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Abstract: Multidrug resistance infections are the main cause of failure in the pro-regenerative cell-
mediated therapy of burn wounds. The collagen-based matrices for delivery of cells could be potential
substrates to support bacterial growth and subsequent lysis of the collagen leading to a cell therapy
loss. In this article, we report the development of a new generation of cell therapy formulations with
the capacity to resist infections through the bactericidal effect of antimicrobial peptide dendrimers
and the anti-virulence effect of anti-quorum sensing MvfR (PqsR) system compounds, which are
incorporated into their formulation. Anti-quorum sensing compounds limit the pathogenicity and
antibiotic tolerance of pathogenic bacteria involved in the burn wound infections, by inhibiting their
virulence pathways. For the first time, we report a biological cell therapy dressing incorporating
live progenitor cells, antimicrobial peptide dendrimers, and anti-MvfR compounds, which exhibit
bactericidal and anti-virulence properties without compromising the viability of the progenitor cells.

Keywords: antimicrobial peptide dendrimers; quorum-sensing inhibitors; MvfR; PqsR; anti-infection
dressing; cell therapy; biological bandage; burn wound

1. Introduction

Loss of skin and immunosuppression following burns predispose patients to severe
infections [1], with more than 50% of deaths following burn injury attributed to infections
in the last decade [2]. The gold standard for the restoration of skin barrier after major
burns is autografting of split thickness intact skin to cover the burned zones. However,
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in patients suffering from large surface burn wounds, intact skin for autografting is not
available. Cultured epidermal autografts (CEAs), dermal regeneration templates (DRTs),
and various forms of regenerative cell therapies and bioengineered skin constructs are the
alternatives to autologous skin grafting to provide a permanent coverage of burn wounds
and promote healing. Burn wounds are rapidly colonized by bacteria originating from
the patient’s intact skin, gastrointestinal and respiratory flora, or external environment,
with the latter group being more resistant to antimicrobial agents [3,4]. The transition of
a colonized wound to an infected wound can happen in a permissive condition and is
characterized by an increase of bacterial counts from the threshold of 105 colony forming
units (CFUs) per gram of tissue and the appearance of clinical signs of infection [5]. While
the primary goal of the rapid and permanent coverage of burn wounds is to protect from
infections, these regenerative cell-based therapies have occasionally been a ground for the
initiation of infections in the clinic. In fact, infection of the DRTs and the graft site is a major
early complication associated with this type of treatment [6–8].

Collagen, as the most abundant extracellular protein of the dermis, is the most widely
used component of pro-regenerative DRTs and cell delivery matrices for the cell therapy
of burn wounds [9–12]. On the other hand, together with laminin, collagen is a target
for microbial adhesion, colonization and invasion of host tissue [13,14]. Staphylococcus
aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) are the most common bacteria
causing infection of DRTs [6,15], and burn wounds in general [16]. P. aeruginosa produces
endogenous proteases that degrade type I collagen [17–19] and indeed, increased bacterial
growth in the presence of collagen membranes has been reported [20]. Thus, the presence
of collagen can be a permissive factor for P. aeruginosa-initiated infections. This high risk
of infection in patients treated with pro-regenerative cell therapies and DRTs implies the
prescription of prophylactic pre- or post-operative antibiotics [21], increasing the risk
of developing antibiotic resistance in patients. The emergence of multidrug resistant
pathogens from burn infections is higher than other hospital-associated infections, which
significantly limits the available therapeutic options for the effective treatment of burn
wounds [1,22–24].

The development of antimicrobial scaffolds for burn wound regeneration is an active
research domain, including dermal substitutes incorporating nano-carriers loaded with
antibiotics for skin engineering [25] as an example. Replacement of classical antibiotics
by non-antibiotic antimicrobial agents in such formulations is currently considered as a
promising strategy to prevent infections and, at the same time minimizing the probability of
inducing antibiotic resistance in burn patients. Non-antibiotic antimicrobials are substances
that kill or stop the growth of bacteria, with a mechanism distinct from antibiotics. Unlike
antibiotics that have specific mechanism of action by targeting distinct/single metabolic
pathways, non-antibiotic antimicrobials have multiple molecular targets with non-specific
mode of action [26]. Therefore, there is less risk of developing drug resistance through
genetic mutations against these compounds [27].

