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A B S T R A C T   

Background: The timing of an event within an oscillatory phase is considered to be one of the key strategies used 
by the brain to code and process neural information. Whereas existing methods of studying this phenomenon are 
chiefly based on retrospective analysis of electroencephalography (EEG) data, we now present a method to study 
it prospectively. 

New method: We present a system that allows for the delivery of visual stimuli at a specific phase of the 
cortical theta oscillation by fitting a sine to raw surface EEG data to estimate and predict the phase. One 
noteworthy feature of the method is that it can minimize potentially confounding effects of previous trials by 
using only a short sequence of past data. 

Results: In a trial with 10 human participants we achieved a significant phase locking with an inter-trial phase 
coherence of 0.39. We demonstrated successful phase locking on synthetic signals with a signal-to-noise ratio of 
less than − 20 dB. 

Comparison with existing method(s): We compared the new method to an autoregressive method published 
in the literature and found the new method was superior in mean phase offset, circular standard deviation, and 
prediction latency. 

Conclusions: By fitting sine waves to raw EEG traces, we locked visual stimuli to arbitrary phases within the 
theta oscillatory cycle of healthy humans.   

1. Introduction 

As early as 1929 rhythmic variations of the electric potential were 
recorded from the surface of the human brain in the absence of external 
stimulation (Berger, 1929). Such spontaneous oscillations are ubiqui-
tous in brains of humans and animals (Basar and Güntekin, 2008), can 
be observed both in sleep and awake states, and are influenced by ex- 
and intrinsic factors (Karakas and Barry, 2017; Dang-Vu, 2012). Some 
researchers have argued that oscillations are fundamentally involved in 
neural processing of sensory, motor, and cognitive information (Buzsáki, 
2006; Engel and Fries, 2001). 

Oscillations are typically measured from electroencephalogram 
(EEG) data. Note that even though there is no uniform definition of the 
EEG frequency bands (Newson and Thiagarajan, 2019), and functional 
correlates differ in frequency depending on species (Jacobs, 2014), in 

this paper we refer to any oscillation in the range of 4–8 Hz as theta and 
8–12 Hz as alpha. Many associations between oscillations and behav-
ioral patterns have been described. For example, the power (i.e., 
amplitude squared) and frequency in the alpha and theta range have 
been linked to attention and perception (Ishii et al., 1999; Thut et al., 
2006; Kastner et al., 1999). Oscillations in the theta range have also been 
linked to memory load, formation, and retrieval (Jensen and Lisman, 
2005; Klimesch, 1999). A number of studies have shown that the 
perception of a visual stimulus varies with not only oscillatory frequency 
and power but also the actual phase within an oscillatory cycle (Van-
Rullen, 2016; Busch et al., 2009; Klimesch et al., 2007; Drewes and 
VanRullen, 2011; Mathewson et al., 2009; Busch and VanRullen, 2010; 
Stefanics et al., 2010; Schyns et al., 2011; Fiebelkorn et al., 2018; Hel-
frich et al., 2018; Klimesch, 2012; Nokia et al., 2015; Fiebelkorn et al., 
2013; Samaha and Postle, 2015). 
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Phase-specific effects reported in the published literature were 
mostly studied using post-hoc analysis of EEG signals that were recorded 
during perceptual tasks (Fiebelkorn et al., 2018; Harris et al., 2018; 
Hanslmayr et al., 2013; Fiebelkorn et al., 2013; Milton and 
Pleydell-Pearce, 2016; Mathewson et al., 2009; Samaha and Postle, 
2015). Some researchers used entrained oscillations, i.e. oscillations 
driven by rhythmic external stimuli, to show phase-specific behavioral 
effects (Nakayama and Motoyoshi, 2019; Stefanics et al., 2010; Romei 
et al., 2012; Ronconi and Melcher, 2017). We now describe a method to 
systematically study phase-specific effects in healthy human subjects by 
using surface EEG recordings to predict stimulus timing. 

2. Materials and methods 

In this section, we first introduce our phase-estimation procedure 
named FitSine and describe the hardware setup used. We then explain 
the simulation and evaluation procedures. These simulations are 
designed to show the properties of our phase estimation and prediction 
algorithm, and compare them to existing methods. Finally, we introduce 
the experiment we used to test our method in a trial with healthy human 
participants. 

