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Abstract 

Natural products (NPs) represent one of the most important resources for discovering new drugs. Here we asked 
whether NP origin can be assigned from their molecular structure in a subset of 60,171 NPs in the recently reported 
Collection of Open Natural Products (COCONUT) database assigned to plants, fungi, or bacteria. Visualizing this subset 
in an interactive tree-map (TMAP) calculated using MAP4 (MinHashed atom pair fingerprint) clustered NPs according 
to their assigned origin (https://​tm.​gdb.​tools/​map4/​cocon​ut_​tmap/), and a support vector machine (SVM) trained 
with MAP4 correctly assigned the origin for 94% of plant, 89% of fungal, and 89% of bacterial NPs in this subset. An 
online tool based on an SVM trained with the entire subset correctly assigned the origin of further NPs with similar 
performance (https://​np-​svm-​map4.​gdb.​tools/). Origin information might be useful when searching for biosynthetic 
genes of NPs isolated from plants but produced by endophytic microorganisms.
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Introduction
Due to the importance of natural products (NPs) in 
drug discovery [1, 2], there is a considerable interest in 
describing and understanding their structural diversity, 
particularly by exploiting NP databases [3] using in silico 
methods such as machine learning (ML) [4]. Compu-
tational approaches have been reported to distinguish 
between NPs and non-NPs [5–9], between terrestrial and 
marine NPs [10], and to classify NP structural types [11, 
12] and visualize their chemical space [13].

In our own approach to this problem [14], we recently 
analyzed NPAtlas, an open-access database listing 25,523 
NPs from bacterial or fungal origin [15], by computing 
the MAP4 fingerprint (MinHashed Atom-Pair finger-
print up to four bonds) [16] of each NP and creating a 

TMAP (tree-map) [17] of the resulting high-dimensional 
dataset. In this analysis, NPs from bacterial or fungal ori-
gin formed separated clusters. This separation effect was 
confirmed by showing that a support vector machine 
(SVM) trained with the MAP4 of NPAtlas was able to 
distinguish bacterial or fungal origin, including a recently 
reported NP isolated from the marine sponge Phakellia 
fusca assigned by our classifier to be of bacterial origin, in 
line with the fact that many NPs from this sponge origi-
nate from endosymbiotic actinobacteria [18, 19].

The possibility to assign the origin of NPs from their 
structure was intriguing because most NPs are second-
ary metabolites produced by biosynthetic gene clusters 
[20] which are sometimes transferred between different 
organisms [21]. Such horizontal gene transfer may reflect 
adaptative relationships between host organisms such as 
plants and sponges and endosymbiotic bacteria or fungi 
[22]. Among the many endophytic NPs [23, 24], striking 
examples include the cancer drug paclitaxel, a plant NP 
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also produced by endophytic fungi of the yew tree [25, 
26], and maytansine, used in antibody-drug conjugates 
for cancer therapy and produced by endophytic bacteria 
in plants [27]. Due to the very widespread occurrence 
of endophytic bacteria and fungi in plants, we asked 
whether our MAP4 analysis might be able to distinguish 
plant NPs from bacterial and fungal NPs. To test this 
hypothesis, we considered the recently reported COCO-
NUT database, an open-access database currently offer-
ing the most extensive coverage and including plant NPs 
[28].

Results and discussion
Chemical space analysis of plant and microbial NPs 
from the COCONUT database
COCONUT collects over 400 thousand NPs from 52 dif-
ferent databases, 135 thousand of which are annotated 
with a taxonomical origin. For our analysis, we consid-
ered the 68 thousand entries annotated with a source 
organism that were also associated with a publication. 
We focused on those annotated as originating from 
plants (50%), fungi (23%), or bacteria (16%), leaving out 
a smaller subset of NPs originating from animals (2%), 
homo sapiens (2.5%), of marine origin (1.5%), or lacking 
one of the previous taxonomical annotations (5%). The 
selected subset of 60,171 NPs contained 33,772 plant 
NPs, 15,648 fungal NPs and 10,751 bacterial NPs.

