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Serrated lesions of the colorectum are the precursors of 15–30% of colorectal cancers
(CRCs). These lesions have a peculiar morphological appearance, and they are more
difficult to detect than conventional adenomatous polyps. In this study, we sought to
define the genomic landscape of these lesions using high-depth targeted sequencing.
Eight sessile serrated lesions without dysplasia (SSL), three sessile serrated lesions with
dysplasia (SSL/D), two traditional serrated adenomas (TSA), and three tubular adenomas
(TA) were retrieved from the files of the Institute of Pathology of the University Hospital
Basel and from the GILAB AG, Allschwil, Switzerland. Samples were microdissected
together with the matched normal counterpart, and DNA was extracted for library
preparation. Library preparation was performed using the Oncomine Comprehensive
Assay targeting 161 common cancer driver genes. Somatic genetic alterations were
defined using state-of-the-art bioinformatic analysis. Most SSLs, as well as all SSL/Ds and
TSAs, showed the classical BRAF p.V600E mutation. The BRAF-mutant TSAs showed
additional alterations in CTNNB1, NF1, TP53, NRAS, PIK3CA, while TA showed a
consistently different profile, with mutations in ARID1A (two cases), SMAD4, CDK12,
ERBB3, and KRAS. In conclusion, our results provide evidence that SSL/D and TSA are
similar in somatic mutations with the BRAF hotspot somatic mutation as a major driver of
the disease. On the other hand, TAs show a different constellation of somatic mutations
such as ARID1A loss of function.
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INTRODUCTION
Colorectal cancer (CRC) is one of the most frequent tumors
worldwide (1). The development of CRC represents a classical
example of carcinogenesis, with the adenoma-carcinoma sequence
being a well-established model for several epithelial tumors (2).
Multiple (epi)genetic alterations in the epithelial cells of the
intestine lead to the development first of an adenoma, that in a
minority of cases may transform into CRC (2). In the last 20 years,
however, the landscape of colorectal carcinogenesis has been
partially modified by the explosion of molecular biology
techniques. CRC is nowadays seen as a heterogeneous disease
(3, 4). While two-thirds of CRCs arise through the “classical”
chromosomal instability pathway, 15–30% probably arise through
the “serrated neoplasia pathway” (5–7). The molecular events
underlying the development of serrated neoplasia have been
partially unraveled. In general, CRC can be roughly classified
according to the following criteria (1): APC-status (mutated or
wild-type) (2); microsatellite status (stable or unstable, MSS or
MSI) (3); KRAS status (mutated or wild-type) (4); BRAF status
(mutated or wild-type) (5); methylation status (CpG Islands
methylation phenotype high or low, CIMP-H or CIMP-L) (6, 8,
9). The most interesting and important topic is that the molecular
and morphological heterogeneity of CRC corresponds to clinical
heterogeneity (e.g., localization, prognosis, response to therapy).
This has led to dramatic changes in the surveillance, prevention,
and treatment of CRC (3).

The morphological features of the serrated pathway are the
so-called serrated polyps. Currently, the WHO classification
recognizes three major categories of serrated lesions, namely,
the hyperplastic polyp (HP), the sessile serrated lesion (SSL, with
or without dysplasia), and the traditional serrated adenoma
(TSA), based mainly on the work of Torlakovic and Snover (9,
10). This classification is based on the distinct histological and
cytological features such as morphology and the “serrated” (i.e.,
resembling “sawtooth”) architecture of colon crypts, and the
position and the extent of the proliferative zone in the crypts (7,
11, 12). While the preneoplastic potential of HPs is still debated,
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“true” preneoplastic lesions are SSL and TSA. Because SSLss have
a higher incidence, they can be viewed as the most important
precursors of malignancy in the serrated pathway (12).

