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A B S T R A C T

Kidney dysfunction can profoundly influence many organ sys-
tems, and recent evidence suggests a potential role for increased
albuminuria in the development of mild cognitive impairment
(MCI) or dementia. Epidemiological studies conducted in dif-
ferent populations have demonstrated that the presence of in-
creased albuminuria is associated with a higher relative risk of
MCI or dementia both in cross-sectional analyses and in studies
with long-term follow-up. The underlying pathophysiological
mechanisms of albuminuria’s effect are as yet insufficiently
studied, with several important knowledge gaps still present in a
complex relationship with other MCI and dementia risk factors.
Both the kidney and the brain have microvascular similarities
that make them sensitive to endothelial dysfunction involving
different mechanisms, including oxidative stress and inflamma-
tion. The exact substrate of MCI and dementia is still under in-
vestigation, however available experimental data indicate that
elevated albuminuria and low glomerular filtration rate are as-
sociated with significant neuroanatomical declines in hippo-
campal function and grey matter volume. Thus, albuminuria
may be critical in the development of cognitive impairment and
its progression to dementia. In this review, we summarize the
available evidence on albuminuria’s link to MCI and dementia,
point to existing gaps in our knowledge and suggest actions to
overcome them. The major question of whether interventions
that target increased albuminuria could prevent cognitive de-
cline remains unanswered. Our recommendations for future re-
search are aimed at helping to plan clinical trials and to solve
the complex conundrum outlined in this review, with the ulti-
mate goal of improving the lives of patients with chronic kidney
disease.

Keywords: albuminuria, chronic kidney disease, dementia,
glomerular filtration rate, mild cognitive impairment

I N T R O D U C T I O N

Kidney dysfunction can have a profound effect on many organ
systems, and chronic kidney disease (CKD) is recognized as a
major risk factor for not only broader cardiovascular diseases
[1], but also for pre-eclampsia, premature delivery and low
birth weight [2]. Recently, evidence has emerged for a relation-
ship between CKD and mild cognitive impairment (MCI) or
dementia, and this review aims to summarize different aspects
of this still poorly understood association. The magnitude of
the problem is large, with almost 700 million persons world-
wide affected by CKD [3] and almost 51 million with
Alzheimer’s disease or other dementias [4]. The burden of both
CKD, MCI and or dementia increases with age, but apart from
an aging population, there are additional factors that drive both
conditions and lead to an increase in their age-standardized
prevalence rates (which accounts for both population growth
and aging) over the past 30 years: CKD and dementia have
shown an increase of 9.4% and 5.7%, respectively, whereas car-
diovascular disease, cancer and chronic respiratory diseases de-
creased by 4.4%, 6.6% and 16.9%, respectively [4].

The interest in studying the interplay between CKD and
MCI or dementia has been determined by its potential for
practical application, with the main question being whether
the treatment of CKD can prevent MCI and dementia.
Unfortunately, so far the answer is unknown, and more re-
search and clinical studies will be needed to resolve it. Previous
studies have suggested that albuminuria is related to MCI and
dementia, and in this review we summarize the available
evidence, point out existing gaps in our knowledge and make
some suggestions on what might be done to fill them.