2.1. Phase estimation 

The goal of our FitSine algorithm is to estimate the instantaneous 
frequency and phase of a surface EEG signal in order to deliver a stim-
ulus at that point in time where the oscillation is at a predetermined 
phase. We will refer to this concept as phase-locked stimulation. The 
algorithm is based on fitting a discrete set of 41 sinusoids with equally 
spaced frequencies in the theta range (4–8 Hz) to the raw input signal, 
and then selecting the best fitting sinusoid. We then extrapolate the best 
fitting sinusoid to predict the oscillatory phase at the earliest possible 
stimulus onset. 

This approach allows to work with less than one oscillatory cycle of 
past data and compensate for latencies by prediction. Here we use the 
term latency to describe the time period between the acquisition of the 
signal and the presentation of the stimulus on the screen. 

We use a general sinusoid in the form y(t) = Asin(2πft+ φ)+ C, and 
rewrite it for discrete times to consist of two sinusoids that are offset in 
phase by one-quarter cycle i.e. an in-phase and a quadrature component. 

We define our base function (1) at a discrete time point tn using scalar 
n ∈ {1, ...,N},N ∈ N as time index, and use scalar j ∈ {1, ..., J}, J ∈ N as 
index for a discrete frequency out of the vector of test frequencies f ∈ RJ. 
We denote the amplitudes belonging to frequency fj as Aj and Bj, where 
A ∈ RJ belongs to the cosine part, B ∈ RJ belongs to the sine part, and 
the constant offset is C ∈ RJ. 

yj,n = Ajcos
(
2πfjtn

)
+ Bjsin

(
2πfjtn

)
+ Cj (1) 

We define the cost for fitting the sinusoid to the measured data x =
[x1, ..., xN] ∈ RN as the sum of the squared error: (2). 

κj =
∑N

n=1

[
xn − Ajcos

(
2πfjtn

)
− Bjsin

(
2πfjtn

)
− Cj

]2 (2) 

In (3) we introduce definitions to rewrite (2) into vectorized form 
(4). 
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(3)  

κj =
(
x − Djsj

)⊤( x − Djsj
)

(4)  

Evaluation of the optimal fit for the given data requires minimization (5) 
of the cost function (2), which can be done by differentiation and sub-
sequent solving for zero, leading to (6). 

ŝj = argmin
sj

(
κj
)

(5)  

ŝj =
(

D⊤
j Dj

)− 1(
D⊤

j x
)

(6)  

The phase φ can now be estimated using (7). 

φj = arctan2(Aj,Bj) (7) 

As can be seen in (6) the inversion and the trigonometric functions 
can be precomputed, leaving only two matrix multiplications to evaluate 
the fit for a single sinusoid. Thereby computation time during runtime 
can be reduced. 

2.2. Benchmark simulations 

To compare the performance of our FitSine algorithm with existing 
methods, we performed a benchmark simulation using Matlab 2018b 
and synthetic data. 

We used an autoregressive (AR) model to predict the data similar to 
the one described by Chen et al. (2013) using intracranial EEG, and 
implemented it as described by Blackwood et al. (2018). 

In short, the AR based method is based on first filtering the signal 
using a second order Butterworth IIR filter. Afterwards, a 20th-order AR 
model (AR20) is trained individually for each data sequence using 
Burg’s lattice-based method, which is then used to predict future data 
points. Hilbert transformation is then applied to the predicted data 
points to estimate the phase. 

For the benchmark simulation we use a linear chirp that changes 
from 4 Hz to 8 Hz over the course of 1000 s, and added various levels of 
white noise to reach the SNR levels specified below. For each algorithm 
we simulated 1000 predictions at randomly sampled locations within 
the chirp signal for each combination of SNR level (− 50 dB, − 40 dB, 
− 30 dB, − 25 dB − 20 dB, − 10 dB, 0 dB, 10 dB), input buffer length 
(100 ms and 300 ms), and prediction time (10 ms, 25 ms, and 34 ms). 