Various non-antibiotic antibacterial compounds have been used to formulate scaffolds
for cutaneous tissue regeneration. Under-development products such as cellulose-based
biomaterial with mineral antimicrobials such as montmorillonite nanocomposites [28],
chitosan-based antibacterial scaffolds [29–31] and burn dressings incorporating metallic
antimicrobials such as silver nanoparticles [32–34] or other metallic antibacterial agents
such as gallium ions [35] have shown promise in promoting wound healing while exhibiting
antimicrobial properties.

Antimicrobial peptides (AMPs) are a key component of the innate immune sys-
tem [36,37] with high antimicrobial effect but poor proteolytic stability. The structure
of these molecules has been used as a model to develop synthetic analogues that mimic
the properties of AMPs [38,39]. These synthetic AMPs, anti-microbial peptide dendrimers
(AMPDs), exhibit increased activity due to their multivalent nature and resistance to
proteases [38]. AMPDs represent potent alternatives to antibiotics [40,41], with quick
and strong antimicrobial and antibiofilm activity against multiple Gram-positive and
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Gram-negative bacteria, including multidrug-resistant (MDR) microorganisms. There is no
evidence of inducing resistance by AMPDs compared to conventional antibiotics [42–44].

Targeting bacterial virulence is an attractive strategy for combating MDR infections
as it would disarm pathogens without affecting viability, thus reducing the selective
pressures driving resistance [45,46]. Quorum sensing (QS) is a process of bacterial cell–cell
communication through extracellular signaling molecules, to share information about
population density and regulate their gene expression accordingly [47]. QS is a regulatory
mechanism, crucial for the virulence, biofilm formation, and antibiotic resistance of many
pathogenic bacteria including P. aeruginosa [48–50]. Disrupting QS may therefore be an
effective strategy to combat recalcitrant infections. M59, a quorum sending inhibitor (QS-
inhibitor) compound, binds to the global virulence QS transcriptional regulator MvfR
(PqsR) and inhibits its activity, thereby blocks the transcription of a diverse array of
virulence factors in multi-drug resistant isolates [51]. Disrupting QS and consequently
bacterial virulence is therefore considered as an antimicrobial strategy combat recalcitrant
infections [52].

We have used pro-regenerative cell-based therapies consisting of clinical-grade pro-
genitor skin fibroblasts for burns and wounds for more than two decades [10,11,53–56].
These cell therapy biological bandages are used as the first cover for the treatment of
superficial to partial-thickness burns. The progenitor nature of these cells provides a rapid
scarless healing efficiency with no immunological rejection, thereby substantiating the
safety of application of the progenitor fibroblasts [12,57]. The first generation of these
cell therapies is now in an ongoing clinical trial in Asia (trial ID numbers NCT03624023
and NCT02737748). In this article, we report the formulation of the second generation of
these cell therapy dressings that, despite the usage of collagen as cell delivery matrix, is
resistant to infection. Thus, this advanced cell therapy dressing will promote healing not
only by providing the pro-regenerative factors delivered by progenitor skin fibroblasts,
but also by having an antibacterial effect on colonized wounds and preventing the onset
of infections. Since both wound colonization and infection hinder the process of wound
healing, our advanced formulations are expected to have potentiated pro-regenerative
effect on burn wounds. We used a dual targeting approach for our antibacterial strategy by
incorporating in the collagen-based delivery matrix of the progenitor skin fibroblasts, two
non-antibiotic antimicrobial compounds: the dendritic antibacterial peptide G3KL [58] and
the QS-inhibitor M59 [51] (Figure 1).
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Figure 1. Chemical structure and sequence of antimicrobial peptide dendrimers (G3KL) and QS-inhibitor compounds (M59
and M64) tested in the present study. G3KL; third-generation dendrimer. First, second, and third generation residues are
indicated in orange, blue, and black color, respectively. One letter codes for amino acids: (l, leucine; k, lysine). M95 and M64.

