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Abstract
Estimates of the average effect of pollution on birthweight might not provide a com-
plete picture if more vulnerable infants are disproportionately more affected. To
address this, I focus on the distributional effect of particulate matter pollution (PM2.5)
on birthweight. To estimate the impact, this paper uses grouped quantile regression, a
methodology developed by Chetverikov et al. (Econometrica 84(2): 809–833, 2016),
which allows estimating the impact of a group-level treatment on an individual-level
outcome when there are group-level unobservables. The analysis reveals nonhomoge-
neous effects indicating that pollution disproportionately affects infants in the lower
tail of the conditional distribution, whereas average effects suggest only minimal and
not economically significant impact of pollution on birthweight. The findings are also
consistent across different specifications.

Keywords Air pollution · Birthweight · Infant health · Quantile regression

JEL Classification I18 · Q52 · Q53

1 Introduction

Public awareness about pollution has been increasing over the last decades, and con-
cerns about the possible adverse effects on health have been rising. A growing number
of studies have taken on the challenge of estimating the potential welfare gain of
pollution reduction. To facilitate the computation of lifetime exposure to pollution,
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many focused on infant health. In the economic literature, there are two prominent
measures of infant health, namely birthweight and mortality. This paper concentrates
on the former.

Birthweight is not only an indicator of neonatal health and is negatively correlated
with infant mortality, but also low birthweight causes substantial medical costs (see
Almond et al. 2005). Estimating the impact of pollution on health presents itself with
some difficulties as there might be factors that influence pollution exposure, which
are also correlated with health so that pollution is not randomly assigned.1 Economic
status, degree of urbanization, race, education, and some behaviors such as smoking
are some examples of confounding variables. For instance, Currie (2011) documents
thatHispanic andAfrican-Americanmothers aswell as smokers are disproportionately
more likely to live close to hazardous emission sites, while the opposite is true formore
educated mothers. Similarly, Currie et al. (2009) point out that in urban areas, where
there is also a higher share of highly educated people, the pollution concentration is
generally higher. Since it is unlikely that we can control for all confounding factors,
studies often rely on fixed effects and instrumental variables to isolate the causal
effect (see, for example, Chay and Greenstone 2003a, b; Currie et al. 2009; Knittel
et al. 2016).

A large body of the literature has focused on the impact of pollution on birth
outcomes and mortality (see, for example, Currie andWalker 2011; Currie et al. 2009;
Currie and Neidell 2005; Knittel et al. 2016; Chay and Greenstone 2003a, b). Some
studies have also suggested that the effectmight be larger in the lower tail. For instance,
Knittel et al. (2016) document that the impact of traffic on infant mortality is nearly
entirely absorbed by premature or low birthweight infants and Currie et al. (2009)
document that the effect of carbon monoxide (CO) concentration on the incidence
of low birthweight was greater than the impact on average birthweight. At the same
time, existing studies using quantile regression methods find that the impact of birth
inputs and other variables, including mother’s race and education, varies across the
distribution (see, for example, Abrevaya 2001; Abrevaya and Dahl 2008; Koenker and
Hallock 2001; Chernozhukov and Fernández-Val 2011). These results, taken together,
suggest that the effect of pollution might be larger among more vulnerable infants.
If this is the case, estimates of the average effects of pollution on birthweight might
underestimate the potential welfare gain of reducing pollution. This is because the
marginal welfare gain of additional weight is higher at the bottom of the distribution.
In other words, a decline in birthweight in the lower tail of the distribution causes
more economic and welfare costs compared with an equivalent decrease in the upper
tail. For this reason, in this paper, I use 1999–2004 birth certificate data from the
USA to study the distributional effect of particulate matter pollution (PM2.5) on the
conditional distribution of birthweight.2

Despite the exact biological mechanism through which exposure to pollution may
affect birth outcomes is not yet wholly understood (Gehring et al. 2014), reasonable
explanations include the effects of pollution on fetal growth and prematurity (Slama
et al. 2008). For example, particulate matter pollution could impact the mother’s

1 For a more complete review of these challenges, see Graff Zivin and Neidell (2013).
2 PM2.5 stands for particulate matter or fine particles with a diameter of 2.5 micrometers or less.
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immune system and increase the risk of infections, possibly leading to preterm birth
(Slama et al. 2008). If pollution is associated with decreased birthweight due to shorter
gestation, one might expect a negative effect, especially in the lower tail of the distri-
bution. By contrast, the impact going through the fetal growth channel is ambiguous.
On the one hand, if all mothers are affected equally, higher pollution would cause
a downward shift in the distribution. On the other hand, if some mothers are more
susceptible to pollution than others, the effect might not be homogeneous.

