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Abstract 

The brain is protected by the endothelial blood-brain-barrier (BBB) that limits the access of 

micro-organisms, tumour cells, immune cells and autoantibodies to the parenchyma. However, 

the classic model of disease spread across a disrupted BBB does not explain the focal 

distribution of lesions seen in a variety of neurological diseases and why lesions are frequently 

adjacent to the cerebrospinal fluid (CSF) spaces. We have critically reviewed the possible role 

of a blood-CSF-brain route as a disease entry pathway into the brain parenchyma. The initial 

step of this pathway is the transfer of pathogens or immune components from the blood into 

the CSF at the choroid plexuses, where the blood-CSF-barrier (BCSFB) is located. The flow 

of CSF results in disease dissemination throughout the CSF spaces. Access to the brain 

parenchyma from the CSF, can then occur across the ependymal layer at the ventricular surface, 

or across the pial-glial barrier of the subarachnoid space and the Virchow-Robin spaces. We 

have reviewed the anatomy and physiology of the blood-CSF-brain pathway and the brain 

barriers controlling this process. We then summarised the evidence supporting this brain entry 

route in a cross-section of neurological diseases including neuromyelitis optica, multiple 

sclerosis, neurosarcoidosis, neuropsychiatric lupus, cryptococcal infection, and both solid and 

haematological tumours. This summary highlights the conditions that share the blood-CSF-

brain pathway as a pathogenetic mechanism. These include the characteristic proximity of 

lesions to CSF, evidence of disruption of the brain barriers, and the identification of significant 

pathology within the CSF. An improved understanding of pathological transfer through the 

CSF and across all brain barriers will inform on more effective and targeted treatments of 

primary and secondary disease of the central nervous system. 

 

Abbreviations 

BBB – blood-brain barrier 

BCSFB – blood-CSF barrier 

CNS – central nervous system 

CSF – cerebrospinal fluid 

ISF – interstitial fluid 
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MRI – magnetic resonance imaging 

MS – multiple sclerosis 

NMO – neuromyelitis optica 

VRS - Virchow-Robin spaces 

Qalb - CSF/serum albumin ratio 
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Key points 

 The pathogenesis of many neurological diseases may involve transfer of pathogens, 

tumour cells or immune components via an indirect blood-CSF-brain entry route, which 

circumvents the blood-brain barrier. 

 We review and appraise the normal anatomy, physiology and terminology regarding 

the blood-CSF-brain entry route, and the relevant barriers controlling this process. 

 Diseases involving the blood-CSF-brain route share characteristic features including 

the proximity of lesions to CSF, evidence of disruption to multiple brain barriers, and 

the identification of significant pathology within the CSF. 

 Better understanding of the blood-CSF-brain disease pathway will allow for focused 

investigations and treatments to be developed for conditions that are often associated 

with significant morbidity. 

 

Introduction 

The general understanding of the functions of the cerebrospinal fluid (CSF) is limited to its role 

in the protection of the brain and spinal cord from traumatic impact, and the exchange of 

nutrients and waste products [1]. However, the importance of CSF in brain development is now 

starting to be recognised [2]. Following production by choroid plexus cells, the established 

model of CSF dynamics is well known (Fig. 1). Solutes move via bulk flow throughout the 

CSF in a multidirectional manner [3]. While alterations in CSF dynamics are known to underlie 

conditions such as hydrocephalus [4], the role of CSF in the pathogenesis of a wide range of 

diseases is largely under recognised. 

The idea of solute exchange between the interstitial fluid (ISF) and the CSF, facilitated by the 

spaces surrounding intracerebral blood vessels or the blood vessel walls, and the existence of 

dural lymphatics, has been known for several decades [5]. However, there is a growing interest 

in these concepts following the new conceptualisation of ISF-CSF exchange as the ‘glymphatic 

system’ [6] and the re-discovery of dural lymphatics [7, 8]. This is a topic of ongoing debate. 

However, there is a broad consensus that solutes and water are exchanged between the ISF and 
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CSF [6, 9, 10]. It is also accepted that solutes in the ISF and CSF can drain into the cervical 

lymph nodes before further transfer into the blood [5, 11, 12]. The exact steps of this drainage 

pathway are disputed. Two apparently discrepant theories are leading: i) solutes drain from the 

ISF via capillary basement membranes and along the basement membranes of arterial walls 

(the intramural perivascular drainage ‘IPAD’ pathway) [13, 14] or ii) alternatively via 

perivenous spaces (the glymphatic pathway) that are anatomically not yet defined [6]. Solutes 

within the CSF have been proposed to enter the cervical lymphatics via the dural lymphatics, 

although the mechanism by which the arachnoid barrier is crossed remains unclear, or the nasal 

lymphatics in the cribriform plate [15]. It has also been demonstrated that solutes in the spinal 

CSF spaces drain into the surrounding sacral and iliac lymph nodes [16]. 

