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Abstract
We show that an appropriately-designed “Refunding Club” can simultaneously solve both 
free-riding problems in mitigating climate change—participating in a coalition with an 
emission reduction target and enduring voluntary compliance with the target once the coa-
lition has been formed. Countries in the Club pay an initial fee into a fund that is invested 
in assets. In each period, part of the fund is distributed among the Club members in rela-
tion to the emission reductions they have achieved, suitably rescaled by a weighting factor. 
We show that an appropriate refunding scheme can implement any feasible abatement path 
a Club wants to implement. The contributions to the initial fund can be used to disentangle 
efficiency and distributional concerns and/or to make a coalition stable. Making the grand 
coalition stable in the so-called “modesty approach” requires less than 0.5% of World GDP. 
Finally, we suggest ways to foster initial participation, to incorporate equity concerns with 
regard to developing countries, and ways to ease the burden to fill the initial fund.
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1 Introduction

1.1  Motivation

International treaties on the provision of global public goods have a fundamental free-
riding problem: each country’s contribution will benefit all countries in a non-exclusive 
and non-rival manner. This Prisoner’s Dilemma aspect and the absence of a supranational 
authority make international coordination crucial and exceptionally difficult to achieve at 
the same time. Countries may either lack the incentive to sign an agreement and may prefer 
to benefit from the signatories’ contributions or they may have incentives not to comply 
with promises made in an agreement.

In long-run problems extending over decades or even centuries, such as mitigating 
anthropogenic climate change, a second problem arises. Even if the free-riding problem 
might be solved temporarily, little is achieved if the international community fails to agree 
on a subsequent agreement when a first agreement has expired. With respect to anthro-
pogenic climate change, this is a recurrent problem. After the first commitment period of 
the Kyoto Protocol has expired,1 the international community has consistently failed to 
agree on a subsequent international agreement to reduce greenhouse gas emissions, be it 
in Copenhagen (2009), Cancún (2010), Durban (2011), Doha (2012) or Warsaw (2013). 
Although in 2015 a new international mechanism to significantly reduce greenhouse gas 
emissions, the so-called Paris Agreement (UNFCCC 2015), was adopted, as of March 
2021 only a minority of countries has submitted long-term low greenhouse gas emission 
development strategies, which were due by the end of 2020. In addition, many countries 
fall short to deliver their self-proclaimed “nationally determined contributions”.

1.2  Treaty and Main Insight

We show that an appropriately-designed “Refunding Club” can simultaneously solve both 
free-riding problems in mitigating climate change—participating in a coalition with an 
emission reduction target and enduring voluntary compliance with the target once the coa-
lition has been formed. In particular, we propose and analyze climate treaties that involve 
a long-run refunding scheme (henceforth “RS”) within a Refunding Club. All countries 
in a coalition of countries forming a Refunding Club pay an initial fee into a fund that 
is invested in long-run assets. Countries in the Club maintain full sovereignty over the 
amount of emissions they abate each year and what policy measures they use to do so. 
At the end of each year, part of the fund is paid out to participating countries in propor-
tion to the relative GHG emission reductions they have achieved in that year, weighted by 
country-specific factors.

We integrate the Refunding Club into a dynamic model that incorporates important 
characteristics of anthropogenic climate change. This requires to allow countries to be arbi-
trarily heterogeneous with respect to damages and abatement technologies together with 
a arbitrarily long (but finite) time horizon. Moreover, we incorporate latest scientific evi-
dence of the climate change problem (i.e., we use a carbon budget approach). Then, we 

1 In this protocol, the industrialized countries of the world, so-called “Annex B countries”, committed 
themselves to a reduction of greenhouse gas (GHG) emissions by 5.2% against 1990 levels over the period 
from 2008 to 2012.
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establish five main insights. First, any feasible abatement path a coalition of countries sets 
as a goal can be implemented by a suitably chosen RS. That is, once the corresponding ini-
tial fund has been established, the RS will ensure that countries comply with the envisioned 
country-specific abatement paths. The abatement paths could be the globally optimal paths 
of the grand coalition or more modest abatement paths by any coalition. Second, since in a 
treaty, voluntary compliance of countries with their abatement paths is independent from 
their specific contributions to the initial fund, the RS disentangles efficiency and distribu-
tional concerns. For instance, a suitably chosen RS cannot only achieve a Pareto improve-
ment over the decentralized solution, but it can achieve any distribution of the cooperation 
gains through the allocation of contributions to the initial funds across countries in the 
Refunding Club.

Third, we use an intertemporal extension of the modest international environmental 
agreement approach developed by Finus and Maus (2008) to characterize stable coalitions 
and thus to address the initial participation problem. By combining refunding (to solve the 
compliance problem) and Finus and Maus’ “modesty approach” (to solve the initial partici-
pation problem), we can determine for what level of modesty a coalition, and in particular 
the grand coalition, can be stabilized. Fourth, using a numerical illustration based upon the 
RICE-2010 model (Nordhaus 2010) with twelve regions in the world, we calculate ballpark 
estimates for the funds required to implement the modest grand coalition of less than 0.5% 
per cent of World GDP. Fifth, we suggest ways to foster initial participation, to incorporate 
equity concerns by differentiating initial fees across countries and to lower the burden for 
developing countries, and ways to ease the burden of filling the initial fund. Moreover, we 
outline how sustainable refunding schemes could be implemented in overlapping genera-
tion models.

1.3  Model and Main Formal Results

We study a multi-country model with country-specific emissions, abatement cost functions 
and damage functions.2 Our main formal results are as follows: First, for a given coalition 
of countries, we introduce a RS, characterized by the set of initial fees payable into a fund 
by each participating country, a weighting scheme with country-specific refund intensities 
and a set of reimbursements across time. With a RS, a coalition of countries turns into a 
Refunding Club. We show that initial fees, the weighting scheme and a feasible sequence 
of refunds can be devised in such a way that the RS implements any feasible abatement 
path a coalition of countries wants to achieve through a treaty. That is, together with the 
abatement decisions of countries outside the coalition, the abatement decisions of coun-
tries in the coalition constitute a unique subgame perfect equilibrium and coincide with the 
goal stipulated in the treaty. Marginal deviations of countries in the coalition would reduce 
abatement costs marginally but this gain is equal to the corresponding reduction of refunds 
and increase of damages. A special case is the grand coalition and the implementation of 
the socially optimal abatement levels in each period and each country as a unique subgame 
perfect equilibrium with a suitably chosen RS.

2 Our model is a dynamic stock pollution game similar to Dockner and Van Long (1993), but generalized 
to n players, in discrete time. In addition, we use a carbon budget approach (see Sect. 2 for details), i.e., we 
abstract from stock depreciation.
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Second, for any feasible abatement goal set by a coalition in a treaty, there exists a fea-
sible set of initial fees such that the RS implements a Pareto improvement over the decen-
tralized solution for all coalition members. Moreover, if we allow for negative initial fees, 
the RS can in fact implement any distribution of the cooperation gains in a coalition, This 
property of RS to disentangle efficiency and distributional concerns is helpful in achiev-
ing initial participation. The former is dealt with by the total amount of the initial fees and 
the refunding formula with the weighting factors. The latter is dealt with by the country-
specific initial fees.

Third, by allowing coalitions to internalize only a fraction of the externalities they 
create, we can examine the stability of coalitions using the modesty approach developed 
by Finus and Maus (2008). Drawing on the above results, we show that for any coa-
lition, any degree of modesty can be implemented by a suitable RS, i.e., the abatement 
choices of countries, in the coalition and outside of it, constitute a unique subgame perfect 
equilibrium.

Besides the analytical result, we illustrate the working and impact of the refunding 
scheme in a numerical exercise based upon the RICE-2010 model that takes into account 
heterogeneities across countries.

1.4  Literature

The starting point for our scheme and its analysis is the large body of game-theoretic lit-
erature on the formation of international and self-enforcing environmental agreements3 
as there is no supranational authority to enforce contracts and to ensure participation and 
compliance during the duration of a treaty. This literature has provided important insights 
into the potentialities and limitations of international environmental agreements regarding 
the solution of the dynamic common-pool problem that characterizes climate change, as 
discussed and surveyed by Bosetti et al. (2009) and Hovi et al. (2013). Hovi et al. (2013) 
point out that there are three types of enforcement that are crucial for treaties to reduce 
global emissions substantially: (i) countries must be given incentives for ratification with 
deep commitment, (ii) those countries that have committed deeply when ratifying should 
be given incentives to remain within the treaties, and (iii) they should be given incentives 
to comply with them. Our Refunding Club satisfies all three requirements. First, when a 
country joins a coalition, it knows that the Refunding Scheme provides strong incentive 
for itself and the other members of the coalition to reduce greenhouse gas emissions. Sec-
ond, once countries have joined the coalition, the Refunding Scheme ensures that countries 
comply with the envisioned abatement objective. Third, once countries have joined the 
coalition, they have no incentive to exit, as they would loose all claims on future refunds.

The papers most closely related to our paper are Gersbach and Winkler (2007, 2012) 
and Gerber and Wichardt (2009, 2013), all of which also incorporate refunding schemes. 
Gerber and Wichardt (2009) analyze a simple two-stage game in which countries in the 

3 Non-cooperative and cooperative approaches have been pursued. Many authors have stressed that the 
grand coalition is not stable if an individual defection does not destroy any coalition formation (e.g., Car-
raro and Siniscalco 1993; Eyckmans et al. 1993; Barrett 1994; Tol 1999; Bosetti et al. 2009.) Typically, in 
such circumstances, stable coalitions only contain a limited number of countries (see, e.g., Hoel 1991; Car-
raro and Siniscalco 1992; Finus and Caparrós 2015a, b). d’Aspremont et al. (1983) have conducted an origi-
nal analysis and has introduced the definitions for internally and externally stable coalitions. Pioneering in 
the modelling of coalition structures are Bloch (1997) and Yi (1997).
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first stage choose whether to accede to a treaty. Doing so involves a payment into a fund. In 
the second stage countries decide on emissions. Only if countries choose a particular emis-
sion level that is desired from a global perspective (and, in general, not in the best interest 
of each country alone) they get a refund paid out of the fund. If refunds (and first-stage 
deposits, respectively) are sufficiently high, all countries choose socially desired emission 
levels in the second stage. Participation in the first stage is ensured by the rule that the 
refunding scheme operates only if all countries participate and contribute their respective 
payments to the fund. If at least one country does not participate, the deposits of all other 
countries are immediately repaid, no refunding scheme is established and countries are 
stuck in the non-cooperative equilibrium. Gerber and Wichardt (2013) extend this frame-
work to an intertemporal framework, in which the continuation of the agreement is chal-
lenged by re-occurring deposit stages. As in Gerber and Wichardt (2009) the refunding 
scheme only operates, respectively continues, if all countries pay their deposits.

In Gersbach and Winkler (2007, 2012), we focussed on the second and third enforce-
ment/commitment problem. We also employed a refunding scheme to incentivice countries 
to increase their levels of emission abatement above the non-cooperative level. In contrast 
to Gerber and Wichardt (2009, 2013) our refunding scheme did not prescribe a particular 
abatement, respectively emission level in order to be eligible for a refund, but employed 
a continuous refunding rule, in which refunds are increasing with emission abatement. In 
addition, we analyzed to what extent initial deposits could be decreased by surrendering 
the revenues of climate policies to the fund (in our case the tax revenues from emission 
taxes).

1.5  Our Contribution

Relative to the literature mentioned above, we make four contributions in this paper. First, 
we combine different aspects from the previous literature in a novel way: Like in Gerber 
and Wichardt (2009) we rely solely on initial payments to finance refunds, as countries 
might be reluctant to surrender tax sovereignty, but we do not assume that refunding col-
lapses if a country does not match precisely a particular emission level. Instead, we rely 
on a continuously differentiable refunding rule like in Gersbach and Winkler (2007, 2011, 
2012). This means that the sustainable treaties advanced in this paper are rule-based trea-
ties, i.e., the treaties neither fix emission targets nor the carbon price. In contrast to Gers-
bach and Winkler (2007, 2011, 2012), however, we do not rely on revenues from emission 
taxes or permit auctions to pay for the initial fees since countries should have full sov-
ereignty over their domestic climate policy and its intensity. The central question in our 
paper is: Can initial payments to a climate fund engineer solutions aspired by a coalition 
when refunding continuously adjusts to abatement efforts of countries? None of the pre-
ceding work has explored this question.

Second, in contrast to the existing literature on refunding schemes, we build a dynamic 
model that incorporates important characteristics of anthropogenic climate change. This 
requires to allow countries to be arbitrarily heterogeneous with respect to damages and 
abatement technologies together with a arbitrarily long (but finite) time horizon. Moreover, 
we incorporate latest scientific evidence of the climate change problem (i.e., we use a car-
bon budget approach, see also Sect. 2 for details). The combination of such a model with a 
continuous refunding rule results in a dynamic game structure, in which the existence and 
uniqueness of a subgame perfect equilibrium is neither obvious nor trivial to prove.
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Third, we also address the first commitment problem. However, unlike Gerber and 
Wichardt (2009, 2013), we do not believe that the participation problem can be credibly 
and realistically solved by an initial stage (or re-occurring intermediate participation stages 
as in Gerber and Wichardt 2013), in which any agreement is abandoned as soon as only 
one country is not willing to participate. Models with such an initial participation stage 
are not renegotiation-proof in the sense that if one country is not willing to participate all 
other countries would be better off by striking an agreement without the deviating coun-
try instead of falling back to the perfectly non-cooperative Nash equilibrium. In fact, we 
interpret the past announcement of the US’ withdrawal from the Paris Agreement and the 
subsequent declarations of (almost) all remaining countries to nevertheless stick to the 
agreement as empirical evidence that making each country pivotal will not work. As a con-
sequence, we investigate the refunding scheme independently of the requirement that all 
countries participate, i.e., it can be applied to any coalition that forms with initial payments 
for a climate fund.

To analyze participation, we present an intertemporal generalization of the modesty 
approach by Finus and Maus (2008), which relies on the standard notion of internal and 
external stability. In fact, our RS poses a suitable microfoundation for the coalition forma-
tion framework in general, and the modest coalition formation framework of Finus and 
Maus (2008) in particular.4 In addition, we explore in Sect. 7 ways to ease the participation 
and financing problem.5

Fourth, the match of anthropogenic climate change characteristics and refunding opens 
up the possibility to assess for the first time the potential of refunding for slowing down cli-
mate change. In particular, we analyze a numerical version of our stylized model based on 
data of the regional disaggregated integrated assessment model RICE-2010 by Nordhaus 
(2010) and assess the order of magnitude of financial assets that are needed to finance such 
a refunding scheme. The calibration exercise reveals that making the grand coalition stable 
requires less than 0.5% of World GDP for the initial fund.