To estimate the effect on the distribution, I use an estimator proposed byChetverikov
et al. (2016), which they refer to as grouped IV quantile regression. As this paper does
not use instrumental variables, I refer to the estimator as grouped quantile regression.
To the best of my knowledge, neither this model nor standard quantile regression has
been used to estimate the effect of pollution on birthweight. This paper builds on
the work of Chay and Greenstone (2003b), who also study the effect of pollution in
the USA. However, they focus on the 1980–1982 period and concentrate on total sus-
pended particulates (TSPs) pollution, which is also ameasure of suspended particulate
matter, but of much larger size.3

This work contributes to the existing literature studying the impact of pollution
on birthweight by providing estimates of the magnitude of the impact on weight on
different parts of the conditional distribution, and not only average effects on weight
or impacts on the incidence of low birthweight. Quantile regression enables to better
estimate the costs of pollution, also considering the different economic implications of
a decrease in birthweight at the bottom of the distribution. In contrast to other studies
using quantile regression, this paper focuses on an endogenous treatment that varies
only at the group-level and not on individual-level birth inputs.

The results suggest a negative effect of PM2.5 on the lower tail of the weight
distribution and no effect on the upper tail. According tomy preferred specification, an
increase in PM2.5 by one standard deviation is associatedwith a decrease in birthweight
by 28.0 g in the 5th percentile of the distribution and 20.5 g in the 1st decile. By looking
at average effects, I do not find an impact of pollution on birthweight.

The remainder of the paper is structured as follows. Section 2 introduces the empir-
ical approach, including a short overview of the estimator. Chapter 3 presents the data,
while Sect. 4 focuses on the results. Following this, Sect. 5 concludes.

2 Empirical approach

The grouped quantile regression estimator developed by Chetverikov et al. (2016) is
particularly suited for estimating the effect of a group-level treatment on an individual-
level outcome. For the estimation, variables are divided into two categories, namely
group level and individual level, and groups are defined as month of birth and county
combinations. In this case, pollution is a group-level treatment as all individuals born
in a given county and month are assumed to be exposed to the same level of pollution.
Other group-level variables are the county-level controls, while details about the single
births are individual-level or within-group covariates. For reason of clarity, in the

3 TSPs include all suspended particles smaller than 40 micrometers.
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remainder of the paper, when I refer to month, I mean the month and year combination
unless otherwise specified.

2.1 Model

The model assumes that the conditional quantile function of birthweight of individual
i born in county c and month m, denoted bwicm , is a function of individual-level
covariates zicm , particulate matter pollution PM2.5,cm , group-level controls xcm , as
well as group-level unobservables ηcm(u):

Qbwicm |zicm ,PM2.5,cm ,xcm ,ηcm (u) = z′icmδcm(u) + PM2.5,cmβ(u)

+x ′
cmθ(u) + ηcm(u), u ∈ U , (1)

where U contains all the quantiles of interest. Individual-level control variables in
zicm include mother’s age and education, the average number of daily cigarettes
smoked during gestation, as well as dummies for Hispanic and black mothers,
and the sex of the infant. The vector δcm(u) contains the parameters of the
individual-level variables and is allowed to vary across groups. The pollutant of
interest PM2.5,cm is the average concentration of particulate matter with a diam-
eter smaller or equal to 2.5 micrometers per cubic meter during pregnancy, and
β(u) is the parameter of interest. The vector xcm contains average temperature
and precipitations during gestation as well as their squares and county-level aver-
age personal income. Similarly to Chay and Greenstone (2003a), I also include
controls for different county-level transfers such as unemployment benefits, pub-
lic assistance medical care benefits, food stamps, personal current transfer receipts,
and income maintenance benefits. Finally, ηcm(u) is the group-level error term. The
county-level income variables are included to control for the socioeconomic charac-
teristics of the counties, whereas weather variables are included as these are likely
to affect pollution and may have an impact on health (Graff Zivin and Neidell
2013).

Gestation length is an important determinant of birthweight and may be itself a
consequence of pollution exposure.Consistentwith this hypothesis,Currie et al. (2009)
provide some evidence suggesting that higher pollution leads to a reduction in the
duration of the pregnancy. For this reason, I do not control for gestational age as it is
an outcome and, thus, endogenous.