2.3. Implementation 

To test our FitSine algorithm for phase-specific stimulation we have 
implemented a setup consisting of a BRAIN VISION actiCHamp EEG 
amplifier equipped with one 32-channel acquisition module, a PC, and 
an LCD monitor. We used 3 photodiodes connected to the auxiliary 
(AUX) input of the EEG amplifier to acquire timing information, one 
mounted to the top right corner of the monitor to detect the true frame 
switch timing, and the other two fixed to LEDs connected to the local 
parallel port (LPT) of the PC. An overview of the system is shown in  
Fig. 1. 

The visual stimuli are presented on an Asus ROG Swift PG279Q 
monitor running at 144 Hz with a custom color calibration profile. We 
used a desktop computer system running on Windows 10 Pro, equipped 
with an Intel I7–8700k running at 4.7 GHz, 32 GB RAM, and an NVIDIA 
GTX 1080Ti as the platform for all measurements. 

We use the functionality of the Lab Streaming Layer library (liblsl) 
project (LabStreamingLayer, 2019) and the pre-compiled binaries to 
create a LabStreaminglayer (LSL) stream to transfer the data from the 
EEG amplifier into Matlab. For that we use the "ActiChamp Connector" 
provided by LSL community on the same PC to configure our EEG 
amplifier and stream out the data at a native sampling rate of 10 kHz. 

The phase estimation is calculated every 2 ms, using our Matlab 
implementation of the algorithm described in subsection 2.1. For the 
phase estimation the most recent 100 ms (N = 1001) of past data is 
used, without any pre-processing. 
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2.4. Hardware in the loop simulation 

We tested the system performance and delay compensation methods 
using a hardware-in-the-loop-simulation. For that we used a Matlab 
script, running in a separate instance of Matlab on the same PC, to ac-
quire the LSL stream every 2 ms. We then replace the samples from the 
unconnected EEG electrodes with the synthetic test-signals, and stream 
it forward to the main application using a second LSL stream. 
Exchanging only the EEG channels with synthetic data, and keeping the 
timing information in the AUX channels allows testing the system per-
formance and timing compensation methods without the need for 
additional hardware. 

We used a 6 Hz sinus with different levels of added white noise to test 
the online implementation of the FitSine algorithm, and used the same 
simulation to compare the accuracy of the offline phase-extraction 
method (see subsection 2.5) against a ground truth signal. 

2.5. Analysis 

To evaluate the performance of the two phase-estimation algorithms 
we compared the predicted phase with an off-line phase estimate ob-
tained by 4–8 Hz bandpass filtering and Hilbert transformation. The 
finite impulse response (FIR) bandpass filter was designed in Matlab 
using separate high- and low-pass filters with a window length 3 times 
larger than the inverse of the respective frequency. Offline zero-phase 
filtering was performed on the GPU using a forward backward approach. 

We use the inter-trial-coherence (ITC) value, as defined in formula 
(8), to measure the clustering of stimulus onset times towards a specific 
oscillatory phase. An ITC value of 1 stands for a "perfect" phase lock (a 
monophasic distribution wherein each stimulus is delivered at that point 
in time where the oscillation is at the predetermined phase), and 
0 stands for uniform data (no clustering towards any angle). 

ITC = ∣
1
K

∑K

n=1
eiφn ∣ (8)  

Where K stands for the total number of trials and φ for the phase. 

2.6. Online phase-specific stimulation experiment 

In order to evaluate the performance of the system we conducted an 
in-vivo experiment studying the influence of the stimulus timing within 
the theta oscillatory cycle (4–8 Hz) on contrast-sensitivity. The task of 
the experiment was to report the orientation of a Gabor patch with 4 
possible orientations. 

For each subject we arbitrarily selected two 180∘ opposite phase 
angles as target for the stimulation onset. We use the term target angle to 
refer to the intended stimulation phases and refer to these two angles as 
condition A & B. 

The stimulus consists of a Gabor patch with stripes in one out of 4 
possible orientations (0∘, 90∘, − 45∘, 45∘), using a spatial resolution of 9 
pixels ( ≈ 14.45 arcmin) for the sinusoidal base, and a width of the 
modulating Gaussian of 200 pixels ( ≈ 320.45 arcmin). The stimulus is 
presented in the center of the monitor and its contrast adjusted using 
QUEST (Watson and Denis, 1983) to a correct detection-rate of ≈ 60%. 
Psychtoolbox (PTB) (Kleiner et al., 2007) is used for stimulus generation 
and presentation. 