Increased knowledge about ISF-CSF communication and the relationship with the lymphatic 

system has resulted in renewed and widespread interest in brain solute exchange, especially 

drainage. Alterations in this solute clearance route have been implicated in several conditions, 

including Alzheimer’s disease [17].  Furthermore, clearance of myelin proteins from the brain 

into the cervical lymph nodes may contribute to the pathogenesis of multiple sclerosis (MS) 

[18]. The normal brain parenchyma lacks dendritic cells, therefore, antigen drainage into lymph 

nodes is potentially a pathway for antigen presentation to the peripheral immune system [19]. 

This route of antigen presentation may be implicated in the pathogenesis of a wider range of 

autoimmune conditions of the central nervous system (CNS). 

The focus on brain drainage pathways has somewhat overshadowed the importance of ISF-

CSF exchange as an entry route into the brain [3, 15, 20]. A blood-CSF-brain entry route could 

enable immune cells and inflammatory cytokines, tumour cells and micro-organisms to transfer 

from blood into the CSF and thus spread throughout the CSF causing brain tissue damage via 

ISF-CSF exchange. The importance of this indirect blood-CSF-brain route is also 

overshadowed in the literature by the established view of a more direct route into the brain, 

where pathogenic threats are believed to cross the endothelial blood-brain-barrier (BBB). The 

different exchange pathways of the brain are summarised in Fig. 2.  

In this article, we review and appraise the normal anatomy, physiology and terminology 

regarding the blood-CSF-brain indirect brain entry route, and the relevant barriers controlling 

this process as opposed to the direct route into the brain across the endothelial BBB. We have 

then evaluated conditions in which a blood-CSF-brain route potentially acts as the conduit of 

disease and summarise the available investigations which measure disruption of this pathway. 

Finally, we have explored the implications of improved understanding of this entry route into 

the brain.  

Terminology 

The nomenclature used to define the spaces around the brain’s blood vessels, including 

perivascular, paravascular and Virchow-Robin spaces (VRS) is applied inconsistently in the 

literature and such inconsistency is a cause for confusion [15, 21, 22]. The word ‘space’ is used 

here to refer to the location around vessels and does not necessarily imply an empty or fluid-

filled region. The term ‘VRS’ will be used to refer to the location surrounding the penetrating 

arteries, but not veins, as they enter the brain prior to branching into capillaries (Fig. 3a). 
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Perivascular is used as to describe the area between any blood vessel and the glia limitans, 

including within the vessel walls themselves. The term ‘paravascular’ space is often used as a 

synonym of VRS and will therefore be avoided due to potential confusion with the perivascular 

space.   

Central nervous system barriers 

The main barriers to movement of solutes within the CNS are the BBB, the blood-CSF-barrier 

(BCSFB) and CSF-brain barriers. The BBB is composed of endothelial cells and joining tight 

junctions. Pericytes also surround the endothelial cells and their importance in mediating the 

BBB is increasingly recognised [23, 24] At the capillary level, blood vessels are surrounded by 

encircling glial end-feet termed the glia limitans [25]. In response to neuroinflammation there 

is upregulation of tight junctions within the glia limitans [26]. Therefore, both the BBB and 

glia limitans act to protect the underlying parenchyma. Lymphocytes can cross the BBB at the 

post-capillary venule and enter the perivascular space, prior to crossing the glia limitans [15]. 

A compromised BBB is frequently considered a key step in the development of pathology [27]. 

However, the focus on the BBB overlooks the potential importance of other brain barriers in 

the spread of pathogenic threats. 

The BCSFB is composed of the choroid plexus epithelial cells and the tight junctions between 

these cells and the basement membrane. It acts to restrict the movement of solutes into the CSF 

[19]. The choroid plexuses are highly vascularised structures within the ventricles that are 

responsible for CSF production [28] (Fig. 3b). The capillaries in choroid plexus are fenestrated, 

allowing for transfer of cells and solutes into the surrounding extracellular fluid in the stroma. 

An outer arachnoid CSF-blood barrier also exists which contains the arachnoid villi. The net 

direction of fluid flow in the arachnoid villi is thought to be from the CSF into the blood [29]. 

