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Peptides, defined as sequences of amino acids up to approximately 50 residues in length, represent an extremely large
reservoir of potentially bioactive compounds, referred to here as the peptide chemical space. Recent advances in com-
puter hardware and software have led to a wide application of computational methods to explore this chemical space.
Here, we review different in silico approaches including structure-based design, genetic algorithms, and machine
learning. We also review the use of molecular fingerprints to sample virtual libraries and to visualize the peptide chem-
ical space. Finally, we present an overview of the known peptide chemical space in form of an interactive map
representing 40,531 peptides collected from eleven open-access peptide and peptide-containing databases, accessible
at https://tm.gdb.tools/map4/peptide_databases_tmap/. These peptides are displayed as TMAP (Tree-Map) according
to their molecular fingerprint similarity computed using MAP4, a MinHashed atom pair fingerprint well suited to an-

1. Introduction

Here, we define the peptide chemical space as the ensemble of all amino
acid sequences up to approximately 50 residues in length. The relevance of
this chemical space for medicine is evidenced by a large number of thera-
peutic peptides, in particular hormones and analogs such as insulin (1) or
the recently FDA-approved bremelanotide (2-4). Despite its size, the pep-
tide chemical space can be precisely defined through a list of amino acid
building blocks, usually the proteinogenic amino acids, and the length
and topologies of the peptide chains that are considered, which may be lin-
ear, cyclic, or branched.

Following the invention of solid-phase peptide synthesis (SPPS) and re-
combinant methods in molecular biology, a number of experimental ap-
proaches have been developed to search the peptide chemical space for
compounds binding to a specific molecular target by synthesizing and test-
ing large combinatorial libraries (5). More recently, advances in computer
hardware and software have made it possible to select bioactive peptides
by computational methods, thereby focusing experimental evaluation to a
selected set of test sequences, as well as to develop a global understanding
of the peptide chemical space by comparing all known bioactive peptides
with each other (6-10). In this review, we summarize recent advances in
computational peptide design. We classified computational design ap-
proaches as follows: a) structure-based design, where 3D-modeling of the
site of action guides the selection of test peptides; b) GA (genetic algo-
rithms), which select test peptides by iterative cycles of mutations and fit-
ness selection; ¢) ML (machine learning) methods, which exploit
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information on known bioactive peptides to propose new ones; and
d) molecular fingerprints, which focus on calculated molecular similarity
between peptide structures to enable a focused sampling (Figure 1). Finally,
we present an overview of the currently know chemical space of bioactive
peptides in form of an interactive chemical space map.

2. Structure-based design

If the 3D structure of the targeted site of action of the desired peptide is
known in advance, one can select potentially bioactive peptides by model-
ing their interactions with this site using docking and molecular dynamics.
This approach has been historically the first method to design bioactive
peptides computationally and has been extensively reviewed (11-15). A re-
cent example of this approach is the computational design of miniprotein
inhibitors of the SARS-CoV-2 spike protein ACE2 (Angiotensin-converting
enzyme 2) interaction stopping the viral entry into cells by Cao et al.
(16). The inhibitors were designed in silico using two different strategies.
First, a library of peptide sequences was designed using the Rosetta soft-
ware (17) to incorporate the ACE2 helix responsible for the most interac-
tion with the spike protein RDB (Receptor Binding Domain). Second, a set
of sequences was designed from scratch though large large-scale de novo
design of small helical scaffolds, followed by RIF (Rotamer Interaction
Field) docking with the spike protein RBD (receptor binding domain),
where RIF docking has the peculiarity of considering multiple conforma-
tions of the binding pocket (Figure 1A) (18).
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Figure 1. (A) The SARS-CoV-2 spike protein RBD (Receptor Binding Domain, green) binds ACE2 (Angiotensin-converting enzyme 2, pink), causing the virus to enter the cell.
The miniprotein LCB3 (blue) was designed to bind the RBD (green) and inhibit the interaction between RBD and ACE2. (B) Genetic algorithm workflow schematic and
classification based on the fitness function. (C) Example of an RNN (Recurrent Neural Network) architecture and sequences of the antimicrobial HHC-10 and HHC-36
discovered with this approach. (D) schematic representation of the sampling of a virtual library using molecular fingerprints.