ASSOCIATION OF INCREASED ALBUMINURIA WITH
MCI AND DEMENTIA

The first published clinical studies demonstrating an associa-
tion between albuminuria and dementia were confined mainly
to elderly populations [5–9]. In one early investigation in older
adults from the Cardiovascular Health Cognition Study
(n¼ 2316), Barzilay et al. found a cross-sectional association
between increasing albuminuria and dementia. This association
remained significant after adjustment for factors associated
with dementia, such as hypertension, diabetes and prevalent
cardiovascular disease. The authors suggested that the associa-
tion of albuminuria and dementia may be partly explained by
the many anatomical microvascular similarities found in the
brains of people with dementia and in the kidneys of patients
with albuminuria [6]. The Prevention of Renal and Vascular
End-Stage Disease study conducted in a general population
(n¼ 4095) found that elevated albuminuria, but not estimated
glomerular filtration rate (eGFR), was associated with worse
cognitive function. However, this association was only present
in the younger cohort (lower tertile of age: 42 6 4 years old).
Furthermore, younger subjects with an increase in albuminuria
during the 6 years before cognitive function testing performed
significantly worse on testing than those with stable albumin-
uria. The authors suggested that the stronger association of al-
buminuria with cognitive function in younger versus older
participants is plausible, because at a young age the prevalence
of interacting comorbid conditions that might confound this
association is low [7]. Similarly, a high urinary albumin-to-
creatinine ratio (UACR) was significantly associated with the
presence of imaging markers of cerebral small vessel disease in
middle-aged and elderly participants of the general population-
based Rotterdam Study [10], and with an increase of the white
matter hyperintensities (reflecting deteriorating cerebral white
matter due to myelin breakdown) volume to the intracranial
volume ratio in the Hisayama Study [11]. More recently, this as-
sociation has been confirmed in the population-based AGES–
Reykjavik Study (mean age 75 years), showing that participants
with incident albuminuria (UACR>30 mg/g) had 21% more
white matter hyperintensity volume progression compared
with participants without incident albuminuria [12]. Recent
studies, including a prospective Atherosclerosis Risk in
Communities (ARIC) study [13], the Hisayama Study [14] and
others, also found that increased albuminuria is consistently
associated with the incidence of dementia.

In diabetic patients, albuminuria has been linked to acceler-
ated cognitive decline. Microvascular cerebral disease manifests
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as impaired vasoreactivity, hypoperfusion and decreased me-
tabolism, which may lead to hypoxia and brain tissue loss.
In middle-aged adults with diabetes and preserved baseline
eGFR ( �90 mL/min/1.73 m2), cognitive function assessed by
the Digit Symbol Substitution Test was worse in participants
with persistent and progressive albuminuria compared with
participants with no albuminuria. Moreover, the eGFR decline
was greater in those with persistent albuminuria compared with
those with increasing albuminuria, suggesting a dose effect.
These findings were independent of both baseline eGFR and
eGFR decline [15]. Mehta et al. used 3D magnetization pre-
pared rapid acquisition with gradient echo magnetic resonance
imaging (MRI) at 3T to evaluate the effect of subclinical levels
of albuminuria on grey matter (GM) in type 2 diabetes mellitus
(DM). These authors found a link between UACR and GM
volume changes in type 2 DM subjects compared with age-
matched controls. Of note, even subclinical levels of
UACR�5 mg/g were associated with an early decline in brain
health. This study also found that the lesions at the GM level be-
gin early when UACR is within accepted normal limits, but
there is clearly a continuum [16]. In contrast, in the Memory in
Diabetes substudy of the Action to Control Cardiovascular Risk
in Diabetes study of middle-aged and older adults with type 2
DM, albuminuria at baseline and its persistence during follow-
up were not independently associated with an increase in
abnormal white matter hyperintensity volume when analyses
were adjusted for systolic blood pressure (SBP) [17]. The de-
cline in cognitive function in association with albuminuria
appeared to be mediated by other risk factors such as elevated
SBP, older age, oxidative stress, obesity and increased arterial
stiffness. Later studies by Freedman et al. demonstrated that in
African-Americans, type 2 DM, mildly elevated UACR and
slightly reduced eGFR were associated with poorer mental proc-
essing speed and working memory [18]. These results identified
a subgroup of African-Americans with type 2 DM at higher risk
for developing reduced cognitive function, and suggested possi-
ble treatment pathways for reducing the burden of cognitive
impairment-related disability. In patients with early diabetes
from the Glycaemia Reduction Approaches in Diabetes study
(n¼ 4998), participants with albuminuria or eGFR<60 mL/
min/1.73 m2 had significantly lower test scores for information
processing speed and perception, executive function and ability
to categorize information, and for verbal learning and memory
compared with participants without renal disease. These find-
ings remained statistically significant after adjustment for hy-
pertension, dyslipidaemia and waist circumference [19].