2. Results and Discussion
2.1. G3KL Has a Rapid Onset of Bactericidal Effect and Is Active against Clinical Isolates of
P. aeruginosa from Burn Wounds

Multi-drug resistant P. aeruginosa infections are the most common causes of mortality
in burn patients [1,16]. Thus, the antimicrobial compound to be incorporated in an ideal
anti-infection burn dressing must be active against P. aeruginosa clinical isolates from burn
wounds. We have recently synthesized a third-generation AMPD class, G3KL (Figure 1),
which is active against P. aeruginosa and A. baumannii laboratory strains [58] as well as a
broad panel of multidrug resistant clinical isolates of both of these pathogens [59], and
also carbapenemase producing clinical strains [38,59]. G3KL has low hemolytic activity
and exhibits excellent serum stability (half-life in human serum, [t1/2], of around 18 h),
and its antimicrobial activity against P. aeruginosa is retained in the presence of human
serum [58,60,61]. G3KL is active against both P. aeruginosa planktonic and biofilm cells at
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concentrations not toxic in vivo, which is comparable to Tobramycin [62]. The bacterici-
dal effect of G3KL is a result of its interactions with the negatively charged lipids of the
membrane, enabling its disruption with consequent rapid bacterial killing [58,63–65]. Of
great clinical significance for burn treatment, we have shown that G3KL is active against
polymyxin B resistant P. aeruginosa mutants and shows no detectable resistance selection
induction [66]. Moreover, we have evidenced the proangiogenic effect of G3KL, which
is crucial for the wound healing process [67]. We compared the bactericidal activity of
G3KL on clinical isolates of P. aeruginosa from burn wounds by performing susceptibility
assays on seven independent isolates from six burn patients and the PA14 as the reference
burn wound isolate (Figure 2A). All strains showed similar minimum inhibitory concen-
trations (MICs) for silver nitrate, the active ingredient of commonly used antibacterial
dressings applied on burn wounds. With the exception of isolate 26423, all isolates were
also susceptible to polymyxin B, which was used for comparison of the bactericidal activity
of G3KL. The MICs for G3KL were similar for all strains and in a similar range as for
polymyxin B (1 µg/mL for polymyxin and 4 µg/mL for G3KL), with the exception of
isolate 26423, which showed a four-fold decreased susceptibility to G3KL. Given the similar
MICs for PA14 (reference burn wound isolate) and the burn wound isolates from our
burn center, we used PA14 for the following experiments. Next, we assessed the kinetics
of the bactericidal effect of G3KL on PA14 and compared the results with silver nitrate
and polymyxin B, all compounds at concentrations corresponding to 4× their MICs. As
shown in Figure 2B, polymyxin B caused a 5 logs reduction in PA14 CFUs/mL after 20 h
incubation. Silver nitrate showed the rapid killing of PA14, with CFU counts dropping
below our detection limit (103 CFU/mL) within 3 h. G3KL displayed the most rapid killing
kinetics, reducing CFU counts below the detection limit after less than 1 h of incubation.
This rapid bactericidal effect is of great clinical significance in the treatment of burn wounds,
mainly because almost all burn wounds are colonized at the time of the application of
pro-regenerative biological dressings containing live cells. Therefore, rapid onset of the
bactericidal effect is crucial to prevent the damage to the cells that are delivered to the
wound bed by these dressings. Furthermore, since the delivery matrix for these cells is
collagen-based, and collagen is specifically prone to degradation by proteases produced by
P. aeruginosa [13,14,17–19], a rapid eradication of bacteria from the wound bed will preserve
the viability and integrity of biological bandages.
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2.2. Identifying the Cytocompatible Concentrations of AMPDs and QS-Inhibitors

The first generation of our cell therapy biological dressings was a combination of
live progenitor skin fibroblasts that are delivered to the wound bed using a biodegrad-
able collagen-based delivery matrix [10,12]. Our goal was to incorporate two classes of
antimicrobial compounds (AMPDs and QS-inhibitors) into the delivery matrix in order to
generate a novel generation of biological bandages with dual targeting of burn wound infec-
tions through contact killing and anti-virulence properties. We selected a third-generation
AMPD, G3KL, with a strong bactericidal effect against P. aeruginosa which is the main
pathogen causing multi drug resistance burn wound infections that also lead to chronic
wound infections due the formation of biofilm and antibiotic tolerant cells that contribute to
treatment failure. It is estimated that about 65% of all bacterial infections are associated with
bacterial biofilms [68]. Biofilm formation is an important reason for the failure of antibiotic
therapy and the development of resistance in bacteria [69]. The P. aeruginosa QS multiple
virulence factor regulator (MvfR), controls many acute and chronic virulence functions,
including the production pyoyanin and pyoverdine, and the formation of antibiotic tolerant
cells and biofilm [50,70,71]. We have recently shown that burn wound exudate increases
the production of pyocyanin and pyoverdin of P. aeruginosa [72]; therefore, anti-virulence
compounds that target MvfR could have a major impact on the prevention and control of
infections in burns [51]. For the formulation of our infection-resistant cell therapy dressings,
we assessed the effect and cytocompatibility of two synthetic compounds with a potent
inhibitory effect on the P. aeruginosa MvfR system; M59 and M64 (Figure 1) [51]. These two
first-generation potent quorum sensing inhibitors that do not alter bacterial cell viability or
growth, inhibit the P. aeruginosa virulence [51] by specifically binding and antagonizing
MvfR [73]. As a result, they disrupt the MvfR-dependent cell-to-cell communication and
MvfR-regulated virulence functions such as formation of antibiotic-tolerant bacteria and
biofilms [74].