The subset spanned from molecular weight MW = 81 
Da for 1,2-dihydropyridine, a plant NP [29], to MW = 
2901 Da for lacticin 481, a bacterial peptide [30]. Plant 
NPs dominated the intermediate molecular weight range 
(200 < MW < 800), while fungal NPs were most abundant 
in the low molecular weight range (MW ≤ 200) and bac-
terial NPs in the high MW range (MW ≥ 800). The three 
series had rather similar distributions of the fraction of 
sp3 carbon atoms (Fsp3), which measures the degree of 
saturation. However, the estimated octanol:water parti-
tion coefficient AlogP indicated that highly polar NPs 
were almost absent from fungal NPs. Furthermore, plant 
NPs had overall higher percentages of glycosides, while 
peptides were almost absent from plant NPs and most 
abundant in bacterial NPs (Table 1).

To get a closer insight into structural features, we cal-
culated the MAP4 fingerprint for each of the 60,171 
selected NPs. MAP4 encoding combines the character-
istics of substructure fingerprints, which are well suit-
able for small molecules, and of atom pair fingerprints, 
which are instead preferable for larger structures, and 
it has been proven suitable for both [16]. It consists of 
listing all pairs of circular substructures of radius 1 and 
2 as SMILES, separated by their topological distance in 
bonds, and MinHashing the resulting set of SMILES pairs 
to a defined dimensionality (1024 in the present analysis). 

We then represented the MAP4 annotated NP dataset 
using the dimensionality reduction method TMAP. This 
method is suitable for very large high-dimensional data-
sets and performs better than t-SNE or UMAP in pre-
serving local and global relationships in the data [17]. 
To create a TMAP, the algorithm computes an approxi-
mate nearest neighbor graph by locality sensitive hashing 
(LSH), cuts edges to obtain the minimum spanning tree 
of this graph, and creates an optimized 2D representation 
of the minimum spanning tree, in which each node rep-
resent a molecule connected to its approximate nearest 
neighbors. This tree is then displayed with interactive the 
visualization tool Faerun [31]. Faerun shows each node 
as a sphere that can be color-coded according to various 
properties and uses Smilesdrawer [32] to depict molec-
ular structures. The TMAP of our NP subset is avail-
able interactively at https://​tm.​gdb.​tools/​map4/​cocon​ut_​
tmap/.

The TMAP of our NP subset color-coded by MW 
showed that most high MW compounds appeared in two 
groups, the first one (at right on the TMAP), contained 
peptides and related macrocycles, and the second one (at 
middle/lower left on the TMAP) corresponded to gly-
cosylated triterpenoids (Fig.  1a). Color-coding by Fsp3 
showed that the TMAP separated high Fsp3 molecules 
(left half of the TMAP), comprising many terpenes, ster-
oids, and glycosides, from low Fsp3 molecules (right half 

Table 1  Property distribution and origin of the 60,171 
COCONUT entries with a DOI and annotated as plants, fungal, or 
bacterial

a COCONUT entries with a DOI and the specified taxonomical origin annotated; 
percentages refer to the total number of the selected entries within the 
specified class: 33,772 plants NPs, 15,648 fungal NPs, and 10,751 bacterial NPs
b Molecular weight (MW) calculated with RDKit
c Fraction of sp3 (Fsp3) calculated with RDKit
d Octanol: water partition coefficient calculated with RDKit following the 
Crippen method (AlogP)
e Containing a cyclic N- or O-acetal substructure defined through SMARTS 
language
f Containing a dipeptide substructure defined through SMARTS language

Plants NPsa Fungal NPsa Bacterial NPsa

MW ≤ 200b 7072 (21%) 4919 (31%) 2237 (21%)

200 ≤ MW < 800b 24,078 (71%) 10,111 (65%) 6066 (56%)

MW ≥ 800b 2622 (8%) 618 (4%) 2448 (23%)

Fsp3 ≤ 0.2c 4213 (13%) 1580 (10%) 1073 (10%)

0.2 ≤ Fsp3 < 0.8c 22,032 (65%) 11,334 (72%) 7986 (74%)

Fsp3 ≥ 0.8c 7527 (22%) 2734 (18%) 1692 (16%)

AlogP ≤ − 2d 4855 (14%) 373 (2%) 1446 (13%)

− 2 ≤ AlogP < 8d 28,315 (84%) 15,000 (96%) 8906 (83%)

AlogP ≥ 8d 602 (2%) 275 (2%) 399 (4%)

