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Abstract

The intestinal microbiome plays a central role in human health and disease. While its com-

position is relatively stable throughout adulthood, the microbial balance starts to decrease in

later life stages. Thus, in order to maintain a good quality of life, including the prevention of

age-associated diseases in the elderly, it is important to understand the dynamics of the

intestinal microbiome. In this study, stool samples of 278 participants were sequenced by

whole metagenome shotgun sequencing and their taxonomic and functional profiles charac-

terized. The two age groups, below65 and above65, could be separated based on taxo-

nomic and associated functional features using Multivariate Association of Linear Models. In

a second approach, through machine learning, biomarkers connecting the intestinal micro-

biome with age were identified. These results reflect the importance to select age-matched

study groups for unbiased metagenomic data analysis and the possibility to generate robust

data by applying independent algorithms for data analysis. Furthermore, since the intestinal

microbiome can be modulated by antibiotics and probiotics, the data of this study may have

implications on preventive strategies of age-associated degradation processes and dis-

eases by microbiome-altering interventions.

Introduction

Genetic diversity between humans does not only arise from allele frequency differences of

shared human genes, but also from the vast number of genetic and metabolic diversity in intes-

tinal microbial communities. The human intestinal microbiome is a complex system consist-

ing of trillions of microorganisms that contribute to numerous functions of the host.

Fermentation of indigestible food components, stimulation and regulation of the immune sys-

tem, strengthening of the intestinal barrier and protection against pathogens [1] are some of

the key functions of the intestinal microbiome. Despite its crucial role in human health, the
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composition of the intestinal microbiome is not uniform between individuals and populations

[2]. Although there are significant differences in relative abundances of bacteria between indi-

viduals, the phyla Bacteroidetes, Firmicutes and Proteobacteria seem to dominate the composi-

tion in almost all individuals [3]. However, despite being able to remain stable over decades in

an individual [4], the composition of the human intestinal microbiome is influenced by several

factors, including the genetic background, gut architecture, immune system, body mass index

(BMI), diet, life style, antibiotics intake, disease and age [5].

With increasing age, physiological functions of human organs start to gradually decrease

[6], making them prone to infections and diseases and leading to a higher mortality risk in the

elderly population [7, 8]. The gastrointestinal tract is also vulnerable to this aging process.

Thus, understanding its age-related dynamics may be crucial for disease prevention in the

elderly. The influence of age on the microbial composition in the gut has been investigated in

many studies for over a decade [9–13]. The most noticeable feature in the microbiota of elderly

individuals is an altered ratio of Firmicutes to Bacteroidetes, with an increased proportion of

Bacteroidetes in the elderly [10]. This ratio has been shown to be of significant relevance in sev-

eral disease states [14] and seems to be not only an effect of the current age, but can, in turn,

have an impact on the ageing process itself [15, 16].

In this study, we aimed to investigate age-associated changes in the intestinal microbial

composition and in microbial functional profiles. Stool samples of 278 participants were

sequenced and analyzed using two independent approaches to identify associations between

microbial abundances as well as functional profiles and age. In contrast to many previous stud-

ies, whole metagenome shotgun sequencing instead of 16S ribosomal RNA sequencing was

applied, allowing the identification of archaea, viruses and eukaryotes in addition to bacteria.

Since the stability of the intestinal microbiome diminishes between an age of 63 and 76 years

[12, 13], we set a threshold of 65 years to divide the cohort into two sex-matched age groups

below65 and above65.

Materials and methods

Study design and recruitment

Participants (n = 278) were recruited from the Department of Ophthalmology at the Univer-

sity Hospital Bern (Inselspital), Switzerland. The study follows the ethical principles for medi-

cal research found in the Declaration of Helsinki and was approved by the Ethics Committee

of the Canton of Bern (Clinical-Trails.gov: NCT02438111). After receiving oral and written

information, all participants signed the informed consent prior to participation. We tested for

differences between study groups in a range of demographic values using either Welch’s t-test

(for age and BMI) or Fisher’s exact test (for sex and smoking; Table 1). Exclusion criteria were

chronic inflammatory and gastrointestinal diseases (including previous surgery in the gastro-

intestinal tract) as well as systemic antibiotic treatment within the last three months. All partic-

ipants were Caucasian and were 18 years of age or older.