The association of microalbuminuria and cognitive function
has also been investigated in patients with human immunodefi-
ciency virus (HIV). Patients with HIV without severe DM and/
or hypertension, hepatitis C virus infection, past or ongoing
neurological diseases (notably acquired immunodeficiency syn-
drome defining neurological events) and/or alcohol or illicit
drug addiction were selected for the study. After adjustment
for factors associated with HIV-associated neurocognitive
disorders and/or microalbuminuria (i.e. age, educational level,
hypertension and CD4þ T-cell nadir), patients with previous
microalbuminuria had a worse cognitive performance for the

information processing speed domain. HIV patients treated
with combination antiretroviral therapy and a history of
microalbuminuria had worse cognitive performance for the
information processing speed domain, possibly because of the
presence of cerebral small vessel disease [20].

Of particular interest is the analysis of cognitive function in
the nephrotic syndrome (NS) characterized by heavy protein-
uria >3.5 g/24 h (accompanied by oedema, hypercholesterolae-
mia, hypoalbuminaemia and prothrombotic state) and usually
a normal eGFR that allows separation of the effects of protein-
uria and reduced eGFR. Unfortunately, literature data are scant.
In children with NS, different studies have demonstrated an
altered quality of life [21], behavioural abnormalities (mostly
hyperkinesis) [22], ‘thought problems’ and ‘internalizing prob-
lems’, without mood changes or attention problems [23].
However, the interpretation of these findings is confounded by
concurrent factors. Thus, psychological stress may trigger pro-
teinuria in children with steroid-sensitive NS [24] and mood
changes could be associated with corticosteroid therapy for NS
[23]. In adults with NS, a study conducted in Taiwan suggested
a correlation between NS and ischaemic stroke [25].

R O L E O F L O W E G F R I N C O G N I T I V E
I M P A I R M E N T A N D D E M E N T I A

There are conflicting data on the role of eGFR in the impair-
ment of separate cognitive domains [26]. This also concerns the
evidence correlating low eGFR with overt dementia. Thus, in a
retrospective community-based cohort study on geriatric
patients, increased albuminuria and low eGFR have been sug-
gested as risk factors for dementia [27]. However, the large-
scale population Helseundersøkelsen i Nord-Trøndelag study
did not reveal a significant association between isolated low
eGFR and dementia [28]. Moreover, the Rotterdam study [10]
and the AGES–Reykjavik study [12] have documented, respec-
tively, that low eGFR is independently associated with lower ce-
rebral blood flow, and that a faster eGFR decline (>3 mL/min/
1.73 m2/year) is associated with increased risk for developing
manifestations of cerebral small vessel disease.

These controversial results could be partially explained by
the different methods used for GFR evaluation. Of note, the
widely accepted eGFR equations are based on serum creatinine
level that can be affected by non-renal factors, including de-
creased muscle mass in elderly patients. To overcome this limi-
tation, the ARIC study estimated GFR by three methods and
found that only low eGFR calculated by equations based on cys-
tatin C and b2-microglobulin was associated with higher de-
mentia incidence, but not low eGFR based on serum creatinine
[13]. This study also demonstrated the cumulative hazard in
participants who had both increased UACR (>30 mg/g) and
low cystatin C-based eGFR (<60 mL/min/1.73 m2), suggesting
that both of these CKD markers are independent factors for de-
mentia development [13]. The higher serum levels of cystatin C
itself (corresponding to lower eGFR) were related to cognitive
impairment measured by the Mini-Mental State Examination
in another study conducted in Japan [29]. Together, these
results suggest that apart from decreased eGFR, other factors re-
lated to higher cystatin C levels such as diabetes, higher levels of
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C-reactive protein (CRP) and white blood cell count [30] could
play a role in development of MCI or dementia that may further
complicate the evaluation of its relationship to albuminuria.