However, the in vivo evidence for this fluid flow in humans, especially in physiological 

conditions, is limited [30]. 

The CSF-brain barrier has two components. Firstly, there is the pial-glial barrier between the 

subarachnoid CSF and the parenchyma (Fig. 3a). This barrier comprises the pia mater covering 

the outer surface of the brain and the underlying parenchymal basement membrane and glial 

end-feet [31]. The pia mater also extends to cover the arteries in the subarachnoid space and 

lines the VRS surrounding the penetrating arterioles until they branch into capillaries [31]. The 

anatomy of the VRS and the communication between the VRS and subarachnoid space, are 

disputed [22, 32]. Human post-mortem studies have questioned the existence of VRS at the 

brain cortex suggesting that VRS are restricted to the basal ganglia and white matter [33]. In 

vivo magnetic resonance imaging (MRI) has demonstrated CSF-isointense spaces along 

arteries, most prominent in the basal ganglia but also surrounding penetrating arteries, once 

they reach the subcortical white matter, and in the brainstem [34, 35]. These spaces are 

especially apparent using ultra-high resolution 7T MRI [36, 37]. MRI visible VRS are rare in 

young healthy adults, but they are more numerous with age [38] and with certain neurological 

diseases including MS [39] and neuropsychiatric lupus [40].  

The ependymal layer is the second CSF-brain barrier and separates the CSF in the ventricles 

and brain tissue. (Fig. 3b).It lines the ventricles and consists of specialised cuboidal cells that 
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are connected by gap and adhesion junctions [41]. It is absent in the normal fetal brain at the 

level of the frontal and occipital horns of lateral ventricles, and the temporal horn overlying the 

alveus of the hippocampus [42]. Tanycytes are elongated cells that are located within the 

ependymal layer and are in contact with the CSF, blood vessels and subcortical nuclei[43]. 

They may represent remnants of radial glia [44]. Subcortical nuclei can also contain CSF 

contacting neurons, which have dendrites or axons that penetrate the ependymal layer [45]. The 

circumventricular organs are unique structures that include the subfornical organ, the vascular 

organ of the lamina terminalis, the pineal gland, the subcommissural organ (SCO), and the 

median eminence/neurohypophysial complex. They contain fenestrated capillaries and 

therefore lack a complete BBB. However, they are separated from the CSF by tight junctions 

between ependymal cells [46]. The lack of tight junctions between the ependymal cells 

elsewhere indicates that the ependymal layer does not constitute a true barrier and solutes can 

transfer between the CSF and parenchyma [47]. However, it has been argued that the 

ependymal layer may present a partial barrier [48]. The ependymal cells have cilia toward the 

ventricular surface that beat synchronously to remove particles. They also have the ability to 

phagocytose and break down proteins, and they contain proteins that can bind toxic metal ions 

[48]. Ependymal cells have a limited potential to regenerate. Following injury, gaps in the 

ependymal layer are filled by reactive astrocytes that form glial nodules [41]. The loss of the 

partial barrier function caused by ependymal cell death could potentially result in increased 

susceptibility of the periventricular region to pathology. This is supported by the finding that 

widespread subependymal gliotic changes occur following  ependymal damage even under 

areas of intact ependyma layer [41]. Additionally, the presence of blood vessels in glial nodules 

may allow for movement of pathogens into the perivascular space. 

  

Physiology of the blood-CSF-brain entry route 

As has been reviewed elsewhere, water, electrolytes and various proteins are transferred across 

the BCSFB within the choroid plexus [49, 50]. The course of CSF solute flow after crossing 

the BCSFB has been demonstrated in humans using intravenous injection of the contrast agent 

gadolinium and delayed sequential MRI [51]. Contrast was detected within the choroid plexus, 

the ventricles, cortical subarachnoid spaces and the VRS as would be expected in the classic 

model of CSF flow. Additionally, when 3H-inulin was injected into the lateral ventricles or 

cisterna magna of dogs there was preferential tracer movement into the spinal subarachnoid 

space [52]. This evidence suggests that solutes enter the CSF via the choroid plexus. Transit is 

followed by rapid transfer throughout the CSF spaces, including accumulation in the VRS and 

subarachnoid space.  