Glycosidese 8260 (24%) 797 (5%) 1793 (17%)

Peptidesf 194 (<1%) 676 (4%) 2053 (19%)

https://tm.gdb.tools/map4/coconut_tmap/
https://tm.gdb.tools/map4/coconut_tmap/
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of the TMAP) featuring many polyphenols and related 
polyaromatic molecules (Fig. 1b). Furthermore, the color-
code by the calculated octanol:water partition coeffi-
cient AlogP, estimating polarity, showed several islands 
of highly polar NPs (low AlogP, magenta) correspond-
ing mostly to nucleosides and glycosylated polyphenols 
(upper part of the TMAP), glycosylated triterpenoids 
(lower left on the TMAP) and peptides (middle right on 
the TMAP), as well as a few groups of apolar NPs (high 
AlogP, red), corresponding primarily to lipids, terpenes, 
and steroids (Fig. 1c)

Color-coding by the annotated origin showed that NPs 
from plants, fungi, or bacteria formed many well-defined 
clusters spread across the entire TMAP (Fig.  1d). On 
the one hand, this separation illustrated how NP origin 
corresponded to differences in molecular structure that 
were well perceived by the MAP4 fingerprint used to 
generate the map. On the other hand, the taxonomical 
origin color code also showed that each subset contained 
diverse structural types. While there was no correlation 
of origin with properties such as MW, Fsp3, or AlogP, 
most glycosides were associated with plants, and most 
peptides were of bacterial or fungal origin, in line with 
Table 1 (Fig. 1e). These relationships were also well visible 
by color-coding the TMAP by six selected prioritized cat-
egories summarizing important characteristics of natural 
products (Fig. 1f )

Statistical modeling of NP origin using support vector 
machines (SVM)
The clear separation of NPs from plants, fungi, or bac-
teria in the TMAP above clearly showed that our MAP4 
fingerprint distinguished between NPs of plant, bacterial 
or fungal origin. To further investigate this separation, 
we trained an SVM classifier using the MAP4 similar-
ity matrix of half of the COCONUT subset and used 
the other half to evaluate it. Indeed, the obtained MAP4 
SVM correctly predicted the origin of 94% of plant NPs, 
89% of fungal NPs, and 89% of the bacterial NPs (MAP4 
SVM), resulting in a balanced accuracy of 0.897, an MCC 
(Matthews correlation coefficient) of 0.890, and an F1 
score of 0.920 (see Methods for a detailed explanation of 
the used metrics).

To better identify the role of the MAP4 molecular 
encoding in the reported successful prediction, we com-
pared the performances of a MAP4 SVM with the per-
formances of an SVM trained using ECFP4 (Extended 

Connectivity Fingerprint ECFP of radius 2, ECFP4 SVM) 
and the RDKit atom pair fingerprint (AP SVM). We 
chose ECFP4 and the RDKit AP as widely used and avail-
able examples of substructures fingerprints and atom 
pair fingerprints. As a baseline model, we also included 
an SVM trained with a set of 11 calculated physico-
chemical properties, namely MW, Fsp3, HBD (hydro-
gen bond donor) count, HBA (hydrogen bond acceptor) 
count, AlogP, the number of carbons, oxygens, and nitro-
gens, the total number of atoms, number of bonds, and 
TPSA (topological polar surface area) (properties SVM). 
The selected 60 thousand COCONUT entries were 
divided into five subsets, and each model was trained and 
evaluated five times using the five different 80-20 train-
ing test splits combinations of one subset as test set and 
the other four as training set. Then the mean balanced 
accuracy, MCC, and F1 score of the five evaluations were 
calculated.

The results of this evaluation are presented in Table 2; 
Fig.  2. Remarkably, all four SVM performed reason-
ably well. The good performance of the property based 
SVM reflected the fact that relatively large NP families 
with characteristic properties are essentially all from the 
same origin. For example, almost all large peptides or 
cyclic peptides are assigned to bacteria, while most gly-
cosylated triterpenoids and polyphenols are assigned to 
plants. Nevertheless, there was a significant performance 
increase with the ECFP4 SVM and MAP4 SVM, which 
performed best, showing that correct origin assignment 
works better if specific substructures are considered. 
Among the four SVM evaluated, our MAP4 SVM per-
formed best with significantly higher values compared to 
the ECFP4 SVM, probably because the MAP4 fingerprint 
encodes a more precise representation of the molecular 
structures than ECFP4. Indeed, MAP4 considers pairs of 
local substructures and the topological distance between 
them, while ECFP4 only encodes the presence of local 
substructures.  