Although model (1) controls for potential confounding factors such as education,
smoking habits, and race, there might be other variables influencing pollution expo-
sure as well as birthweight, such that PM2.5,cm is endogenous. To deal with this
endogeneity, Chay and Greenstone (2003a) use fixed effects and IV and find simi-
lar results with both estimation strategies. Due to the difficulty of finding a proper
instrument, this paper relies on two types of fixed effects. More precisely, I assume
that ηcm is additively separable in month and county effects. The month of birth fixed
effects accounts for time-varying unobservables, and the county-level fixed effects
account for unobserved but time-invariant county-level factors. Before presenting the
model with the fixed effects, it is useful to discuss the estimator. Hence, in the follow-
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ing subsections, I first present the estimator and then continue with the fixed effects
model.

2.2 Grouped quantile regression

Grouped quantile regression is performed in two stages. The first stage consists of
regressing the dependent variable, birthweight, on individual-level covariates for each
group, using quantile regression. For each group and quantile, the resulting constant
is saved, and the data are collapsed at the group level. In the second stage, the constant
from the first stage is regressed on the variable of interest, PM2.5, using one observation
per group by OLS. Therefore, the observations are weighted by the size of the groups.
Additionally, the second stage regression might include group-level controls and fixed
effects. Differently, the first stage uses only data for one group at the time, where the
unit of observations are individuals. Thus, there is no time variation in the single first-
stage regressions. A different way to see it is to consider the groups as subsamples,
which are used independently from each other in the first stage, whereas in the second
stage, the units of observations are counties, which are observed over time.4

When there are no individual-level covariates, and there is no group-level het-
erogeneity, grouped quantile regression reduces to the minimum distance estimator
proposed by Chamberlain (1994). Chetverikov et al. (2016) point out that grouped
quantile regression has several advantages. First, its bias disappears fast as the sample
size increases. Second, grouped quantile regression remains consistent in the presence
of group-level unobserved heterogeneity, which biases traditional quantile regression
as well as quantile regression with fixed effects.5 Third, inference in the second stage
is easy to compute, and standard errors can be estimated without having to take into
account the first stage. Fourth, the computation is faster than for alternative estimators.
For example, computing the fixed effects quantile regression estimators of Koenker
(2004) or Kato et al. (2012) is not feasible because of the large number of observations
and fixed effects. Canay (2011) proposed an alternative estimator that can be com-
puted within a reasonable amount of time. However, this method is too restrictive, as it
assumes that the fixed effects are constant across the distribution. While this estimator
comes with attractive features, there are a few caveats that should be acknowledged.
First, it is questionable whether the first stage can be ignored when computing the
standard errors. This problem might be more severe if the groups are small since
Chetverikov et al. (2016) assume that the number of observations per group increases
faster than the number of groups, so that the first-stage error does not matter. Second,
the estimated constant changes substantially when the regressors are reparameterized.
Thus, by using only the first stage constant in the second stage, the estimator might
not be invariant to reparameterizations of the individual-level variables. Addressing
these issues is left for future work.

4 For additional information about the estimator as well as the asymptotic theory, see Chetverikov et al.
(2016).
5 Group-level unobservables, even when uncorrelated with the treatment, cause problems similar to left-
hand side measurement errors (see, for example, Hausman 2001; Hausman et al. 2019).While measurement
errors in the dependent variable do not bias OLS linear regression estimates, such errors are a source of
bias in quantile regression.
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2.3 Model with fixed effects

To include the fixed effects, let ηcm(u) = λm(u) + γc(u) + εcm(u), so that the model
becomes

Qbwicm |zicm ,PM2.5,cm ,xcm ,λm ,γc,εcm (u) = z′icmδcm(u) + PM2.5,cmβ(u) + x ′
cmθ(u)

+ λm(u) + γc(u) + εcm(u), u ∈ U (2)

where the unobserved time-invariant county effects are captured by γc(u), the month
effects by λm(u), and εcm(u) is the group-level error term. Group-level variables and
the fixed effects enter only the second stage regression, which is estimated by OLS.
In this case, like in mean regression, the county fixed effects capture all time-invariant
county-level factors, and the month fixed effects capture time-varying unobservables
that are the same across counties. Thus, the identifying assumption is that, conditional
on the fixed effects, pollution is as good as randomly assigned. A threat to identifica-
tion could arise if, for example, wealthier households, who have on average heavier
children, decide to move to less polluted areas. Currie et al. (2009) tested a similar
hypothesis and did not find substantial evidence that pollution was an important moti-
vating factor. If, after controlling for the fixed effects, pollution is not exogenous, the
remaining endogeneity might be small.