Our selected antimicrobial compounds (G3KL, M59/M64) should preserve their
activity after being incorporated into the collagen matrix in concentrations that do not
affect the viability of the progenitor fibroblasts that are co-delivered with them onto the
wound bed. First, we determined the cytocompatible concentrations of these compounds.
The viability of progenitor skin fibroblasts incubated with AMPDs and QS-inhibitors for
24 and 48 h was assessed by measuring the mitochondrial activity of cells using an [3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. We assessed the
cytocompatibility of different analogs of G3KL (Supplementary Figure S1). We observed
that the acetate salt of G3KL at 100 µg/mL did not affect the viability of cells at 24 and
48 h (Figure 3A), therefore, we selected the acetate salt of G3KL (G3KL hereafter) as
the AMPD of choice for the formulation of antibacterial bandages. We also tested the
cytocompatibility of our two QS-inhibitors, M64 and M59 [51]. M64 induced massive cell
death in our progenitor fibroblast cultures, but M59 at concentrations below 20 µM did
not alter the viability or morphology of progenitor fibroblasts (Figures 3B,C and 4). M59 at
20 µM did not have strong toxicity on cells but induced a clear morphology change. We
used polymyxin B and silver nitrate (AgNO3) as controls for anti-P. aeruginosa activity
of the new formulations. AgNO3 had a strong toxic effect on the progenitor fibroblasts,
but polymyxin B did not affect the viability of cells (Figure 3A). We also assessed the
effect of a combination of non-cytotoxic concentrations of G3KL and M59 on the viability
of progenitor fibroblasts. No cytotoxicity was observed when cells were treated with a
combination of G3KL (100 µg/mL) and M59 (5 and 10 µM) (Figure 3D).
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** p ≤ 0.01, *** p ≤ 0.001.
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Figure 4. Assessment of the viability and morphology (Live/Dead assay) of human progenitor fibroblast cells incubated
with different antimicrobial compounds. Cells were cultured for 24 h in the presence of G3KL or QS-inhibitors (M64 and
M59). Higher concentration M64 and M59 induced death and morphological changes in cells. M59 did not induce cell death
or morphology changes at concentrations below 20 µM. Live cells are stained green and dead cells are stained red.
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2.3. Identifying the Best Matrix for the Delivery of G3KL and Progenitor Skin Cells to
Burn Wounds