Finally, we also contribute to solving dynamic public goods problems. At least since 
Fershtman and Nitzan (1991) it is know that dynamic good problems pose more severe 
challenges than their static counterparts.6 We examine the most severe case when countries 
cannot commit to any future emission reductions, as no international authority can enforce 
an agreement on such reductions. The dynamic public good problem is thus particularly 
severe. The treaties we advance in this paper essentially reduce the public good problem 
over an infinite horizon to a static problem in which counties are asked to contribute in the 

6 Dynamic games on voluntary provision of public goods have been significantly developed (see Wirl 
1996; Dockner and Sorger 1996; Sorger 1998; Marx and Matthews 2000). Recent contributions involve 
Dutta and Radner (2009) who examine agreements on mitigating climate change supported by inefficient 
Markov perfect equilibria.

4 In this respect our model shares some similarities with Harstad (2020), who analyzes a dynamic model 
inspired by the pledge-and-review mechanism of the Paris Agreement to account for a variety of different 
empirical observations of international environmental agreements.
5 If complete contracts on emission reductions could be written between countries, a first-best solution 
would be easily achieved including, of course, the initial participation problem. Harstad (2012, 2016) and 
Battaglini and Harstad (2016) analyze the interaction between decisions on emission levels and investments 
into low-carbon energy technologies in dynamic games with incomplete contracting, i.e., when countries 
can contract on emission reductions but not on investment. We abstract from technology investments and 
scrutinize what refunding can achieve in case countries cannot contract ex ante on emission reductions.
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initial period to a global fund. Once the global fund has been set up, countries voluntarily 
choose the desired emission levels in all subsequent periods.7

1.6  Organization of the Paper

The paper is organized as follows: in the next section, we set up our model, for which in 
Sect. 3 we derive the social optimum and the decentralized solution as benchmark cases. 
The refunding scheme is introduced in Sect. 4, where the existence and uniqueness of RS 
to implement any solution an arbitrary coalition aspires to is also established. In Sect. 5, 
we extend the modesty approach to an intertemporal setting and characterize the stability 
conditions of coalitions with this approach. In Sect. 6 we illustrate our model numerically. 
In Sect. 7, we discuss practical aspects of the RS, such as initial participation and how to 
raise initial fees and how sustainable refunding schemes can be implemented in an overlap-
ping generation set-up. Section 8 concludes. Proofs of all propositions are relegated to the 
“Appendix”.

2  The Model

We consider a world with n ≥ 2 countries characterized by country specific emission 
functions Ei , abatement cost functions Ci , and damage functions Di over a finite (though 
arbitrarily large) time horizon of T (T > 0) running from period t = 0 to period t = T .8 
Throughout the paper the set of all countries is denoted by I  , countries are indexed by i 
and j, and time is indexed by t.

Emissions of country i in period t are assumed to equal “business-as-usual” emissions �i 
(i.e., emissions arising if no abatement effort is undertaken) minus emission abatement ai

t
:9

We assume that emission abatement ai
t
 is achieved by enacting some national environmen-

tal policy, which induces convex abatement costs in country i:10

Cumulative global emissions, which are the sum of the emissions of all countries up to 
period t, are denoted by st:

(1)Ei(a
i
t
) = �i − ai

t
, i ∈ I, t = 0,… , T .

(2)Ci(a
i
t
) =

𝛼i

2

(
ai
t

)2
, with 𝛼i > 0, i ∈ I, t = 0,… , T .

7 In this respect, our argument is exactly opposite to Gerber and Wichardt (2013), who propose to split 
static public good problems into dynamic ones in order to reduce downside payments.
8 Throughout the paper, we denote the time horizon by T. Note that a time horizon of T comprises of T + 1 
periods.
9 We do not restrict abatement to be at most as high as business-as-usual emissions, i.e., ai

t
≤ �

i
 . Thus, we 

allow for negative net emissions, for example via afforestation or carbon capture and sequestration tech-
nologies.
10 This is a standard short-cut way of capturing aggregate abatement costs in country i (see, e.g., Falk and 
Mendelsohn 1993).
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where the initial stock of cumulative greenhouse gas emissions is denoted by s0.
Recent scientific evidence suggests that global average surface temperature increase 

is—at least for economically reasonable time scales (i.e., several centuries)—approxi-
mately a linear function of cumulative global carbon emissions (see Allen et al. 2009; Mat-
thews et al. 2009; Zickfeld et al. 2009; IPCC 2013). As a consequence, we consider strictly 
increasing and strictly convex damage costs for each country i to depend on cumulative 
global emissions st rather than on atmospheric greenhouse gas concentrations:

Countries are assumed to discount outcomes in period t with the discount factor �t with 
0 < 𝛿 < 1 . Finally, we introduce the following abbreviations for later reference:

3  Decentralized Equilibrium, Global Social Optimum and International 
Environmental Agreements

Throughout the paper, we assume that a local planner in each country (e.g., a government) 
seeks to minimize the total domestic costs, which—in the absence of any transfers—con-
sist of the discounted sum of domestic abatement and domestic environmental damage 
costs over all T + 1 periods:

We further assume that local planners in all countries have perfect information about the 
business-as-usual emissions, abatement costs and environmental damage costs of all coun-
tries. In addition, in each period t local planners in all countries i observe the stock of 
cumulative emissions st before they simultaneously decide on the abatement levels ai

t
.

Finally, we assume that costs can—at least potentially—be frictionless shared across 
countries by a transfer scheme T  , which is a set of domestic net transfers summing up to 
zero. Thus, we suppose a transferable utility set-up.

3.1  Decentralized Solution and Global Social Optimum

Under these assumptions and in the absence of any international environmental treaty, the 
decentralized solution is the subgame perfect Nash equilibrium outcome of the game, in 
which all local planners i in period t choose abatement levels ai

t
 such as to minimize total 

domestic costs taking the emissions ajt of all other countries j ∈ I⧵i as given.
We solve the game by backward induction, starting from period T. It is useful to con-

sider a typical step in this procedure. To this end, suppose that there exists a unique 

(3)st+1 = st +

n∑
i=1

Ei(a
i
t
) , t = 0,… , T ,

(4)Di(st) =
𝛽i

2
s2
t
, with 𝛽i > 0, i ∈ I , t = 0,… , T .

(5)E =

n∑
i=1

�i , A =

n∑
i=1

1

�i
, B =

n∑
i=1

�i, �i =
�i

�i
, Γ =

n∑
i=1

�i .

(6)Ki =

T∑
t=0

�t
[
�i

2

(
ai
t

)2
+

�i

2
s2
t

]
, i ∈ I .
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subgame perfect equilibrium for the subgame starting in period t + 1 with a stock of cumu-
lative greenhouse gas emissions st+1 . For the moment, this is assumed to hold in all periods 
t + 1 and will be verified in the proof of Proposition 1. Other details of the history of the 
game apart from the level of cumulative greenhouse gas emissions st+1 do not matter, as 
only st+1 influences the payoffs of the subgame starting in period t + 1 and the equilibrium 
is assumed to be unique.

Given the unique subgame perfect equilibrium for the subgame starting in period t + 1 
with the associated equilibrium payoff Wi

t+1
(st+1),

11 country i’s best response in period t, āi
t
 , 

is determined by the solution of the optimization problem

subject to Eq. (3), Wi
T+1

(sT+1) ≡ 0 , and given the sum of abatement efforts by all other 
countries A−i

t
=
∑

j≠i a
j

t . The following proposition establishes the existence and unique-
ness of a subgame perfect Nash equilibrium:

Proposition 1 (Decentralized Solution) For any time horizon T < ∞ , there exists a 
unique subgame perfect Nash equilibrium of the game in which all countries non-cooper-
atively choose domestic abatement levels in every period to minimize the net present value 
of total domestic costs, characterized by sequences of emission abatements for all coun-
tries i in all periods t, 

{
âi
t

}i∈I

t=0,…,T
 , and a sequence for the stock of cumulative GHG emis-

sions 
{
ŝt
}
t=0,…,T

.

The proof of Proposition 1 is constructive in the sense that we do not only show exist-
ence and uniqueness of the subgame perfect equilibrium, but derive closed-form solutions 
for the corresponding abatement and cumulative GHG emission paths.12

In general, the total global costs, i.e., the sum of total domestic costs over all countries, 
are not minimized in the decentralized solution. As a consequence, the decentralized solu-
tion is inefficient, as in the global total cost minimum, which is also called the global social 
optimum, all countries could be made better off by an appropriate transfer scheme T  , due 
to the transferable utility assumption.

The reason for the decentralized solution to fall short of the global social optimum is 
that local planners only take into account the reduction of environmental damages that an 
additional unit of abatement prevents in their own country and neglect the damage reduc-
tions in all other countries. As a consequence, aggregate abatement levels in the decen-
tralized solution are lower compared to the global social optimum and, thus, cumulative 
greenhouse gas emissions are higher.

The global social optimum is derived by choosing abatement paths 
{
ai
t

}
t=0,…,T

 for all 
countries i ∈ I  , such as to minimize the net present value of total global costs consisting of 
global costs of emission abatement and the sum of domestic environmental damages stem-
ming from the cumulative global emissions:

(7)Vi
t
(st)|A−i

t
= max

ait

{
�Wi

t+1
(st+1) −

�i

2

(
ai
t

)2
−

�i

2
s2
t

}
,

11 The equilibrium payoff Wi

t+1
(s

t+1) is minus the discounted sum of the total domestic costs over the 
remaining time horizon starting from period t + 1 in the subgame perfect equilibrium of the subgame start-
ing in period t + 1.
12 Despite being closed-form the solutions are quite cumbersome and, thus, relegated to the “Appendix”.
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There exists a unique global optimum in which the costs of abating an additional marginal 
unit of emissions have to equal the net present value of all mitigated future damages caused 
by this additional marginal unit:

Proposition 2 (Global Social Optimum) For any time horizon T < ∞ there exists a 
unique social global optimum characterized by sequences of emission abatements for all 
countries i in all periods t, 

{
ai
t

⋆
}i∈I

t=0,…,T
 , and a sequence for the stock of cumulative green-

house gas emissions 
{
s⋆
t

}i∈I

t=0,…,T
.

Again, we derive closed form solutions for abatement and cumulative emission paths in 
the global social optimum in the proof of Proposition 2.

3.2  International Environmental Agreement

The inefficiency of the decentralized solution gives incentives to local planners to cooperate 
in order to reduce total domestic costs. Throughout this paper we refer to these cooperations 
as international environmental agreements or treaties for short.13 In the framework of our 
model, the most general definition of an international environmental agreement comprises 
three components: First, a time horizon T, which denotes the duration of the treaty; second, a 
fixed set C ⊆ I  of participating countries, also called member countries or simply the coali-
tion. Finally, the abatement paths 

{
ai
t

}i∈C

t=0,…,T
 of all member countries i ∈ C , the treaty aspires 

to implement. We also define aggregated abatement AC
t
 of the coalition C in period t as:

In line with most of the literature on international environmental agreements, we assume 
that all non-members of the coalition behave as singletons, i.e., they non-cooperatively set 
abatement levels such as to minimize the net present value of their own total domestic 
costs, as in the decentralized solution, taking the aggregate abatement effort of the coali-
tion and the abatement levels of all other non-member countries as given. Derivation of the 
subgame perfect equilibrium is analogous to the decentralized solution:

Proposition 3 (Abatement paths of non-members) For any time horizon T < ∞ and 
any given coalition C with a corresponding sequence of aggregate abatement levels {
AC
t

}
t=0,…,T

 , there exists a unique subgame perfect Nash equilibrium of the game in which 
all non-member countries choose domestic abatement levels in every period t = 0,… , T  
to minimize the net present value of total domestic costs, characterized by sequences of 

(8)min
{ait}

i∈I

t=0,…,T

T∑
t=0

�t
n∑
i=1

[
�i

2

(
ai
t

)2
+

�i

2
s2
t

]
,

(9)AC

t
=
∑
i∈C

ai
t
, t = 0,… , T .

13 Both the global social optimum and the decentralized outcome are important benchmarks in evaluating 
the performance of potential international agreements. While the decentralized outcome is realized if no 
agreement takes place, the social optimum is the ultimate goal an international agreement seeks to imple-
ment. Obviously, any agreement has to outperform the decentralized outcome in order to be seriously con-
sidered, and it is the “better,” the closer its outcome is to the global social optimum.
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emission abatements for all countries i ∉ C in all periods t, 
{
ǎi
t

}i∉C

t=0,…,T
 , and a sequence for 

the stock of cumulative GHG emissions 
{
št
}
t=0,…,T

.

Whether a treaty, as defined above, succeeds in implementing its aspired abatement 
paths 

{
ai
t

}i∈C

t=0,…,T
 mainly depends on two circumstances:

First, the coalition of participating countries has to be stable in the sense that no par-
ticipating country would rather leave the coalition (internal stability) and no non-member 
country would rather join the coalition (external stability). Whether the conditions of inter-
nal and external stability hold, depends on how the aspired abatement paths of the remain-
ing coalition members changed if any of its members would leave the coalition. This ques-
tion, which set of countries form a stable coalition, is also called the participation problem.

Second, even if a treaty is stable in the sense of the participation problem, it still has 
to make sure that participating countries stick to the aspired abatement paths 

{
ai
t

}i∈C

t=0,…,T
 . 

Without any kind of incentive scheme it is, in general, not in the countries’ own best inter-
est to comply with the treaty. Therefore, the question how to incentivize countries to stick 
to the aspired abatement paths is also called the compliance problem.

Most of the literature on international environmental agreements, as reviewed in Sect. 1, 
has concentrated on the participation problem, while compliance was simply assumed. 
Although a stable coalition is a sine qua non for a treaty’s success, it is obviously not suf-
ficient, as ample real world examples of non-compliance show. To remedy this shortcom-
ing, we introduce an institutional setting, called a refunding scheme, in the next section that 
implements any feasible abatement paths 

{
ai
t

}i∈C

t=0,…,T
 , a coalition intends to implement, as 

the unique subgame perfect Nash equilibrium.

4  Refunding Scheme

In the following, we introduce a refunding scheme (RS), a versatile institutional design 
ensuring the compliance of all members of an international environmental agreement with 
the aspired abatement paths. The essential idea is that an international fund is established 
refunding interest earnings to member countries in each period proportionally to their rela-
tive emission reductions weighted by country specific refunding weights.

