratification due to the absence of tumor cells. (B) Stroma classi-
fication resulted in a significant stratification of patient survival within TRG1b and TRG3; classification of TRG1a and TRG2 was not signif-
icant. P values less than 0.05 were considered significant.
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95% CI 0.81–1.52, p = 0.521), and distant metastases
(HR 1.47, 95% CI 0.69–3.13, p = 0.318) as covariables,
and was even the stronger factor compared with the stro-
mal classifier (HR 1.86; 95% CI 0.81–4.25, p = 0.143)
(Table 1).

Metabolic classifiers of tumor and stroma are even
able to stratify categories of TRG
Next, we tested the impact of the tumor and stroma clas-
sifiers on patient outcome in relation to the histological
response of TRG. Using Kaplan–Meier survival esti-
mates, the tumor random forest classifier was able to fur-
ther stratify categories of TRG1b (p = 0.02) and TRG3
(p < 0.001), while TRG2 was not statistically significant
(p = 0.24) (Figure 3A). Patients with a pathological
complete response (TRG1a) were excluded from sub-
stratification with the tumor classifier; though stromal
changes may occur, tumor cells are no longer present

in these cases. Applying the stroma classifier did provide
significant differences for OS in TRG1b (p = 0.03) and
TRG3 (p = 0.02), while TRG1a (p = 0.11) and TRG2
(p = 0.21) were not statistically significant (Figure 3B).
This highlights that the metabolic constitution of tumor
and stroma has a stronger impact on the treatment
response and survival prognosis than the quantity of
tumor cells determined by TRG. In addition, the presence
of lymph node metastasis is an important prognostic fac-
tor related to patient outcome. Therefore, we tested the
classifiers’ independence with regard to the level of nodal
metastasis. The tumor classifier could be used to signifi-
cantly stratify lymph node status ypN0 (p < 0.0001) and
ypN1 (p < 0.001), while ypN2 and ypN3 were not statis-
tically significant (supplementary material, Figure S4A).
By using the stroma classifier, a significant difference
could be shown for ypN0 (p = 0.02) and ypN1
(p < 0.001) but not for ypN2 (p = 0.61) (supplementary
material, Figure S4B).

Figure 4. Forest plots of log2 hazard ratios with 95% confidence intervals comparing metabolite levels between neoadjuvant-treated and
primary resected EACs. The predictive power of the metabolic features was compared between (A) neoadjuvant and (B) primary resected EACs
of patients who had not undergone neoadjuvant treatment. The Cox proportional hazard model was calculated for the top 50 ranked metab-
olite features on primary EACs. Only two metabolites were significant in primary EACs (highlighted in blue), indicating that most of the met-
abolic features of the neoadjuvant EAC classifier are related to treatment.
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Figure 5. Spatial correlation network of metabolites distinguishing between good and poor survival groups in the tumor response evaluation
model. Pixel-wise spatial correlations within and between metabolites were calculated and filtered (p < 0.05). Node color in the network
indicates whether individual metabolites are more abundant in the long-term (green) or short-term survivor (magenta) group. The nodes cor-
relate in size with the feature importance of the classified metabolites. Edges represent positive (blue) and negative (red) spatial correlations
between metabolites. Representative images of metabolites from the network are shown with Kaplan–Meier survival analyses for (A) GDP-
glucose, (B) dADP, (C) nicotinate ribonucleotide, and (D) N-acetyl-glucosamine phosphate. Ion distribution maps reveal specific localization
of the metabolite markers in tumor cell regions (white); the corresponding H&E stains of the very same patient tissue core are shown to the
right. Patient tissue cores were selected representatively according to their prognostic risk for lowmass intensity (image with violet border) or
high mass intensity (image with red border). Scale bar: 100 μm. dADP, deoxyadenosine diphosphate; dGTP, deoxyguanosine triphosphate;
dIDP, deoxyinosine diphosphate; GDP, guanosine diphosphate; GDP-glucose, guanosine diphosphate glucose; Leu-Leu-Leu, trileucine;
LysoPA, lysophosphatidic acid; LysoPC, lysophosphatidylcholine; PE, phosphatidylethanolamine; PGP, phosphatidylglycerophosphate; PI,
phosphatidylinositol; TG, triglyceride; Val-Val-Val, trivaline.
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Tumor metabolites are specific for neoadjuvant
therapy
In order to validate whether the classifier is specific in
terms of treatment, metabolite levels of the neoadjuvant
EACs were compared with the levels in primary resected
EACs of equivalent stage (Figure 4). We focused on the
tumor classifier, due to its stronger effects in patient
stratification. In Figure 4B, the calculated hazard ratios
of the top 50 stratifying metabolites defined by the
neoadjuvant classifier are shown for the primary resected
treatment-naïve EAC cohort. There were substantial dif-
ferences between both cohorts. Only two of the
50 metabolite features, N-acetyl-glucosamine phosphate
andm/z 462.9285, were also significant in primary EAC.
The effect of m/z 462.9285 changed from good in the
neoadjuvant EACs to poor in the primary EACs. Pre-
sumably these markers are nonspecific in terms of
neoadjuvant treatment, rather than general prognostic
markers in EAC biology. This indicates that changes in
metabolite levels occur during neoadjuvant therapy.