Using the MAP4 SVM to assign the origin of NPs
The SVM evaluation above showed that the MAP4 anal-
ysis of NP molecular structure identified features dis-
tinguishing between NPs assigned to plants, fungi, and 
bacteria. Assuming that most of the assigned origins 
were correct among the 60,171 NPs used for training, 
one may use an SVM to tentatively assign the origin of 
further NPs as originating from plants, fungi, or bacteria. 

Fig. 1  MAP4 TMAP of the 60 thousand selected COCONUT entries. The maps are colored according to a molecular weight MW in Da, b fraction 
of sp3 carbon atoms Fsp3, c calculated octanol:water partition coefficient AlogP, d COCONUT annotated origin, e presence of a glycoside (blue) 
or peptide (green) substructure, or both (magenta), f prioritized categories: glycosides (entries containing a glycoside substructure, blue) > 
peptides (entries containing a peptide substructure, cyan) > high MW (green) > high Fsp3 (yellow) > low Fsp3 (orange) > low MW (red). Entries not 
belonging to any category are reported in gray. All maps are accessible in an interactive format at https://​tm.​gdb.​tools/​map4/​cocon​ut_​tmap/

(See figure on next page.)

https://tm.gdb.tools/map4/coconut_tmap/
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To best exploit the information in the COCONUT data-
base, we trained a MAP4 SVM using the entire set of 
60 thousand COCONUT NPs assigned to plants, fungi, 
or bacteria. We used the resulting classifier to build an 
online tool that takes any molecular structure as input 
(drawn or pasted as SMILES) and returns the assigned 
origin and the corresponding percentages from the SVM 
classifier. This tool is freely accessible online at https://​
np-​svm-​map4.​gdb.​tools/.

The online tool performed quite well in assigning the 
origin of newly published NPs which were not present 
in COCONUT. Among 20 recently reported NPs from 

plants, fungi, or bacteria, 17 were correctly assigned to 
their origin, while only three were misassigned (Table 3; 
Fig. 3). In details, the fungal epicospirocin 1 [33], penici-
meroterpenoid A [34], beetleane A [35], funiculolide D 
[36], and fusoxypenes A [37], the bacterial vertirhodin 
A [38], bosamycin A [39], and dumulmycin [40], and 
the plant fortuneicyclidin A [41], meloyunnanine A [42], 
hyperfol B [43], pegaharmol A [44], hunzeylanine A [45], 
mucroniferal A [46], perovsfolin A [47], horienoid A [48], 
and erythrivarine J [49] were correctly classified. On the 
other hand, the fungal rhizolutin [50] and myxadazoles 
A [51] and the bacterial marinoterpin A [52] were mis-
classified. Note that in these cases, the percentage val-
ues to the assigned class were lower than for the correct 
predictions.  

As an additional test of our online tool, we investi-
gated the predicted origin of the 3364 NPs (Additional 
file  1) in COCONUT reported with an origin and a 
publication for which the organism name was reported 
(e.g. Brachystemma calycinum) but not the correspond-
ing taxonomical annotation as plant, fungi, bacteria. 
Checking individual predictions showed that the pre-
dicted origin was in many cases correct, in line with our 
performance evaluation. For example, the 49 NPs with 
Euphorbia as a source, many of which were peracety-
lated polycyclic terpene alcohols, as well as the 45 NPs 

Table 2  SVM evaluation with balanced accuracy, MCC, and F1 
score

a Mean value and standard deviation (σ) of the five different test/training sets 
split of the fivefold cross-validation
b 1024 dimensions
c 11 properties: MW, Fsp3, HBD) and HBA, calculated logP with the Crippen 
method (AlogP), number of carbons, oxygen, and nitrogen, the total number of 
atoms, number of bonds, and topological polar surface area (TPSA)