Sample collection, data sequencing and quality control

Chilled stool samples were collected and delivered in an aerobic environment and brought to

the laboratory within 16 hours after defecation. Upon arrival, they were immediately frozen at

-20˚C. Following the manufacture’s protocol, the PSP1Spin Stool DNA Plus kit (Stratec Bio-

medical AG, Beringen, Switzerland) with an integrated RNA digestion step using 100 mg/ml

RNase A (Qiagen, Homberchtikon, Switzerland) was used to isolate metagenomic DNA from

up to 200 mg stool sample. Whole metagenome shotgun sequencing was performed at BGI

Europe (Copenhagen N, Denmark) and the Next Generation Sequencing Platform of the
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University of Bern, Switzerland. For library preparation, the TruSeq DNA PCR-Free Library

Preparation kit was used. Cluster generation and sequencing were done following standard

pipelines of Illumina HiSeq 3000 platforms, resulting in 150bp paired-end reads. Quality filter-

ing was performed using Trimmomatic v.0.32 to remove adapter sequences and reads shorter

than 70bp and to trim low-quality bases from both ends [17]. Resulting reads were mapped

against hg19 human reference genome to identify sequences of human origin using Bowtie2

(v.2.2.4) [18]. Reads of human origin were excluded, resulting in non-human, high-quality

reads for further analysis.

Microbial and functional profiling of the intestinal microbiomes

The Metagenomic Phylogenetic Analysis tool (MetaPhlAn2, v.2.0–2.6.0) [19] and the marker

database (v.20) using default settings were used to perform metagenomic profiling by mapping

non-human high-quality reads to a set of clade-specific markers. Alignment was performed

using Bowtie2 (v.2.2.4) followed by normalization of the total number of reads in each clade

divided by the nucleotide length of its marker, resulting in the relative abundance of each taxo-

nomic unit.

To detect the metabolic potential of the gut microbiome, the HMP (Human Microbiome

Project [20]) Unified Metabolic Analysis Network (HUMAnN2, v.0.2.1 – v.0.11.0) [21] was

applied for each sample separately with default settings based on the taxonomic profiles from

MetaPhlAn2. Mapping reads to ChocoPhlAn, a functionally annotated pan-genome database,

was performed with the help of Bowtie2 (v.2.2.4). To identify unmapped reads, Diamond

(v.0.8.37) [22] in combination with the universal protein reference database UniRef90 [23] was

used. The assignment of the resulting organism-specific gene hits to pathways was done

through maximum parsimony using MinPath (v.1.2) [24]. Using this information,

HUMAnN2 returned a list of genes and pathways and their relative abundances.

A Principle Component Analysis (PCA) between groups was computed and visualized

using the function prcomp (data, center = T, scale = T) [25] and the library factoextra in the R

software (version 3.6.0) [26]. PCA was performed for microbial abundances (Fig 3A) and path-

way abundances (Fig 3B). The p-value for separation was assessed by Permutation Multi-vari-

ate Analysis of Variance (PERMANOVA) with 10’000 iterations using the R package vegan51

[27]. To find age-related taxonomic and functional features, Multivariate Association of Linear

Models (MaAsLin) in the R package Maaslin (v.0.0.5) was used with default settings [28].

Moreover, associations of biological variables including sex and BMI with microbial and func-

tional abundances were analyzed with MaAsLin. Differences were considered to be significant

Table 1. Characterization of the study cohort.

Feature above 65 below 65 p-value

N 145 133

Sex (% male) 64 (44.1) 67 (50.4) 0.357

Age [years] (mean (SD), min, max 77.25 (6.32), 65.07, 92.94 49.69 (12.05), 19.55, 64.71 <0.001

BMI [kg/m2] (mean (SD)) 26.10 (4.54) 24.80 (4.44) 0.016

Smoker (%) 0.058

No 85 (58.6) 74 (55.6)

Previous 53 (36.6) 42 (31.6)

Yes 7 (4.8) 17 (12.8)

BMI = Body Mass Index [kg/m2]. Differences in BMI and age were calculated using Welch’s t-test, differences in sex

and smoking through Fisher’s exact test.

https://doi.org/10.1371/journal.pone.0258505.t001
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if the p-value< 0.05 and q-value< 0.2. MetaPhlAn2 abundance files were normalized by sum-

ming all values across all taxonomic levels for each participant followed by dividing each value

by this sum. Selection was performed by maintaining only the most specific taxa if abundances

of one clade of several taxonomic levels were identical for all participants.