Birthweight of infants born in the same county is likely to be correlated as mothers
in a given county are exposed to the same set of doctors, hospitals, and other living
circumstances. Furthermore, since I observe counties over time, the error terms are
serially correlated. For instance, a highly polluted county today is likely to be polluted
also next month. Since the second stage is performed with one observation per group,
to take these issues into account, the standard errors are clustered at the county level.

3 Data

To estimate the effect of pollution on birthweight, I merge longitudinal natality data
with environmental, income, and transfer data. Natality data are taken from the Vital
Statistics of the National Center for Health Statistics. The natality datasets contain
information on the birth certificates of every birth in the USA for a given calendar year,
including mother’s residence state and county, birth month, some socio-demographic
characteristics of the mother and father, as well as information about the pregnancy
and the birth. Due to new restrictions, the publicly available datasets include geo-
graphic indicators only until 2004. Since for the pollutant of interest, the number of
measurements is substantially lower for the years before 1999, this study focuses on
the 1999–2004 period.

The natality datasets contain approximately fourmillion observations for each year;
however, many were not included in the final dataset. First, I remove the observations
for which the mother’s residence is abroad or is in the outlying areas of the USA. Sec-
ond, as the dataset does not contain information for counties with less than 100,000
inhabitants, I could not match these observations with environmental data. These
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observations, as well as those for which birthweight, mother’s age, education, race,
Hispanic origins, or the number of cigarettes smoked during the pregnancy are miss-
ing, are dropped. Furthermore, consistent with previous research, multiple births are
excluded.
Information on tobacco use during pregnancy is not available for California, and thus,
controlling for smoking during pregnancy leads to a considerable loss of observations.
Given the importance of this variable, also considering its variation across counties
and time, it is included in the analysis.6

Monthly county-level data on temperature and average precipitation are from the
Center for Disease Control and Prevention, and daily pollution data are from the
United States Environmental Protection Agency. Precipitations are measured in mil-
limeters, whereas the daily average concentration of particulate matter is measured in
micrograms per cubic meter. There are two variables for temperature, one containing
average maximum temperature and the other average minimum temperature in degree
Celsius. So, temperature is calculated as the average of the two. For each birth month
and county combination, I created variables for pollution exposure, temperature, and
precipitation during pregnancy. These variables are prone to measurement errors for
different reasons. First, as the exact date of birth is missing, exposure is calculated as
the average pollution in the month of birth and the previous eight months, regardless
of whether the infant was born on the first or last day of the month. Second, not all
pregnancies last nine months. Third, as pointed out by Greenstone and Gayer (2009),
actual pollution exposure is not observed, and pollution levels can vary substantially
within a county. Fourth, people can influence their exposure to pollution by spending
a different amount of time outdoors. Therefore, I can only approximate exposure. On
the other hand, this approximation enables the use of grouped quantile regression as
pollution becomes a group-level treatment.

Particulate matter of the different kinds comes from various sources and is divided
into primary and secondary sources. The primary includes combustion processes,
traffic, construction as well as power plants (Larssen and Hagen 1997). However, the
Environmental ProtectionAgency (2019) argues thatmost of it derives from secondary
sources, namely chemical reactions of other pollutants in the air, which are emitted by
traffic, electricity generation, or industry. Particulate matter exposure can have effects
on lung- and heart-related diseases, and pregnant women might also be more suscep-
tible to particulate matter (Kelly and Fussell 2012). The finest PM2.5 is particularly
health-damaging since, due to their small size, some particles can enter into the lungs
and may find a way into the bloodstream (Kelly and Fussell 2012).

The Bureau of Economic Analysis provides county-level data on population,
income, and transfers. These include per capita personal income, public assistance
medical care benefits, food stamps (SNAP), personal current transfer, unemployment
benefits, and income maintenance benefits. With the population data, I transform the
transfer variables in per capita term. As only yearly data are available, I construct vari-
ables for income and transfer during pregnancy for eachmonth of birth as the weighted

6 The results are similar when keeping the observations with missing values for cigarettes and including
an interaction term between a dummy for California and the month fixed effects.
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Fig. 1 Distribution of birthweight

average of the number of months of gestation in the current and previous year.7 To
assign income, transfers, and environmental variables to infants born at the beginning
of 1999, I also use data for the year 1998. So, these data cover the 1998–2004 period.