Balanced acc. MCC F1

MAP4 SVM a,b 0.919 ± 0.005 0.879 ± 0.005 0.929 ± 0.003

ECFP4 SVM a,b 0.890 ± 0.005 0.827 ± 0.006 0.897 ± 0.003

RDKit AP SVM a,b 0.735 ± 0.005 0.592 ± 0.006 0.752 ± 0.004

Properties SVM a,c 0.758 ± 0.005 0.613 ± 0.007 0.761 ± 0.004

a b c

Fig. 2  Fivefold cross-validation mean values and 3σ confidence intervals of the a balanced accuracy, b MCC, and c F1 score for the four SVM 
classifiers. In all panels, the MAP4 SVM is reported in blue, the ECFP4 SVM in orange, the RDKit AP (AP) SVM in green, and the properties (Prop.) SVM 
in red

https://np-svm-map4.gdb.tools/
https://np-svm-map4.gdb.tools/
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with Radula as a source, which were polyphenols and 
terpenes, were all correctly assigned to a plant origin.

In several cases, the SVM prediction conflicted with 
the taxonomy of the reported source organism. For 
example, the indole alkaloids cephalinones A-D and 
cephalandoles A-C isolated from the orchid Ceph-
alanceropsis gracilis  [53] and whose structures were 
partly revised by total synthesis [54], were all assigned 
to bacteria by our SVM. In fact, These NPs might stem 
from an endophytic bacterium considering that endo-
phytic microorganisms produce several related indole 
alkaloids [55]. Our SVM also reassigned the cancer 
drug maytansin from an annotated plant origin in 
the training set to a predicted bacterial origin, in line 
with its endophytic origin [27]. On the other hand, our 
classifier also assigned a bacterial origin to two cyclic 
peptides (CNP0085258 and CNP0085259) [56] and 
a cyclotide (CNP0085363) [57] isolated from plants. 
Although these plants indeed contain endophytic bac-
teria, the plant origin of such peptides is well estab-
lished [58, 59], and the SVM assignment to bacteria 
reflects the fact that the majority of cyclic peptides and 
cyclotides in the COCONUT set used for training the 
SVM were assigned to bacteria, compared to only a 
handful of cyclotides of plant origin.

While the classifier may point to the possible endo-
phytic origin of NPs isolated from plants, its use on NPs 
from other sources is problematic. For instance, among 
the 1,035 marine NPs from COCONUT with an anno-
tated origin, 639 were assigned to plants by our SVM. 
This prediction must be mostly wrong considering 
that most marine organisms such as algae, corals, and 
sponges are not plants. For example, the 44 NPs from the 
soft coral Sinularia, or the macrocyclic terpene lactone 
lobophytolide A (CNP0275045) stemming from the soft 
corral lobophytum cristagalli [60, 61], were all incorrectly 
assigned to plants. However, the remaining 231 fungal 
and 165 bacterial predictions might be partly correct 
considering that many marine organisms carry endos-
ymbionts. For example, our classifier assigned a bacterial 
origin for echinosulfonic acid B (CNP0318329), a bro-
minated bis-indole NP isolated from the marine sponge 
Echinodictyum gorgonoides  [62]. In this case, other 
authors have reported the isolation of a bacterial strain 
from the same sponge as a probable source of its biologi-
cal activities [63].

Conclusions
In summary, we visualized the chemical space covered 
by a subset of 60 thousand NPs from the COCONUT 
database with an assigned origin and publication using a 
TMAP calculated on the basis of MAP4 as molecular fin-
gerprint, which is available at https://​tm.​gdb.​tools/​map4/​
cocon​ut_​tmap/. Analyzing this TMAP revealed that NPs 
from plant, fungal or bacterial origin form well sepa-
rated groups. We then trained an SVM classifier with the 
MAP4 fingerprint to assign the origin of NPs and found 
that it performed excellently and significantly better than 
classifiers trained with ECFP4, RDkit AP, or physico-
chemical descriptors.

To help assign NP origin, we then trained a MAP4 
SVM classifier using the entire set of 60 thousand NPs. 
This tool is available online at https://​np-​svm-​map4.​gdb.​
tools/ and returns an origin prediction for any molecu-
lar structure drawn or pasted as SMILES. We found 
that this classifier correctly predicts the origin of plant, 
bacterial or fungal NPs not included in the 60 thousand 
COCONUT set used for training, as exemplified with the 
correct prediction of 17 out of 20 newly published NPs. 
Broader testing of the classifier with further NPs from 
COCONUT showed limitations for NPs not from plant 
or microbial origin, such as marine NPs, but it also led to 
interesting use cases suggesting that the tool might serve 
as a help to assign NP origin. This concerns in particular 
NPs isolated from plant but which might in fact be pro-
duced by endophytic microorganisms. Such information 
could be essential when searching for the corresponding 
biosynthetic genes.