Group separation by machine learning

A machine learning approach was used to investigate a potential separation of the study groups

below65 and above65 by their microbial and functional profiles and to find the main contribu-

tors of such a separation. Model selection for the best performing machine learning algorithm

of the dataset was done with the R libraries mlbench (v.2.1) [29] and caret (v.6.0–84) [30], test-

ing four common classification algorithms: CART (Classification and Regression Tree), SVM

(Supported Vector Machines), RF (Random Forest) and KNN (K nearest neighbor). The best

fitting model, R package randomForest (v.4.6–14), was consequentially used [31].

Parameter tuning of random forest was performed for mtry and nTree using random and

grid search as well as build in tools. The algorithm’s performance on the whole dataset using

10 fold cross validation was calculated using the package caret (v.6.0–84) [30]. Cross-validation

was repeated 10 times. Random forests performance was evaluated by fitting it on the training

set using the fitted model and the function predict of the random Forest package. Receiver

Operating Characteristic (ROC) curves were calculated using the R package ROCR (v.1.0–7)

[32]. Shrinkage Discriminant Analysis (SDA) based on Correlation Adjusted T-scores (CAT-

scores) was performed using the R package sda (v.1.3.7) [33]. A shrinkage CAT score between

the mean values of the groups was computed for each predictor variable. The ranking for each

feature was determined by a summary score (the weighted sum of squared CAT scores across

classes) using microbial and pathway abundances as input. Based on Gene Ontology (GO)

terms, functional features with top CAT scores were clustered using REVIGO [34].

Results

Taxonomic and functional characterization of the intestinal microbiota

To find associations of age with functional and compositional alterations in the intestinal

microbiome, the gut metagenomes of 278 study participants were sequenced. The cohort con-

sisted of 145 participants aged equal or above 65 years (above65) and 133 participants aged

below 65 years (below65) (Table 1). In total, 7.3 trillion 151 bp paired-end reads with an aver-

age of 26 ± 10.9 (SD) million reads per sample were generated. After trimming and filtering,

23 ± 9.9 (SD) million non-human high-quality reads per sample remained for further process-

ing. Overall, 99.43% of the reads mapped to the bacterial kingdom (99.88% in participants

below65, 99.01% in participants above65). Bacteroidetes and Firmicutes, followed by Proteobac-
teria and Actinobacteria were found to be the most abundant phyla (Fig 1B). Consistent with

previous studies, Bacteroidia and Clostridia were the most abundant classes in the cohort [35].

The dominating genera were Bacteroides, Alistipes followed by Subdoligranulum and Faecali-
bacterium. An unclassified Subdoligranulum species, Faecalibacterium prausnitzii, Alistipes
putredinis, Prevotella copri and Bacteroides uniformis were found to be the five most abundant

species in the cohort (S1 Table). To describe the metabolic functions of these identified taxa,

HUMAnN2 was applied on each sample separately, resulting in 793 assigned pathways.

Classification of the microbiota into enterotypes

In accordance with a previous study of Arumagam et al. [35], the intestinal microbiomes of

our cohort could be divided into three enterotypes of distinct microbial composition. Out of
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the computed Jenson-Shannon distance of the genus abundances, clustering was done with

Partitioning Around Medoids (PAM). The Calinski-Harabasz (CH) Index was used to deter-

mine that the optimal cluster number, i.e. returning the most robust partition of the dataset,

was three clusters. Combining the results of a PCA and clustering through Between Class

Analysis (BCA) resulted in graphical interpretation of the data in Fig 2A. In terms of abun-

dance Bacteroides, Prevotella and Subdoligranulum were found to be the dominating genera in

clusters 1, 2 and 3, respectively (Fig 2B). Applying Fisher’s exact test, subjects of group above65
were over-represented in enterotype 2 (p = 0.0012) and under-represented in enterotype 3

(p = 0.0036), supposing an age-dependency of the proposed enterotypes.

Age-dependent microbial and functional composition of the intestinal

microbiota

A PCA with age as grouping variable showed that differences in microbial species abundance

as well as in pathway abundance separated the two age groups above65 and below65 with PER-

MANOVA confirming a significant p-value of 0.0004 and 0.0006, respectively (10’000 itera-

tions; Fig 3A and 3B). To identify features that are different in relative abundance between the

groups, MaAsLin was applied on the taxonomically and functionally profiled metagenomes.