4.1  Rules of the Refunding Scheme

In general, a RS for a given coalition of countries C and a given time horizon T of the 
treaty is characterized by the set of initial fees 

{
f i
0

}i∈C payable into a global fund by each 
participating country i ∈ C , a weighting scheme 

{
�i
t

}i∈C

t=0,…,T−1
 , and a set of reimbursements {

Rt

}
t=0,…,T

 . The sequence of events is as follows: 

1. At the beginning of period t = 0 all participating countries pay the initial fees f i
0
 into a 

fund.
2. In every period t = 0,… , T  all countries i ∈ I  set abatement levels ai

t
.

3. At the end of every period t = 0,… , T the RS reimburses the total amount Rt to member 
countries. In periods t = 0,… , T − 1 each member country i ∈ C receives a refund ri

t
 that 

is proportional to the emission reductions they have achieved relative to overall emission 
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abatement of the coalition times a weighting factor �i
t
 . In period t = T  any remaining 

fund is repaid in equal shares to all participating countries.

We assume that the assets of the fund are invested at the constant interest rate � per period, 
and the returns add to the global fund in the next period t + 1 . We assume that the interest 
rate � corresponds to the discount factor � , i.e., � = 1∕� − 1 . As the reimbursement Rt is 
paid to coalition members at the end of each period t = 0,… , T  , the fund at the beginning 
of period t + 1 reads

with an initial fund f0 =
∑

i∈C f
i
0
 . Note that fT+1 = 0 , or equivalently RT = fT.

In addition, the refund ri
t
 a member country i ∈ C receives in period t yields

with a weighting scheme satisfying

The weighting scheme accounts for the fact that countries are heterogeneous with respect 
to business-as-usual emissions, abatement costs and environmental damage costs.

4.2  Existence and Uniqueness of the Refunding Scheme

In the following, we show that for any given treaty, characterized by a time horizon T, a 
coalition C and feasible coalition abatement paths 

{
ai
t

}i∈C

t=0,…,T
 , there exists a set of initial 

fees 
{
f i
0

}i∈C , a weighting scheme 
{
�i
t

}i∈C

t=0,…,T−1
 and refunds 

{
Rt

}
t=0,…,T−1

 such that the RS 

implements the aspired abatement paths 
{
ai
t

}i∈C

t=0,…,T
 of the coalition C as the unique sub-

game perfect Nash equilibrium in which all countries set emission abatement levels in all 
periods to minimize the net present value of their own total domestic costs (which also 
includes initial payments and refunds for members of the coalition).

To this end, we first define a feasible coalition abatement path. A feasible coalition 
abatement path has the property that it lies in between the abatement paths of the decen-
tralized solution and the social global optimum for all coalition member countries i ∈ C 
and all time periods t = 0,… , T:14

(10)ft+1 = (1 + �)(ft − Rt), t = 0,… , T − 1,

(11)ri
t
=

⎧⎪⎨⎪⎩

�i
t
Rt

ai
t∑

j∈C a
j
t

, t = 0,… , T − 1,

Rt

�C� , t = T ,

(12)
�
i∈C

�i
t

ai
t∑

j∈C a
j

t

= 1, t = 0,… , T − 1 .

(13)âi
t
≤ ãi

t
≤ ai

t

⋆
, i ∈ C, t = 0,… , T .

14 While abatement paths with ai
t

⋆
< ãi

t
 would also be “feasible” in a strictly technical sense and could also 

be implemented by the RS, we consider the social global optimum as a natural upper bound for the emis-
sion abatement levels of coalition members.
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Note that, by construction, all feasible coalition abatement paths obeying conditions (13) 
are optimal in the last period T, as ãi

T
= 0 for all i ∈ C . Then, the following Proposition 

holds:

Proposition 4 (Existence of the RS) Given a treaty characterized by the coalition C , a 
time horizon T and feasible coalition abatement paths 

{
ãi
t

}i∈C

t=0,…,T
 , there exist a RS charac-

terized by a set of initial fees 
{
f̃ i
0

}i∈C , a sequence of feasible refunds 
{
R̃t

}
t=0,…,T−1

 , and a 
weighting scheme {�̃�i

t
}i∈C
t=0,…,T−1

 such that the outcome of the unique subgame perfect Nash 
equilibrium of the game, in which all countries non-cooperatively choose domestic abate-
ment levels in every period to minimize the net present value of total domestic costs, coin-
cides with the aspired abatement paths 

{
ãi
t

}i∈C

t=0,…,T
 for all member countries i ∈ C and the 

abatement paths 
{
ǎi
t

}i∉C

t=0,…,T
 , as given by Proposition 3, for all non-member countries i ∉ C.

The idea of the proof is to choose a reward system that renders all member countries’ 
aspired abatement levels under the RS as best responses to the given abatement levels of all 
other countries (within and outside the coalition). As shown in the proof of Proposition 4 
in the “Appendix”, the RS is characterized by a uniquely determined sequence of refunds {
R̃t

}
t=0,…,T−1

 and a weighting scheme 
{
�̃�i
t

}i∈C

t=0,…,T−1
 . Yet, the set of initial fees is not unam-

biguously determined. In fact, all sets of initial fees, the sum of which exceeds the minimal 
initial global fund f̃0 with

render a feasible RS that implements the treaty with aspired coalition abatement paths {
ãi
t

}i∈C

t=0,…,T
 . The intuition is that the global fund needs the minimum size f̃0 in order to be 

able to pay sufficiently high refunds R̃t such that countries stick to the aspired abatement 
levels in all periods. Any excess funds are redistributed in equal shares in the last period, in 
which the abatement level is zero independently of the refund. Even if we restrict attention 
to the minimal initial global fund f̃0 , we are free in how to distribute the burden of raising 
the initial fund across countries.

Proposition 5 (Uniqueness of the RS) For a given treaty characterized by the coalition 
C , a time horizon T and a set of feasible coalition abatement paths 

{
ãi
t

}i∈C

t=0,…,T
 , the refund-

ing scheme is only unique with respect to the minimal initial global fund f̃0 . In particular, 
there exists a feasible set of initial fees f i

0
 satisfying 

∑
i∈C f

i
0
= f̃0 such that the RS constitutes 

a Pareto improvement over the decentralized solution for all coalition members i ∈ C.

The intuition for this result is that compared to the decentralized solution all countries 
are better off under the RS if their initial fee was zero. As a consequence, there is a posi-
tive initial fee f̂ i

0
 that would leave country i equally well off under the RS compared to the 

decentralized solution. In the proof of Proposition 5 in the “Appendix”, we show that the 
sum f̂0 =

∑
i∈C f̂

i
0
 exceeds f̃0 . As a consequence, we can set the initial fee below f̂ i

0
 making 

all countries better off.15

In summary, we have shown that the RS can implement any feasible coalition abatement 
path and gives ample freedom in how to raise the necessary initial fund. The former feature 

(14)f̃0 =

T−1∑
t=0

R̃t

(1 + 𝜌)t
,

15 The set of initial payments implicitly defines a transfer scheme T  , as introduced in Sect. 3.



524 H. Gersbach et al.

1 3

of the RS may be important, as, in general, international climate policy is not shaped along 
standard economic cost-benefit analyses such as the derivation of the global social opti-
mum in Sect. 3.1. In fact, the policy goal, for which global consensus is sought after, is 
to limit greenhouse gas emissions to such an extent that the global mean surface tempera-
ture increase is not exceeding 2 ◦C against preindustrial levels (see, for example, EU 2005; 
UNFCCC 2009, 2015). As the global mean surface temperature increase is predominantly 
determined by cumulative greenhouse gas emission, such a temperature goal can be trans-
lated into a stock of permissible cumulated greenhouse gas emissions, a so-called global 
carbon budget. Starting from the current stock of cumulative greenhouse gas emissions, 
estimates for this remaining carbon budget—as of beginning of 2018—roughly range 
between 320 and 555 trillion tonnes of carbon (GtC) (IPCC 2018).16 Thus, Proposition 
4 says that once the world community has agreed on an abatement path, the RS is able to 
implement it as a unique subgame perfect Nash equilibrium no matter how ambitious this 
abatement path is compared to the social global optimum. In particular, the RS is compat-
ible with the idea of “nationally determined contributions”, as detailed in Article 3 of the 
Paris Agreement (UNFCCC 2015).

The latter feature of the RS implies that it cannot only achieve a Pareto improvement, 
but can in fact implement any distribution of the cooperation gain, i.e., the difference of 
the net present value of the total global costs between the decentralized solution and the 
social global optimum, if we allow initial fees to be negative for at least some countries. 
This property of the RS to disentangle efficiency and distributional concerns is helpful in 
achieving initial participation, as we shall discuss in Sect. 7.1.

5  The Modesty Approach to Refunding

So far, we have focused on the compliance problem, i.e., how to incentivize member coun-
tries to stick to the aspired abatement paths of a given international environmental agree-
ment. Although Proposition 5 has established that all member countries can be made better 
off under the RS compared to the fully decentralized solution, as characterized by Propo-
sition 1, this does not imply that any treaty is stable in the sense that all member coun-
tries have an incentive to join the coalition in the first place.17 As already mentioned in 
Sect. 3.2, it is crucial to characterize how aspired abatement paths changed if any coalition 
members were to leave the treaty (or, more precisely, not to participate in the treaty in 
the first place). In the following, we showcase how questions of participation and compli-
ance can be discussed simultaneously by applying the RS, as characterized in Sect. 4, to 
an intertemporal extension of the modest international environmental agreement approach 
developed by Finus and Maus (2008).

16 The main obstacles for translating an upper temperature bound for mean global surface temperature into 
a carbon budget are scientific uncertainties concerning the equilibrium climate sensitivity and the climate-
carbon cycle feedback (see, e.g., Friedlingstein et al. 2011; Zickfeld et al. 2009).
17 In particular, treaties with large coalition sizes and high aspired abatement paths may not be stable, as 
countries may have an incentive not to participate in the treaty in the first place in order to free-ride on the 
abatement efforts of the remaining coalition members.



525Long-Term Climate Treaties with a Refunding Club  

1 3

5.1  An Intertemporal Extension of Modesty

The standard coalition formation game is a two stage game, in which all countries in 
the first stage simultaneously decide whether to join an international agreement. In the 
second stage, all countries simultaneously set emission abatement levels. Non-member 
countries choose abatement levels non-cooperatively by minimizing their own domestic 
costs, taking the abatement levels of all other countries as given, while coalition mem-
bers are supposed to choose emissions abatement levels such as to minimize the sum of 
total domestic costs over all member countries. Finus and Maus (2008) allow for modest 
international environmental agreements by specifying that member countries only inter-
nalize a fraction � ∈ [0, 1] of the externalities within the coalition.

Applying this idea to our intertemporal model framework, results in the following 
two stage game: 

1. At the beginning of period t = 0 all countries simultaneously decide whether to join an 
international environmental agreement.

2. In all periods t = 0,… , T  all countries simultaneously decide on emission abatement 
levels. 

(a) Non-member countries choose abatement levels minimizing the net present values 
of their total domestic costs, taking the abatement levels of the coalition and the 
other non-members as given, resulting in abatement paths 

{
ǎi
t

}i∈C

t=0,…,T
 as charac-

terized by Proposition 3.
(b) Members of the coalition C set abatement levels such as to 

 taking the emission levels of non-member countries as given.
The parameter � in Eq. (15) can be interpreted as the degree of modesty. It can be inter-
preted as the fraction � of externalities the coalition internalizes among its members. 
This formulation essentially entails a more modest emission reduction goal. The higher 
� , the higher the emission abatement goal of the coalition. For � = 1 the treaty internal-
izes all externalities coalition members impose on each other, which is the assumption 
of the standard coalition formation set-up.

5.2  Combining Modesty and Refunding

While assuming that the coalition sets abatement levels according to Eq. (15) allows 
for a parsimonious way to reconcile the empirical observation of “large but modest” 
agreements with the prediction of the coalition formation framework, one might ask 
why coalition members should comply with these aspired abatement paths of the treaty, 
as they are, in general, not in their best interest (in terms of minimizing the net present 
value of total domestic costs). This is where the RS, as characterized in Sect. 4 comes 
into play. As we shall proof in Proposition 6, the aspired abatement paths characterized 
by Eq. (15) constitute feasible coalition abatement paths that can be implemented via an 
appropriate RS by virtue of Proposition 4. Thus, the RS serves as a microfoundation to 

(15)min
{ait}

i∈C

t=0,…,T

T∑
t=0

�t
∑
i∈C

[
�i

2

(
ai
t

)2
+ �

�i

2
s2
t

]
,
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implement the aspired abatement paths characterized by the modest coalition formation 
framework.

As usual, we analyze the intertemporal modest coalition formation game with refunding 
by backward induction, i.e., we first characterize the subgame perfect Nash equilibrium of 
the second stage, for given time horizon T and given coalition C.

Proposition 6 (Abatement paths in SPE of second stage) For any time horizon T < ∞ , 
any given coalition C and any degree of modesty � , there exists a unique subgame per-
fect Nash equilibrium of the game in which all non-member countries i ∉ C choose domes-
tic abatement levels in every period t = 0,… , T  to minimize the net present value of total 
domestic costs, and all member countries i ∈ C set abatement levels according to Eq. (15). 
The subgame perfect Nash equilibrium is characterized by emission abatements paths {
ǎi
t

}i∉C

t=0,…,T
 for all countries i ∉ C and 

{
ãi
t

}i∈C

t=0,…,T
 for all countries i ∈ C and a correspond-

ing path 
{
st
}
t=0,…,T

 for the stock of cumulative GHG emissions.

The proof of Proposition 6 in the “Appendix” is constructive, as we derive the unique 
closed-form solutions of the abatement paths in the subgame perfect Nash equilibrium of 
the second stage. Moreover, we show that the decentralized solution, as given by Prop-
osition 1, and the global social optimum, as characterized by Proposition 2, are bound-
ary solutions of Proposition 6, which apply in the case that the coalition only consists of 
at most one member country or all countries are members of the coalition and � = 1 . As 
a consequence, the assumptions of Proposition 4 apply, and any feasible abatement path 
as defined in Eq. (13) of the modest coalition formation game can be implemented by an 
appropriate RS.