Some observations from the birth dataset could not be matched with environmental
or income data. Therefore, these observations are not included in the final dataset.
Groups with less than 200 births are removed to ensure that there are enough obser-
vations to estimate the first stage. The final dataset includes 9,016,342 individual
observations divided into 13,239 groups, with, on average, 681 observations each.
This comprises data for 272 different counties and 43 different states, for which there
are, on average, data for 47 months out of 72. It is important to note that given the
considerable number of observations that have been excluded, the sample may not be
representative of the USA. In the final dataset, the mothers of two-third of the remain-
ing 9 million infants reside in counties with a population of over half a million people
and only 10% in counties with a population between 100,000 and 250,000 inhabitants.
Nonetheless, over half of the mothers reside in small cities with a population below
100,000 inhabitants. Therefore, it seems that the dataset represents only urban and
suburban areas.

Figure 1 shows the distribution of birthweight, while Table 1 shows descriptive
statistics for different levels of pollution. Columns 1 to 4 provide the values for the
four quartiles of PM2.5, while the last column gives the summary statistics for the
whole sample. About one-fifth of themothers are black, while over 20% haveHispanic
origins. Compared with the 2000 census data, the share of black and Hispanic mothers
is substantially larger than in the population.8 This discrepancy may be due to the
different fertility rates across women or due to the loss of observations.

7 For example, for an infant born in February 2002, income during gestation is calculated as 2
9 income2002+

7
9 income2001, since seven-ninth of the pregnancy was in the year 2001.
8 According to the 2000 census, these groups represent 12% and 13% of the population, respectively
(United States Census Bureau 2001).
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Table 1 Summary statistics

PM2.5 Level
(1) (2) (3) (4) (5)
1st quartile 2nd quartile 3rd quartile 4th quartile Total

Individual-Level Variables

Birthweight

Mean 3330.3 3336.9 3317.7 3301.3 3321.6

Standard Deviation 556.0 571.0 582.4 592.6 575.8

5th percentile 2440 2438 2381 2353 2410

10th percentile 2704 2693 2665 2637 2680

25th percentile 3033 3033 3005 3005 3020

50th percentile 3345 3373 3345 3340 3345

75th percentile 3685 3686 3685 3661 3685

90th percentile 3969 3997 3983 3969 3979

% Female 0.488 0.488 0.488 0.489 0.488

% Black 0.102 0.169 0.248 0.311 0.208

% Hispanic 0.299 0.234 0.201 0.163 0.224

Mother’s age 27.35 27.63 27.79 27.43 27.55

Mother’s education 12.88 12.98 13.07 13.01 12.99

Cigarettes 0.701 0.678 0.667 0.867 0.728

Group-level variables

PM2.5

Mean 9.344 12.16 14.04 16.71 13.06

Standard Deviation 1.237 0.569 0.595 1.306 2.863

Temperature 16.33 14.76 13.26 12.63 14.25

Precipitations 2.317 2.797 2.933 2.752 2.700

Per capita personal income 32142.3 34514.2 34555.1 34919.1 34032.6

Public medical benefits 675.0 801.2 1077.2 1039.7 898.3

SNAP 61.63 58.92 74.37 82.05 69.24

Personal current transfers 3888.4 4004.6 4440.2 4478.2 4202.8

Unemployment benefits 124.7 132.3 146.6 129.8 133.4

Income maintenance benefits 365.3 390.4 480.0 514.8 437.6

N 2,254,309 2,253,995 2,255,235 2,252,803 9,016,342

The descriptive statistics show that infants exposed to a higher level of pollution also
differ in other characteristics. For example, mothers of children exposed to a higher
level of PM2.5 during pregnancy are less likely to be Hispanic as well as more likely to
be black and to smoke a higher number of cigarettes than mothers of children in lower
quartiles of pollution. Furthermore, there seems to be a negative correlation between
birthweight and PM2.5, which looks stronger lower percentiles of birthweight. It is
also noteworthy that the 5th percentile is the only one that falls under the definition of
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Table 2 OLS estimates of the effect of PM2.5 on birthweight

Birthweight in grams
(1) (2) (3) (4) (5) (6) (7)