The CSF is not an immune-privileged environment [15]. In healthy individuals, proteins of 

varying molecular weight, albeit in small quantities, can enter the CSF resulting in a serum/CSF 

gradient. For example, IgG is approximately 800 times more concentrated in the serum 

compared to the CSF [53]. How antibodies enter the CSF from the blood is uncertain. However, 

antibodies, especially IgG, are found in the choroid plexus epithelial cells which could suggest 

exchange across the BCSFB [49]. Intrathecal antibody synthesis can also occur. Immune cells 

are detectable in the CSF, such as T-lymphocytes which make up over 80% of CSF cells [54]. 

Lymphocytes migrate from the blood into the choroid plexus, especially following peripheral 
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immune stimulation [55]. Lymphocytes can potentially cross into the CSF at the choroid 

plexus, as demonstrated using an animal model of MS [56] and an in vitro BCSFB model [57]. 

Lymphocytes are also detectable in the VRS and perivascular spaces, even in the absence of 

known neurological disease [58]. The transfer of antibodies and immune cells into the CSF 

plays an important protective role against infections but can also have implications in 

autoimmune conditions. 

Transfer of solutes from the CSF into the brain has been demonstrated in mouse models where 

a fluorescent tracer was shown to cross both the pial-glial barrier and the ependymal layer [6, 

10]. Transfer of gadolinium through the ependymal layer has also been demonstrated in vivo 

using high-resolution MRI in rats [59]. After crossing the ependymal layer, the contrast was 

shown to spread preferentially along the perivascular spaces deeper into the parenchyma. 

Furthermore, it has been demonstrated that intrathecally injected antibodies and smaller 

antigen-binding fragments can enter the parenchyma from the CSF, with the spinal cord and 

brainstem demonstrating higher rates of influx [60]. Cytokines can also enter the parenchyma 

from the CSF [61, 62].  

It is therefore clear that solutes can cross the BCSFB, spread throughout the CSF and enter the 

parenchyma across the CSF-brain barriers. It is also apparent that components of the immune 

system gain access to the CSF as part of immune surveillance and that antibodies and cytokines 

can potentially move from the CSF into the parenchyma across the permeable CSF-brain 

barriers. 

Pathological involvement of the blood-CSF-brain route. 

The key methodologies to evaluate the significance of this route include pathological 

assessment, CSF sampling, MRI, in vitro barrier models and animal models (Table 1). 

Neuroinflammatory conditions, in particular antibody-mediated diseases such as neuromyelitis 

optica (NMO), are likely to involve the blood-CSF-brain pathway. Micro-organisms can cross 

from the blood into the CSF at the choroid plexus [63]; cryptococcus can also enter the brain 

parenchyma from the CSF. Primary and secondary CNS lymphoma and leptomeningeal 

carcinomatosis are potential examples of tumour spread via the blood-CSF-brain route. The 

supportive evidence for the involvement of the blood-CSF-brain route across a spectrum of 

neurological diseases is summarised in Table 2. The following features of these conditions 

would implicate spread of disease involving the blood-CSF-brain route:  

 Characteristic disease distribution. Lesion location can be determined using neuroimaging 

and by post-mortem pathological assessment. Within the conditions described in Table 2 

there is a predominance of lesions within CSF-adjacent locations. Periventricular and 

cortical lesions suggest compromise of the ependymal layer or the pial-glial barrier 

respectively. The optic nerves, spinal cord and brainstem are additional CSF-adjacent 

regions that are commonly affected. Involvement of the deep white matter, which is located 

away from the CSF, is relatively spared in these diseases.  

 

 Evidence of BCSFB dysfunction. The conditions described in Table 2 frequently exhibit 

raised CSF/serum albumin ratios (Qalb) which indicates increased permeability of the 
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BCSFB. Moreover, in NMO, MS and neurosarcoidosis the rise in Qalb has been shown to 

correlate with clinical relapses, implicating BCSFB disruption in disease pathogenesis. The 

BCSFB is located within the choroid plexus. Disease infiltration or damage to the choroid 

plexus is detectable in many of the conditions described. Furthermore, tumour cells have 

been shown to transfer across in vitro BCSFB models and lymphocytes have been shown 

to enter the CSF via the choroid plexus in animal models of MS.  

 

 Significance of CSF pathology. CSF biomarkers such as detection of neurofilament light 

chains due to parenchymal tissue damage can reflect changes in the parenchyma [64]. 

Evaluation of the CSF can also identify immune cells, tumour cells, or micro-organisms, 

suggesting disease propagation within the CSF. Intrathecal antibody synthesis can also be 

detected in the CSF. The importance of CSF involvement in causing disease is supported 

by the following evidence: 

i) Longitudinal changes in CSF pathology correlate with disease status more closely 

than serum pathology. 

ii) Greater sensitivity of CSF compared to serum/plasma investigations for disease 

diagnosis. 

iii) Passive transfer of autoantibodies from human to animal CSF causes a similar 

disease phenotype. 