The morphology of the serrated pathway seems to match, at
least partially, specific driver molecular alterations. The most
frequent is the V600E mutation in the BRAF proto-oncogene
(13, 14). Additional epigenetic changes as observed in the CIMP-
H phenotype, namely, hypermethylation of theMLH1 gene, may
lead to microsatellite instability (7, 13, 14) and subsequent
development of CRC. However, no complete correspondence
exists between the CIMP-H phenotype and the serrated pathway
(5). Additionally, the study by the Cancer Genome Atlas (TCGA)
has identified six pathways that are altered in CRC (WNT, TGF-
beta, RTK/RAS, PI3K, TP53, MS) (15), and more recently a
molecular classification distinguishing four subgroups has been
suggested (16).

In this study, we analyzed a series of histologically well-
characterized precursor lesions of CRC by NGS to characterize
the genetic landscape of serrated lesions and to compare it with
tubular adenomas.
MATERIALS AND METHODS

Patients and Tissue Samples
Eight sessile serrated lesions (SSL), three sessile serrated lesions
with dysplasia (SSL/D), and two traditional serrated adenomas
(TSA) were retrieved from the files of the Institute of Pathology
of the University Hospital Basel, Switzerland, and from the
GILAB AG, Allschwil, Switzerland, between January 1 and
June 30, 2016. For all selected samples, a matched normal
mucosa was available and was used as germline control. The
histological classification for the samples is summarized in
Table 1. Three tubular adenomas (TA) were used as control.
All the slides were reviewed by an experienced pathologist (LT)
to confirm the histological diagnosis, using the current WHO
classification (9). The study has been approved by the
Institutional Review Board of the Institute of Pathology,
TABLE 1 | Histologic and immunohistochemical characterization (mismatch repair proteins) of the samples included in the study.

Case ID Diagnosis MLH1 MSH2 MSH6 PMS2

SSA01T SSL w/o dysplasia Pos Pos Pos Pos
SSA02T SSL w/o dysplasia Pos Pos Pos Pos
SSA03T TSA with serrated dysplasia, low-grade Pos Pos Pos Pos
SSA04T TSA with serrated dysplasia, low-grade Pos Pos Pos Pos
SSA05T SSL with adenomatous dysplasia, low-grade Neg Pos Pos Pos
SSA06T SSL with adenomatous dysplasia, low-grade Pos Pos Pos Pos
SSA07T SSL w/o dysplasia Pos Pos Pos Pos
SSA08T SSL w/o dysplasia Pos Pos Pos Pos
SSA09T SSL w/o dysplasia Pos Pos Pos Pos
SSA10T SSL w/o dysplasia Pos Pos Pos Pos
SSA11T SSL w/o dysplasia Pos Pos Pos Pos
SSA12T SSL with adenomatous dysplasia, low-grade Pos Pos Pos Pos
SSA13T SSL w/o dysplasia Pos Pos Pos Pos
SSA14T TA, low-grade dysplasia Pos Pos Pos Pos
SSA15T TA, low-grade dysplasia Pos Pos Pos Pos
SSA16T TA, low-grade dysplasia Pos Pos Pos Pos
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University Hospital Basel, and the Ethics Committee of
Nordwest/Central Switzerland (EKNZ).

DNA Extraction and Microdissection
Eight-mm-thick sections from representative formalin-fixed
paraffin-embedded (FFPE) histological blocks for each lesion
and matched normal mucosa were stained with Nuclear Fast Red
in RNase-free conditions and subjected to microdissection with a
sterile needle under a stereomicroscope (Olympus) to ensure a
percentage of tumor cells >90%, as described previously (17).
DNA was extracted from the microdissected tissues using the
DNeasy Blood and Tissue Kit (Qiagen), according to the
manufacturer’s guidelines, and quantified using the Qubit
Fluorometer assay (Life Technologies). All samples yielded
DNA of sufficient quantity and quality for sequencing analysis.