At the beginning of each trial, a neutral gray screen is shown for a 
duration consisting of a uniformly distributed random time-period be-
tween 200 ms and 500 ms, and the time it takes until the requirement 
for phase-locked stimulation is fulfilled. For this requirement, the phase 
at the majority of the three occipital electrodes, as determined with 
FitSine and extrapolated to the next possible stimulus time-point, has to 
lie within ± 10∘ of the target angle. As soon as this is fulfilled a Gabor- 
patch is shown for ≈ 48.6 ms, followed by a neutral gray screen. The 
participants then have to report the orientation of the Gabor-patch 
without time limit using a forced choice test with four alternatives. 
The response of the participant on the number block of the keyboard 
starts the next trial. The trial sequence used for the experiment is shown 
in Fig. 2. 

Additionally we performed a second experiment, denoted Random, 
with a similar task without phase locking in each participant. For the 
Random experiment we adapted the duration of the initial gray screen to 
match the inter-trial intervals of the phase-specific experiment. For this, 
we prolonged the initial random duration to a value between 200 ms 
and 700 ms. 

10 healthy volunteers (3 females, ages 24–47 years, mean 31, SD 7) 
participated in the study. They all provided written informed consent. 
All procedures were approved by the local ethics committee (Kantonale 
Ethikkomission Bern (KEK), Basec PB_2016–00250), in accordance with 
the principles of the Declaration of Helsinki (World Medical Association 
Declaration of Helsinki, 2013). 

Experiments were carried out in a dimly lit room, with participants 

Fig. 1. Block diagram of the setup used for phase-selective stimulation. EEG 
and trigger-signals are recorded using a BRAIN VISION actiCHamp amplifier 
using 32 + 8 channels, and transferred to the PC via USB2 using the Lab-
StreamingLayer (LSL) app for device control. Data transfer into Matlab is ach-
ieved using a LSL stream for portability. Matlab is used for all data processing 
and experiment control. Visual stimuli are generated in Matlab using Psy-
chtoolbox. Control-signals on Parallel-port (LPT) are used for delay 
measurements. 

Fig. 2. Illustration of the task. Trial starts with a button-press on the keyboard. 
After a variable delay (200–500 ms uniformly distributed plus the time until the 
specific oscillatory phase is met) the stimulus (Gabor-patch with 4 possible 
orientations) is shown for 7 consecutive frames (48.6 ms). This is followed by a 
neutral gray background. Infinite time is given to the participant to assign one 
of four possible orientations to the trial using the number block of the keyboard. 
The keyboard input is used to trigger the start of the next trial. 
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seated ≈ 50 cm away from the monitor. EEG was recorded from Cz, C1, 
and C2 (using a 32-channel EASYCAP EEG cap arranged according to the 
extended international 10–20 system (Nuwer et al., 1998) using Fz as 
reference and FPZ as ground electrode. Impedance during the partici-
pant preparation was monitored and SuperVisc High Viscosity 
Electrolyte-Gel for active electrodes (EASYCAP, Herrsching, Germany) 
applied to achieve a targeted impedance below 10 kΩ. 

3. Results 

3.1. Simulations 

We compared our FitSine approach as introduced in section 2.1 with 
the AR based method. Computation-time for both algorithms was eval-
uated using 10′000 consecutive runs with an input sequence consisting 
of 1001 random samples. If not otherwise noted, we report the results as 
mean ± standard deviation (mean ± SD). We measured a computation 
time of (133.22 ± 474) μs for the FitSine algorithm with 41 equally 
spaced frequency bins between 4 and 8 Hz. We measured the following 
values for the single steps required by the AR-20 method for a 10 ms 
prediction window: Second order IIR bandpass filtering (68.80 ± 779) μ 
s; Training time for the AR-20 model using Burg’s lattice-based method 
(5.56 ± 48) ms; Iterative prediction (791.27 ± 4108) μs; Phase estima-
tion using the Hilbert filter (156.72 ± 1623) μs. This resulted in a total 
computation time of 6.57 ms for the AR-20 method. 