All of these situations are supported by examples in Table 2.  

 Evidence of pathological involvement of the CSF-brain barriers. Barrier disruption and 

disease infiltration across the ependymal lining and pial-glial barrier is detectable at 

pathological examination and with MRI in many of the conditions described in Table 2. 

Accumulation of immune cells, micro-organisms and tumour cells is also detectable within 

the VRS and in some conditions the number of VRS detectable on MRI increases with 

disease progression. Leptomeningeal gadolinium enhancement on MRI is common in these 

conditions and suggests disease involvement of the pial-glial barrier. Furthermore, release 

of brain-derived proteins into the CSF is suggestive of CSF-brain barrier breakdown. 

 

 Lack of evidence of BBB disruption also characterises several of the conditions described 

in Table 2. Parenchymal contrast enhancement on MRI is not seen in cell-surface antibody 

mediated autoimmune encephalitis [65] and is infrequent in NMO [66] and 

neuropsychiatric lupus [67].  

Discussion 

We have reviewed the evidence for an indirect pathway entry into the brain. The blood-CSF-

brain route, which bypasses the direct route across the BBB (Fig. 4). Transfer across the BBB 

does not adequately explain the distribution of lesions seen in many of the conditions listed in 

this paper. The choroid plexuses act as an entry route for micro-organisms and tumour cells 

into the CSF. The immune system protects against these threats, primarily in the form of 

antibodies and lymphocytes entering the CSF. However, the ability of the immune cells and 

antibodies to access the CSF makes the brain susceptible to autoimmune disease. The CSF is 



 

 

This article is protected by copyright. All rights reserved. 

separated from brain parenchyma by the CSF-brain barriers, which if breached can allow entry 

of pathogenic threats into the brain parenchyma, potentially with onward preferential 

movement along perivascular spaces.  

The blood-CSF-brain route has previously been suggested to contribute to diseases such as MS 

[68], NMO [69], neurosarcoidosis [70, 71], neuropsychiatric lupus [72] and NMDAR-antibody 

encephalitis [73]. We have summarised the evidence that would implicate involvement of the 

blood-CSF-brain route within an expanded range of neurological diseases (Table 2). Within 

these conditions, lesions are commonly found in locations adjacent to the CSF and markers of 

disease, such as antibodies, tumour cells and micro-organisms, detectable within the CSF have 

greater significance for disease development than markers of disease detectable within the 

blood. Disruption of the BCSFB and CSF-brain barriers is also apparent in these conditions. 

The blood-CSF-brain route contrasts with the view that pathogenic threats cross the BBB from 

the blood into the parenchyma [27]. In the latter situation, a widespread lesion distribution 

involving deeper regions of the brain would be expected, given the extensive distribution of 

cerebral blood vessels [74]. This pattern is seen with parenchymal brain metastases [75] but 

not in the conditions described in Table 2. Moreover, the lack of parenchymal MRI gadolinium 

enhancement in NMO [66] and cell-surface antibody mediated autoimmune encephalitis [65] 

suggest that in these conditions the BBB remains largely intact throughout the disease process. 

Where parenchymal gadolinium enhancement is seen, such as in MS [76] and primary CNS 

lymphoma [77], BBB disruption is clearly also important for disease pathogenesis. However, 

the blood-CSF-brain route may also be important for disease initiation. In support of this, 

longitudinal studies of NMO have shown leptomeningeal enhancement prior to the 

development of underlying parenchymal or spinal lesions [78]. Moreover, it has been proposed 

that there are two phases of inflammation in MS, with major BBB disruption occurring in early 

disease, while in later disease there is lymphocyte accumulation in the meninges and VRS, 

without BBB breakdown [79]. The importance of entry route into the brain is exemplified by 

the different clinical presentation caused by anti-MOG antibodies. In adults, these 

autoantibodies cause anti-MOG antibody disease, which results in optic nerve, spinal cord, 

brainstem and cortical grey matter lesions with relative sparing of the deep white matter, in 

keeping with a blood-CSF-brain route of disease transfer [80] (Table 2). However, the same 

autoantibodies can also cause acute disseminated encephalomyelitis (ADEM) in children. In 

ADEM there are a widespread white matter lesions, which exhibit MRI gadolinium 

enhancement indicative of BBB disruption [81].  