Microbes colonize all open wounds even in the absence of clinical signs of infec-
tion [75]. Therefore, any kind of wound dressing or cell therapies are applied on an already
colonized microenvironment. Thus, an ideal wound dressing should exhibit both anti-
infective and wound healing accelerating properties. G3KL, is an excellent candidate for
preventing infections on wound sites. However, as AMPDs are a new class of antimicrobial
compounds, there is no translational report on their delivery strategies for their application
on wounds [76]. We use solid collagen-based delivery matrices for formulating the first
generation of our proregenerative cell therapy dressings. Collagen is widely used in wound
dressings and skin substitute products but is also susceptible to degradation by P. aerugi-
nosa. For our new formulations, we sought to investigate other biopolymers as the delivery
matrix. We assessed the bactericidal properties and cytocompatibility of G3KL at non-toxic
concentrations after incorporation into two hydrogel formulations based on hyaluronic
acid (HA; Ostenil) and chitosan (KitoKit) and compared the results with our collagen-based
formulations. HA is a structural component of the extracellular matrix and is also widely
used in tissues engineering and wound dressings [77,78]. HA derivatives are biodegradable
and biocompatible and are involved in multiple biological functions, such as cell adhesion,
migration, and proliferation, crucial to the wound healing process [79]. Chitosan is also a
natural biomaterial with inherent antibacterial properties and is widely used in wound
dressings. Chitosan promotes wound healing through its immune-modulatory effect and
promotes fibroblast proliferation, migration, and ECM production [80,81]. G3KL retains its
antibacterial activity after being incorporated into the collagen matrix and induces a 5 folds
reduction in the bacterial load, retrieved from underneath the collagen-G3KL matrices
(Figure 5A). The co-incorporation of M95 with G3KL potentiates the bactericidal effect
of G3KL. Similar potentiating effect of M59 was observed for polymyxin B, which was
used as a positive control (Figure 5A). In addition to the retention of their antibacterial
effect after being incorporated into the collagen matrices, G3KL and M59 exhibited no
toxicity to progenitor skin fibroblasts which were co-incorporated into the collagen matrix
(Figure 5B).
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Figure 5. Assessment of the antibacterial effect and cytocompatibility of G3KL incorporated into
a collagen-based solid matrix. (A) CFUs retrieved under the collagen matrix incorporating only
progenitor cells, M59 (10 µM), G3KL (100 µg/mL), M59 (10 µM) and G3KL (100 µg/mL), polymyxin
B (PolyB; 12.5 µg/mL), PolyB (12.5 µg/mL) and M59 (10 µM). (B) Live/Dead cell viability assay for
progenitor cells seeded onto collagen matrix incorporating G3KL (100 µg/mL), or a combination
of M59 (10 µM) and G3KL (100 µg/mL). Live cells are stained green and dead cells are stained red.
Data are presented as the means ± SD (n = 3). p values were determined by unpaired Student’s test.
** p ≤ 0.01 *** p ≤ 0.001.
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Incorporation of G3KL into HA and chitosan did not abolish its antibacterial activity.
HA-G3KL exhibited a rapid bacteriostatic activity with a 6-fold reduction in bacterial
load after 24 h. G3KL-chitosan hydrogel showed a rapid and potent bactericidal effect
(Figure 6A), but both hydrogel composites highly affected the viability of progenitor cells.
As shown in Figure 6B and supplementary Figure S2, cells embedded in these hydrogels
did not survive following 24 h incubation at 37 ◦C.
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G3KL has a three-dimensional branched structure, and the charged end of the branches
act as functional groups for their non-specific antibacterial effect. There are 15 positive
charges in the structure of each G3KL molecule. The bacterial killing effect of G3KL is
through penetration into the bacterial membrane and causing the leakage of cytoplasmic
components leading to bacterial death [58]. We observed that fluorescently-labeled G3KL
is uptaken by the progenitor skin fibroblasts in 2D cultures, with no effect on the viability
of cells (Supplementary Figure S3). G3KL in the hydrated collagen matrix is not cytotoxic
either; therefore, the configuration of the molecule in polymeric hydrogels might confer
some toxic properties to G3KL. This toxicity is most probably independent of the charge
of the polymer hydrogel as HA has overall negative charges, and chitosan is positively
charged. Incorporation of G3KL in both turned to be cytotoxic. These experiments revealed
that collagen-based solid scaffolds could be used as a cytocompatible delivery matrix for
the G3KL (Figure 5B).

2.4. The Anti-Virulence Effect of QS-Inhibitor Compound M59 Is Retained When Embedded in the
Collagen Matrix

M59 is a potent anti-virulence compound through the inhibition of the MvfR pathway
in the QS system of P. aeruginosa. MvfR is a transcriptional regulator in P. aeruginosa
that modulates the expression of several QS-regulated virulence factors [82] including
pyocyanin [83]. Pyocyanin is a blue-green pigment and the green color of P. aeruginosa
cultures is a result of the secretion of this virulence factor into the environment. M59
has a strong inhibitory effect on the production of pyocyanin through the inhibition of
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MvfR [51,84], thus we used the presence or absence of the green pyocyanin color as a
read out for QS-inhibitory activity by M59 in our experiments. When incorporated into
the collagen matrix, M59 with concentrations higher than 10 µM inhibited pyocyanin
production, evidenced by the absence of green color from the matrix (Figure 7A,B, upper
panel, and data not shown).
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Figure 7. Antibacterial and anti-virulence properties of the final formulation of biological bandages
on collagen matrix incorporating progenitor fibroblasts. The biological bandages were assembled
with collagen matrix incorporating G3KL, M59, and progenitor fibroblasts. (A) The zone of growth
inhibition surrounding the bandage (clear rectangle zone surrounding the matrix) shows the bacteri-
cidal effect of the dressing. The brown halo around dressings incorporating M59 (red dotted circle)
shows the inhibition of pyocyanin expression. Only the formulating incorporating both G3KL and
M59 shows both the inhibition zone and the inhibition of pyocyanin expression (absence of green
color). (B) Images of matrices withdrawn from plates of panel (A). (C) Quantification of the zone
of inhibition for bacterial growth. Dark grey: minimal inhibitory zone size, light grey: maximal
inhibitory zone size.
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2.5. Scaleing up and Final Assembly of the Components of Novel Anti-Infection Cell
Therapy Dressings