Next, we compared the phase-locking performance of our FitSine 
approach to the AR-20 based method. According to the steps described 
under Benchmark simulation in section 2.2. The results of this simula-
tion are visualized in Fig. 3, which illustrates that FitSine shows a better 
phase-locking performance with a higher ITC and a smaller mean de-
viation of the target, which we termed "phase offset". Moreover, we 
found a smaller circular standard deviation (circ std) for the FitSine as 
compared to the AR-20 based prediction. 

To test the implementation of our FitSine algorithm, and the whole 
setup as shown in Fig. 1, we performed a hardware-in-the-loop simu-
lation. The resulting ITC-values (summarized in Table 1), indicate a 
reliable prediction for SNR values down to − 20 dB. The ITC values 
shown under "ITC post", are computed using the offline phase-detection 
method as reference, as used later on with the EEG measurements. The 
values under "ITC Reference" are computed with the input signal of the 
simulation as reference. We found a mean offset of the target phase of 
6.30∘ with a circular standard deviation of 19.83∘ for the 0 dB SNR. The 
signal replacement step increased the input-latency to a total of 

(8.32 ± 061) ms. 

3.2. Experiment 

We measured an input-latency during the experiment of (6.34 ± 63) 
ms between the issuing of a signal to the local parallel-port and its 
detection in Matlab. 

For the phase-locking conditions we achieved a circular mean phase 
offset of 3.50∘, and a circular standard deviation of 66.55∘, over all trials. 

To illustrate the phase-locking performance of the whole system we 
combined all phase-selective trials into one plot (Fig. 4) by subtracting 
the target phase. This figure incorporates both the offsets in the mean 
angle between the single participants, and the variation around it. 
Therefore, the ITC of all trials combined, as shown in Fig. 4, is smaller 
with 0.373 than the average of the ITCs from each participant (Table 2) 
with 0.394. 

We checked the efficacy of the phase-locking system by testing the 
resulting phase distribution as detailed above for deviation from the 
uniform distribution using Rao’s test for circular uniformity (R version 
3.4.3, and the CircStats package version 0.2.6). Significant deviations 
from the uniform distribution were found for both phase-specific con-
ditions, and no significant deviation for the random case [A: p = <

0.001, B: p = < 0.001, Random: p = > 0.10]. 
Then we computed ITC values to measure the precision of the system 

(summarized in Table 2). One-way ANOVA was conducted to compare 
the phase locking for the 3 conditions. Normality checks and Levene’s 
test were carried out and the assumptions met using a significance level 
of 0.05. There is a significant difference in the mean ITC [F(2, 27) 

Fig. 3. Benchmark simulation using a 4–8 Hz 
linear 1000 s chirp signal to compare our Fit-
Sine method against the AR based algorithm 
using input buffer lengths of 100 ms (solid 
lines), and 300 ms (dashed lines). Blue traces 
correspond to FitSine, green to AR based. Pre-
diction windows of 10 ms, 25 ms, and 34 ms 
are shown using markers (none, circle, cross). 
Top: Inter-Trial-Coherence (ITC), Middle: Phase 
offset in degrees between the target angle and 
the mean angle at the predicted time point in 
the future, Bottom: Circular standard deviation 
of the phase at the predicted time point.   

Table 1 
Inter Trial Coherence (ITC) values for target angles at 0∘ (A) and 180∘ (B) using 
simulated oscillations with a range of signal to noise (SNR) ratios. Oscillations 
were simulated using 100 ms sequences of a 10 kHz sampled 6 Hz sine wave 
with added white Gaussian noise. ITC Post: ITC values calculated using the off- 
line method. ITC Reference: ITC values using the original sine wave as reference.   

ITC Post ITC Reference 

SNR A B A B 

10 dB  0.9931  0.9940  0.9932  0.9940 
0 dB  0.9604  0.9676  0.9599  0.9669 
-10 dB  0.8883  0.8773  0.8845  0.8721 
-20 dB  0.7555  0.7771  0.7406  0.7611 
-50 dB  0.3811  0.3027  0.1008  0.0061  
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= 40.37, p = 7.69 × 10− 9] between the conditions. Post hoc compari-
sons using Tukey’s test shows a significant difference between the phase- 
locked conditions (A and B) and random: A vs. random 
(p = 39.03 × 10− 9) and B vs. random (p = 128.36 × 10− 9). There is no 
significant difference in the ITC between the two phase-locked condi-
tions (p = 0.87). 