Targeted Sequencing
Library preparation was performed using the Oncomine
Comprehensive Assay v3 (Thermo Fisher Scientific) using 20
ng DNA according to the manufacturer’s guidelines. This
multiplex-PCR based technique targets 161 common cancer
driver genes. Quantification and quality control were performed
with the Ion Library TaqMan Quantitation Kit (Thermo Fisher
Scientific). Pooled libraries diluted to 30 pM each were loaded on
Ion 530 Chip (Thermo Fisher Scientific) and processed in Ion
Chef Instrument (Thermo Fisher Scientific). Sequencing was
performed on the Ion S5 system (Thermo Fisher Scientific).

Mutation Analysis
Somatic mutation calling was performed using PipeIT (18),
which performs the initial variant calling step by Torrent
Variant Caller (TVC, v5.0.3, Thermo Fisher Scientific) using
low stringency variant calling parameters. PipeIT whitelists
hotspot variants (19, 20) then filters out variants covered by
fewer than 10 reads in either the tumor or the matched normal
sample, supported by fewer than eight reads or for which the
tumor variant allele frequency (VAF) was <10 times that of the
matched normal VAF. Whitelisted hotspot variants that did not
pass the above read count and/or VAF filters were manually
reviewed. All BRAF V600E mutations were confirmed to be
somatic by Sanger sequencing as previously described (21).

Immunohistochemistry
Immunohistochemical staining was performed as previously
described (22, 23). Briefly, 8 mm-thick sections were cut,
dehydrated, and processed on a Bond III (Leica Biosystems
Wetzlar, Germany). The ready-to-use (RTU) primary
antibodies were from Novocastra (Leica Biosystems, Wetzlar,
Germany), optimized for use on BOND III. The staining was
performed with the following antibodies:

MLH1 (clone ES 05): Epitope retrieval (ER) 1, pH 7.5/8, 30’
100°C; incubation time: 30’

MSH2 (clone 79H11): ER 2, pH9, 20’ 100°C; incubation time: 30’

MSH6 (clone EP 49): ER2, pH9, 20’ 100°C; incubation time: 30’

PMS2 (clone EP 51); ER2, pH9, 10’ 100°C; incubation time: 30’
Frontiers in Oncology | www.frontiersin.org 3
RESULTS

Mutational Analysis
We performed targeted sequencing of eight sessile serrated
lesions without dysplasia (SSL), three sessile serrated lesions
with dysplasia (SSL/D), two traditional serrated adenomas
(TSA, Figure 1), as well as three tubular adenomas (TA) as
control. Sequencing was performed at a mean depth of 670×
(range from 382× to 942×; Supplementary Table 1). On average,
SSLs harbored 1.75 mutations (range 1–4, n=8), SSL/Ds 2
mutations (range 2–2, n=3), TSAs 55 mutations (range 5–5,
n=2), and TAs 3 mutations (range 2–4, n=3) (Figure 2).
Annotation of the somatic mutations reveals that all but two
samples harbored hotspot alteration in cancer-related genes.

All SSL/D and TSAs showed the classical BRAF p.V600E
mutation, together with 75% (6/8) of SSLs. Of note, one of the
two BRAF-wildtype SSLs harbored a hotspot KRAS Q61K
mutation (Figure 2 and Supplementary Table 2). Additionally,
the BRAF-mutant TSAs showed additional alterations in
CTNNB1, NF1, TP53, NRAS, PIK3CA.

We further identified alterations involvingMLH1 andMSH6,
part of the “mismatch repair” machinery, in two SSLs. However,
these mutations were missense rather than truncating, and their
variant allele fractions were ~5%, suggesting they may not result
in mismatch repair deficiency. Indeed, immunohistochemistry of
MLH1, MSH2, MSH6, and PMS2 showed that all SSLs were
positive, indicating mismatch repair proficiency (Figure 1 and
Table 1). On the other hand, we identified one SSL/D (SSA005T)
that was MLH1-negative.

On the other hand, TAs showed a consistently different profile and
were all wild-type for BRAF (p = 0.02, Fisher’s exact test compared
to the serrated lesions). By contrast, TAs harbored mutations in
ARID1A (two cases), SMAD4, CDK12, ERBB3, and KRAS. The
complete list of mutations is shown in Supplementary Table 2.