Having solved the compliance problem in the second stage by employing the RS, we 
can now turn to the participation problem in the first stage. Anticipating the outcome of 
the second stage, a coalition is a subgame perfect Nash equilibrium outcome of the first 
stage, if no country has an incentive to unilaterally change its membership status. Thus, 
all member countries i ∈ C must not be better off if they were not in the coalition, and all 
non-member countries i ∉ C must be better off than if they were by joining the coalition. 
If we denote, for any given coalition C and modesty parameter � , the net present value of 
total domestic costs of member countries i ∈ C by K̃i(C,𝜇) and the net present value of total 
domestic costs of non-member countries i ∉ C by Ǩi(C,𝜇) , then the conditions of internal 
and external stability read in our transferable utility set-up:18

We note that the stability conditions can be formulated without explicitly invoking the 
RS. The reasons is twofold. First, the RS does not change the sum of the net present value 
of total domestic costs over all member countries, as the net present value of all refunds is, 
by construction, equal to the initial fund. Second, according to Proposition 6, there exists 

(16a)
∑
j∈C

K̃j(C,𝜇) −
∑
j∈C⧵i

K̃j(C⧵i,𝜇) ≤ Ǩi(C⧵i,𝜇), ∀ i ∈ C,

(16b)
∑
j∈C∪i

K̃j(C ∪ i,𝜇) −
∑
j∈C

K̃j(C,𝜇) > Ǩi(C,𝜇), ∀ i ∉ C .

18 We apply the usually made assumption that countries stick with the coalition in case of indifference.
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an appropriate RS for any coalition structure C such that it is in the best interest of coalition 
members to stick to the agreement. Therefore, the conditions of internal and external stabil-
ity implicitly also involve all elements of the RS in different coalition arrangements C, C⧵i 
and C ∪ i , namely how much a country in the coalition has to pay into the initial fund, how 
much it will abate inside and outside the coalition, how many refunds it will obtain when in 
the coalition and how many damages occur. Hence, for instance, initial contributions have 
to be chosen such that stability conditions are met for each individual country.

We note that the refunding approach with its transfers balances asymmetries between 
countries in a coalition in an optimal way,19 i.e., to achieve the abatement objective of the 
coalition by providing incentives for countries to comply and by making sure that countries 
want to join the coalition.

Even in the static modest international environmental agreement framework it is not 
possible to analytically analyze coalition stability for quadratic damage functions and het-
erogenous countries. As a consequence, we shall concentrate attention to a particularly 
interesting case, calibrate our model and derive numerical results. The particular question, 
we want to address is for what level of modesty � the grand coalition C = I  can be sta-
bilized. For the grand coalition, only internal stability (16a) is relevant, which can be re-
arranged to yield:

Thus, the grand coalition is stable if it can guarantee all countries a lower net present value 
of total domestic costs when they participate in the treaty instead of unilaterally leaving it.

The approach opens up a wide range of further interesting issues, which we leave for 
future research. For instance, is it globally optimal to stabilize the grand coalition with an 
appropriate value of � , instead of being less modest and having only a smaller coalition 
being stable? Or could better results be achieved by having several smaller regional coali-
tions with their own abatement objectives and associated refunding schemes?

6  Numerical Illustration

To give an idea of the degree of modesty that renders the grand coalition stable and the 
corresponding order of magnitude needed for the initial fund f0 to implement it via an 
appropriate RS, we run a numerical exercise. Due to the highly stylized model, the results 
are rather a numerical illustration than a quantitative analysis.

We follow the RICE-2010 model (Nordhaus 2010) in dividing the world into twelve 
regions, each of which we assume to act as a “country”, as detailed in Sect. 2.20 We also 
take the “business-as-usual” (BAU) emissions for all twelve regions from Nordhaus (2010). 
The RICE-2010 model assumes a backstop technology, the price of which decreases over 
time and fully crowds out fossil fuel based energy technologies by 2265. As a consequence, 
global CO2 emissions drop to zero in 2265 in the BAU scenario in which cumulative global 

(17)
∑
j∈I

K̃j(I,𝜇) ≤
∑
i∈I

Ǩi(I⧵i,𝜇) .

20 The twelve regions are: United States of America (US), European Union (EU), Japan, Russia, Eurasia, 
China, India, Middle East (MidEast), Africa, Latin America (LatAm), other high income countries (OHI) 
and Rest of the World (Others).

19 For optimal transfer systems in the presence of asymmetries, see Finus and McGinty (2019).
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CO2 emissions of 5679.6 GtC have been released into the atmosphere (we assume that 
cumulative global CO2 emissions prior to 2015 amount to 550 GtC).

In the global social optimum of the RICE-2010 model, the long-run cumulative global 
emissions amount to 1470.8 GtC, which implies an increase of the average global surface 
temperature of approximately 2.9–3 ◦C over preindustrial levels. In addition, carbon neu-
trality, i.e., zero global GHG emissions are only reached by 2155. In light of the Paris 
agreement and the recent announcements by the US, EU and China, among other coun-
tries, to become carbon neutral by 2050, respectively 2060, the RICE-2010 model’s global 
social optimum feels somewhat outdated. Unfortunately, there is no updated version of the 
RICE-2010 model. We deal with this issue in a two step procedure.

First, we calibrate our model in such a way that the global social optimum in our model 
resembles the optimal solution of the RICE-2010 model as closely as possible. Therefore, 
we calibrate the relative damage parameters for each region by fitting quadratic functions to 
the damage functions used in the RICE-2010 model. Then we re-scale all damage param-
eters such that damages in the BAU scenario in the year 2095 amount to 12 trillion USD 
or 2.8% of global output as in Nordhaus (2010, 11723). We calibrate the abatement cost 
parameters such that the emission paths in the global social optimum of all twelve regions 
resemble the optimal solution of the RICE-2010 model as closely as possible, under the 
constraint that the abatement cost parameters decline at a unique and constant rate. Table 1 
shows the calibrated abatement and damage cost parameters for all twelve world regions. 
Abatement cost parameters decrease at the rate of � = 1.65% per year, implying a drop of 
approximately 15.1% per decade.21 In line with the RICE-2010 model, we employ a dis-
count rate of 5% per year, which corresponds to a discount factor of � = 0.6139 for each 
ten year period. While it is not possible to perfectly mimic the outcome of a sophisticated 
integrated assessment model as the RICE-2010 model with our simple theoretical model, 
both global GHG emissions as well as cumulative global emissions match reasonably well 
(see upper graphs in Fig. 1).

Second, we increase the rate at which the abatement cost parameters decline to � = 5% 
per year implying a decadal drop of 38.6%. Under these conditions, our model calculates 
a global social optimum in which carbon neutrality is reached by 2065 and cumulative 
global emissions level off at 874.6 GtC. This corresponds to an average global surface tem-
perature increase between 1.7 and 1.8 ◦C , which we consider compatible with the goals of 
the Paris Agreement. In this “Paris compatible” calibration, the long-run level of cumula-
tive global emissions in the decentralized solution amounts to 1550.1 GtC, which approxi-
mately corresponds to a 3.1 ◦C increase of average global surface temperature. In this sce-
nario, carbon neutrality would be achieved by 2115 (see lower graphs in Fig. 1).

Seeking the upper bound of the degree of modesty, for which the grand coalition for the 
Paris compatible model calibration is just stable, we find � = 26.594% . In this case, long-
run cumulative global emissions amount to 1204.7 GtC, which closes approximately half 
of the gap between the decentralized solution and the global social optimum. Yet, with a 
temperature increase of approximately 2.4 ◦C , the stable grand coalition would fall short of 
the 2 ◦C temperature target.

An initial fund of 2.64 tril. USD or 0.326% of 2015 world GDP is needed to implement 
the stable grand coalition via a RS. In addition, Table  2 shows the net present value of 
refunds and the maximum initial fees a region is willing to pay to join the treaty for all 12 

21 As in the RICE-2010 model, we use ten year periods. However, we usually express all values in per 
annum terms.
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regions in tril. USD and % of world GDP. By construction, the sum of initial fees f̂ i
0
 , which 

makes regions indifferent whether to join the treaty, amounts to the same total of 2.64 tril. 
USD or 0.326% of 2015 world GDP.

Table 3 shows the development of the refund over time. We observe that total refunds 
start at very low levels of 19.2 bil. USD per annum corresponding to 0.024% of world 
GDP, continuously rise until they peak in 2075 at 797 bil. USD per annum correspond-
ing to 0.253% of world GDP. After that they sharply decline and by 2115 no refunds have 
to be paid anymore, as even in the decentralized solution net zero GHG emissions have 
been reached. While this general pattern of global refunds is mimicked by the individual 
regions, there are some differences in magnitude. China receives the highest refunds both 
in absolute numbers and also as a share of its GDP, peaking in 2075 at 242.03 bil. USD 
corresponding to 0.546% of its GDP. Africa has the lowest relative peak refunds in 2075 
of 34.32 bil. USD or 0.131% of its GDP. The marginal abatement costs start at 49.3 USD 
per tC (equalling 180.93 USD per ton of CO2 ) and rise until 2075, when they peak at 73.6 
USD per tC (or 270.11 USD per ton of CO2).

In summary, the refunding scheme can stabilize a grand coalition that bridges half the 
gap between the global social optimum and the decentralized solution in our Paris compat-
ible model calibration. While the net present value of funds needed is sizeable at 2.64 tril. 
USD, it is not out of reach, when compared to other funds raised in situations of global 
crisis, such as the latest global financial crisis or the Corona pandemic. We would like to 
stress that our quantitative exercise is only an illustrative example to gauge the order of 
magnitude of what an initial fund would look like.

7  Discussion

So far we have focused first on how a refunding scheme can implement any goal a coali-
tion has set and second, on how coalition stability can be achieved, and in particular the 
stability of the grand coalition. We have seen that a refunding scheme transforms the inter-
temporal climate-policy problem into a standard, static public-goods problem. Once all 
countries in the stable coalition have made their initial contribution, and have agreed on the 

Table 1  Calibrated abatement 
and damage cost parameters in 
tril. USD/GtC2 for all twelve 
regions

Region �
i

�
i

US 0.07480 10.2529 × 10−6

EU 0.17741 11.5362 × 10−6

Japan 0.59840 11.7255 × 10−6

Russia 0.28194 8.34241 × 10−6

Eurasia 0.42195 9.45971 × 10−6

China 0.04122 9.83528 × 10−6

India 0.09974 16.1990 × 10−6

MidEast 0.08976 14.0065 × 10−6

Africa 0.17127 17.4541 × 10−5

LatAm 0.16836 10.3044 × 10−6

OHI 0.26429 11.3390 × 10−6

Other 0.08286 14.1580 × 10−6
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refunding parameters, countries follow the envisioned path of abatement voluntarily and 
would be worse off by forfeiting refunds.

Numerous further issues are relevant for the design of refunding scheme and the use of 
Refunding Clubs. We address them in this section, as they deserve further scrutiny.

Fig. 1  Global emissions (left) and cumulative global emissions (right) in GtC for the RICE-2010 model 
calibration (upper graphs) and our Paris compatible calibration (lower graphs) in the RICE-2010 BAU sce-
nario (dashed black) and the global social optimum in the RICE-2010 (dashed gray) and our RICE-2010 
calibrated model (solid black). The lower graphs show the global social optimum (solid black), the decen-
tralized solution (dashed black) and the stable grand coalition (solid gray) in the Paris compatible calibra-
tion

Table 2  Net present value of 
refunds and maximum initial 
fees f̂ i

0
 for all 12 regions in tril. 

USD and % of world GDP for the 
stable grand coalition in the Paris 
compatible model calibration 
(degree of modesty � = 26.594%

)

Region NPV ref. 
[tril. USD]

NPV ref. 
[% WGDP]

f̂
i

0
 [tril. USD] f̂

i

0
 [% WGDP]

US 0.3674 0.0453 0.2926 0.0361
EU 0.1555 0.0192 0.1612 0.0199
Japan 0.0396 0.0049 0.0884 0.0109
Russia 0.0863 0.0107 0.0840 0.0104
Eurasia 0.0578 0.0071 0.0763 0.0094
China 0.7564 0.0934 0.5762 0.0711
India 0.2214 0.0273 0.2782 0.0343
MidEast 0.2727 0.0337 0.2785 0.0344
Africa 0.1147 0.0142 0.2232 0.0275
LatAm 0.1698 0.0210 0.1562 0.0193
OHI 0.0899 0.0111 0.1162 0.0143
Other 0.3068 0.0379 0.3075 0.0379
Sum 2.6384 0.3256 2.6384 0.3256



531Long-Term Climate Treaties with a Refunding Club  

1 3

Ta
bl

e 
3 

 R
ef

un
ds

 a
nd

 m
ar

gi
na

l a
ba

te
m

en
t c

os
ts

 (M
A

C
) o

ve
r t

im
e 

fo
r t

he
 st

ab
le

 g
ra

nd
 c

oa
lit

io
n 

in
 th

e 
Pa

ris
 c

om
pa

tib
le

 m
od

el
 c

al
ib

ra
tio

n 
fo

r a
ll 

tw
el

ve
 w

or
ld

 re
gi

on
s

20
15

20
25

20
35

20
45

20
55

20
65

20
75

20
85

20
95

21
05

R(
t) 

[tr
il.

 U
SD

/a
]

0.
01

92
0.

03
96

0.
07

90
0.

15
12

0.
27

64
0.

48
13

0.
79

70
0.

74
18

0.
33

04
0.

04
74

R(
t) 

[%
 W

or
ld

 G
D

P]
0.

02
37

0.
03

54
0.

05
39

0.
08

17
0.

12
25

0.
17

93
0.

25
26

0.
20

23
0.

07
82

0.
00

98
�
U
S
A

1.
07

1.
07

1.
07

1.
07

1.
07

1.
07

1.
07

0.
93

0.
89

0.
57

Re
fu

nd
 [b

il.
 U

SD
/a

]
2.

75
5.

67
11

.3
0

21
.6

3
39

.5
5

68
.8

6
11

4.
78

83
.5

9
34

.5
8

3.
10

Re
fu

nd
 [%

 G
D

P]
0.

01
7

0.
02

7
0.

04
4

0.
07

1
0.

11
2

0.
17

0
0.

25
2

0.
16

4
0.

06
1

0.
00

5
M

A
C

 [U
SD

/tC
]

49
.3

55
.4

61
.3

66
.5

70
.4

72
.8

73
.6

53
.4

33
.4

20
.9

�
E
U

0.
93

0.
93

0.
93

0.
93

0.
93

0.
93

0.
94

1.
34

1.
65

3.
85

Re
fu

nd
[b

il.
 U

SD
/a

]
1.

02
2.

09
4.

17
7.

99
14

.6
1

25
.4

3
42

.3
8

70
.1

2
39

.6
6

13
.0

0
Re

fu
nd

 [%
 G

D
P]

0.
00

6
0.

01
0

0.
01

7
0.

02
7

0.
04

3
0.