Out of the 20 identified taxa with age-dependence, 15 had a higher relative abundance in the

below65 group and five in the above65 group (Fig 3C). Moreover, while the intestinal micro-

biomes of subjects of the below65 group were enriched in genes of 248 pathways, microbiomes

Fig 1. Taxonomic characterization of the intestinal microbiome. Relative abundances of microbiota at phylum level

for each study subject (A) and averaged for study groups (B). Above65 (patients aged 65 years and above; n = 145),

below65 (patients below 65 years of age; n = 133).

https://doi.org/10.1371/journal.pone.0258505.g001
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Fig 2. Intestinal microbial enterotypes. (A) Based on the abundance of microbial genera, three enterotypes were

identified in the cohort using Between Class Analysis that visualizes results from Principal Component Analysis and

clustering. (B) The relative abundances of the proposed drivers of these three enterotypes, the genera Bacteroides,
Prevotella and Subdoligranulum, are shown for each subject.

https://doi.org/10.1371/journal.pone.0258505.g002

Fig 3. Distinct microbial and functional composition between age groups. Principal component analysis of (A)

microbial and (B) pathway abundances separated the two age groups above65 and below65 (PERMANOVA, 10’000

iterations). Blue color represents above65 (patients aged 65 years and above; n = 145), orange below65 (patients below

65 years of age; n = 133). (C) Correlation between taxonomic features and age (MaAsLin, q< 0.2). Positive

correlations (orange) imply higher abundance in below65, whereas negative correlations (blue) imply higher

abundance in above65.

https://doi.org/10.1371/journal.pone.0258505.g003
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of subjects of the above65 group were enriched in genes of 57 pathways (S2 Table). A boosting

step in the MaAsLin algorithm ensures that only metadata that are associated with the given

metagenomic feature are included in the model, implying that all associations detected by the

modeling approach have been corrected for all other confounding factors. However, the effect

of other biological variables including sex and BMI on the microbiome of this cohort was also

investigated, showing that only a subspecies of Bacteroidales bacterium ph8 was associated

with sex with higher abundances in females compared to males and that the BMI positively

correlated with the order Selenomonadales and negatively correlated with the family Rumino-
coccaceae. There was no association found between both, sex and BMI, and the functional pro-

files of the metagenomes in the cohort.

Allocation of subjects to age groups based on the intestinal microbiome

To further illustrate the age-dependency of the intestinal microbiome, machine learning

approaches were applied to identify potential biomarkers for the age groups. Model selection

of several common machine learning algorithms for classification revealed Random Forest as

most suitable for the data set since it showed significantly better performance for both, micro-

bial and pathway abundances, compared to the other algorithms tested (S1 Fig). Furthermore,

to increase the accuracy of Random Forest, hyperparameters were tuned, suggesting setting

the number of variables used in each split (mtry) to 11 and the number of generated trees in

the forest (nTree) to 2000 for taxonomic features and setting mtry to 26 and nTree to 2000 for

functional features, respectively. After tuning, the model was trained and evaluated by 10 fold

cross-validation (Table 2). While accuracies between 0.72 and 0.86 mean that between 72 and

86% of the features are classified correctly by the Random Forest approach, kappa between

0.44 and 0.71 indicates moderate to substantial agreement according to Landis and Koch [36].

To further assess the classifier’s performance, ROC curves were computed (Fig 4). With an

AUC of 0.91 for microbial abundances (Fig 4A) and 0.77 for pathway abundances (Fig 4B), the

discrimination capacities of the models to distinguish between age groups is good. Finally, to

identify those taxonomic and functional features contributing most to group separation,

shrinkage discriminant analysis based on CAT-scores was applied (Fig 5). According to mtry

in Random Forest, 11 bacterial groups (Fig 5A) and 26 pathways (Fig 5B) with the highest

CAT-scores were considered. GO term based clustering revealed that age-dependent func-

tional features of the microbiome are mainly involved in biosynthetic processes of heme,

sphingolipid,unsaturated fatty acids and nicotine catabolic process (Fig 6).

Discussion

In this study, the effects of age on the intestinal microbiome and its functional profile were

investigated. The intestinal microbiome is relatively stable during adulthood [4], but several

studies reported aberrations in older individuals [11, 37]. In accordance to previous studies

Table 2. Performance of random forest on microbial and pathway abundances.