This article has focused on and highlighted the potential role of the choroid plexus as an entry 

route for immune cells, tumour cells and micro-organisms into the CSF. However, the choroid 

plexus is not the only entry route into the CSF. Another possible route for the exchange of 

pathology is between the meningeal blood vessels and the CSF. This would be supported by 

the frequent presence of leptomeningeal enhancement in the conditions described in this paper, 

suggestive of gadolinium contrast leakage from these vessels. Meningeal blood vessels have 

also been suggested as an entry route for lymphocytes into the CSF [15]. Pathogenic threats 

could potentially enter the CSF via this route in addition to the choroid plexus or alternatively 

pathology within the CSF may secondarily disrupt the leptomeningeal blood vessels causing 
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their increased permeability. Recent studies have also shown that immune cells reside in larger 

numbers within the dura mater than previously expected [82, 83]. The dural myeloid cells were 

shown to move to sites of CNS injury [83] and the dural B lymphocytes were shown to mature 

into antigen presenting subtypes following neuroinflammation [82]. These findings could 

suggest an exchange between the dural and CSF, independent of the blood. Another potential 

route of pathological and immunological entry in to the CSF is via the other circumventricular 

organs such as the median eminence [84].  

Various investigative techniques can be used to assess disruption of the blood-CSF-brain 

pathway (Table 1). Advances in neuroimaging and in vitro barrier models will allow for 

improved assessment of blood-CSF-brain pathway disruption. Structural MRI is starting to be 

used to investigate in vivo changes to the choroid plexuses [85]. Dynamic contrast enhanced 

MRI has also been employed to assess the flow of contrast from the blood into and throughout 

the CSF spaces [51]. This could potentially be utilised to assess changes is BCSFB transfer and 

CSF flow in disease states. Furthermore, ultra-high resolution 7T MRI has the potential to 

accurately examine small spaces such as the VRS [86]. PET imaging also holds potential for 

examining changes in brain solute exchange using compartmental modelling, as has already 

been shown in MS and Alzheimer’s disease [87]. In vitro models are valuable for assessing 

exchange across the brain barriers. While cellular models of the BBB and BCSFB exist, models 

of the CSF-brain barriers are not yet available.  

Many of the conditions described in this paper are associated with considerable long-term 

morbidity and increased mortality. Identifying and improving the understanding of the blood-

CSF-brain route of pathological entry into the brain could lead to more effective treatments. 

The efficacy of systemic therapies can be limited when disease spread via or to the CSF. For 

example, treatments to remove autoantibodies including plasma exchange and intravenous 

immunoglobulin, are less effective in conditions where autoantibodies are intra-thecally 

synthesised. Examples include NMDAR-antibody encephalitis compared to peripheral 

autoimmune conditions such as myasthenia gravis [88]. Current untargeted systemic treatments 

can have severe adverse effects. For example, immune suppression and reconstitution as part 

of advanced treatments for MS can increase the risk of opportunistic infection and other 

autoimmune diseases [89]. If patients could be identified as having a primarily CSF based 

pathology this could allow for more targeted treatment, such as direct drug delivery into the 

CSF. This already occurs with intrathecal chemotherapy in leukaemia [90] and leptomeningeal 

carcinomatosis [91], intrathecal antimicrobials in cryptococcal meningitis [92, 93], and has 

recently been trialled with intrathecal immunosuppression in primary progressive MS [94]. 

Intrathecal delivery devices already exist for providing analgesic and antispasmodic 

medications [95]. Other potential directions for future research include the development of 

treatments that reduce the transfer of pathology across the BCSFB and the CSF-brain barriers.  

To conclude, we have outlined a disease model in which the CSF is a principal conduit of 

disease via an indirect blood-CSF-brain entry route, circumventing the BBB, rather than a 

passive bystander in the pathogenesis of CNS diseases. We have described the shared 

characteristics of diseases where the pathogenesis likely involves this route. By highlighting 
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this pathway of disease, we hope that specific targeted therapies can be developed to treat a 

group of conditions often associated with significant morbidity.  
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Table 1. Investigations to evaluate disruption of the blood-CSF-brain pathway. GFAP - Glial 

fibrillary acidic protein; NFL – Neurofilament light chains. 

Investigation Description 

Pathological 

assessment 

Post-mortem and brain biopsy specimens can undergo pathological 

assessment to assess for disease infiltration, disruption of normal 

anatomy and for localising lesions, in relation to the brain barriers. 