Other recent examples of structure-based peptide design include the dis-
covery of cyclic peptides with high binding affinity to diverse influenza
strains through modeling based on antibody loops by Sevy et al. (14), and
the design of stapled peptides that activate the VapC complex of the Myco-
bacterium tuberculosis and lead to the arrest of bacterial cell growth by Kang
et al. (19). Structure-based design sometimes simply aims to identify pep-
tides that mimic the structure of a known bioactive peptide. A recent exam-
ple of this approach is the design of peptides that assemble into cross-a
amyloid-like structures by Zhang et al. (20).

3. Genetic algorithms

A GA is a search algorithm inspired by the evolution theory, which op-
timizes a population of solutions toward a given goal through iterative cy-
cles of mutations and selection of the fittest solutions using a fitness
function (21). If the solutions searched by the algorithm are set to be pep-
tide sequences, GAs can be applied to find novel peptides (Figure 1B).

The fitness function of a peptide GA can be based on calculated proper-
ties. In 2003, Teixido et al. used a GA to identify peptides capable of cross-
ing the BBB (blood-brain barrier) with a fitness function based on a set of
descriptors comprising molecular weight, length, amphiphilicity, isoelec-
tric point, LogP, secondary structure, presence of aromatic and positive res-
idues, potential hydrogen bonds, and the nature of C- and N-termini. The
ideal set of values for these descriptors was derived from a statistical anal-
ysis of the experimental data on peptide-BBB permeability (22). More

recently, Beltran and Brizuela used mean hydrophobicity, helical hydro-
phobic moment, net charge, and isoelectric point to design selective cat-
ionic antibacterial peptides (23). In another recent example of GA guided
by properties, Port et al. optimized a guava antimicrobial peptide using a
fitness function based on the ratio between hydrophobic moment and a-
helix propensity (24).

Predicted protein—peptide interactions can also be used as fitness func-
tion of a GA. In 2011, Knapp et al. optimized peptides for major histocom-
patibility complex binding using a GA and the consensus of five different
binding prediction methods in its fitness function (25). More recently,
King et al. discovered an a-conotoxin analog with optimal binding to the
a3p2-nicotinic acetylcholine receptor using a GA and an AutoDock-based
fitness function to guide their search (26).

The fitness function used to guide selection in a GA can also be esti-
mated with ML property prediction. For example, Fjell et al. used the pre-
diction of an artificial neural network to drive a GA toward active
antimicrobial peptides (27). Additional ML approaches are discussed in
the following sections. A further example of GA for peptide design
exploiting molecular fingerprint similarity as fitness function is discussed
below in Section 5.

It is also possible to use the feedback of experimental analysis to guide a
GA, as exemplified by Yoshida et al., who combined supervised ML with
in vitro testing as fitness function of a GA to optimize antimicrobial pep-
tides (28). Another recent example is the work of Neuhaus et al. (29).
Starting from known ACPs (anticancer peptides), these authors used a GA
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Figure 2. Molecular fingerprint-guided discovery of antimicrobial peptides. (A) Synthesis and virtual library design and selection of bp56. (B) Molecular dynamics studies of
bp56 in water with or without TFE (trifluoroethanol) to mimic the membrane environment reveals a dynamic conformation. (C) Optimization of antimicrobial peptide
dendrimer G3KL by virtual library enumeration, nearest neighbor selection, synthesis, and testing.
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coupled with in vitro testing to generate new ACPs with improved activity.
They showed that both the interaction with the membrane and the degree
of peptide dimerization were responsible for the anticancer activity.

4. Machine learning

ML approaches are used for two major tasks: property prediction and
generation of new sequences. For property prediction, one uses supervised
ML techniques, for which the task consists of mapping an input to a specific
output (Figure 1C) (30-35). The input can be not only the peptide sequence
itself but also descriptors, structure-based features, molecular fingerprints,
or a combination of the previous. The output of the ML model is usually a
label, such as active/inactive for a specific application. Property prediction
by ML requires a large amount of highly curated data, highlighting the im-
portance of manually curated peptide databases that collect sequence activ-
ity and toxicity.