The phase locking for all participants is shown in Fig. 5 using polar 
histograms. We used Bold lines to indicate the target angles, the used 
target angles and the resulting ITC values are listed in Table 2. 

4. Discussion 

By using a sine wave fitting procedure to raw EEG signals, we were 
able to lock visual stimulus presentation to any phase angle within the 
theta cycle. Our system makes no constraints on the target phase such as 
approaches based on peak or level detectors. This allows prospective 
testing of hypotheses derived from correlative evidence concerning 
arbitrary theta phases. 

This was achieved using efficient computing combined with 
commercially available equipment consisting of an EEG-amplifier, a 
monitor, and a computer. Such a closed-loop visual stimulation system 

in the theta band using surface electrodes in humans is to our knowledge 
unprecedented. A great number of post-hoc analysis of stimulus timing 
in rodents, monkeys, and humans demonstrated that the location of a 
stimulus within an oscillatory cycle critically determines synaptic plas-
ticity (Law and Stan Leung, 2018; Teyler et al., 2005; Hyman et al., 
2003; Christian et al., 1997), memory formation and memory retrieval 
(Klimesch, 2012; Jensen and Mazaheri, 2010; Kaiser and Lutzenberger, 
2005; Osipova et al., 2008; Lisman and Idiart, 1995; Tseng et al., 2018; 
Reinhart and Nguyen, 2019; Solomon et al., 2017). 

Our phase prediction method allows for phase-locked visual stimu-
lation in the theta range. The phase difference between the target and 
stimulus angle is illustrated in Fig. 4 where a clear clustering of the 
stimuli around 0◦ is visible. The clear clustering around the target angle 
is also visible in Fig. 5 for the single participants. The averaged ITC value 
for the phase-locked condition in each subject is bigger than the biggest 
ITC value for random stimulation, indicating a successful phase locking 
on the subject level. 

We consider the mean phase offset of 3.5◦ as small compared to the 
much larger variability of the phase offset in individual trials (standard 
deviation = 70◦). This relatively high accuracy is possible since we do 
not induce systematic errors with non-zero-phase filters. The frequency 
dependent phase shift of such filters cannot be compensated as the fre-
quency varies between participants and also during the recording. On a 
trial by trial basis the target offsets were variable with a standard de-
viation of 70◦. In Fig. 3 we show that the low SNR is the primary cause of 
this variability. 

The mean angle close to 0 of the AR method should only be inter-
preted in combination with the circular standard deviation, as the 
averaging over the frequency sweep leads to a cancellation of the sys-
tematic offsets between 45◦ at 4 Hz and − 45◦ at 8 Hz introduced by the 
second order IIR filter. The ITC value is a pure precision metric and does 
not report accuracy metrics for which we use the mean phase offset. 

We limited the usage of past data to a short sequence of 100 ms. The 
goal of this is to prevent event related potentials and artefacts from 
previous trials from influencing the phase prediction when using short 
inter-trial intervals. In contrast to the iterative prediction procedure of 
the AR method the computation time for the phase estimation with 
FitSine is independent of the prediction window. Comparing the total 
time of all required computation steps for 10 ms prediction, our 
approach of using sine fitting to raw EEG signal in combination with pre- 
computation resulted in a 50 times smaller computation time than the 
AR based method (133 μs vs. 6.57 ms). 

We arbitrarily selected a frequency resolution of 0.1 Hz, leading to 
41 discrete frequencies for the evaluation of the fit. The quantification 
error we introduce with this 0.1 Hz step size leads to an angular error of 
maximally 0.18◦, which is insignificant in comparison to other sources 
of errors in the system. We refrained from using less frequencies as the 
gain in computational time would be negligible compared to the input 
delay which is in the millisecond range. As the FitSine algorithms only 
requires matrix multiplications, it can be easily and efficiently imple-
mented on a wide range of hardware and software platforms. 