The process of the assembly of the first generation of our biological bandages for
clinical use has been described previously ([12] and Figure 8A). Upon the admission of
major burn patients in our Burn Unit at Lausanne University Hospital (CHUV, Lausanne)
and if the patient meets the requirements to receive the progenitor cell therapy treatment
(detailed in [12]), the number of required dressings to cover the burn wounds is estimated
by the treating medical doctor, and the order is placed to the GMP cell production facility.
Upon the reception of the production order, allogenic progenitor skin fibroblasts are
withdrawn from the GMP clinical cell bank [85] and thawed for direct seeding on the
solid collagen-based delivery matrix. Cells are washed after thawing and resuspended in
a freshly prepared complete DMEM medium. The viability of cells is determined and if
more than 80% viable cells are available, the batch is released for the construction of the
biological bandages. Cells are diluted to 105 total cells/mL and homogenously seeded on
preconditioned collagen scaffolds. The constructs (biological bandages) will be incubated
for 24 h at 37 ◦C before multiple washes and transfer to the operating room for clinical
application on burn wounds ([12] and Figure 8A).
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Following the same procedure for incorporating cells into the collagen delivery matrix,
we explored multiple scenarios for embedding the antibacterial components into the
biological bandages for our new formulations. We assessed the antibacterial activity
of fully assembled next-generation dressings after suspending the M59 and G3KL at
cytocompatible concentrations (10 µM and 100 µg/mL respectively) in pre-incubation wash
solutions, overnight incubation solution, post-overnight incubation wash solutions. The
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suspension of antibacterial compounds in the overnight incubation solution yielded good
incorporation of compounds into the construct and the retention of activity, evidenced
by the formation of growth inhibition zone and blocking the expression of pyocyanin
(Figure 7B and data not shown). However, to achieve the desired concentrations of the
M59 and G3KL, large amounts of compounds were needed. Therefore, we tried a 20 min
incubation (soaking under gentle agitation) of constructs in PBS containing M59 and G3KL
after the overnight incubation and wash processes at the last step of the assembly. We also
determined the minimum soaking volume and found that a minimum of 0.5 mL soaking
suspension per cm2 of collagen matrix surface is needed to obtain adequate incorporation
of antibacterial compounds into the delivery matrix. We assembled the new anti-infection
cell therapy dressings under the new established protocol and assessed their antibacterial
efficacy against the PA14 clinical strain (Figure 7A,B). As predicted, the collagen scaffolds
devoid of G3KL, got digested by the activity of proteinase enzymes of P. aeruginosa. As
shown in Figure 7B (upper panel), the digested matrix had lost its integrity upon retrieval
from the surface of the PA14 solid culture. The presence of M59 alone did not prevent
the infection and degradation of the collagen matrix but prevented the production of
pyocyanin, as evidenced by the absence of green color as compared to control collagen
matrix (Figure 7B, upper panel). In contrast, the incorporation of G3KL prevented the
infection and degradation of the dressings, as the intact matrix could be retrieved from
the PA14 culture (Figure 7B, middle panel). The bacterial growth inhibition zone around
the dressings containing G3KL and the absence of green color shows the anti-infective
properties of the new generation of dressings. The antibacterial activity is comparable with
polymyxin B incorporated dressings (Figure 7A,C).

Multiple repetitions of these experiments confirmed that the explained process for
constructing the new anti-infection dressings (Figure 8B) is effective and efficiently prevents
the infection of the collagen-based cell therapy scaffold and has a contact-killing and anti-
virulence effect on the P. aeruginosa clinical isolate, PA14. Taken together, using a stepwise
approach, we designed a second generation of pro-regenerative cell-mediated therapies
that successfully deliver within the burn wound anti-bacterial as well as anti-virulence
mediators. The final formulations of theses dressings are currently, under investigation
in vivo, in minipig model of burn wound infection and we expect them to reach the bedside
in the next years.