PM2.5 −10.38∗∗∗ -0.923 0.0481 4.751 −0.267 −4.364 −4.167

(0.605) (4.166) (4.450) (4.146) (3.220) (3.594) (3.593)

Individual controls x x x x x x

Weather controls x x x x x

Income controls x x x

Transfers controls x x x

County fixed effects x x x

72 months fixed effects x x

The regression estimates give the effect of an increase in PM2.5 exposure during gestation by one standard
deviation on birthweight. The dependent variable is birthweight in grams. Results are based on a sample of
9,016,342 individual births divided into 13,239 groups. Regressions are weighted for the number of births
in each group. Heteroscedasticity robust standard errors in parentheses are clustered at the county level.
*** p < 0.001, ** p < 0.01, * p < 0.05

low birthweight so that most of the percentiles in the lower tail of the distribution are
already above this threshold.9

Theweather variables are also correlatedwith pollution as PM2.5 exposure is higher
in colder climates. Similarly, income and transfer variables vary substantially across
the quartiles of PM2.5 exposure. For instance, average personal income, as well as
various transfer variables, is larger in higher quantiles of pollution exposure. This
could indicate higher inequality in more polluted areas.

4 Results

This section presents first the results of the average effect of pollution on birthweight,
and then the impact on the distribution using grouped quantile regression. To facilitate
the interpretation of the coefficients, the independent variable of interest is normalized
to have a mean of zero and a standard deviation of one.

4.1 Mean estimates

Table 2 shows the results of OLS regressions. To allow δcm to vary across groups, the
estimation is performed in two stages simply using OLS instead of quantile regres-
sion in the first stage. In Column 1, average group-level birthweight is regressed on
PM2.5 without control variables. The coefficient is negative; however, it is most likely
a severely biased estimate of the causal effect. Column 2 includes individual-level
covariates. The estimate becomes smaller in absolute value and is not statistically
significant. Column 3 includes weather controls and Column 4 also income and trans-
fers controls. Although of small magnitude, the coefficients are perversely signed. As

9 Low birthweight is defined as birthweight below 2500 g.
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shown before, several variables that might influence birthweight are correlated with
pollution. As this is the case for observed variables, it is plausible that pollution is
correlated with some unobserved factors that affect birthweight. To correct for this
bias, I add county and month fixed effects.10 With the county fixed effects (Column
5), the point estimate is positive but small and with no economic significance. Col-
umn 6 also includes month fixed effects. The coefficient has the expected sign, but it
remains of small magnitude with no economic implication. This last estimate suggests
that an increase in pollution exposure by one standard deviation leads to a decrease in
birthweight by 4.4 g. Column 7 includes the fixed effects but not income and transfers
controls. The coefficient changes only slightly, indicating that most of the explanatory
power of these variables is captured by the fixed effects. Besides being statistically
insignificant, the average estimates do not suggest any economicallymeaningful effect
of PM2.5 on birthweight.11

4.2 Distributional effects

This subsection presents the distributional effect estimated using grouped quantile
regression for the set of quantiles u ∈ {0.05, 0.1, . . . , 0.95}. Table A.2 in Supplemen-
tary Appendix illustrates the estimated coefficients for all specifications. The results of
the first stage are not displayed. Instead, kernel densities of the distribution of α̂cm,1(u)

are included in Figure A.1 in Supplementary Appendix.
Figure 2 shows the results using the main specification. PM2.5 seems to have a

negative effect on birthweight, mostly in the lower tail of the conditional distribu-
tion. According to these estimates, an increase in PM2.5 by one standard deviation is
associated with a decrease in birthweight by 28.0 g in the 5th percentile and by 20.5
g in the 10th percentile. The effect in the 15th and 20th percentiles is more modest,
and an increase in PM2.5 by one standard deviation is associated with a decrease in
birthweight by 10.8 and 9.3 g, respectively. The estimates are statistically significant
at conventional levels only up to the 2nd decile. In higher quantiles, the coefficients
become smaller and remain negative up to the 45th percentile. In the higher half
of the distribution, the estimates are close to zero and are neither economically nor
statistically significant.12

The confidence intervals are large, mostly considering the large sample size. Plau-
sible reasons are the measurement error as well as the susceptibility to attenuation bias
of the fixed effects estimator. Furthermore, it could be that grouped quantile regression
loses a large amount of information by keeping only the constant in the second stage.