Microbial abundances Pathway abundances

Sample size 278 277

Accuracy 0.755 0.724

Kappa 0.507 0.442

The model was evaluated by ten times repeated 10-fold cross-validation. Accuracy shows the number of correctly

classified features out of all features, while kappa depicts the accuracy normalized at the baseline of random chance

on the dataset.

https://doi.org/10.1371/journal.pone.0258505.t002
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[35, 38], the microbiomes in this cohort were dominated by the phyla Bacteriodetes and Firmi-
cutes (Fig 1). However, differences in relative abundances of microbes between the age groups

below65 and above65 compared in this study, have been identified by two independent

approaches, by MaAsLin (Fig 3C) and by machine learning algorithms using Random Forest

Fig 4. ROC curves for the random forest classifier for microbial abundances and pathway abundances. ROC

curves visualizing the Random Forest classifier for (A) microbial abundances and (B) pathway abundances. The group

above65 is represented in blue (patients aged 65 years and above; n = 145), the curve for below65 was omitted as its

information is redundant. AUC, area under the curve; ROC, receiver operating characteristic.

https://doi.org/10.1371/journal.pone.0258505.g004

Fig 5. Top 11 bacteria and top 26 pathways according to CAT-scores. The (A) top ranked 11 bacteria and (B) top

ranked 26 pathways according to CAT-scores. The length and direction of the blue bars indicate the influence of a

given biomarker on the discriminative power of the model. A: The order Burkholderiales within the class

Betaproteobacteria have the highest potential for separation of the age groups with a positive CAT-score indicating an

over-representation in the below65 group. While both, the family Enterobacteriaceae within the class

Gammaproteobacteria have a negative CAT-score indicating an over-representation in the above65 group. B: Most of

the pathways shown have a higher relative abundance in the elderly population with mandelate degradation (PWY-

1501) contributing most to group separation. above65: patients aged 65 years and above (n = 145), below65: patients

below 65 years of age (n = 133). CAT-scores, correlation adjusted T-scores.

https://doi.org/10.1371/journal.pone.0258505.g005
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(Fig 5A). Using PCA, the group separation may in part be due to outliers since most of the

data clusters together (Fig 3A and 3B). However, both approaches showed that the class Beta-
proteobacteria as well as its order Burkholderiales and the family Sutterellaceae including the

species Suturella wadsworthensis had a higher relative abundance in the below65 age group,

whereas the class Gammaproteobacteria and its family Enterobacteriaceae had a higher relative

abundance in the above65 age group compared to the respective other group.

Although being in relatively low abundance compared to Bacteriodetes and Firmicutes,
alterations in the phylum Proteobacteria may have a considerable effect on human health since

an elevated prevalence of Proteobacteria has been proposed as a diagnostic marker for an

unstable intestinal microbial community called dysbiosis and for risk of disease [38–40].

Moreover, the family Bifidobacteriaceae and its genus Bifidobacterium including the species

Bifidobacterium adolescentis were of higher relative abundance in the below65 compared to the

above 65 age group. Since it has been proposed in many studies that Bifidobacterium can be

used as probiotic to alleviate various disease by modulating the intestinal microbial composi-

tion [41], reduced Bifidobacteriaceae may be used as marker for dysbiosis and disease progres-

sion in the elderly. Furthermore, increasing proportions of Enterobacteriaceae as observed in

the above65 group, including Klebsiella spp., Enterobacter aerogenes and Escherichia coli, were

also observed in patients suffering from atherosclerotic cardiovascular disease [42]. Bacteria of

the genus Klebsiella have been observed in higher abundances in patients with hypertension

and pre-hypertension [43]. Thus, the family Enterobacteriaceae and especially its genus Klebsi-
ella may be a marker for disease in the elderly.

Fig 6. Scatterplot of the top 26 pathways based on GO terms. Cluster representatives (i.e. GO terms remaining after

redundancy reduction by REVIGO) are shown. Distances between bubbles represent the semantic similarities between

the GO terms, bubble position is determined by application of multidimensional scaling to a matrix of the GO terms’

semantic similarities (the lower the distance, the more similar the terms). The axes values have no intrinsic meaning.

Bubble size indicates the frequency of the GO term in the underlying GO database. Logarithmized CAT-scores are

visualized using a color gradient from red to blue. GO, gene ontology; CAT-scores, correlation adjusted T-scores.

https://doi.org/10.1371/journal.pone.0258505.g006
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Concerning taxonomic features, the two approaches applied for age group separation in

this study, resulted in similar results with some exceptions at low taxonomic levels. On the

level of functional features, machine learning algorithms assisted in reducing the data set into

pathways with the highest discriminative potential in the prediction model of the cohort.