3. Materials and Methods
3.1. Bacterial Strains, Clinical Grade Human Fibroblast Cells, and Chemicals

P. aeruginosa PA14 strain was kindly provided by the laboratory of Prof. L G Rahme,
University of Harvard and used as a reference strain. The clinical burn wound isolates were
collected from patients hospitalized between 2012–2014 at the CHUV (kindly provided by
D. Blanc, CHUV). If not otherwise stated, the bacterial strain was cultured in LB medium
at 37 ◦C with shaking (250 rpm). The Antimicrobial Peptide Dendrimers (AMPDs) were
provided by the University of Bern (Prof. JL Reymond; [58]. The quorum sensing inhibitors
(M59 and M64) were provided by the University of Harvard (Prof. L G Rahme; [51]).
Silver nitrate (AgNO3) and polymyxin B were purchased from SIGMA-Aldrich (Buchs,
Switzerland). Human skin progenitor fibroblasts were obtained from a registered primary
cell bank (FE002-SK2, used for experimentation between passage 2 and 6) isolated from an
organ donation according to a protocol approved by the State ethics committee (University
Hospital of Lausanne, Ethics Committee Protocol # 62/07) and within regulations of the
Department Biobank. These cells were personally donated for specific research purposes
by Prof. Applegate.

3.2. Cellular Toxicity Assays for Antibacterial Compounds
3.2.1. Live/Dead Assay

Progenitor skin fibroblasts were grown within 96-well microplates (DMEM medium
complemented with 10% FBS, 1% glutamine) in a standard incubator (37 ◦C, 5% CO2)
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for 24 h. The culture medium was then replaced with a medium containing different
antimicrobial compounds, and cells were further incubated at 37 ◦C for 24 h. After in-
cubation, the culture medium was removed, washed twice with PBS, and the viability
was assessed using the Viability/Cytotoxicity Assay Kit for Animal Live and Dead Cells
(Biotium, Hayward, CA, USA). Reagent solutions were prepared according to manufacturer
protocol and added to cultures and incubated for 45 min at room temperature. Stained cells
were observed, and images were taken using a fluorescent microscope (Zeiss Axiovert 100,
Oberkochen, Germany).

3.2.2. MTT Cell Titer Assay

Progenitor skin cells were grown and incubated with antimicrobial compounds as
described in the previous section. After 24 h of incubation, cell viability was measured
using the CellTiter 96®AQueous One Solution Cell Proliferation Assay Kit (Promega,
Madison, WI, USA). Reagent solution was prepared in DMEM culture medium according
to manufacturer’s protocol. 150 µL of the medium was added to each culture and incubated
for 90 min. Further, 100 µL of medium was transferred to a fresh 96-well microplate, and
the absorbance was measured at 490 nm with a spectrophotometer (Wallac Victor2 1420
multilabel counter, PerkinElmer, MA, USA).

3.3. Preparation of Cell-Embedded Dressings

Dressings with solid collagen matrix: Biological bandages were prepared as described
previously [10,12]. In brief, frozen fetal progenitor skin fibroblasts (passage 2) from the
Clinical Master Cell Bank [86] were thawed, washed twice with PBS, and re-suspended in
completed DMEM. Collagen TissueFleece™ (Baxter, Heidelberg, Germany) delivery matrix
was cut into 4 × 4.5 cm square sections. Cells were evenly seeded into the collagen matrix
(5000 cells/cm2) and incubated at room temperature for 20 min, the time necessary for
cells to adhere to the matrix. The biological bandages were incubated overnight at 37 ◦C,
followed by multiple washes with PBS. Antimicrobial peptide dendrimers and QSIs were
suspended in PBS and added to the cell-seeded matrices, soaked for another 20 min and
used in the antibacterial activity assays. Control bandages did not contain antibacterial
compound.