To assess the sensitivity of the results, I estimate other specifications with different
control variables and a slight variation of the fixed effects. Figure 4 shows the results
without control variables in the second stage. In this specification, the estimates are

10 Recall that months are defined as year and month combination. To give an illustration, six years of data
imply that there are 72 months effects.
11 With the full set of controls and fixed effects, the estimates are close to zero and not statically significant
at conventional levels also when using conventional OLS.
12 The results are robust when the second stage regressions are not weighted by the number of observations
in each group. Further, the results are similar, both, when clustering at the state level as well as when using
two-way clustering at the month and county level.
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The dependent variable is birthweight in grams. Results are based on a sample of 9,016,342 individual
births divided into 13,239 groups. Results are from the second stage using month and county fixed effects.
Individual controls are included in the first stage, while the second stage includes weather, income, and
transfers controls. Regressions are weighted for the number of births in each group. Heteroscedasticity
robust standard errors clustered at the county level are used to construct the 95% confidence interval.

shifted upwards; however, without many differences. Figure 5 illustrates the results
of the regressions with only weather controls in the second stage. These results are
almost identical to those including income and transfers controls. Figure 6 shows the
result of the second stage including a different set of fixed effects. As in the other
regressions, the model uses county fixed effects; however, instead of including fixed
effects for every single month and year combination, I use fixed effects for the month
of the year and the year itself. The results are close to those in Fig. 2. Nonetheless, in
the higher half of the distribution, the coefficients are closer to zero, and a few more
quantiles are negative.

The findings suggest that there is a negative effect of PM2.5 pollution only in the
lower tail of the conditional distribution.While this paper does not study the incidence
of prematurity, the larger impact on pollution in the lower tail of the distribution might
suggest that the prematurity channel may be important as suggested in Currie et al.
(2009) andCurrie andWalker (2011). Nonetheless, without additional analysis, further
conclusions about the causal chain are not possible.

Although I focus on a different pollutant, my results are consistent with previous
studies. As Chay andGreenstone (2003b), I find onlyminimal effects of pollution with
no economic implication on average birthweight. Moreover, consistent with Chay and
Greenstone (2003b), Currie et al. (2009), and Knittel et al. (2016), my results suggest
that the negative impact of pollution is larger amongmore vulnerable infants. It should,
however, be noted that none of these studies focuses on PM2.5, but on PM10 or TSPs,
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Fig. 3 Effect of PM10 on the conditional distribution of birthweight. The figure illustrates the grouped
quantile regression estimates of the effect of an increase in PM10 exposure during gestation by one standard
deviation on the conditional distribution of birthweight. The dashed green line shows theOLSpoint estimate.
The dependent variable is birthweight in grams. Results are based on a sample of 7,793,245 individual
births divided into 10,603 groups. Results are from the second stage using month and county fixed effects.
Individual controls are included in the first stage, while the second stage includes weather, income, and
transfers controls. Regressions are weighted for the number of births in each group. Heteroscedasticity
robust standard errors clustered at the county level are used to construct the 95% confidence interval.

which have some similarities, or CO, which differs substantially in its characteristics
and in how it might affect health.

Two additional points regarding the results should be noted. First, if pollution were
to affect stillbirth or miscarriage, this analysis would be based on a potentially selected
sample of living births (Chay and Greenstone 2003a, b). The bias caused by censoring
might also vary across the distribution. If pollution affects miscarriage dispropor-
tionately among infants that would have had poor birth outcomes, then this potential
selection bias would be larger in the lower tail. In this case, the estimates should be
regarded as lower bounds. A second concern with the results is the measurement error
associated with the approximation used to assign pollution to women. A short discus-
sion of this issue is included in Supplementary Appendix, and future research should
explore this further.

4.3 Alternative pollutant

To assess the plausibility of the findings, I use the same dataset to estimate the effect
of PM10 on birthweight. PM10 is defined as the concentration of particulate matter
smaller or equal to 10 micrometers per cubic meter during pregnancy. As for this
pollutant there are different missing values, these results rely on a partly different
sample with 7,793,245 individual births and 10,603 groups. The summary statistics
of this sample are in Supplementary Appendix in Table A.2.