Table 3  MAP4 SVM origin prediction for 20 recently published 
microbial and plants NPs that are not present in COCONUT

a Predicted using the MAP4 SVM available online at https://​np-​svm-​map4.​gdb.​
tools/

Natural product Origin MAP SVM predictiona

Epicospirocin 1 Fungal Fungal (97%)

Penicimeroterpenoid A Fungal Fungal (82%)

Beetleane A Fungal Fungal (97%)

Funiculolide D Fungal Fungal (85%)

Rhizolutin Fungal Plant (55%, fungal: 29%)

Fusoxypenes A Fungal Fungal (69%)

Myxadazoles A Fungal Bacterial (74%, fungal: 16%)

Vertirhodin A Bacterial Bacterial (88%)

Marinoterpin A Bacterial Plant (44%, bacterial: 37%)

Bosamycin A Bacterial Bacterial (94%)

Dumulmycin Bacterial Bacterial (80%)

Fortuneicyclidin A Plant Plant (98%)

Meloyunnanine A Plant Plant (99%)

Hyperfol B Plant Plant (93%)

Pgaharmol A Plant Plant (77%)

Hunzeylanine A Plant Plant (95%)

Mucroniferal A Plant Plant (73%)

Perovsfolin A Plant Plant (92%)

Horienoid A Plant Plant (95%)

Erythrivarine J Plant Plant (91%)

https://tm.gdb.tools/map4/coconut_tmap/
https://tm.gdb.tools/map4/coconut_tmap/
https://np-svm-map4.gdb.tools/
https://np-svm-map4.gdb.tools/
https://np-svm-map4.gdb.tools/
https://np-svm-map4.gdb.tools/
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Fig. 3  Chemical structure of 20 recently published microbial and plants NPs which are not present in COCONUT. The MAP4 SVM prediction is 
identical with the origin unless marked otherwise



Page 8 of 11Capecchi and Reymond ﻿J Cheminform           (2021) 13:82 

Methods
Database preprocessing
The COCONUT database was downloaded. Only the 
135,091 (out of 400,837) entries having a taxonomical 
annotation were selected. The selected subset was fur-
ther filtered down to the 67,730 entries having an anno-
tation not shorter than ten characters in the DOI field. 
Then, the taxonomy field was split by commas and match 
towards the words “plant”/“plants”, “fungi”/“aspergillus”, 
“bacteria”/“bacillus”/“bacta” to select the NPs with an 
annotated plant, fungal, or bacterial origin, respectively. 
The entries common between multiple origins were 
assigned with the following priority: human > animal 
> bacteria > fungi > plant > marine. The process led to 
the selection of 33,772 plant NPs, 15,648 fungi NPs, 
and 10,751 bacterial NPs with annotated DOI, for a 
total of 60,171 structures. The number of carbons, oxy-
gen, and nitrogens, the total number of atoms, number 
of bonds, and TPSA were extracted from the COCO-
NUT annotations. MW, Fsp3, HBD, and HBA count, 
AlogP, were calculated using RDKit [64]. The presence/
absence of a peptide or a glycoside moiety was evaluated 
using Daylight [65] SMILES arbitrary target specification 
(SMARTS) language. SMARTS were used with RDKit 
to identify COCONUT entries containing a dipep-
tide substructure, defined as “[NX3,NX4+][CH1,CH2]
[CX3](=[OX1])[NX3,NX4+][CH1,CH2][CX3](=[OX1])
[O,N]”, or a containing a glycoside defined as cyclic N- 
or O-acetal substructure with the SMARTS “[CR][OR]
[CHR]([OR0,NR0])[CR]”. Substructures were used only 
for recognizing and labeling peptidic and glycosylated 
NPs and they were not removed.

Fingerprint calculation
The 1024 dimensions MinHashed atom pair fingerprint 
of radius 2 was calculated using the open-source code of 
MAP4.