06
7

0.
10

1
0.

15
3

0.
07

9
0.

02
4

M
A

C
 [U

SD
/tC

]
49

.3
55

.4
61

.3
66

.5
70

.4
72

.8
73

.6
73

.7
49

.0
30

.7
�
Ja
p
an

0.
89

0.
89

0.
89

0.
89

0.
89

0.
89

0.
89

0.
95

0.
82

0.
02

Re
fu

nd
 [b

il.
 U

SD
/a

]
0.

29
0.

59
1.

18
2.

26
4.

13
7.

18
11

.9
7

12
.3

1
4.

41
0.

02
Re

fu
nd

 [%
 G

D
P]

0.
00

6
0.

01
1

0.
02

0
0.

03
6

0.
06

1
0.

09
7

0.
15

0
0.

14
3

0.
04

8
0.

00
02

M
A

C
 Ja

pa
n 

[U
SD

/tC
]

49
.3

55
.4

61
.3

66
.5

70
.4

72
.8

73
.6

61
.3

36
.7

22
.5

�
R
u
ss
ia

1.
02

1.
02

1.
02

1.
02

1.
02

1.
02

0.
91

0.
62

0.
52

0
Re

fu
nd

 [b
il.

 U
SD

/a
]

0.
70

1.
44

2.
87

5.
50

10
.0

6
17

.5
1

23
.8

8
11

.4
1

4.
00

0
Re

fu
nd

 [%
 G

D
P]

0.
03

1
0.

05
2

0.
08

9
0.

14
9

0.
24

1
0.

37
7

0.
46

7
0.

20
5

0.
06

7
0

M
A

C
 R

us
si

a 
[U

SD
/tC

]
49

.3
55

.4
61

.3
66

.5
70

.4
72

.8
67

.6
41

.1
24

.9
15

.5
�
E
u
ra
si
a

0.
97

0.
97

0.
97

0.
97

0.
97

0.
97

0.
98

0.
70

0.
64

0.
13

Re
fu

nd
 [b

il.
 U

SD
/a

]
0.

44
0.

92
1.

83
3.

50
6.

39
11

.1
3

18
.5

5
9.

86
3.

85
0.

11
Re

fu
nd

 [%
 G

D
P]

0.
04

1
0.

06
0

0.
09

0
0.

13
6

0.
20

3
0.

29
6

0.
41

9
0.

19
3

0.
06

6
0.

00
2

M
A

C
 [U

SD
/tC

]
49

.3
55

.4
61

.3
66

.5
70

.4
72

.8
73

.6
46

.8
29

.2
18

.4
�
C
h
in
a

1.
24

1.
24

1.
24

1.
24

1.
24

1.
24

1.
24

0.
91

0.
79

0
Re

fu
nd

 [b
il.

 U
SD

/a
]

5.
79

11
.9

5
23

.8
2

45
.5

9
83

.3
4

14
5.

12
24

2.
03

13
7.

68
50

.2
7

0
Re

fu
nd

 [%
 G

D
P]

0.
04

9
0.

07
1

0.
10

9
0.

16
7

0.
25

5
0.

37
8

0.
54

6
0.

27
3

0.
08

9
0

M
A

C
 [U

SD
/tC

]
49

.3
55

.4
61

.3
66

.5
70

.4
72

.8
73

.6
49

.1
30

.1
18

.7
�
In
d
ia

0.
81

0.
81

0.
81

0.
81

0.
81

0.
81

0.
81

0.
95

0.
79

0



532 H. Gersbach et al.

1 3

Ta
bl

e 
3 

 (c
on

tin
ue

d)

20
15

20
25

20
35

20
45

20
55

20
65

20
75

20
85

20
95

21
05

Re
fu

nd
 [b

il.
 U

SD
/a

]
1.

57
3.

23
6.

44
12

.3
3

22
.5

3
39

.2
3

65
.3

9
78

.9
3

29
.6

9
0

Re
fu

nd
 [%

 G
D

P]
0.

03
4

0.
04

4
0.

05
9

0.
08

1
0.

11
3

0.
15

7
0.

21
2

0.
21

1
0.

06
7

0
M

A
C

 [U
SD

/tC
]

49
.3

55
.4

61
.3

66
.5

70
.4

72
.8

73
.6

65
.9

43
.3

28
.2

�
M
id
E
as
t

0.
90

0.
90

0.
90

0.
90

0.
90

0.
90

0.
90

1.
01

1.
01

0.
27

Re
fu

nd
 [b

il.
 U

SD
/a

]
1.

94
3.

99
7.

96
15

.2
4

27
.8

5
48

.4
9

80
.8

3
91

.0
9

41
.4

4
1.

58
Re

fu
nd

 [%
 G

D
P]

0.
03

4
0.

04
6

0.
06

5
0.

09
2

0.
13

4
0.

19
0

0.
26

2
0.

24
8

0.
09

5
0.

00
3

M
A

C
 [U

SD
/tC

]
49

.3
55

.4
61

.3
66

.5
70

.4
72

.8
73

.6
63

.8
42

.3
27

.4
�
A
fr
ic
a

0.
73

0.
73

0.
73

0.
73

0.
73

0.
73

0.
73

0.
79

0.
66

0
Re

fu
nd

 [b
il.

 U
SD

/a
]

0.
82

1.
70

3.
38

6.
47

11
.8

3
20

.6
0

34
.3

2
37

.1
9

14
.7

7
0

Re
fu

nd
 [%

 G
D

P]
0.

03
4

0.
03

9
0.

04
8

0.
06

0
0.

07
8

0.
10

2
0.

13
1

0.
11

1
0.

03
5

0
M

A
C

 [U
SD

/tC
]

49
.3

55
.4

61
.3

66
.5

70
.4

72
.8

73
.6

64
.0

44
.2

29
.5

�
L
at
A
m

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

1.
35

1.
66

4.
75

Re
fu

nd
 [b

il.
 U

SD
/a

]
1.

12
2.

31
4.

61
8.

83
16

.1
5

28
.1

2
46

.8
6

72
.5

1
40

.1
1

16
.7

1
Re

fu
nd

 [%
 G

D
P]

0.
01

6
0.

02
2

0.
03

3
0.

04
9

0.
07

2
0.

10
5

0.
14

9
0.

19
8

0.
09

5
0.

03
5

M
A

C
 [U

SD
/tC

]
49

.3
55

.4
61

.3
66

.5
70

.4
72

.8
73

.6
71

.7
46

.7
30

.4
�
O
H
I

0.
92

0.
92

0.
92

0.
92

0.
92

0.
92

0.
93

0.
82

0.
65

0
Re

fu
nd

 [b
il.

 U
SD

/a
]

0.
67

1.
39

2.
77

5.
30

9.
69

16
.8

6
28

.1
0

21
.2

4
7.

08
0

Re
fu

nd
 [%

 G
D

P]
0.

01
3

0.
02

1
0.

03
5

0.
05

6
0.

09
1

0.
14

3
0.

21
8

0.
15

1
0.

04
7

0
M

A
C

 [U
SD

/tC
]

49
.3

55
.4

61
.3

66
.5

70
.4

72
.8

73
.6

54
.4

32
.8

20
.1

�
O
th
er

0.
91

0.
91

0.
91

0.
91

0.
91

0.
91

0.
91

1.
13

1.
25

1.
78

Re
fu

nd
 [b

il.
 U

SD
/a

]
2.

11
4.

34
8.

66
16

.5
8

30
.3

0
52

.7
6

87
.9

5
11

5.
91

60
.5

0
12

.8
7

Re
fu

nd
 %

 G
D

P]
0.

05
1

0.
06

3
0.

08
2

0.
10

9
0.

14
7

0.
19

8
0.

26
1

0.
27

7
0.

11
9

0.
02

1
M

A
C

 [U
SD

/tC
]

49
.3

55
.4

61
.3

66
.5

70
.4

72
.8

73
.6

67
.4

45
.9

30
.8



533Long-Term Climate Treaties with a Refunding Club  

1 3

7.1  Increasing Initial Fees and a Refunding Club

At the initial level, when countries are pondering whether to sign the treaty and to pay 
the initial fee, the free-rider problem is present. If all other countries participate and if 
aggregate initial fees are high, this country would benefit from all other countries’ abate-
ment efforts, without having to pay the initial fee and to compete for refunds. Hence, the 
question is how better solutions than the one induced by the modesty approach could be 
achieved.

The ideal solution lies in making countries—and large countries, in particular—pivotal 
for the formation of a coalition, with high initial fees. In order to achieve such a scenario, 
about ten to twenty of the largest greenhouse gas emitters must coordinate and agree that 
coalition formation and the refunding scheme fail if any of them defects.22

As full participation by all countries at once is unlikely, it is useful to resort to sequen-
tial procedures where a subset of countries makes a start and the others follow later (see 
Andreoni 1998; Varian 1994). We envision four steps. First, as suggested in the last para-
graph, a set of large countries could initiate the system by paying initial fees and form a 
Refunding Club. In particular, if the US, the EU countries, China and maybe India would 
start the system with significant initial fees, this would constitute the Refunding Club in 
which the largest share of greenhouse gases are emitted. In addition, if wealthy countries 
pay substantially larger initial fees than the modesty approach suggests, such a Refunding 
Club would be powerful enough to slow down climate change significantly.

Second, smaller rich countries could follow, which would increase the initial wealth. In 
the third and fourth steps, larger and smaller developing countries could be invited to join 
the Refunding Club. Regarding the payment of initial fees, they should be treated differ-
ently, as we will discuss next.

The successful implementation of a refunding scheme only depends on raising the 
minimum initial global fund, but not on the individual countries’ contributions to it. Thus, 
within a coalition, the refunding scheme is able to disentangle efficiency from distribu-
tional concerns. Yet, in reality, the distribution of initial fees to raise the initial global fund 
is of great importance. For example, many developing countries may lack the necessary 
wealth to pay the initial fees, or countries in transition may refuse to pay high initial fees 
by arguing that historically, the current atmospheric greenhouse gas concentrations were 
caused by industrialized countries. To induce participation, payment of initial fees could 
be differentiated according to different distributional criteria such as stage of development, 
current greenhouse emissions or historic responsibility with respect to atmospheric green-
house gas concentrations.23 Thus, refunding schemes and the payment of initial fees can 
be made compatible with the concept of “common but differentiated responsibilities and 
respective capabilities”, as detailed in Article 4 of the Paris Agreement (UNFCCC 2015). 
To sum up, allocating the burden of the initial fees is a tool that can solve distributional 
concerns, since they indirectly implement transfers across countries.

22 In practice, these countries must be collectively stubborn and insist on full participation by this entire 
core group before going ahead.
23 Development-compatible refunding system have been developed in Gersbach and Hummel (2016).
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7.2  Raising Initial Fees

Even differentiated initial fees cannot circumvent the problem that the sustainable refund-
ing scheme relies on successfully raising the minimum initial global fund. As this fund 
may be quite large, even in the modesty solution, we outline two ways in which it might be 
financed.

Raising the minimum initial fund in full at the beginning of the treaty is not necessary. 
We can also achieve a coalition solution in which a smaller amount of money of money is 
paid repeatedly. To see this, let {Rt}

T
t=0

 be the sequence of refunds in a solution envisioned 
by a coalition. In addition, we define the sequence of fees ft(Δ) for a time span Δ > 0 by

If ft(Δ) is paid into the fund at times t = 0,Δ, 2Δ,… , the net present value of the fund is 
equal to the initial fund f0 =

∑T−1

t=1

�
Rt

(1+�)t

�
 and, thus, the same solution can be achieved as 

when f0 is initially paid in full.
With the repeated payments scheme, we face a trade-off between high initial fees and 

the property of an RS that transforms an intertemporal climate-policy problem into a static 
public-goods problem. In particular, if the time span Δ is short, the solution of the problem 
of a coalition relies on the repeated commitment of all countries, as the initial participation 
problem would have to be solved whenever new payments have to be made. Therefore Δ 
should not be too small.

If the repeated solution to the initial participation problem turns out to be a major obsta-
cle to international cooperation, raising the initial fees by allowing countries to borrow 
money may be more advisable. Countries could then borrow either from the international 
capital market or directly from the administering agency of the RS. In the latter case, no 
actual initial money flows would be needed, since the initial fee would then simply be a 
liability of countries at the administration agency. In turn, future refund claims would be 
reduced or could even become negative, as countries would have to pay interest and ulti-
mately pay back their liabilities to the agency. Hence, borrowing from the agency appears 
like a Munchhausen solution to the problem of raising initial fees.

However, at least two problems may arise. First, if countries borrow a large amount 
from the agency, they may later only receive a small payment or may even have to pay 
when refunds and repayment obligations are netted. Hence, countries might be tempted 
to renounce high abatement efforts and to default on their repayment obligations to the 
agency. The country would then lose all claims to refunds. However, as such refunds are 
small when abatement efforts are small, such a strategy may be profitable. That is, a coun-
try could choose to default against the administering agency and could free-ride on the 
abatement efforts of other countries even if it has signed the treaty and has borrowed from 
the agency. Such considerations suggest that countries should rather be made to borrow on 
the international capital market.

Second, if countries borrow a large amount on international capital markets, the default 
risk may rise if outstanding government debt is already at a high level. If the country needs 
to pay a higher interest rate than the risk-free rate, as investors demand a positive risk pre-
mium, further borrowing may increase the default risk, as refunds are insufficient to cover 
interest-rate payments. In such cases, it is more efficient if part of the initial fund is being 
raised by taxes over several periods.

(18)ft(Δ) =

Δ∑
�=1

Rt+�

(1 + �)�
.
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7.3  Information Requirements and Reaction to Unforeseen Shocks

The design of any RS rests on the bold assumption that all exogenous parameters are con-
stant and, in particular, that they are known ex ante. These are demanding informational 
requirements.

We distinguish between temporary and permanent changes of parameters. Temporary 
shocks to the parameters do not inhibit the long-run behavior of the refunding scheme, 
because of the global convergence to the first-best solution. It is likely that initial expecta-
tions about the discount/interest rate � , the abatement cost parameters �i , the damage cost 
parameters �i , and the business-as-usual emissions �i turn out to be incorrect and that at 
some time t, new information on one or several of these parameter arrives. In particular, 
technological progress may substantially change the abatement cost parameters.

Permanent changes in the exogenously given parameters would, in general, change the 
necessary refunds for a RS corresponding to a given feasible coalition abatement path.24 
Moreover, in general, also the aspired coalition abatement path itself would change, for 
example, the abatement path and the degree of modesty that renders the grand coalition 
stable.