P A T H O P H Y S I O L O G Y O F C O G N I T I V E
I M P A I R M E N T A N D D E M E N T I A I N
A L B U M I N U R I C P A T I E N T S

The multiple mechanisms explaining MCI and dementia in kid-
ney dysfunction include vascular lesion and impaired cerebral
blood flow autoregulation, neuroinflammation, effect of urae-
mic neurotoxins and kidney neurotrophins, and have been de-
scribed in detail elsewhere [31, 32]. Below we highlight the less
studied pathways that link albuminuria and cognitive impair-
ment. Albuminuria and an eGFR decrease could contribute to a
reduction of hippocampal volume with concomitant
microvascular damage, resulting in significant hippocampal an-
atomical and functional decline (Figure 1). The hippocampus is
part of the limbic system of the brain and, among other
physiological roles, is involved in the processes of formation,
consolidation and memory retrieval [33]. The hippocampus is
composed of several subregions including ‘cornu ammonis’
parts 1–4 (CA1–CA4), the ‘dentate gyrus’ and the ‘subiculum’.
CA regions contain three neuronal layers with pyramidal excit-
atory cells and are connected by several neural circuits with
other parts of the hippocampus. The dentate gyrus is consid-
ered to be one of only two regions in the brain capable of adult
neurogenesis and is thought to be involved in the maintenance
of cognitive function, in particular spatial and non-spatial
memory. However, different factors could be affecting it and a
deficient rate of adult neurogenesis could potentially contribute
to many neurological and psychiatric conditions.

Brain atrophy has been associated with physiological aging;
however, in patients with CKD, a higher prevalence of brain at-
rophy has been found, even at relatively young patients with
mean age 60 6 12 years [34]. In CKD patients, decline in GM
volume seems to be more rapid and followed by cognitive

impairment [35]. Studies in vivo performed using 3T-MRI
scans showed that patients with CKD had smaller cerebral GM
and hippocampal volume accompanied by decreased cortical
thickness [36]. Also, disturbed calcium metabolism in CKD is
associated with numerous neuropathological findings, includ-
ing arteriosclerosis, microaneurysms and microvascular calci-
nosis, and the hippocampus is not spared from these
pathological changes. Brain autopsy from subjects with CKD
has demonstrated microvascular calcinosis in the CA4 hippo-
campal region [37]. These neuroanatomical changes correlated
with poorer cognitive performance.

Furthermore, in an animal model of CKD, a reduction in
synaptic proteins in the hippocampus was demonstrated at a
molecular level. In unilateral ureteric obstruction (UUO) mice,
a model of CKD, synapsin-1, synaptophysin and synaptotag-
min, together with glutamate NMDAR2B and AMPA recep-
tors, were all reduced compared with controls [38]. Even
though the effect of albumin on neurocognitive parameters de-
cay cannot be directly linked to CKD in this particular model,
the study clearly demonstrates not only behavioural cognitive
decline, but also reduced functional markers of excitatory hip-
pocampal synapses [38], which should be investigated further
in albuminuria models. Also, histological examination in UUO
mice showed hyperphosphorylation of tau protein in the
hippocampus.

Several lines of evidence show that functional performance
in memory tests in animal models of CKD is associated with
hippocampal decay and atrophy. Compared with the sham-op-
erated group, in a mouse with CKD induced by UUO, weak
performance was demonstrated in several behavioural learning
and memory tests: novel object recognition test, Y-maze test
and puzzle box test [38]. Spatial learning deficits were also dem-
onstrated in the five-sixths nephrectomy (5/6Nx) CKD mouse
model that resulted in increased escape latency during acquisi-
tion trials in the Moris water maze task and correlated with
increased neuro-inflammatory markers in hippocampal tissue

FIGURE 1: Hippocampal structural and functional changes in animal models of kidney disease. GD, gyrus dentatus.
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[39]. Unilateral nephrectomy (UniNx) and two-thirds electro-
coagulation of the other renal cortex of C57BL/6 mice was
associated with lower performance in the radial arm water
maze test, and the UniNx mice made significantly more errors
compared with sham-operated controls [40]. Cognitive impair-
ment was accompanied by increased numbers of pyknotic
neuronal cells in the hippocampus of the CKD mice.