The first example of this approach was reported in 2009 by Cherkasov
et al. with the discovery of two tryptophan- and arginine-rich antimicrobial
peptides, HHC-10 and HHC-36, which were more potent and shorter than
similar arginine-rich peptides found in Nature such as indolicidin
(Figure 1C) (36). These authors trained an artificial neural network classi-
fier with 44 QSAR descriptors to discern between antimicrobial and
nonantimicrobial peptides. They then used this trained neural network to
classify each peptide in a virtual library of 100,000 random nonapeptides
enriched with tryptophan, arginine, and lysine, as active or inactive. In a re-
cent example of this approach (37), Timmons and Hewage showed that one
can use supervised ML to train a neural network classifier to distinguish be-
tween hemolytic and nonhemolytic peptides at the example of peptides
from the DAASPDB and the Hemolytic databases (38).

The second application of ML consists of training generative models to
output new peptide sequences with specific characteristics. For example,
Miiller et al. recently reported an LSTM-RNN (long short-term memory re-
current neural network) capable of generating helical peptides with pre-
dicted antimicrobial activity (39). In a similar approach, Grisoni et al.
trained an LSTM-RNN to generate a-helical cationic amphipathic se-
quences, and then fine-tuned it using 26 known ACPs. Twelve of the
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proposed sequences were synthesized and ten showed the expected
membranolytic activity (40).

Classification and generative ML models can also be combined. For ex-
ample, Tucs et al. recently reported a GAN (Generative Adversarial Net-
work) to generate antimicrobial peptides (41). A GAN is a ML
architecture composed of an ML generative model and a discriminator,
which is generally an ML classifier, whereby both models are trained as a
pair. The task of the generator is to generate sequences resembling known
antimicrobial peptide sequences, while the task of the discriminator is to
distinguish between potential antimicrobial peptides and random
sequences.

5. Molecular fingerprints

We recently showed that one can discover bioactive peptides computa-
tionally in the absence of precise structural modeling by using molecular
fingerprint comparisons. This approach is well-known in small molecule
drug discovery (42), but still underexploited with peptides. We demon-
strated the feasibility of this approach by discovering antimicrobial bicyclic
peptides against the Gram-negative bacterium Pseudomonas aeruginosa and
its biofilms (43).

To discover active bicyclic peptides, we used a shape and
pharmacophore fingerprint called 2DP describing the relative positions of
cationic and hydrophobic groups, an important parameter for the targeted
membrane disruptive activity. The workflow comprised the following
steps: 1) establishing a SPPS protocol for bicyclic peptides comprising
nine variable positions; 2) enumerating a virtual library considering all pos-
sible combinations of lysine, leucine at the variable positions; 3) computing
2DP-fingerprint similarities between all pairs of bicyclic peptides and clus-
tering the virtual library to sample the overall diversity of the virtual li-
brary; and 4) synthesizing and testing a small set of sampled bicyclic
peptides. This approach led to the identification of a single active bicyclic
peptide, which we then optimized by synthesizing and testing further ana-
logs identified by 2DP-similarity searching in the virtual library
(Figure 1D).

Table 1

Peptide and peptide-containing databases publicly available and downloadable in bulk
Name Description Size® Web page Ref.
PDB® 3-D structural data of large biomolecules 8805 https://www.rcsb.org/ (62)
SwissProt® Sequences and functional information of peptides 9129 https://www.uniprot.org/ (63)