To accommodate permanent changes in the exogenous parameters, the RS could include 
a clause that the values of these parameters are re-evaluated on a regular basis (e.g., every 
ten years) and that the fund’s wealth is corrected accordingly, either by raising additional 
money from the members or paying back wealth to member countries.

Even if revision cannot be done frequently, the refunding scheme offers some built-in 
corrections. For example, when marginal damages increase, also the individually optimal 
abatement efforts for a given refunding scheme increase. However, the extent to which 
such built-in reactions to parameter changes correct deviations from the first-best solution 
or from a coalition solution is beyond the scope of this paper, but constitutes an important 
avenue for future research.

7.4  Sustainable Climate Treaties in Overlapping Generation Frameworks

So far, we have focused on the properties of a RS and on how the implementation of such 
a scheme can be eased through repeated payments or through the use of capital markets. 
Still, we have assumed so far that the countries’ interest can be represented by a long-lived 
social planner.

The implementation of sustainable refunding schemes is more difficult in overlapping 
generation models, in which each generation is predominantly concerned about its own 
welfare. Then, setting up a refunding scheme hurts the old (existing) generations and ben-
efits future generations—and possibly young existing generations—via two channels. First, 
the benefits from higher abatement today mainly accrue to future generations. This was the 
focus of important papers by Bovenberg and Heijdra (1998, 2002).25 Public debt policies 
can help redistribute the welfare gains from increased abatement more equally across gen-
erations. Essentially, by issuing (more) public debt today and by having future generations 

25 How public debt can be used to strike an intergenerational bargain in the context of climate change is 
also addressed by Dennig et al. (2015) who propose several focal bargaining points.

24 However, whether a change in the exogenous parameters increases or decreases the necessary level of 
global fund depends, in most cases, on the whole set of exogenous parameters, and the comparative static 
results for the global fund of the respective RS are quite complex.
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pay it back, the welfare of current generations can be increased at the expense of future 
generations. Additional effects such as a potential crowding out of physical capital invest-
ments and the reduction of distortionary taxation affect the balance between current and 
future generations.

Second, current generations must set up the fund and thus are, in principle, required to 
channel some of their savings towards the payment of initial fees. Since the global fund 
also invests, such savings may not necessarily decrease capital accumulation, but as future 
generations inherit the global fund for their own refunding, setting up the global fund 
decreases the welfare of current generations. Again, to redistribute the burden of setting up 
the global fund more equally across generations, one might implement repeated payments, 
as discussed above, or again, public debt can be used to increase the disposable income of 
current old generations.

In principle, the use of public debt can engineer trade among generations, can ease the 
implementation of sustainable refunding schemes and opens up the possibilities to achieve 
Pareto-improving climate policies across generations. However, with much higher public 
debt levels after the Covid-19 pandemic in many countries, the scope for further increases 
of public debt is quite limited.

8  Conclusion

In this paper, we have shown that a refunding scheme, which is a rule-based treaty offer-
ing monetary incentives for emission abatement to member countries that are proportional 
to their relative abatement efforts, may promote sustained international cooperation with 
respect to anthropogenic climate change. The RS provides a simple blueprint for an inter-
national treaty on climate change and depends on a small number of parameters.

Yet, the RS is no panacea, as free-rider problems have no perfect solutions. For example, 
our numerical illustration shows that implementing a stable grand coalition in the modesty 
approach, which stabilizes average surface temperature at approximately 2.4 ◦C , requires 
funds in the amount of 2.64 tril. USD. Given that the Green Climate Fund (GCF),26 the 
existing real world institution closest to our refunding scheme, has set itself the goal to 
raise 100 bil. USD per year starting from 2020, but has great difficulties in securing the 
pledges for these sums, such a sum seems considerably high. Yet, it is comparable to the 
sums raised to counter other global crises such as the latest financial crisis or the Corona 
pandemic. Still, the industrialized countries would have to shoulder a large share of the 
initial fees.

We stress that a decisive difference between the GCF and the RS is that the RS refunds 
money according to a simple and transparent rule (which is already known when initial 
fees are raised), while the GCF is governed by a 24-member board who decides which pro-
jects will be financed by the fund after the money has been raised.

No doubt, the practical implementation of the refunding schemes in a Refunding Club 
developed in this paper requires a variety of additional considerations. In the last section, we 
have discussed how to achieve better initial participation, and we have outlined several ways 
of raising initial fees. Other issues, such as the governance of the administering agency, or the 

26 The Green Climate Fund was formally established during the UNFCCC COP-16 meeting in Cacun in 
2010. Its objective is to assist developing countries in adaptation and mitigation practices to counter climate 
change.
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stimulation of technological progress in abatement technologies will need thorough investiga-
tion in future research.

Appendix

Proof of Proposition 1

The decentralized solution is a special case of the second stage of the modest coalition forma-
tion game, as detailed in Sect. 5. Thus, Proposition 6, which states that there exists a unique 
subgame perfect Nash equilibrium of the second stage of the game for any given membership 
structure C and modesty parameter � also covers the decentralized solution. In fact, the decen-
tralized solution is characterized by C = ∅ , i.e., the coalition is an empty set and all countries 
i ∈ I  do not participate in the treaty.

In the solution () of the proof of Proposition 6 the decentralized solution corresponds to 
x = 0 and y = Γ implying also ĀC = 0 , ĀNC = E and s̄ = 1−𝛿

𝛿
E . Thus, we obtain for the aggre-

gate emission abatement level At =
∑

i∈I a
i
t
 and the stock of aggregate cumulative emissions 

st : 

 with 

 and 

 The individual countries’ abatement levels in the subgame perfect Nash equilibrium of the 
decentralized solution are given by:

  ◻

(19a)At = E + B2(T)(1 − �2)�
t
2
− B3(T)(1 − �3)�

t
3
,

(19b)st = s̄ + B2(t)𝜆
t
2
+ B3(T)𝜆

t
3
,

(20a)�2 =
1 + �(1 + Γ) −

√
[1 + �(1 + Γ)]2 − 4�

2�
,

(20b)�3 =
1 + �(1 + Γ) +

√
[1 + �(1 + Γ)]2 − 4�

2�
,

(21a)B2(T) = −
E + (s0 − s̄)(1 − 𝜆3)𝜆

T
3

(1 − 𝜆2)𝜆
T
2
− (1 − 𝜆3)𝜆

T
3

,

(21b)B3(T) =
E + (s0 − s̄)(1 − 𝜆2)𝜆

T
2

(1 − 𝜆2)𝜆
T
2
− (1 − 𝜆3)𝜆

T
3

.

(22)ai
t
=

�i

Γ
At, ∀ i ∈ I, t = 0,… , T .
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Proof of Proposition 2

Also the global social optimum is a special case of the second stage of the modest coa-
lition formation game, as detailed in Sect.  5. Thus, Proposition 6, which states that 
there exists a unique subgame perfect Nash equilibrium of the second stage of the game 
for any given membership structure C and modesty parameter � also covers the global 
social optimum. In fact, the global social optimum is characterized by � = 1 and C = I  , 
i.e., the coalition is the grand coalition encompassing all countries i ∈ I  and fully inter-
nalizes all damages imposed by GHG emissions on all other countries.

In the solution () of the proof of Proposition 6 the global social optimum corresponds 
to x = AB and y = 0 implying also ĀC = E , ĀNC = 0 and S̄ =

1−𝛿

𝛿
E . Thus, we obtain for 

the aggregate emission abatement level At =
∑

i∈I a
i
t
 and the stock of aggregate cumula-

tive emissions st : 

 with 

 and 

 The individual countries’ abatement levels in the global social optimum are given by: 

  ◻

(23a)At = E + B2(T)(1 − �2)�
t
2
− B3(T)(1 − �3)�

t
3
,

(23b)st = S̄ + B2(t)𝜆
t
2
+ B3(T)𝜆

t
3
,

(24a)�2 =
1 + �(1 +AB) −

√
[1 + �(1 +AB)]2 − 4�

2�
,

(24b)�3 =
1 + �(1 +AB) +

√
[1 + �(1 +AB)]2 − 4�

2�
,

(25a)B2(T) = −
E + (s0 − s̄)(1 − 𝜆3)𝜆

T
3

(1 − 𝜆2)𝜆
T
2
− (1 − 𝜆3)𝜆

T
3

,

(25b)B3(T) =
E + (s0 − s̄)(1 − 𝜆2)𝜆

T
2

(1 − 𝜆2)𝜆
T
2
− (1 − 𝜆3)𝜆

T
3

.

(26a)ai
T
= 0, ∀ i ∈ I,

(26b)ai
t
=

At

�iA
, ∀ i ∈ I, t = 0,… , T − 1 .
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Proof of Proposition 3

The situation, in which a set of non-member countries strategically choose emission 
abatement levels such as to minimize their own domestic costs is similar to the second 
stage of the coalition formation game, as discussed in Sect.  5 and Proposition 6. The 
only difference is that the coalition C is following an exogenously given emission abate-
ment paths instead of strategically reacting to the emission abatement choices of all 
non-member countries i ∉ C . Thus, existence and uniqueness of the subgame perfect 
equilibrium can be shown perfectly analogously to the proof of Proposition 6 by assum-
ing an exogenously given aggregate emission abatement path AC

t
 of the coalition.

Thus, we directly obtain the following system of first-order linear difference equations 
for the aggregated emission abatement levels of non-member countries ANC

t
=
∑

i∉C a
i
t
 and 

the stock of aggregated cumulative emissions st for some exogenously given path of aggre-
gate emission abatement AC

t
 of the coalition C : 

 Introducing the matrix M:

we rewrite the system () in matrix form:

The general solution of the matrix equation (29) is given by:

where ĀNC
t

 and s̄t denote particular solutions to (29),27 �i are the eigenvalues and �i the 
eigenvectors of the matrix M, and Bi(T) are constants determined by the initial and termi-
nal conditions of the stock and the emission abatement levels ( i = 1, 2).

The particular solutions are given by:

In addition, for the matrix M we derive the following eigenvalues �i ( i = 1, 2 ): 

(27a)ANC

t+1
=
(
1

�
+ ΓNC

)
ANC

t
− ΓNCst − ΓNC

(
E − AC

t

)
,

(27b)st+1 = −ANC

t
+ st + E − AC

t
.

(28)M =

(
1

�
+ ΓNC − ΓNC

−1 + 1

)
,

(29)
(
ANC

t+1

st+1

)
= M ⋅

(
ANC
t

st

)
+

(
−ΓNC

(
E − AC

t

)
E − AC

t

)
.

(30)
(
ANC
t

st

)
=

(
ĀNC
t

s̄t

)
+ B1(T)𝜈1𝜆

t
1
+ B2(T)𝜈2𝜆

t
2
,

(31)
(
ĀNC
t

s̄t

)
=

t−1∑
t�=0

Mt�
⋅

(
−ΓNC

(
E − AC

t�

)
E − AC

t�

)
.

27 As AC
t
 may be any arbitrary exogenously given path, there may not exist a steady state, and thus, there 

exists no constant particular solution to (29).
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 and eigenvectors ( i = 1, 2 ): 

Inserting into Eq. (30) yields: 

The constants Bi(T) ( i = 1, 2 ) are derived from the initial stock s0 and the terminal con-
dition ANC

T
= 0 , which implies 

 The individual countries’ abatement levels in the subgame perfect Nash equilibrium are 
given by: 

  ◻

Proof of Proposition 4

First, note that if the RS is able to incentivize all member countries i ∈ C to implement the 
aspired abatement paths 

{
ãi
t

}i∈C

t=0,…,T
 we can use Proposition 3 to determine the emission 

abatement paths 
{
ǎi
t

}i∉C

t=0,…,T
 for all non-member countries i ∉ C in the subgame perfect Nash 

equilibrium. Thus, it suffices to show that given these emission abatement paths of non-
member countries 

{
ǎi
t

}i∉C

t=0,…,T
 , there exists a RS that implements the aspired abatement paths {

ãi
t

}i∈C

t=0,…,T
 for all coalition members i ∈ C as a subgame perfect Nash equilibrium. For further 

(32a)�1 =
1 + �

(
1 + ΓNC

)
−

√[
1 + �

(
1 + ΓNC

)]2
− 4�

2�
,

(32b)�2 =
1 + �

(
1 + ΓNC

)
+

√[
1 + �

(
1 + ΓNC

)]2
− 4�

2�
,

(33a)�1 =
{
1 − �1, 1

}
,

(33b)�2 =
{
1 − �2, 1

}
.

(34a)ANC

t
= ĀNC

t
+ B1(T)(1 − 𝜆1)𝜆

t
1
+ B2(T)(1 − 𝜆2)𝜆

t
2
,

(34b)st = s̄t + B1(T)𝜆
t
1
+ B2(T)𝜆

t
2

(35a)B1(T) = −
ĀNC

T
+ (s0 − s̄0)(1 − 𝜆2)𝜆

T
2

(1 − 𝜆1)𝜆
T
1
− (1 − 𝜆2)𝜆

T
2

,

(35b)B2(T) =
ĀNC

T
+ (s0 − s̄0)(1 − 𝜆1)𝜆

T
1

(1 − 𝜆1)𝜆
T
1
− (1 − 𝜆2)𝜆

T
2

.

(36a)ai
T
= 0, ∀ i ∈ I,

(36b)ai
t
=

�i

ΓNC
ANC

t
, ∀ i ∉ C, t = 0,… , T − 1 .
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use, we define the aggregated emission abatement level of all non-member countries i ∉ C in 
period t in the subgame perfect Nash equilibrium by ǍNC

t
=
∑

i∉C ǎ
i
t
.

To prove this, we assume that a set of countries C has joined a feasible RS characterized by 
a weighting scheme 

{
�i
t

}i∈C

t=0,…,T−1
 and a sequence of refunds {Rt}t=0,…,T−1 by paying an initial 

fee f i
0
 . We shall analyze the subgame perfect Nash equilibria of the RS by backward induction. 

In every step of the backward induction, we show that 

1. the objective function of each country i is strictly concave,
2. there exists a feasible weighting scheme {�̃�i

t
}i∈C and a feasible refund R̃t such that the 

aspired abatement levels {ãi
t
}i∈C are consistent with the necessary and sufficient condi-

tions of the subgame perfect Nash equilibrium of the subgame starting in period t and
3. the aspired abatement levels {ãi

t
}i∈C are the unique solution solving the necessary and 

sufficient conditions of subgame perfection of the subgame starting in period t,

given the aspired abatement levels {ãi
t+1

}i∈C constitute the unique subgame perfect Nash equi-
librium outcome of the subgame starting in period t + 1.