Taken together, our results provide evidence that SSL/Ds and
TSAs are similar in somatic mutations having the BRAF hotspot
somatic mutations as a major driver of the disease. On the other
hand, TAs show a different constellation of somatic mutations
such as ARID1A loss of function.
DISCUSSION

CRC is the third neoplasia for incidence and the fourth cause of
death for neoplasia worldwide (1). Although CRC represents the
classical model of development of epithelial cancer through the
so-called adenoma-carcinoma sequence (2), it is now clear that
there are other genetic events underlying its origin and growth.
In particular, the clinical and biological relevance of serrated
lesions of the colon has been pointed out in the last 25 years (5,
6). Serrated lesions of the colon are very well defined from the
pathological point of view (12), and patients with serrated
lesions are followed up similarly to “classical” tubular (TA),
tubulovillous (TVA), and villous adenomas (VA) of the colon.

In general, in our series, only TSA showed a higher frequency
of mutations, while SSL, TA, and TVA had fewer mutations/
cases. This is in agreement with a recent study, in which no
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difference was found between SSL and conventional adenomas
regarding the frequency of mutations (24). Although we only
have two TSAs in our series, the presence of five mutations/case
in comparison to ≈1.75–2 in SSL or TA may suggest that
genomic instability could underlie the morphology of TSA.
Frontiers in Oncology | www.frontiersin.org 4
We found the classical mutation BRAF p.V600E in most
serrated lesions in our series, in particular in all SSLs with
dysplasia and TSAs. SSLs with dysplasia are considered the
“true” premalignant lesion to CRC in the so-called “serrated
pathway” and progress relatively quickly, whereas TSAs are more
FIGURE 1 | Histological micrographs (A, C, E, G) and immunohistochemical stain results for MLH1 (B, D, F, H). (A, B) SSL without dysplasia (SSA08T); (C, D) SSL
with dysplasia (ID SSA05T); (E, F) TSA (SSA04T); (G, H) TA (SSA15T). Note negativity for MLH1 in SSA05T (D).
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similar to “conventional” adenomas regarding the development
of cancer (25, 26). BRAF is one of the key players in the
development of CRC through serrated adenomas (27, 28).
BRAF is a molecular switch in the RAS–RAF–MEK–ERK
pathway, which is crucial in the control of proliferation and
differentiation (28). In our study, we found KRASmutations in 1/
4 conventional adenomas and in 1/12 serrated polyps (SSL
without dysplasia, BRAF-wildtype), which is in keeping with
the results of several previous studies, where the frequency of
KRAS mutations in both conventional and serrated adenomas
was between 8 and 10% (29–32). BRAF mutation has been
suggested to be an early phenomenon in the genesis of SSL,
whereas the genetic landscape of TSA seems to be more
heterogeneous (4). In a recent study using whole-exome
sequencing, BRAF V600E was found to be the only consistent
mutation in serrated polyps (33). In our study, two SSLs without
dysplasia had no BRAF mutation. One case had a p.Q61K
mutation in KRAS, and the other had a p.A507P substitution
in KIT. The former is a rare mutation that has been described in
non-small-cell lung cancer and in colon cancer, with oncogenic
potential. The latter has been described in GISTs as oncogenic.

Other mutations found in SSLs affected BRCA1, a very
important tumor suppressor gene, involved in the genesis and
Frontiers in Oncology | www.frontiersin.org 5
development of many different tumors (34), CDKN1B and
CDKN2B (also known as p27KIP1 and p15INK4B), two important
tumor suppressor genes involved in the regulation of cell cycle. We
also found two SSLs with mutations affecting proteins of the DNA-
repair machinery (MLH1 and MSH6). Immunohistochemistry
showed that all SSLs were mismatch repair proficient, thus these
MLH1 and MSH6 mutations are not likely to have affected the
mismatch repair pathway, and it is also unlikely that these SSL
polyps were driven by MLH1 methylation. Similarly, NOTCH1 has
been shown to act as an oncogene in CRC (35), so it is likely that the
missense mutation we found is simply a bystander phenomenon.