3.4. Assessment of Antibacterial Activity
3.4.1. Minimal Inhibitory Concentrations (MIC) Assessment

The broth microdilution method was used to determine the MIC of antimicrobial
compounds against PA14 strain, according to Clinical Laboratory Standards Institute
guidelines [87]. A single bacterial colony was grown in MHB (Mueller-Hinton Broth)
medium overnight at 37 ◦C. The stock solutions of antimicrobial compounds were prepared
and added to the first well of 96-well microtiter plate and two-fold dilutions were made.
Bacteria was added to each well to a final inoculation of about of 5 × 105 CFUs. The
plates were incubated at 37 ◦C for 18 h. For each test, two columns of the plate were kept
for sterility control (broth only) and growth control (broth with bacterial inoculums, no
antibacterials). The MIC was defined as the lowest concentration of the peptide dendrimer
that inhibited visible growth of the PA14. Following MIC reading, the lowest concentration
of the test agent killing at least 99.99% of the original inoculum was measured by plating
100 µL broth from clear wells on MHA plates and incubation at 37 ◦C for 24 h for CFU count.

3.4.2. Inhibition Zone Assay

The antibacterial activity of cell-embedded dressings against Gram-negative P. aerug-
inosa was tested using the inhibition zone assay. Solid agar plates containing M9 salt
medium supplemented with 0.2% glucose, 0.5% casamino acids (CAA), 2 mM MgSO4
and 1.6% agar, which were prepared 24 h in advance. To inoculate the agar plate, 1100 µL
of NaCl 0.9% containing 108 CFU/mL were spread on the plate using a sterile rake and
dried under a laminar flow for 15 min. Cell-embedded dressings were prepared, and
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AMPDs were incorporated into the dressings as described earlier and were placed on P.
aeruginosa inoculated agar plate by means of sterile tweezers and incubated at 30 ◦C for
18 h. The positive control consisted of the dressing incorporating polymyxin B (4 mg/L),
and negative controls did not incorporate any antibacterial compound. The next day
the plate was scanned, and inhibition zones were measured. Matrices were removed
from the plate and photographed. The experiments were carried out in triplicate in two
experimental replicates.

3.4.3. Bacterial Killing Assay

Bacterial PA14 suspensions were prepared by resuspending culture grown overnight
in LB medium and washed once in M9 salts supplemented with 2 mM MgSO4 (M9MS),
at an OD600 = 2.0 (5 × 109 CFU/mL). 15 uL of the above cell suspension was diluted in
96-well plates containing 135 uL of M9MS and 4× the MIC of the test compound (2 mg/L
AgNO3, 4 mg/L polymyxin B and 32 mg/L G3KL) and incubated at 37 ◦C. Samples were
withdrawn at regular time points and serially diluted in 0.9% NaCl. Five uL of appropriate
dilutions were plated on LB agar plates and incubated for 18 h at 37 ◦C. The number of
colony forming units (CFU) was counted at the end of incubation. Experiments were
performed in triplicate and on three separate occasions.

3.4.4. Antibacterial Properties of Hydrogel Formulations

A total of 108 bacteria were suspended in 200 µL of the gel formulations (HA or
Chitosan) in a 96-well plate and incubated at 30 ◦C. At each time point, CFU count was
performed by removing 10 µL aliquots and preparing 10-fold serial dilutions before spotting
samples on LB-agar plate.

4. Conclusions

As all open wounds may be colonized with microbes, even in the absence of clinical
signs of infection [75], any kind of wound dressing or cell therapies is applied to an already
colonized microenvironment. The likelihood that the microbial colonization of a wound
leads to infection depends on both host and microbial factors. Therefore, an ideal wound
dressing should exhibit both anti-infective and wound-healing accelerating properties.
Integration of antibiotics into wound regeneration products would prevent infection;
however, the risk of antibiotic resistance and inherent cytotoxicity of some antibiotics [88]
decreases the enthusiasm towards their application in wound regenerative therapy. Our
study shows for the first time the possibility of combining wound healing properties
provided by progenitor cells with antimicrobial and anti-virulence agents in a burn wound
cell therapy dressing. Moreover, we also report for the first time a translational study to
identify the best delivery system for AMPDs on wound sites, paving the way to use them
in a clinical setup.

Supplementary Materials: The following are available online, Figure S1: Assessment of the via-
bility (MTT assay) of human progenitor fibroblast cells incubated with different analogs of G3KL.
Figure S2: Assessment of cytocompatibility of G3KL incorporated into Chitosan-based hydrogel
matrix. Figure S3: Cytotoxicity and cellular uptake of Fluorescent-G3KL.
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