More sophisticated models such as the AR-20 method may model the 
dynamics of a signal with more complexity than our FitSine procedure 
and could thus achieve a better prediction. However, in our case the AR- 
20 cannot be applied on unfiltered raw signals. In the design of the filter 
required to pre-process the signal for the AR method compromises be-
tween filter-steepness, group-delay, and non-linear phase-transfer 
properties have to be weighed against each other for online processing 
(Widmann et al., 2015). For example, the second-order IIR filter used in 
the Benchmark simulation introduces a phase shift of ∓ 45◦ between 4 
and 8 Hz. Digital filters with less degrading properties are possible, but 
are of higher order and their associated group delay largely outweighs 
the better prediction performance of AR models, as the introduced delay 
has to be compensated for by increasing the prediction interval. 

The fast computation in combination with the measured input delay 
of our setup of less than 7 ms allowed us to use a basic representation of 

Fig. 4. Distribution on the phase offsets of all trials from all participants 
(N = 10). The depicted distribution has a circular mean angle of 3.50∘, a cir-
cular standard deviation of 66.55∘, and an ITC value of 0.373. 

Table 2 
Inter Trial Coherence (ITC) values for all subjects with the individual target 
angle in condition A and a target angle 180∘ apart in condition B. ITC values for 
random stimulation are also shown.   

Target (◦) ITC 

Subject A B A B Random 

ID1  290  110  0.3311  0.3728  0.0709 
ID2  220  40  0.2747  0.1667  0.1766 
ID3  220  40  0.3164  0.3789  0.0189 
ID4  150  330  0.1783  0.2082  0.1338 
ID5  270  90  0.2333  0.4876  0.1640 
ID6  10  190  0.2351  0.3968  0.0536 
ID7  70  250  0.3369  0.3416  0.1633 
ID8  135  315  0.4934  0.3816  0.0596 
ID9  350  170  0.3718  0.4512  0.1756 
ID10  120  300  0.5434  0.4119  0.0723  
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the signal for the required prediction window. With the AR model we 
were not able to achieve a whole system delay below the 10 ms used in 
the simulation due to a significantly higher computation time. In Fig. 3 
we showed the influence of different prediction times on the phase- 
locking performance. 

The 10 ms prediction with the AR method would therefore not be 
possible using our setup. Due to the closed loop, our setup allows to 
adapt to variable latencies in the system, as shown in the hardware-in- 
the-loop simulation. 

A general limitation in the analysis of EEG-signals is the lack of a 
ground truth signal. The theta band we used in this experiment has a low 
SNR, and the values we used for evaluation might be corrupted by noise. 
Tests with simulated signals showed that our used post-hoc comparison 
signal is valid at least up to a SNR of − 20 dB. Table 1 shows that we 
were not able to reliably reconstruct the signals below a SNR of − 20 dB, 
neither with the FitSine nor the FIR-filter. Better performance in the 
synthetic test case could be achieved by choosing longer sequences of 
past data, which leads to an improvement of the SNR due to the un-
correlated nature of the noise. 

EEG recordings are noisy and analysis usually involves different 
filtering and signal processing steps. Filtering introduces artefacts which 
vary with window size, and filter-type (Vanrullen, 2011; Widmann and 
Schröger, 2012). Such artefacts are particularly problematic if the same 
filters are used in the online prediction and in the post-hoc analysis to 
determine the performance of the algorithm. Given that we have used 
sine wave fitting and extrapolation on the raw signal for the prediction, 
and then used a classical FIR filter in the post-hoc analysis procedure, we 
believe that artefacts and bias we may have introduced in the prediction 
should not propagate through the post-hoc analysis part. 

Our FitSine approach can also be applied to frequency bands other 
than theta. In an unpublished and unreviewed pilot study with 9 par-
ticipants we used the same protocol in the alpha range, and measured an 
average ITC of (0.57 ± 0.16). We attribute the significantly better 
phase-locking performance to the higher SNR in the alpha band for 
surface EEG signals (see Fig. 3 for the dependency between SNR and the 
ITC). 

An analysis of the impact of a phase-specific visual stimulus on the 
corresponding psychophysical response will be the scope of future 
publication. 

In conclusion we show a relatively simple way of providing visual 
stimuli at a specific oscillatory phase of a cortical theta cycle. 
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