SSL/D had a monotonous genomic landscape. They showed
the classical BRAF V600E mutation, as described in the literature
(5, 33, 36). They also showed mutations in CDK12 and in RNF43.
CDK12 is a recently characterized cyclin-dependent kinase
(CDK) that has been claimed to be involved in the genesis of
prostate and ovarian cancers (37). RNF43 belongs to a
superfamily of thrombospondin type 1 repeat-containing
proteins (R-spondins) (38). R-spondins control the activity of
WNT signaling also in adult stem cells (38). Interestingly,
missense mutations in RNF43 have been found consistently in
microsatellite unstable CRCs (39) and in some hereditary
serrated polyposes (40). It is however a well-known factor in
FIGURE 2 | Repertoire of somatic genetic alterations in the serrated lesion of the colorectum. Heatmap indicating somatic genetic alterations identified in samples
subjected to sequencing. Somatic alterations are color-coded according to the legend. Hotspot mutations are non-synonymous mutations that are in hotspot
residues (see Materials and Methods).
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the development of gastric adenocarcinoma (41) and pancreatic
intraductal papillary mucinous neoplasm (42). We also identified
one SSL/D with loss of MLH1 expression withoutMLH1 somatic
mutations. One could speculate here that the dysplasia, in this
case, was driven by MLH1 methylation.

TSA showed in contrast more mutations (five/case). BRAF
p.V600E was found in both cases. Other mutations were found in
CTNNB1 (beta-catenin), NF1, TSC2, NRAS, PIK3CA, TERT, TP53.
The role of beta-catenin in Wnt signaling and colon carcinogenesis
is very well known (15). It has been shown that TSC2, through its
interaction with mTOR, may increase the activity of Wnt signaling
(43). Moreover, there is a cross-talk between PIK3CA and Wnt
signaling, probably againmediated by TSC2 (43).NF1 changes have
not been described previously in serrated lesions. Interestingly, it
was claimed to be a target of mutational changes inMSI-CRCs (44).
TERT is a well-known factor involved in the progression of
colorectal carcinogenesis and higher activity (45). p.Q61K
mutation in NRAS is a well-known activating mutation, with
oncogenic potential. p.C275Y missense mutation in TP53 has
been found in colorectal cancer (15), and mutations in TP53 are
associated with the development of dysplasia in TSAs (46).

TAs showed three mutations/case, but they were more
variable. One case showed the classical KRAS p.G12C. Other
involved genes were ARID1A, CDK12, CTNNB1, KIT, MSH6,
ERBB3, RAD51D. Truncating mutations of ARID1A, a chromatin
remodeler, have been related to the development of endometrioid
carcinoma of the ovary (47) and of early CRC (48). ERBB3
belongs to the HER receptor tyrosine kinase (RTK) family and
has been found to be mutated in 11% of CRCs (49). RAD51D,
involved in DNA repair, has been found to be rarely mutated in
ovarian, breast, and colon cancer (50). Of note, our sequencing
panel does not include APC, which is an important cancer gene in
the conventional pathway. A previous study found that APC
mutations are rare in serrated lesions, which would suggest APC
mutations may be another distinguishing molecular feature that
distinguishes the conventional and the serrated pathways (51).

The main limitation of our work is that it is a small retrospective
series. The use of a targeted sequencing panel also limits our ability to
characterize the global genomic features of these lesions. The study of
the methylation profiles of these samples could also provide
additional insights into the pathogenesis of the serrated pathway.
Further study in larger cohorts will be required to confirm our results.

In summary, we have studied by NGS a small series of
colorectal serrated lesions (SSL, SSL/D, and TSA) and have
compared their genomic profiles with conventional TAs.
Serrated lesions have a simpler genomic profile in comparison
with TAs. BRAF p.V600E is the most frequent genomic
alteration in serrated lesions.
Frontiers in Oncology | www.frontiersin.org 6
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