and proteins manually annotated

SATPdb¢ Therapeutic peptides 14,985 http://crdd.osdd.net/raghava/satpdb/ (64)
DBAASP® Antimicrobial peptides 10,999 https://dbaasp.org/ (65)
DRAMP® Antimicrobial peptides 3673 cpu-bioinfor.org (66)
AVPdb8® Antiviral peptides 1801 http://crdd.osdd.net/servers/avpdb/ 67)
SPdb" Signal peptides 2340 http://proline.bic.nus.edu.sg/spdb/ (68)
NeuroPedia Neuropeptides 392 http://proteomics.ucsd.edu/Software/NeuroPedia/ (69)
DADP Anuran defense peptides 743 http://split4.pmfst.hr/dadp/ (70)
Quorumpeps® Quorum sensing peptides 243 http://quorumpeps.ugent.be/ (71)
AntiAngioPred' Angiogenic peptides 197 http://clri.res.in/subramanian/tools/antiangiopred/index.htm] (72)
Total of peptidic entries constituted by 2 to 50 natural amino acids 53,307
Unique sequences collected across databases 40,531

# Number of unique peptidic entries constituted by 2 to 50 natural amino acids.
® PBD = Protein Data Bank.

¢ SwissProt = peptide sequences from the Uni-Prot database.

4 SATPdb = Structurally Annotated Therapeutic Peptides database.

¢ DBAASP = Database of Antimicrobial Activity and Structure of Peptides.
f DRAMP = Data Repository of Antimicrobial Peptides.

& AVPdb = Antiviral Peptide database.

b spdb = Signal Peptide database.

! NeuroPedia = Neuropeptides database and spectral library.

J DADP = Database of Anuran Defense Peptides.

k" Quorumpeps = Quorumpeps database.

! AntiAngioPred = Server for Prediction of Anti-Angiogenic Peptides.
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The virtual library of the above proof-of-concept experiment only com-
prised 6230 different bicyclic peptides. In a subsequent project, we applied
the same approach to a differently designed and much larger virtual library
of 4.7 million bicyclic peptides and identified the cysteine bridged bicyclic
peptide bp50 and its D-enantiomer bp56 as potent antimicrobial peptides
against multidrug-resistant strains of Acinetobacter baumannii and
P. aeruginosa (Figure 2A) (44). Note that membrane disruptive peptides
are generally conformationally flexible and that this conformational flexi-
bility is necessary for their activity (45). Indeed, molecular dynamics

2 I 7l 50

Sequence length
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studies and CD spectra suggest that bp56 exists in a dynamic equilibrium
between a [3-sheet conformation in water and a partially a-helical amphi-
philic conformation in a membrane environment (Figure 2B).

Considering that our 2DP molecular fingerprint could be applied to any
type of peptide chain topology, we further implemented this fingerprint-
based approach to search for analogs of AMPD (antimicrobial peptide den-
drimer) G3KL, which contains a highly ramified peptide chain (46). This
AMPD kills a broad range of Gram-negative bacteria including multidrug-
resistant clinical isolates by a membrane disruptive mechanism with almost

[ 4

Annotated as antimicrobial or anticancer

Presentin 1 DB (31,827)
Present in 2 DBs (5,898)
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Figure 3. TMAP of the MAP4-encoded peptide databases space-colored according to (A) sequence length, (B) source database (DB, entries present in multiple databases were
assigned to the smallest one), (C) occurrences across databases, (D) antimicrobial and anticancer activity. Further colors based on different activity criteria are available, and

they can be found in the TMAP at https://tm.gdb.tools/map4/peptide_databases_tmap/.
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no resistance (47-49). G3KL exhibits angiogenic as well as antibiofilm
properties (50,51), and can act synergistically with small molecule antibi-
otics (52). By generating a virtual library of G3KL analogs and testing
2DP-nearest neighbors of G3KL, we identified AMPD T7 exhibiting en-
hanced serum stability and a broader activity spectrum (Figure 2C) (53). In-
terestingly, AMPD T7 corresponds to minor sequence changes at the
dendrimer core compared to G3KL, which were thought to be negligible
by design but turned out to have a major impact on antimicrobial activity.

We recently implemented molecular fingerprint similarity as a fitness
function in a GA called PDGA (peptide design genetic algorithm) capable
of generating peptides resembling any target molecule of choice. Because
the molecular fingerprint can be computed for any molecule of interest,
PDGA can generate peptide analogs of both peptides and nonpeptides. Fur-
thermore, PDGA operates with diverse peptide topologies including linear,
cyclic, or polycyclic peptides as well as peptide dendrimers. In a typical
PDGA run, all generated sequences above a defined molecular fingerprint
similarity threshold are identified as analogs. In a proof-of-principle com-
putation, we showed that PDGA generates known analogs of the cyclic pep-
tide tyrocidine A and peptide dendrimer G3KL (54).