Neuroanatomical and functional changes in the hippocam-
pus of CKD patients and in animal models of CKD could be
associated with reduced hippocampal neurogenesis. In patients
with MCI, a lower number of neuroblast cells was found in the
dentate gyrus of the hippocampus, while a higher expression
level of these cells correlated with better cognitive scores [41].
Several factors could contribute to this, including chronic
oxidative stress and increased glucocorticoid levels that reduce
differentiation and proliferation of hippocampal neuronal stem
cells, probably as a result of accumulation of mitochondrial
oxidative stress [42, 43]. Accumulation of a critical marker of
oxidative stress, 8-hydroxy-2’-deoxyguanosine, in hippocampal
neuronal cells was found in an animal model of CKD [40].
Endoplasmic reticulum (ER) stress is also thought to contribute
significantly to neuronal dysfunction and its role in the
hippocampal dysfunction seen in CKD has been examined. The
expression level of glucose-regulated protein 78, a typical ER
stress marker, showed a pronounced increase in the hippocam-
pus. Furthermore, 4-hydroxy-2-nonenal-protein adducts, a
marker of oxidative stress, was also increased in the hippocam-
pus 8 weeks after 5/6Nx [44].

In UUO mice, increased levels of the inflammatory markers
CRP and tumour necrosis factor-a (TNF-a) in serum were
detected, accompanied by elevated levels of the Nrf2 transcrip-
tion factor and 8-hydroxyguanosine in the hippocampus [38].
Oxidant/antioxidant imbalance and up-regulation of TNF-a
and interleukin-1b (IL-1b) gene expression in hippocampal tis-
sue were also detected in 5/6Nx mice. These changes were ac-
companied by increased proteinuria and a reduction in
creatinine clearance [39]. Also, microglial activation should be
considered as a source of neurotoxicity and release of pro-
inflammatory factors that could contribute to cognitive impair-
ment. Exposure of primary cultured microglia to serum albu-
min resulted in release of TNF-a, transforming growth factor-
b1 and higher inducible nitric oxide synthase expression [45].

Finally, blood–brain barrier (BBB) breakdown is an early
event in the aging human brain that begins in the hippocampus
and may contribute to cognitive impairment [46]. The BBB
breakdown in the hippocampus and its CA1 and dentate gyrus
subdivisions worsened with MCI, and correlated with injury to
BBB-associated pericytes seen in a mouse model of CKD [47].
Furthermore, it is known that small vessels in the kidney and
brain are exposed to high blood flow volumes during the car-
diac cycle [48]. Therefore, it has been hypothesized that kidney
disease (as reflected in increased albuminuria) and cerebral
small vessel disease (cognitive impairment) are both signs of
systemic small vessel disease affecting different organs with ana-
tomical and haemodynamic similarities. Moreover, endothelial
dysfunction, regardless of the cause, leads to leakage of proteins
into the interstitial space in both kidney and brain tissues [49].

Various mediators have been suggested to cause endothelial
dysfunction. Particularly, kidney dysfunction induces nitric ox-
ide deficiency due to disturbances in L-arginine metabolism,
eventually affecting the maintenance of the microcirculation
and BBB [49]. A key mechanism that may link albuminuria and
BBB damage is a loss of the glycocalyx, a polysaccharide layer
that lines the luminal endothelial surface and that acts as a
barrier [50]. Degradation of the glycocalyx in response to endo-
thelial activation, as may occur in kidney disease, can lead to al-
buminuria and increased microvascular permeability in organs
other than the kidney, including the brain [50]. The cross-talk
between kidney and brain may also involve the renin–angiotensin
system [51], and the evidence from in vivo and clinical studies
showing that the treatment with angiotensin-converting en-
zyme inhibitors and AT1 receptor blockers, beside exerting
renoprotection, also has beneficial actions in neurodegenerative
disorders [52].