Whereas MaAsLin resulted in 305 significantly different pathways between below65 and

above65 (S2 Table), the use of Random Forest approach allowed to reduce this list to the 26

pathways contributing most to group separation (Fig 5B). This shows that machine learning is

a powerful tool to find key differences in the data set. However, there are also disadvantages:

Unlike to simple p-value test, relevance scores used to highlight multivariate interacting effects

in machine learning approaches are usually difficult to interpret [44]. Moreover, through boot-

strapping of the dataset some samples may be lost due to random sampling, leading to possible

neglect of crucial data such as outliers. Using machine learning to develop classifiers for dis-

ease detection has the advantage in its non-invasive nature, but it is crucial to use attributes

resulting in classifiers with reasonable predictive value for disease instead of confounding vari-

ables [45]. Therefore, combining different approaches, termed hybrid machine learning, may

result in more stable and better predicting algorithms to detect potential biomarkers [46]. In

this study, only one machine learning approach (Random Forest that showed the best perfor-

mance in the prediction model, S1 Fig) was applied, but a second independent algorithm

based on linear models (MaAsLin) was used for data analysis. This may mutually exclude the

drawbacks of the two approaches and generate more robust results.

In this study, the highest discriminative power in the proposed model was attributed to 26

pathways that are mainly involved in biosynthetic processes of heme, sphingolipid, unsatu-

rated fatty acids and nicotine catabolic process (Fig 6). Many studies have shown associations

between the Firmicutes to Bacteroidetes ratio and several diseases such as obesity [47] and also

including age-dependent diseases such as age-related macular degeneration [48]. Since the

order Selenomonadales is part of the phylum Firmicutes, the positive correlation found

between Selemondales and the BMI in this cohort may point to these associations. Moreover,

the fatty acid profile is linked to various metabolic disorder including obesity [49]. Thus, there

may be an age-associated connection between the Firmicutes to Bacteroidetes ratio, fatty acid

synthesis and several diseases such as obesity. Molano et al. showed age-dependent changes in

the sphingolipid composition of immune cells, resulting in immune dysregulation [50]. Thus,

the age-dependent sphingolipid biosynthesis by gut microbes found in this study may be

linked to diminished functions of the immune system and associated diseases in the elderly.

Moreover, in agreement with our data, it has been shown in a murine model of Western diet

in the USA that the microbiome affects both, the plasma fatty acids and the liver sphingolipids

[51]. Since the heme metabolism may be altered in age-related diseases, probably involving

oxidative damage that is triggered by free heme, and since the biosynthesis of heme requires

Vitamin B6 [52], the age-dependent biosynthesis of both, heme and Vitamin B6, found in this

study may be a trigger for age-related diseases. Previous studies have shown that nicotine

exposure alters the intestinal microbiome secondary to diet [53] and in our cohort, we identi-

fied an age-associated nicotine catabolic process, supposing an altered degradation of nicotine

in the elderly in association with the taxonomic composition of the microbiome.

Conclusions

This study revealed taxonomic and functional features of the intestinal microbiome associated

with age and with a potential link to age-associated diseases in humans. Therefore, these results

may have important implications on preventive strategies for degenerative processes occurred

in the elderly by using microbiome-altering interventions. Given the significant differences
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found between the age groups in this study by two independent approaches, advising to use

age-matched groups for unbiased metagenomic data analysis in further studies and to consider

the drawbacks of the algorithms used for data analysis, thus, probably applying a second inde-

pendent approach to generate robust results.

Supporting information

S1 Table. Taxonomic characterization of the intestinal microbiome by MetaPhlAn2. The

most abundant phyla are highlighted in red, the most abundant classes in green, the dominat-

ing genera in purple and the most abundant species in yellow.

(XLSX)

S2 Table. Distinct functional composition between age groups. Correlation between func-

tional features and age (MaAsLin, q< 0.2). Positive correlations (orange) imply higher abun-

dance in below65, whereas negative correlations (blue) imply higher abundance in above65.

(XLSX)

S1 Fig. Model selection for machine learning algorithm based on microbial abundances.

RF, Random Forest; SVM, support vector machine; CART, Classification and Regression

Trees; KNN, K-Nearest Neighbor.

(TIF)
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