6. Visualizing the peptide chemical space

The ability to compute similarities between peptides allows
representing the peptide chemical space in the form of maps in which dis-
tances represent similarities. Such maps provide an overview that helps to
perceive the structural diversity of peptides. In our first implementation
of this approach, we created an interactive map of the Protein Data Bank
chemical space based on computed 3D-shape similarities (55). However,
this representation was only applicable to macromolecules with known
3D structures such as those in the Protein Data Bank.

To represent peptide structural diversity in a general context, we have
used the molecular shape similarity fingerprint used above with PDGA to
compute similarities between molecules featured in the non-Lipinski part
of the ChEMBL and PubChem databases. These non-Lipinski subsets com-
prise 376,504 respectively 15,798,352 entries, 16% respectively 7% of
which contain a dipeptide substructure (56). These similarity comparisons
can be represented in interactive 3D maps displayed using Faerun (57), in
which each molecule appears as a point color-coded by a property of
choice, and its structure is displayed using Smilesdrawer (58).

More recently, we created a high-resolution molecular fingerprint
called MAP4 useful to analyze diverse molecular classes spanning from
small molecule drugs to metabolites, natural products, and macromolecules
including peptides, oligonucleotides, and complex carbohydrates (59). The
MAP4 fingerprint can be used in combination with the TMAP mapping tool
(60) to create insightful representations of molecular databases, as recently
shown for the case of the Natural Product Atlas (61).

For the present review, we have collected bioactive peptides from
eleven publicly accessible databases that cover a wide range of size and
scope (Table 1) (62-72). We considered 40,531 database entries corre-
sponding to sequences of between 2 and 50 natural amino acids, calculated
their SMILES representation using RDKit (73), and used this data to com-
pute a TMAP based on the MAP4 fingerprint. This map organizes peptides
by their size and sequence (Figure 3A, https://tm.gdb.tools/map4/peptide_
databases_tmap/). The map colored by source activity type illustrates that
the largest fraction of peptides in these databases (17,260 sequences, 43%
of the total) are annotated as antimicrobial and anticancer, and stem from
the DBAASP, DRAMP, AVPdb, and the antimicrobial and anticancer sec-
tions of the SATPdb (Figure 3B and online map). Color-coding the map by
the number of databases in which a peptide is listed shows that most pep-
tides (60%) occur only in one database, while 11% are present in two data-
bases, 3.4% in three, 1.4% in four, and less than 1% in five databases
(Figure 3C). Color-coding by database shows that several databases tend
to cover specific regions of the peptide chemical space, which is not surpris-
ing for activity-specific databases such as SPdb in which sequences have
limited diversity, but somewhat surprising for the peptides retrieved from
PDB (Figure 3D).

Medicine in Drug Discovery 9 (2021) 100081
7. Conclusion and outlook

In this review, we presented computational approaches to explore the
peptide chemical space. Structure-based designs are well-suited when de-
tailed information exists on the targeted site of action. On the other hand,
GAs have broader applicability since they can be used to design peptide se-
quences even if the targeted activity is not defined by a structure but more
generally by a set of properties. ML methods are similarly broad in their ap-
plicability but require a large number of known peptides with documented
activity to enable model training. Finally, molecular fingerprints can be
used to guide the sampling of large virtual peptide libraries as well as the
optimization of known actives. Molecular fingerprints furthermore allow
to compute maps that facilitate a global understanding of the peptide chem-
ical space. Most interestingly, GAs, ML, and molecular fingerprint-based
approaches are possible without detailed knowledge of the peptide
3D-structure and allow to explore diverse peptide chain topologies, also
incorporating nonnatural amino acids. Such computational methods can
play an enabling role in expanding the reach of peptides for therapeutic
applications.
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