123



M. Pons

Despite the similarity between these contaminants, they have a relatively low corre-
lation (0.1197), and from the summary statistics, it is clear that PM10 is assigned
differently compared to PM2.5. For instance, there is only a minimal correlation
between PM10 and the variable black. Moreover, the relationships between PM10
and Hispanic, cigarettes, or mother’s education appear to go in the opposite direction
compared to PM2.5. The same is true also for weather variables. Additionally, average
personal income and most of the transfer variables are lower in higher quartile of
PM10 exposure, which is the opposite pattern compared to PM2.5. For these reasons,
PM10 allows estimating the effect of a quite similar pollutant, whose exposure appears
confounded in a distinct way by observable variables.

Figure 3 shows the result of the regression estimating the effect of PM10 on the
conditional distribution of birthweight. As before, pollution is normalized to have a
mean of zero and a standard deviation of one. Further supporting the previous findings,
the results are similar to those of PM2.5 and suggest a higher effect of pollution in
the lower tail of the conditional distribution. An increase in pollution by one standard
deviation is associated with a decline in birthweight by 33.5 g in the 5th and by 17.4 g
in the 10th conditional percentile, whereas the decline in the 15th and 20th percentiles
is of 12.7 and 13.8 g, respectively. In higher quantiles, the coefficients are close to
zero.

5 Conclusion

This paper uses grouped quantile regression to estimate the effect of pollution on the
conditional distribution of birthweight. Themagnitude of the effect varies substantially
across the distribution, suggesting not only that it is crucial to consider the distribu-
tional effects, but also that estimates of the average impact might underestimate the
adverse effect of pollution. I find a negative effect of PM2.5 only in the lower tail of the
distribution. The estimates suggest that an increase in PM2.5 by one standard deviation
leads to a reduction of birthweight by 28.0, 20.5, and 10.8 g in the 5th, 10th, and 15th
percentiles. These results are also consistent across different specifications.

To further assess the robustness ofmy findings, I estimate the samemodel for PM10,
a pollutant that appears assigned in a distinct way compared to PM2.5. Supporting
the results, I find a similar pattern, with the strongest effect in the lower tail of the
distribution and no effect in the higher tail.

When interpreting these results, a few caveats should be considered. In this analysis,
I estimated the effect of pollution on the conditional distribution of birthweight. Given
the greater interest for the unconditionally small infants, itwould be relevant to estimate
the impact on the unconditional quantiles. Further, this paper analyzes the effect of
pollution during the nine months before birth. However, the effect of pollution on
birthweight might vary depending on the stage of the pregnancy. Future research
should explore different definitions of the treatment.
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Fig. 4 Effect of PM2.5 on the conditional distribution of birthweight: Specification 2. The figure illustrates
the grouped quantile regression estimates of the effect of an increase in PM2.5 exposure during gestation by
one standard deviation on the conditional distribution of birthweight. The dashed green line shows the OLS
point estimate. The dependent variable is birthweight in grams. Results are based on a sample of 9,016,342
individual births divided into 13,239 groups. Results are from the second stage using month and county
fixed effects. Individual controls are included in the first stage, while no control variables are included in the
second stage. Regressions are weighted for the number of births in each group. Heteroscedasticity robust
standard errors clustered at the county level are used to construct the 95% confidence interval.
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Fig. 5 Effect of PM2.5 on the conditional distribution of birthweight: Specification 3. The figure illustrates
the grouped quantile regression estimates of the effect of an increase in PM2.5 exposure during gestation by
one standard deviation on the conditional distribution of birthweight. The dashed green line shows the OLS
point estimate. The dependent variable is birthweight in grams. Results are based on a sample of 9,016,342
individual births divided into 13,239 groups. Results are from the second stage usingmonth and county fixed
effects. Individual controls are included in the first stage, while the second stage includes weather controls.
Regressions are weighted for the number of births in each group. Heteroscedasticity robust standard errors
clustered at the county level are used to construct the 95% confidence interval.
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Fig. 6 Effect of PM2.5 on the conditional distribution of birthweight: Specification 4. The figure illustrates
the grouped quantile regression estimates of the effect of an increase in PM2.5 exposure during gestation
by one standard deviation on the conditional distribution of birthweight. The dashed green line shows
the OLS point estimate. Results are based on a sample of 9,016,342 individual births divided into 13,239
groups. Results are from the second stage using county fixed effects as well as year and month fixed effects.
In this regression, month fixed effects can be seen as a dummy for each of the 12 months of the year.
Individual controls are included in the first stage, while the second stage includes weather, income, and
transfers controls. Regressions are weighted for the number of births in each group. Heteroscedasticity
robust standard errors clustered at the county level are used to construct the 95% confidence interval.
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