Assuming that there exists a unique subgame perfect equilibrium for the subgame start-
ing in period t + 1 with a stock of cumulative greenhouse gas emissions st+1 , for all countries 
i ∈ C , we denote country i’s equilibrium payoff for this subgame by Wi

t+1
(st+1) . Then country 

i’s best response in period t, āi
t
 , is determined by the solution of the optimization problem

subject to Eq. (3), Wi
T+1

(sT+1) ≡ 0 , and given the sum of the abatement efforts of all other 
countries A−i

t
=
∑

j≠i a
j

t . Differentiating Eq.  (37) with respect to ai
t
 and setting it equal to 

zero yields

where s̄t+1 = st + E − āi
t
− A−i

t
 and

Differentiating w.r.t. st and applying the envelope theorem yields

Starting with period t = T  , we first note that the maximization problem of all countries is 
strictly concave, as WT+1(sT+1) ≡ 0 and rT = fT∕|C| . Thus, Eq. (38) characterizes the best 
response for all countries i ∈ C , which is given by āi

T
= 0 independently of the abatement 

choices of all other countries. As a consequence âi
T
= 0 for all i ∈ C is the subgame perfect 

Nash equilibrium of the game starting in period T and is also the aspired abatement level in 
period T, as ãi

T
= 0 for all i ∈ C for all feasible coalition abatement paths. Then, the equi-

librium pay-off is given by Wi
T
(sT ) = Vi

T
(sT )|Â−i

T
 , which is strictly concave:

(37)Vi
t
(st)|A−i

t
= max

ait

{
�Wi

t+1
(st+1) −

�i

2
(ai

t
)2 −

�i

2
s2
t
+ ri

t

}
,

(38)𝛼iā
i
t
= −𝛿Wi

t+1

�
(s̄t+1) +

𝜕ri
t

𝜕ait

|||||ait=āit

(39)
�ri

t

�ait
=

⎧⎪⎨⎪⎩
�i
t
Rt

AC−i
t

(ait + AC−i
t )2

, t = 1,… , T − 1,

0, t = T .

(40)−Vi
t

�
(st)|A−i

t
= �ist − �Wi

t+1

�
(st+1) .
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Now, we analyze the subgame starting in period t assuming that their exists a weighting 
scheme {�̃�i

t�
}i∈C
t�=t,…,T−1

 and a sequence of refunds 
{
R̃t�

}
t�=t,…,T−1

 such that the outcome of 
the unique subgame perfect Nash equilibrium of the subgame starting in period t + 1 coin-
cides with the aspired coalition abatement paths 

{
ãi
t�

}i∈C

t�=t+1,…,T
 . In addition, we assume 

that Wi
t+1

(st+1) is strictly concave. Then, also the optimization problem of country i ∈ C in 
period t is strictly concave

As a consequence, there exists a unique best response āi
t
 for all countries i ∈ C given the 

emission abatements of all other countries j ≠ i , which is given implicitly by (38):

As, by assumption, −Wi
t�
�
(st� ) = −Vi

t�
�
(st� )|Â−i

t�
 for all t� ≥ t + 1 we can exploit Eq. (40) to 

obtain the following Euler equation:

Inserting s̄t+1 = st + E − āi
t
− AC−i

t
− ǍNC

t
 yields:

with

First, we show that there exist unique �̃�i
t
 and R̃t such that choosing the aspired coalition 

abatement level ãi
t
 is an equilibrium strategy for all countries i ∈ C . Inserting aspired abate-

ment levels ãi
t
 and rearranging Eq. (45), we obtain

Taking into account that the weighting scheme adds up to one, i.e., 
∑

j∈C �̃�
j

t

ã
j
t

ÃC
t

= 1 , yields 

(41)Wi
T
(sT ) = −

�i

2
s2
T
+

fT

|C| ⇒ W ��
T
(sT ) = −�i .

(42)𝛿Wi
t+1

��
(st+1) − 𝛼i +

𝜕2ri
t

(𝜕ait)
2
< 0 .

(43)𝛼iā
i
t
− 𝜆i

t
Rt

AC−i
t

(āit + AC−i
t )2

= −𝛿Wi
t+1

�
(s̄t+1) .

(44)𝛼iā
i
t
− 𝜆i

t
Rt

AC−i
t

(āit + AC−i
t )2

= 𝛿𝛽is̄t+1 + 𝛿𝛼iã
i
t+i

− 𝛿�̃�i
t+1

R̃t+1

ÃC−i
t+1

(ÃC

t+1
)2

.

(45)𝛼iā
i
t
+ 𝛿𝛽i(ā

i
t
+ AC−i

t
) − 𝜆i

t
Rt

AC−i
t

(āit + AC−i
t )2

= C̃i
t
,

(46)C̃i
t
= 𝛿𝛽i

(
st + E − ǍNC

t

)
+ 𝛿𝛼iã

i
t+i

− 𝛿�̃�i
t+1

R̃t+1

ÃC−i
t+1(

ÃC

t+1

)2 .

(47)�̃�i
t
R̃t =

(
ÃC

t

)2
(
𝛼i

ãi
t

ÃC−i
t

+ 𝛿𝛽i
ÃC
t

ÃC−i
t

−
C̃i
t

ÃC−i
t

)
.

(48a)R̃t = ÃC

t

∑
j∈C

[
ã
j

t

(
𝛼j

ã
j

t

Ã
C−j
t

+ 𝛿𝛽j
ÃC
t

Ã
C−j
t

−
C̃
j

t

Ã
C−j
t

)]
,
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We now show that the aspired coalition abatement levels ãi
t
 are the unique solution 

to the Euler equations of all countries i ∈ C given the weighting scheme 
{
�̃�i
t

}i∈C and the 
refund R̃t . To this end, we express equation (45) in terms of ai

t
 and AC

t
 and solve for ai

t
:

Summing-up over all countries i ∈ C yields

which has to hold for AC
t
= ÃC

t
 and is a necessary condition for a Nash equilibrium. Differ-

entiating hi
t
(AC

t
) with respect to AC

t
 , we obtain:

Seeking the roots of hi
t

�
(AC

t
) yields

Thus, for every hi
t
(AC

t
) there exist one positive collective abatement level Āi

t
 such that 

hi
t

�
(Āi

t
) = 0 . In addition it holds (taking into account Eq. (47)): 

(48b)�̃�i
t
=

ÃC
t

�
𝛼i

ãi
t

ÃC−i
t

+ 𝛿𝛽i
ÃC
t

ÃC−i
t

−
C̃i
t

ÃC−i
t

�

∑
j∈C

�
ã
j

t

�
𝛼j

ã
j
t

Ã
C−j
t

+ 𝛿𝛽j
ÃC
t

Ã
C−j
t

−
C̃
j
t

Ã
C−j
t

�� .

(49)
ai
t
= AC

t

�̃�i
t
R̃t + C̃i

t
AC
t
− 𝛿𝛽i

(
AC
t

)2

�̃�itR̃t + 𝛼i
(
AC
t

)2
���������������������������������

≡hit(A
C
t )

= AC

t
hi
t
(AC

t
) .

(50)
∑
i∈C

hi
t
(AC

t
) = 1,

(51)hi
t

�
(AC

t
) =

�̃�i
t
R̃tC̃

i
t
− 2(𝛼i + 𝛿𝛽i)�̃�

i
t
R̃tA

C
t
− 𝛼iC̃

i
t

(
AC
t

)2
[
�̃�itR̃t + 𝛼i

(
AC
t

)2]2 .

(52)
hi
t

�
(AC

t
) = 0 ⇔ �̃�i

t
R̃tC̃

i
t

���
≡x>0

− 2(𝛼i + 𝛿𝛽i)�̃�
i
t
R̃t

���������������
≡y>0

AC

t
− 𝛼iC̃

i
t

���
≡z>0

(
AC

t

)2
= 0,

(53)⇔ x − yAC

t
− z

(
AC

t

)2
= 0,

(54)⇔ AC

t
= −

y ±
√
y2 + 4xz

2z
.

(55a)hi
t
(0) = 1, hi

t
(ÃC

t
) =

𝛼iã
i
t
ÃC
t
+ �̃�i

t
R̃t

(
1 −

ÃC−i
t

ÃC
t

)

�̃�itR̃t + 𝛼i
(
ÃC
t

)2 ∈ [0, 1], ÃC

t
≠ 0

(55b)hi
t

�
(0) = C̃i

t
> 0, hi

t

�
(ÃC

t
) < 0 .



544 H. Gersbach et al.

1 3

 Focusing attention to the positive half-space AC
t
≥ 0 , all hi

t
(AC

t
) start at 1 for AC

t
= 0 . In 

addition, all hi
t
(AC

t
) exhibit a unique local extremum at Āi

t
> 0 . As hi�

t
(AC

t
) is increasing at 

AC
t
= 0 , the local extremum is a local maximum. This implies that all hi

t
(AC

t
) are increas-

ing until Āi
t
> 0 and decreasing afterwards. This also implies that ÃC

t
> Āi

t
 for all i ∈ C , 

because hi
t
(ÃC

t
) < 1 , which can only happen for values AC

t
> Āi

t
 , as all hi

t
(AC

t
) start at 1 and 

further increase until the local extremum at Āi
t
 . As ÃC

t
> Āi

t
 , this, in turn, implies that at 

ÃC
t
 , all hi

t
(ÃC

t
) ∈ [0, 1] are monotonically decreasing.28 As a consequence, there exists no 

other value A′
t
 such that 

∑
i∈C h

i
t
(A�

t
) = 1 . Then, only the aspired coalition abatement levels 

ãi
t
 solve the Euler equations of all countries i ∈ C simultaneously for the weighting scheme 

�̃�i
t
 and the refund R̃t.
Differentiating (40) with respect to st , we obtain

As Wi
t
(st) = Vi

t
(st)|Â−i

t
 , this implies that the equilibrium pay-off Wi

t
(st) is strictly concave 

for all countries i ∈ C.
Working backwards to t = 1 yields a the unique subgame perfect Nash equilibrium out-

come that is given by the aspired coalition abatement levels 
{
ãi
t

}i∈C

t=0,…,T
 , the abatement path {

ǎi
t

}i∉C

t=0,…,T
 of all non-members countries i ∉ C and the corresponding path of cumulative 

greenhouse gas emissions {st}t=0,…,T .
It remains to show that the RS is feasible, i.e., the weighting scheme {�̃�i

t
}n
i=1

 and the 
refund R̃t are non-negative for all t = 0,… , T − 1 , for all feasible coalition abatement 
paths 

{
ãi
t

}i∈C

t=0,…,T
 . As Wi

t
(st) = Vi

t
(st)|Â−i

t
 , we can consecutively apply Eq. (40), insert into 

Eq. (38) and evaluate in the subgame perfect Nash equilibrium:

The corresponding equation in the decentralized solution yields:

By construction ãi
t
> âi

t
 for all i ∈ C and t = 0,… , T − 1 . As a consequence, it also 

holds that ŝt > st for all t = 0,… , T  . This, in turn, implies that {�̃�i
t
}i∈C
t=0,…,T−1

> 0 and {
R̃t

}
t=0,…,T−1

> 0 .   ◻

(56)Vi
t

��
(st)|A−i

t
= 𝛿Wi

t+1

��
(s̄t+1) − 𝛽i .

(57)𝛼iã
i
t
− �̃�i

t
R̃t

ÃC−i
t(
ÃC
t

)2 = 𝛿𝛽i

T∑
𝜏=t+1

𝛿𝜏−(t+1)s𝜏 , t = 0,… , T − 1 .

(58)𝛼iâ
i
t
= 𝛿𝛽i

T∑
𝜏=t+1

𝛿𝜏−(t+1)ŝ𝜏 , t = 0,… , T − 1 .

28 Another way to see that hi
t

�
(ÃC

t
) < 0 is by evaluating Eq. (51) at ÃC

t
 and re-writing it to yield:

hi
t

�
(ÃC

t
) is negative, as the term in brackets in the numerator is larger as 𝛼

i
ãi
t
+ 𝛿𝛽

i
ÃC
t
− C̃i

t
 , which, according 

to Eq. (47), is equal to �̃�i
t
R̃
t
AC−i
t

∕
(
ÃC
t

)2
> 0.

h
i

t

�
(ÃC

t
) = −

�̃�i
t
R̃
t

[
2(𝛼

i
+ 𝛿𝛽

i
)ÃC

t
− C̃

i

t

]
+ 𝛼

i
C̃
i

t

(
Ã
C
t

)2
[
�̃�i
t
R̃
t
+ 𝛼

i

(
Ã
C
t

)2]2 .
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Proof of Proposition 5

The first part of Proposition directly follows from Eq. (14).
To show that the any feasible RS can always be implemented as a Pareto improvement 

over the decentralized solution, we introduce the following abbreviation: Denote the net 
present value of the discounted sum of abatement costs and environmental damage costs of 
country i in the decentralized solution and the RS by K̂i and K̃i , respectively: 

In addition, let f̃ i
0
 be the net present value of the discounted sum of refunds that country 

i ∈ C receives in the RS:

 By construction, all countries i ∈ C are better off in the RS than in the decentralized solu-
tion if their initial fees were equal to zero. The reason is that environmental damage costs 
are smaller under the refunding scheme and abatement costs minus refunds are smaller 
compared to the decentralized solution. Otherwise, it would not have been in the countries’ 
best interest to choose the aspired coalition abatement levels. Define the difference in terms 
of net present value between the RS and the decentralized solution by f̂ i

0
:

Note that f̂ i
0
 is the initial fee that would leave country i ∈ C indifferent between the RS and 

the decentralized solution. Summing-up over all countries i ∈ C , we obtain:

Thus, it is always possible to find a set of initial fees f i
0
 such that 

∑
i∈C f

i
0
= f̃0 and, in addi-

tion, f i
0
< f̂ i

0
 for all i ∈ C .   ◻

Proof of Proposition 6

In line with the literature, we assume that in the second stage both the modesty parameter 
� and the membership structure are given and common knowledge. Then, the coalition acts 
as one player in the non-cooperative game, in which the coalition and all other non-mem-
ber countries choose emission abatement levels to maximize their objective. We assume 
that in each period t = 0,… , T  the previous emission abatement choices of all players are 
common knowledge before all players simultaneously decide on emission abatement levels 
in period t. The subgame perfect Nash equilibrium is derived by backward induction.

(59a)K̂i =

T∑
t=0

[
𝛼i

2

(
âi
t

)2
+

𝛽i

2
ŝ2
t

]
,

(59b)K̃i =

T∑
t=0

[
𝛼i

2

(
ãi
t

)2
+

𝛽i

2
s̃2
t

]
.