TMAP layout
The indices generated by the MinHash procedure of the 
MAP4 calculation were used to create a locality-sensi-
tive hashing (LSH) forest [66] of 32 trees. Then, for each 
structure, the 20 approximate nearest neighbors (NNs) 
in the MAP4 feature space were extracted from the LSH 
forest, and the tree layout was calculated. The LSH forest 
and the minimum spanning tree layout were calculated 
using the TMAP open-source code. Finally, Fearun [31] 
was used to display the obtained layout interactively.

MAP4 SVM implementation
The coconut SUBSET entries used to generate the TMAP 
were assigned to training or test set with a 50% random 

split. The SVM was trained using the MAP4 fingerprints 
of the training set. It utilized a custom kernel that calcu-
lates the similarity matrix between two MAP4 fingerprints, 
where the similarity of fingerprint a and fingerprint b is 
calculated (1) counting of elements with the same value 
and the same index across a and b, and (2) dividing the 
obtained value by the number of elements of fingerprint a. 
The class weights were inversely proportional to the class 
frequency, and the hyperparameter C was optimized using 
fivefold cross-validation. During the hyperparameter opti-
mization, 20% of the training set was left out as a valida-
tion set, and the balanced accuracy of the validation set was 
maximized. The hyperparameter C was optimized among 
the values 0.1,1, 10, 100, and 1000, resulting in C = 1. To 
overcome the intrinsic incapability of SVMs in handling 
more than two classes, the classifier was implemented 
using scikit-learn [67] with the “one versus rest” strategy, 
where in the background one classifier per class is trained 
and the class is fitted against all the other classes. and all 
not mentioned hyperparameters were used in their default 
values. Platt scaling [68], was used to obtain probabilistic 
prediction values. After the evaluation process, a second 
version of the MAP4 SVM classifier was trained using both 
training and test to learn from all curated 60 thousand data 
points.

MAP4, ECFP4, RDKit AP, and properties SVMs comparison
The MAP4, ECFP4, and the RDKit AP fingerprints and 
a set of 11 properties (MW, Fsp3, HBD and HBA count, 
AlogP, number of carbons, oxygens, and nitrogens, total 
number of atoms, number of bonds, and TPSA) were 
used to train four different SVM classifiers in a fivefold 
cross-validation. For all classifiers, the class weights were 
inversely proportional to the class frequency, and the 
hyperparameters were optimized using 10% of the available 
data (Table 4). For the properties SVM, the 11 values were 
scaled to zero mean and unit variance.

Classifiers evaluation metrics
The F1 score is defined as the harmonic mean of precision 
and recall:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score = 2×
(Precision× Recall)

(Precision+ Recall)
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 Where TP stands for true positives, TN for true nega-
tives, FP for false positives, and FN for false negatives 
predicted by the classifier.

The balanced accuracy is defined as:

The Matthews correlation coefficient (MCC) is a corre-
lation between the observed and the predicted class and 
it is defined as:

Online MAP4 SVM
The MA4 SVM classifier trained with the whole 60 thou-
sand COCONUT subset is found at https://​np-​svm-​
map4.​gdb.​tools/. The query molecule can be provided as 
a drawn structure or pasted SMILES in the JSME editor 
[71]. The given query is canonicalized, chirality informa-
tion is removed with RDKit, and the MAP4 fingerprint 
is calculated. To obtain probabilistic prediction values for 
each class, we use Platt scaling [68].

Abbreviations
AP: Atom pair; COCONUT: Collection of Open Natural Products.; HBA: 
Hydrogen bond acceptor; HBD: Hydrogen bond donor; LSH: Locality sensitive 
hashing; MAP4: MinHashed atom pair fingerprint; MCC: Matthews correla‑
tion coefficient; ML: Machine learning; MW: Molecular weight; NN: Nearest 
neighbor; NP: Natural product; SMARTS: SMILES arbitrary target specification; 
SMILES: Simplified molecular-input line-entry system; SVM: Supported vector 
machine; TMAP: Tree-map; TPSA: Topological polar surface area.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​021-​00559-3.

Balanced accuracy =
TP

TP+FP + TN
TN+FN

2

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

 
 Additional file 1. COCONUT entries for which a publication and an 
organism name were reported but not the corresponding taxonomical 
annotation as plant, fungi, or bacteria.
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