C O N T R O V E R S I E S I N T H E R E L A T I O N S H I P
B E T W E E N A L B U M I N U R I A A N D M C I A N D
D E M E N T I A

Several controversies exist in the relationships between in-
creased albuminuria and cognitive impairment, leaving the
questions about its causal role. First, these two conditions share
some important risk factors. Compared with the general popu-
lation [53] or even other CKD patients with normal urinalysis
[6, 54], patients with albuminuria are generally older and have
more comorbidities, including higher prevalence of diabetes
and cardiovascular disease, higher smoking rate and higher
BP—each of these can affect brain function over time. In fact,
the Cardiovascular Health Cognition Study demonstrated the
role of such confounders in patients who had doubling of
albuminuria over time: after adjustment for cardiovascular
disease and demographic factors the relative risk of dementia
development was substantially attenuated, and the risk of mild
cognitive decline becomes non-significant [6]. Diabetes alone
increases the odds of cognitive decline by 1.2- to 1.7-fold,
depending on the examination tool used [55, 56]. Even young
patients with type 1 diabetes, who had good glycaemic control
and few comorbidities, over 18 years of follow-up demonstrated
a decline in psychomotor and motor speed (but not in memory
or intelligence tests). In this cohort several major predictors of
cognitive dysfunction have been revealed, including a rise in se-
rum creatinine or the need for dialysis, but the role of albumin-
uria has not been studied [57].

Second, albuminuria may be the result of systemic endothe-
lial dysfunction that also plays an independent role in MCI and
dementia development [58, 59]. Notably, both the kidney and
brain have low vascular resistance systems and can maintain
stable continuous high-volume perfusion that is resistant to
fluctuations in systemic BP, although this feature makes both
organs sensitive to disturbances in endothelial function and
autoregulation, and stiffness of central arteries [48]. The design
of studies performed so far is hampered by the inability to eval-
uate endothelial dysfunction and its role on MCI or dementia,
since most studies analyse ‘CKD in general’ without any
fine-grain distinction by the primary cause of CKD or types of
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macro- and microvascular abnormalities that may be present.
The data on cognitive decline in different diseases that affect
kidney structure are lacking, and only analyses with a mixture
of primary (glomerular diseases) and secondary (diabetes, hy-
pertensive nephropathy, etc.) kidney aetiologies are currently
available. The dilemma of whether kidney dysfunction in
primary nephropathies leads to systemic endothelial dysfunc-
tion that subsequently increases the risk of MCI and dementia,
or whether the primary systemic endothelial dysfunction per se
is due to diseases affecting multiple organs and leads to the le-
sion in both kidney and brain, remains unresolved. Moreover,
there are only a few, and not always unidirectional [6], pub-
lished data on whether an increase or decrease of albuminuria
over time has any impact on progression of MCI and dementia.

Third, incident cognitive dysfunction can be limited by
intensive BP control as demonstrated in the systolic blood pres-
sure intervention trial memory and cognition in decreased hy-
pertension (SPRINT MIND) study [60] in which the
intensively treated group (SBP<120 mmHg) had a substan-
tially lower hazard ratio (HR) at 0.81 [95% confidence interval
(CI) 0.69–0.95] for development of MCI compared with the
standard treatment group (SBP<140 mmHg). However, this
effect should be studied further in relation to overt kidney dis-
ease, because in subgroup analysis the patients with CKD had a
HR of 1.00 (95% CI 0.77–1.31) for this endpoint (even if no dis-
tinction between low eGFR and albuminuria in patients has
been carried out), suggesting that the onset of cognitive impair-
ment can be reduced by intensive BP control only in patients
without CKD. The relationship between BP and albuminuria is
complex, and a secondary analysis of the SPRINT trial [54] has
shown that in the intensively treated group the association of al-
buminuria and stroke was not significant [1.25 (95% CI 0.69–
2.28)], while in the standard treatment group this association
was present [3.44 (95% CI 2.11–5.61)]. The effect of risk factors
correction that may improve cognitive status in the general
population [61, 62]—namely, additional physical activity, cog-
nitive training, a Mediterranean diet, obesity correction, reduc-
tion of social isolation and smoking cessation—remain
unknown in CKD patients, and the benefits of their correction
have never been studied considering the relationship between
albuminuria and MCI or dementia.