Qalb The CSF/serum ratio of albumin. Albumin is produced in the liver 

and is the most abundant plasma protein. It enters the CSF via the 

BCSFB. Qalb therefore increases with BCSFB dysfunction [96] but 

may also be seen in situations of reduced CSF flow and albumin 

clearance [97]. 

Raised CSF 

parenchymal 

proteins 

High levels of parenchymal proteins (e.g., GFAP and NFL) in the 

CSF, especially if there is not a similar rise in the serum, is 

suggestive of CSF-brain barrier disruption.  

Intrathecal antibody 

synthesis 

Antibodies produced in the CSF by lymphocytes can be detected 

using two different techniques. Firstly, the IgG-Index where an 

increased CSF/serum ratio of antibodies titres, accounting for Qalb, 

suggests intrathecal antibody synthesis. The second, more sensitive 

technique, is to detect oligoclonal protein bands using protein 

electrophoresis to determine the presence of specific antibodies in 

the CSF that are not present in the serum [98] 

MRI Parenchymal lesion gadolinium contrast enhancement is suggestive 

of BBB breakdown [76]. Distinctive linear contrast enhancement is 

suggestive of pathological accumulation along the perivascular 

spaces or in the VRS [99]. Leptomeningeal enhancement follows 

accumulation of contrast at the pial surface following contrast leak 

from leptomeningeal blood vessels [100] and suggests 

inflammation at the pial surface [78]. The ‘dot-dash’ sign is seen in 

damage to the ependymal layer [101]. 

Barrier models The ability of cells and proteins to cross the BBB and BCSFB can 

be tested in vitro using specialised cell models [102]. 

Passive transfer into 

animal models 

If the passive transfer of human CSF pathology, such as antibodies, 

into the CSF of animals causes a similar disease phenotype this 

supports an essential role of the CSF pathology, especially if this 

does not occur with transfer into the serum. 
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Table 2. The characteristics of conditions in which a blood-CSF-brain indirect route of 

pathological spread is suspected. NMO – Neuromyelitis optica; AQP4 – Aquaporin-4; MOG – 

myelin oligodendrocyte glycoprotein.  

 

ANTI-MOG 

ANTIBODY DISEASE 

SIMILAR TO NMO - 

OPTIC NERVE, 

SPINAL CORD AND 

BRAINSTEM BUT 

GREATER 

CORTICAL GREY 

MATTER 

INVOLVEMENT. 

RELATIVE 

SPARING OF THE 

DEEP WHITE 

MATTER [80] 

RAISED QALB 

[117] 

CASES OF ANTI-MOG ANTIBODIES 

DETECTABLE IN CSF BUT NOT 

SERUM [118, 119] 

GFAP 

ASTROCYTOPATHY 

Leptomeninges, 

periventricular, cortical 

grey matter, spinal 

cord, retina, 

cerebellum and 

hippocampus [120-

122] 

 

 

Unknown CSF anti-GFAP antibodies have better 

diagnostic sensitivity than serum antibodies 

[120] 

MULTIPLE 

SCLEROSIS 

Widespread with 

predominance of 

periventricular 

‘Dawson’s fingers’ 

lesions [124] 

 

 

Raised Qalb, during 

clinical relapse [125] 

 

Choroid plexus 

involvement [56, 102, 

126]  

 

Lymphocytes transfer 

into the CSF across 

choroid plexus in 

animal models [56] 

 

Reduced PET tracer 

influx into the 

ventricles [87] 

Intrathecal antibody synthesis usually 

present [127] 

 

CSF lymphocyte proliferation in secondary 

progressive disease [128] 

Increased number of VRS, especially 

after relapse [34, 39].  
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CELL-SURFACE 

ANTIBODY 

MEDIATED 

AUTOIMMUNE 

ENCEPHALITIS 

 

Specific for antibody 

e.g. hippocampus in 

NMDAR-antibody 

encephalitis [132] 

Unknown Intrathecal antibodies synthesis is 

predominant with NMDAR-antibody 

encephalitis and CSF antibodies are more 

diagnostically sensitive than serum 

antibodies [73, 133] 

 

Intrathecal antibodies synthesis can also 

occur in LGI1 and AMPAR-antibody 

encephalitis and is associated with worse 

clinical outcome [134, 135] 

 

CSF NMDAR-antibody levels correlate 

better with disease severity than serum 

levels [133] 

 

An animal model of NMDAR-antibody 

encephalitis is produced following transfer 

of human NMDAR-antibodies into the CSF 

[73, 136] 

NEUROPSYCHIATRIC 

LUPUS 

Periventricular and 

brainstem lesions are 

common [137] 

 