(59c)f̃ i
0
=

T−1�
t=1

�̃�iR̃t

(1 + 𝜌)t

�
ai
t∑

j∈C a
j

t

�
.

(60)f̂ i
0
= K̂i − K̃i + f̃ i

0
> 0 .

(61)
∑
i∈C

f̂ i
0
=
∑
i∈C

[
K̂i − K̃i + f̃ i

0

]
=
∑
i∈C

[
K̂i − K̃i

]
+ f̃0 > f̃0 .
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For a given modesty parameter � and a given membership structure C , the coalition is sup-
posed to set emission abatement levels such as to solve optimization problem (15) subject to 
the equation of motion for aggregate cumulative emissions (3) and given the emission abate-
ment levels of all non-member countries. To solve the problem recursively, we introduce the 
value function:

where A−C
t

 denotes the vector of emission abatement levels of all non-member countries, 
VC
t
(st) represents the negative of the total coalition costs accruing from period t onwards 

discounted to period t and WC
t+1

(st+1) is the coalition’s equilibrium pay-off of the subgame 
starting in period t + 1 conditional on the stock of accumulated GHG gases st+1.

All non-member countries i ∉ C seek to minimize the net present value of their own total 
domestic costs (6) subject to stock dynamics of cumulative global GHG emissions (3) and 
given the emission abatement levels of all other countries. Again, we introduce the value 
function:

where A−i
t

 denotes the vector of emission abatement levels of all other countries j ≠ i , 
Vi
t
(st) represents the negative of the total country i’ costs accruing from period t onwards 

discounted to period t and Wi
t+1

(st+1) is the country i’s equilibrium pay-off of the subgame 
starting in period t + 1 conditional on the stock of accumulated GHG gases st+1.

Differentiating the value functions (62) and (63) with respect to ai
t
 and setting them equal to 

zero, we derive the following first-order conditions: 

 The optimization problems of the coalition and all non-member countries in period t are 
strictly concave if 

 in which case the first-order conditions () implicitly define the coalition’s and all non-
member countries’ unique best response functions.

In addition, differentiating the value functions (62) and (63) with respect to st and applying 
the envelope theorem yields 

(62)VC

t
(st)|A−C

t
= max

{ait}i∈C

{
�WC

t+1
(st+1) −

∑
i∈C

[
�i

2
(ai

t
)2 + �

�i

2
s2
t

]}
,

(63)Vi
t
(st)|A−i

t
= max

{ait}

{
�Wi

t+1
(st+1) −

[
�i

2
(ai

t
)2 +

�i

2
s2
t

]}
, i ∉ C,

(64a)�ia
i
t
= −�WC

t+1

�
(st+1), ∀ i ∈ C, t = 0,… , T,

(64b)�ia
i
t
= −�Wi

t+1

�
(st+1), ∀ i ∉ C, t = 0,… , T .

(65a)𝛿WC

t+1

��
(st+1) − 𝛼i < 0, ∀ i ∈ C, t = 0,… , T,

(65b)𝛿Wi
t+1

��
(st+1) − 𝛼i < 0, ∀ i ∉ C, t = 0,… , T,

(66a)−VC

t

�
(st)|A−C

t
= �BCst − �WC

t+1

�
(st+1), ∀ i ∈ C, t = 0,… , T,

(66b)−Vi
t

�
(st)|A−i

t
= �ist − �Wi

t+1

�
(st+1), ∀ i ∉ C, t = 0,… , T,
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 where we have introduced the notation BC =
∑

i∈C �i.
Starting from WC

T+1
(sT+1) ≡ 0 ≡ Wi

T+1
(sT+1) for all i ∈ I  , implying that the objective 

function of the optimization problem of the coalition and all non-member countries is 
strictly concave. As a consequence, Eq. () characterize the coalition’s and all non-member 
countries’ best response, which is given by āi

T
= 0 for all I ∈ I  independently of the emis-

sion abatement choices of all other countries. As a consequence, ãi
T
= 0 for all i ∈ C and 

ǎi
T
= 0 for all i ∉ C is the unique and symmetric Nash equilibrium for the subgame starting 

in period T given the stock of cumulative greenhouse gas emissions sT . The equilibrium 
pay-offs are given by WC

T
(sT ) = VC

T
(sT )|Â−C

T
 for the coalition and Wi

T
(sT ) = Vi

T
(sT )|Â−i

T
 and 

are strictly concave: 

 As a consequence, the optimization problem of the coalition and all non-member countries 
is also strictly concave in period T.

Now assume there exists a unique subgame perfect Nash equilibrium for the subgame 
starting in period t + 1 with a stock of greenhouse gas emissions of st+1 yielding equilib-
rium pay-offs WC

t+1
(st+1) and Wi

t+1
(st+1) to the coalition and all non-member countries i ∉ C , 

respectively, with WC

t+1

��
(st+1) < 0 and Wi

t+1

��
(st+1) < 0 . Then the optimization problem in 

period t is strictly concave for the coalition and all non-member countries i ∉ C , implying 
there exists a unique best response āi

t
 for all countries i ∈ I  given the emission abatements 

of all other countries j ≠ i , which is given implicitly by 

 where s̄t+1 = st + E − āi
t
− A−i

t
 . As, by assumption, −WC

t�
�
(st� ) = −VC

t�
�
(st� )|Â−C

t�
 and 

−Wi
t�
�
(st� ) = −Vi

t�
�
(st� )|Â−i

t�
 for all t� ≥ t + 1 , we can exploit conditions () to obtain: 

 Summing up Eq. (69a) over all coalition members i ∈ C and Eq.  (69b) over all non-
member countries i ∉ C , we obtain the following equations for the aggregate abatement 
levels AC

t
=
∑

i∈C a
i
t
 and ANC

t
=
∑

i∉C a
i
t
 of the coalition and all non-member countries, 

respectively: 

(67a)WC

T
(sT ) = −�

B
C

2
s2
T

⇒ WC

T

��
(sT ) = −�BC

,

(67b)Wi
T
(sT ) = −

�i

2
s2
T

⇒ Wi
T

��
(sT ) = −�i, ∀ i ∉ C .

(68a)𝛼iā
i
t
= −𝛿WC

t+1

�
(s̄t+1), ∀ i ∈ C,

(68b)𝛼iā
i
t
= −𝛿Wi

t+1

�
(s̄t+1) , ∀ i ∉ C,

(69a)ai
t
= 𝛿ãi

t+1
+ 𝜇𝛿

B
C

𝛼i

(
st + E −

∑
j∈I

a
j

t

)
, ∀ i ∈ C,

(69b)ai
t
= 𝛿ǎi

t+1
+ 𝛿𝛾i

(
st + E −

∑
j∈I

a
j

t

)
, ∀ i ∉ C .

(70a)AC

t
= 𝛿ÃC

t+1
+ 𝜇𝛿AC

B
C
(
st + E − AC

t
− ANC

t

)
,
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 where we have used the abbreviation AC =
∑

i∈C 1∕�i and ΓNC =
∑

i∉C �i . Solving this sys-
tem of equations for AC

t
 and ANC

t
 , we obtain the aggregate abatement levels of the coa-

lition and non-member countries, respectively, for period t in the subgame perfect Nash 
equilibrium: 

 Inserting ÃC
t
 and ǍNC

t
 back into Eq. () yields the unique equilibrium abatement level in 

period t for all countries i ∈ I  : 

Differentiating () with respect to st , we obtain 

 As WC
t

��
(st) = VC

t

��
(st)|Â−C

t
 and Wi

t

��
(st) = Vi

t

��
(st)|Â−i

t
 , this implies that the equilibrium pay-

offs WC
t
(st) and Wi

t
(st) are strictly concave for the coalition and all non-member countries 

i ∉ C.
Working backwards until t = 0 yields unique sequences of emission abatements {ãi

t
}T
t=0

 
and {ãi

t
}T
t=0

 for all coalition countries i ∈ C and all non-member countries i ∉ C , respec-
tively, and the corresponding sequence of the stock of cumulative greenhouse gas emissions 
st ( t = 0,… , T ) that constitute the unique subgame perfect Nash equilibrium outcome of the 
second stage of the modest international environmental agreement.

Having established existence and uniqueness of the subgame perfect Nash equilibrium, we 
now employ Eq. () together with the equation of motion for the stock of aggregated cumula-
tive emissions (3) to derive the following system of first-order linear difference equations: 

(70b)ANC

t
= 𝛿ǍNC

t+1
+ 𝛿ΓNC

(
st + E − AC

t
− ANC

t

)
,

(71a)ÃC

t
=

𝛿
[
ÃC

t+1

(
1 + 𝛿ΓNC

)
+ 𝜇AC

B
C
(
st + E − 𝛿ǍNC

t+1

)]

1 + 𝛿ΓNC + 𝜇𝛿AC
B
C

,

(71b)ǍNC

t
=

𝛿
[
ǍNC

t+1

(
1 + 𝜇𝛿AC

B
C
)
+ ΓNC

(
st + E − 𝛿ÃC

t+1

)]

1 + 𝛿ΓNC + 𝜇𝛿AC
B
C

.

(72a)ãi
t
= 𝛿ãi

t+1
+ 𝜇𝛿

B
C

𝛼i

(
st + E − ÃC

t
− ǍNC

t

)
, ∀ i ∈ C,

(72b)ǎi
t
= 𝛿ǎi

t+1
+ 𝛿𝛾i

(
st + E − ÃC

t
− ǍNC

t

)
, ∀ i ∉ C .

(73a)VC

t

��
(st)|A−C

t
= �WC

t+1

��
(st+1) − �BC

, ∀ i ∈ C,

(73b)Vi
t

��
(st)|A−i

t
= �Wi

t+1

��
(st+1) − �i, ∀ i ∉ C .

(74a)AC

t+1
=
(
1

�
+ �AC

B
C
)
AC

t
+ �AC

B
CANC

t
− �AC

B
Cst − �AC

B
C
E,

(74b)ANC

t+1
= ΓNCAC

t
+
(
1

�
+ ΓNC

)
ANC

t
− ΓNCst − ΓNCE,

(74c)st+1 = −AC

t
− ANC

t
+ st + E .
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By introducing the abbreviations x = �AC
B
C and y = ΓNC and the matrix M

we rewrite the system () in matrix form:

The general solution of the matrix equation (76) is given by:

where ĀC , ĀNC and s̄ denote the steady state values of AC
t
 , ANC

t
 and st , �i are the eigenvalues 

and �i the eigenvectors of the matrix M, and Bi(T) are constants determined by the initial 
and terminal conditions of the stock and the emission abatement levels ( i = 1,… , 3).

Calculating the steady state values by setting

yields: 

 In addition, for the matrix M we derive the following eigenvalues �i ( i = 1,… , 3 ): 

 and eigenvectors ( i = 1,… , 3 ): 

(75)M =

⎛
⎜⎜⎝

1

�
+ x x − x

y
1

�
+ y − y

−1 − 1 + 1

⎞
⎟⎟⎠
,

(76)
⎛⎜⎜⎝

AC

t+1

ANC

t+1

st+1

⎞⎟⎟⎠
= M ⋅

⎛⎜⎜⎝

AC
t

ANC
t

st

⎞⎟⎟⎠
+

⎛⎜⎜⎝

−xE

−yE

E

⎞⎟⎟⎠
.

(77)
⎛⎜⎜⎝

AC
t

ANC
t

st

⎞⎟⎟⎠
=

⎛⎜⎜⎝

ĀC

ĀNC

s̄

⎞⎟⎟⎠
+ B1(T)𝜈1𝜆

t
1
+ B2(T)𝜈2𝜆

t
2
+ B3(T)𝜈3𝜆

t
3
,

(78)AC

t+1
= AC

t
= ĀC, ANC

t+1
= ANC

t
= ĀNC , st+1 = st = s̄,

(79a)ĀC =
x

x + y
E

(79b)ĀNC =
y

x + y
E

(79c)s̄ =
1 − 𝛿

𝛿

E

x + y

(80a)�1 =
1

�
,

(80b)�2 =
1 + � + �(x + y) −

√
[1 + � + �(x + y)]2 − 4�

2�
,

(80c)�3 =
1 + � + �(x + y) +

√
[1 + � + �(x + y)]2 − 4�

2�
,

(81a)�1 = {−1, 1, 0},
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Inserting into Eq. (77) yields: 

The constants Bi(T) ( i = 1,… , 3 ) are derived from the initial stock s0 of cumulative 
GHG emissions and the terminal conditions AC

T
= 0 and ANC

T
= 0 of aggregate emission 

abatement levels, which imply 

 By inserting these expressions back into equations () yields the aggregate abatement lev-
els AC

t
 and ANC

t
 and the stock of aggregate cumulative emissions st in the subgame perfect 

Nash equilibrium ( t = 0,… , T).
Finally, we determine the individual countries’ abatement levels in the subgame perfect 

Nash equilibrium. Using backward induction starting from t = T  , we obtain from equations 
(): 

  ◻

(81b)�2 =

{
x

x + y
(1 − �2),

y

x + y
(1 − �2), 1

}
,

(81c)�3 =

{
x

x + y
(1 − �3),

y

x + y
(1 − �3), 1

}
,

(82a)AC

t
= ĀC − B1(T)𝜆

t
1
+

x

x + y

[
B2(T)(1 − 𝜆2)𝜆

t
2
+ B3(T)(1 − 𝜆3)𝜆

t
3

]

(82b)ANC

t
= ĀNC + B1(T)𝜆

t
1
+

y

x + y

[
B2(T)(1 − 𝜆2)𝜆

t
2
+ B3(T)(1 − 𝜆3)𝜆

t
3

]

(82c)st = s̄ + B2(T)𝜆
t
2
+ B3(T)𝜆

t
3

(83a)B1(T) =
yĀC − xĀNC

(x + y)𝜆T
1

,

(83b)B2(T) = −
ĀC + ĀNC + (s0 − s̄)(1 − 𝜆3)𝜆

T
3

(1 − 𝜆2)𝜆
T
2
− (1 − 𝜆3)𝜆

T
3

,

(83c)B3(T) =
ĀC + ĀNC + (s0 − s̄)(1 − 𝜆2)𝜆

T
2

(1 − 𝜆2)𝜆
T
2
− (1 − 𝜆3)𝜆

T
3

.

(84a)ai
T
= 0, ∀ i ∈ I ,

(84b)ai
t
=

AC
t

�iA
C
, ∀ i ∈ C, t = 0,… , T − 1,

(84c)ai
t
=

�i

ΓNC
ANC

t
, ∀ i ∉ C, t = 0,… , T − 1 .
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