Spatial correlations reveal potential functional
relationships of metabolites associated with therapy
response
To investigate the metabolic characteristics related to
treatment response, we performed a metabolic network
analysis evaluating the co-localization pattern of the
metabolites in the neoadjuvant tumor evaluation model.
The spatial correlation network illustrated in Figure 5
reveals the correlation of functionally interconnected
metabolites. Five dense clusters within the networks
indicate a stronger spatial correlation of the correspond-
ing metabolites and thus a higher dependency between
their amounts. Altered metabolism within the clusters
particularly includes changes in amino acids and ana-
logues (21.5%), lipid biogenesis (19.8%), nucleosides
and nucleotides (6.6%), and carbohydrates and carbohy-
drate conjugates (4.1%). In the network, the metabolite
importance in the classifier is reflected by node size,
while the node color indicates whether individual metab-
olites are more abundant in the long-term or short-term
survivor group. Accordingly, GDP-glucose is more
important than GDP, and they correlate negatively
(rs = �0.0177). High mass intensity of the metabolite
in tumor cells is significantly associated with long OS
(p = 0.005), which is also shown in representative
images of GDP-glucose distribution within tissues
(Figure 5A). Likewise, the glycerophospholipid
C42-PGP showed good prognosis if the metabolite was
abundantly detected in the tumor (p = 0.0082). Con-
versely, the nucleotide dADP was associated at low sig-
nal intensity with good prognosis and at high intensity
with poor prognosis (p = 0.0004) (Figure 5B). With a
high feature weighting in the classifier, dADP correlates
to N-acetyl-L-glutamyl 5-phosphate (rs = 0.528), nicoti-
nate ribonucleotide (rs = 0.447), dIDP (rs = 0.430),
3-hydroxyisovalerylcarnitine (rs = 0.337), and thiamine
triphosphate (rs = �0.312), while correlations to

dolichyl b-D-glucosyl phosphate (rs = 0.256), dGTP
(rs = 0.213), histidinyl-threonine (rs = 0.210), and
arginyl-asparagine (rs = 0.208) were found to be less
pronounced. In addition, many dipeptide and tripeptide
profiles, such as trileucine, (iso)leucyl-(iso)leucine, or
N-acetylaspartylglutamylglutamate, contributed to the
separation of the long and short survival groups.
Besides, nicotinate ribonucleotide, which along with
dADP correlates with ten other metabolites, correlates
with good patient prognosis when the mass signal
intensity is low (p = 0.0039) (Figure 5C). A small clus-
ter was formed by N-acetyl-glucosamine phosphate
(p = 0.003) (Figure 5D) and C41-triglyceride (rs =
0.216), chondroitin (rs = 0.219), and 5,10-methylene-
tetrahydrofolate (rs = 0.219).

Discussion

In the present study, we used tumor metabolism to assess
the treatment response of patients with locally advanced
adenocarcinoma of the esophagus. We found that in
neoadjuvant-treated EACs, the metabolic response is
the stronger arbiter of patient outcome when compared
with the histopathological TRG.

The metabolic classifiers were primarily compared
with the pathological regression according to the Becker
TRG, which takes the quantity of tumor cells into account
for classification. For the patient stratification into short-
and long-term survival groups, metabolic response based
on changes in tumor cells exhibited superior results in
accuracy, sensitivity, and specificity compared with
TRG (Figure 2F,H). This result suggests that not the
tumor cell count but rather changes in the tumor’s meta-
bolic constitution determine the response of
neoadjuvant-treated EAC patients. However, some
effects could also be derived from the metabolic state of
tumor stroma, although these effects were more pro-
nounced in tumor, as shown by multivariate analysis.
The finding that the metabolism of both – the tumor and
stromal tissue compartments – provides valuable informa-
tion about treatment response is consistent with the con-
cepts of regression grading: the TRGs that primarily
refer to residual tumor cells as a reference for response
evaluation to therapy, such as the Becker system [5,25],
and TRGs that additionally incorporate the extracellular
matrix (e.g. the Mandard or Dworak systems) [26–28].
It should be noted that the biochemical characteristics of
tumor and stroma can be assessed by spatial metabolo-
mics analysis; however, the qualitative assessment of the
tumor stroma in particular remains limited by histomor-
phological TRG. Importantly, using the metabolic classi-
fiers, it was even possible to further stratify patients into
different prognostic groups that could not be stratified
by TRG. These extended risk stratification in the individ-
ual categories of TRG, and nodal status could be achieved
globally for tumor and stroma (Figure 3 and supplemen-
tary material, Figure S4), demonstrating the effectiveness
of the metabolic response evaluation.
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Aparticular feature of our study is that themetabolites of
the classifier were tested to be specific for treatment by
comparing metabolite levels to a primary resected and
treatment-naïve EAC cohort. The majority of the classi-
fier’s metabolites in tumor changed significantly in their
abundance under therapy. This is consistent with previous
studies reporting differences in the expression of molecular
and diagnostic markers after neoadjuvant therapy [29,30].
Consequently, the identified metabolites strongly deter-
mine patient outcome in terms of treatment, while the clas-
sifier’s features were mainly nonspecific for patients who
underwent primary surgery (Figure 4). These results are
remarkable considering that the alternative molecular anal-
ysis from small tumor tissue cores of TMAs led to these
superior results in patient classification.