Additional subcortical 

infarctions relating to 

microthrombi 

accumulation [40] 

Raised Qalb [138] 

 

Choroid plexus 

involvement [72, 139-

141] 

Intrathecal antibody synthesis occurs [142] 

 

CSF antibody titres correlate better with 

disease severity compared with serum [142] 

NEUROSARCOIDOSIS Leptomeninges, 

periventricular, 

perivascular, VRS, 

optic nerve, brainstem 

[70] 

 

Raised Qalb, 

especially during 

active disease [143] 

 

Choroid plexus 

involvement [70] 

 

Intrathecal antibody synthesis occurs [143] 

CRYPTOCOCCAL 

INFECTION 

Leptomeninges, VRS 

and basal ganglia [145] 

  

Choroid plexus 

infiltration by 

organism [146] 

 

Raised Qalb is a poor 

prognostic factor 

[147] 

 

Reactive intrathecal antibody synthesis is 

associated with better prognosis [147] 

 

Organism grown from CSF culture [146] 
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LEPTOMENINGEAL 

CARCINOMATOSIS  

 

Leptomeninges [91] 

 

 

 

 

Raised Qalb [91] 

 

Transfer of malignant 

cells across in vitro 

BCSFB [90, 149]  

Reactive intrathecal antibody synthesis [91] 

 

Tumour cells detectable in CSF [91] 

PRIMARY CNS 

LYMPHOMA 

Periventricular 

‘butterfly’ lesions, 

leptomeninges, basal 

ganglia, cerebellum 

[151] 

 

Raised Qalb [152] 

 

Choroid plexus 

involvement [77] 

 

Tumour cells detected by flow cytometry 

and a minority have reactive intrathecal 

antibody synthesis [153] 
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Fig. 1 The classic model of CSF dynamics. Ventricular CSF is produced from the blood via 

the choroid plexuses in the walls of each of the four ventricles (red arrows). CSF flows (black 

arrows) from the lateral into the third ventricle (1), then flows into the fourth ventricle (2) via 

the cerebral aqueduct. From the fourth ventricle CSF flow is either into the central canal of the 

spine (3) or into the subarachnoid space at the cisterna magna (4). CSF flows within the 

subarachnoid space and is cleared via the arachnoid villi into the dural venous sinuses (5). The 

location of the brain barriers discussed in this review are also shown (black circles). 
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Fig. 2 Simplified model of brain solute exchange. The direct pathway into the parenchyma is 

across the blood-brain-barrier (blue arrow). The indirect pathway requires movement of solutes 

firstly from the blood into the CSF and then into the parenchyma (red arrows).  Drainage from 

the parenchyma (black arrows) can be directly back into the blood, into the CSF or via blood 

vessel walls into the dural/cervical lymphatics. Solutes in the CSF can re-enter the blood at the 

choroid plexus or enter the lymph. The lymph flows into the deep cervical lymph nodes (DcLN) 

and finally on to the blood. 

  



 

 

This article is protected by copyright. All rights reserved. 

 

Fig. 3 Barriers to brain solute exchange (a) Penetrating arteriole at the cortical surface. The 

blood vessel is covered with endothelium, smooth muscle cells and adventitia.  The CSF is 

separated from the ISF by the pial-glia barrier, which is comprised of the pia mater and glial 

end-feet. The pia mater extends to cover the arteriole in the subarachnoid space. The Virchow-

Robin space (VRS) surrounds the penetrating arteriole. The VRS and ISF are separated by the 

pial-glial barrier. (b) The choroid plexus is a collection of outpouchings into the ventricular 

CSF. These are highly vascular structures which contain fenestrated capillaries surrounded by 

an extracellular fluid called the stroma. The ciliated choroid plexus epithelial cells are 

connected by tight junctions and sit on a basement membrane, this forms the blood-CSF-

barrier. (c) The ependymal layer separating the ventricular CSF and the ISF. This is mainly 
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comprised of ciliated ependymal cells. Tanycytes are also present and connect to both the CSF 

and blood vessels. Glial nodules, which can contain blood vessels, form in areas of ependymal 

damage.  
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Fig. 4 The blood-CSF-brain indirect route of pathology influx into the brain. Micro-organisms, 

tumour cells and immune cells/antibodies can enter the CSF via the choroid plexus, (dark red) 

where they cross the blood-CSF barrier. Rapid transport throughout the CSF spaces occurs 

(black arrows). Entry into parenchyma occurs across the ependymal layer and the pial-glial 

barrier (green arrows). 
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