Finally, MCI is a rather broad term, covering different cogni-
tive domains [31], including memory, reaction time, attention,
executive function, concentration, visuospatial performance
and others. Dementia is also non-heterogeneous condition that
has distinct nosologic forms, including Alzheimer’s disease, vas-
cular dementia, Lewy body dementia and frontotemporal de-
mentia. The widely used Montreal Cognitive Assessment
(MoCA) covers different domains of cognitive abilities, but it
may have different results for some domains compared with
other tests. For example, only 7% of patients had abnormal trail
making test (TMT), which examines executive function (visual
attention and task switching), while 44% had abnormal MoCA,
and proteinuria was substantially higher in those with abnormal
TMT (median protein-to-creatinine ratio 150 versus 43 g/mol,
respectively) [63]. Only some of the studies discussed here have
applied a comprehensive evaluation of all cognitive domains

with several tests in the same patients that allow to study the
role of albuminuria and other factors in the complex landscape
of MCI and dementia domains. All these conundrums will need
to be addressed in future studies (Table 1).

C O N C L U S I O N S

We have summarized evidence that delineates some of the pos-
sible pathophysiological mechanisms and clinical significance
of albuminuria for MCI and dementia. Despite the availability
of strong evidence for an association between albuminuria and
MCI or dementia, several important knowledge gaps exist,
leaving unresolved the major questions about a causal relation-
ship and the effectiveness of interventions targeting albumin-
uria per se to prevent cognitive decline. Our recommendations
for future research aim to help in planning clinical trials and
to solve this complex conundrum, with the ultimate goal to
improve the outcomes in patients with kidney damage.
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Table 1. Recommendations for further clinical studies on relationship
between albuminuria and MCI or dementia

1. Collect data about comorbidities and risk factors (DM, hypertension,
smoking, etc.) that could lead to development of MCI or dementia.

2. Account for the primary kidney disease that has led to albuminuria
development.

3. Account for markers of systemic inflammation (CRP) at baseline and
during follow-up.

4. Evaluate the effect of change in albuminuria, eGFR, blood pressure,
glucose level, body mass index on MCI or dementia during follow-up.

5. Evaluate in CKD patients the effect of non-pharmacological interven-
tions (additional physical activity, cognitive training, etc.) that could
lead to prevention of MCI and dementia.

6. Apply in the same study several tests/questionnaires that evaluate
different cognitive domains and include tests that allow to cross-validate
impairment in a single cognitive domain.

7. Use imaging techniques to identify instrumental signs of brain dysfunc-
tion in CKD patients.

8. Estimate indicators of endothelial autoregulation disturbances
(measuring flow-mediated dilatation), stiffness of central arteries
(measuring pulse wave velocity) and retinal vessels analysis to evaluate
the role of vascular system in development of MCI or dementia in CKD
patients.

9. Evaluate joint effect of albuminuria and eGFR on MCI or dementia in
prospective studies. Use equations for calculation of eGFR based on
both serum creatinine and cystatin C.

10. In case of dementia as outcome, report the exact nosological form
(Alzheimer’s disease, vascular dementia, Lewy body dementia and
frontotemporal dementia) and provide study findings for each of them.

6 B. Bikbov et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/ndt/advance-article/doi/10.1093/ndt/gfab261/6421744 by U

niversitaetsbibliothek Bern user on 16 D
ecem

ber 2021

http://www.cost.eu
http://www.cost.eu
http://www.connectcost.eu


Decline in Nephro-Neurology: European Cooperative Target
(CONNECT).

C O N F L I C T O F I N T E R E S T S T A T E M E N T

B.B., G.H., V.P., A.F., F.M.-R., G.C., A.B. and N.P.
declare no conflict of interest. M.J.S. reports personal fees
from NovoNordisk, Jansen, Boehringer, Mundipharma,
AstraZeneca, Esteve, Fresenius, Ingelheim Lilly, Vifor,
ICU medical and Bayer during the conduct of the study. R.U.
is currently employed by AstraZeneca BioPharmaceuticals
R&D, Early Cardiovascular, Renal and Metabolism,
Cambridge UK and Gothenburg Sweden. M.E. reports grants
from Bayer and fees paid to the Charité from AstraZeneca,
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