To gain insight into the molecules’ processes and
events that play a role in tumor cells, and which are
related to patients’ outcome, we performed a metabolic
network analysis determining the spatial correlation
between metabolites. Altered metabolites between the
two survival groups comprise different biomolecular
compounds such as amino acids. These are involved in
various pathways contributing to cancer cell growth
and survival [31], but not much is known about the func-
tional properties of the di- and tri-peptides that had an
impact on patient survival in our study. Di- and tri-
peptides have been suggested as potential disease bio-
markers for cancer and have become increasingly the
subject of metabolomic studies [32,33]. For instance,
the tripeptide N-acetylaspartylglutamylglutamate is pro-
duced together with the dipeptide N-acetyl-aspartyl-
glutamate in cells by the same synthetase [34]. The latter
metabolite was unveiled as a glutamate reservoir in
diverse cancers [35], while the precise function of N-
acetylaspartylglutamylglutamate remains to be clarified.
Most cancer cells, including esophageal cancer cells
but also platinum-treated lung cancer cells, show a
strong dependence on an exogenous supply of gluta-
mine, a precursor of glutamate, and cells respond
very sensitively to glutamine deprivation [36,37]. Thus,
N-acetylaspartylglutamylglutamate might be able to
store glutamate for use when its production from other
sources is limited. Alongside their function as substrates
for protein synthesis, amino acids also play a role in
energy generation, maintaining cellular redox homoeos-
tasis and driving the synthesis of nucleic acid.

Major changes in nucleoside and nucleotide metabo-
lism have been linked to patient survival. Typically, can-
cer cells have deactivated crucial DNA damage response
signaling routes and often rewire their metabolism and
energy production networks [38,39]. Platinum-based
chemotherapies and 5-FU are routinely used for neoad-
juvant treatment and cause significant changes in DNA
metabolism, either by interference or by chemical reac-
tion with DNA [40,41]. Transcriptomics and metabolo-
mics studies using different tumor and non-tumor cell
lines uncovered a strong correlation between platinum
sensitivity and pathways involved in nucleotide metabo-
lism by salvage or de novo synthesis [42,43]. The changes
in metabolism, exemplified for the nucleotides dADP,

GDP-glucose, and nicotinate ribonucleotide (Figure 5),
can be interpreted either as the resistance of chemothera-
peutic agents or as an alteration in metabolism occurring
in response to DNA repair. Moreover, we found the
metabolite 5,10-methylenetetrahydrofolate to be prognos-
tic for EAC. It has been shown that there is a correlation
between the activity of methylenetetrahydrofolate reduc-
tase (MTHFR), an inhibitor of thymidylate synthase,
and the response of tumor cells to the chemotherapeutic
agent 5-FU [44]. It has been suggested that intracellular
concentrations of 5,10-methylenetetrahydrofolate can
increase the cytotoxic effect of 5-FU by the formation of
a ternary complex that inhibits the activity of thymidylate
synthase and suppresses DNA synthesis. An improved
response to 5-FU-based chemotherapy was observed in
patients with advanced colorectal cancer bearing a poly-
morphic MTHFR allele [45], while in contrast, low
MTHFR expression levels in EACs showed a poor
response to treatment [46].
Our classifier is a starting point that warrants further

validation in other independent patient cohorts.
Importantly, the patient tissue specimens investigated
in this study were routine pathological FFPE re-
section specimens processed for diagnostic purposes
to macroscopically and histologically assess the effects
of neoadjuvant therapy. The integrity of the tissue is
maintained during metabolic measurement, allowing
further development of the assay in combination with
histopathology. The technical application of MALDI
IMS is already available in an increasing number of
pathological institutions. It should be noted that before
the method can be applied in laboratories in a clinical
setting, consensus is needed in the standardization of
procedures and protocols, which is currently the subject
of ongoing research [47–49]. In our analyses, we
included patients treated with neoadjuvant chemo-
therapy and chemoradiotherapy. It is conceivable that
patient stratification according to treatment regimen
could further improve classification. In conclusion,
we have demonstrated that our metabolite-based classi-
fier identified from EAC tumor samples of patients trea-
ted with neoadjuvant chemoradiotherapy provides
valuable information on treatment response and
patients’ survival independently of TRG and lymph
node status. Tumor response evaluation by TRG is com-
monly used to determine the treatment success of neoadju-
vant therapy in EAC patients. We have demonstrated that
our metabolic classifier can likewise be used to measure
tumor response and may even outperform conventional
histopathologic estimation of tumor regression with regard
to prognostic stratification of patients.
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