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Abstract. Several sensitivity experiments with the Weather
Research and Forecasting (WRF) model version 3.8.1 have
been performed to find the optimal parameterization setup
for precipitation amounts and patterns around Mount Kenya
at a convection-permitting scale of 1 km. Hereby, the focus
is on the cumulus scheme, with tests of the Kain–Fritsch,
the Grell–Freitas, and no cumulus parameterizations. In ad-
dition, two longwave radiation schemes and two planetary
boundary layer parameterizations are evaluated, and differ-
ent nesting ratios and numbers of nests are tested. The pre-
cipitation amounts and patterns are compared against a large
amount of weather station data and three gridded observa-
tional data sets. The temporal correlation of monthly pre-
cipitation sums show that fewer nests lead to a more con-
strained simulation, and hence the correlation is higher. The
pattern correlation with weather station data confirms this re-
sult, but when comparing it to the most recent gridded ob-
servational data set the difference between the number of
nests and nesting ratios is marginal. The precipitation pat-
terns further reveal that using the Grell–Freitas cumulus pa-
rameterization in the domains with resolutions > 5 km pro-
vides the best results when it comes to precipitation patterns
and amounts. If no cumulus parameterization is used in any
of the domains, the temporal correlation between gridded and
in situ observations and simulated precipitation is especially
poor with more nests. Moreover, even if the patterns are cap-
tured reasonably well, a clear overestimation in the precipi-
tation amounts is simulated around Mount Kenya when us-
ing no cumulus scheme in all domains. The experiment with

the Grell–Freitas cumulus parameterization in the domains
with resolutions > 5 km also provides reasonable results for
2 m temperature with respect to gridded observational and
weather station data.

1 Introduction

East Africa, including Kenya, has anomalously dry cli-
mate conditions compared to many other equatorial regions
around the globe (e.g. Trewartha, 1981; Nicholson, 2017).
The precipitation patterns in East Africa are very heteroge-
neous, which can be attributed to the variety and complex-
ity of large-scale controls, i.e. topography, influence from
the ocean, the dynamics of the tropical circulation, and lakes
(Nicholson, 2017). The topography, in particular the Turkana
channel between the Ethiopian and East African highlands
in Kenya, exerts a strong steering effect on the low-level
flow on timescales from seasons to days (Paegle and Geisler,
1986; Slingo et al., 2005). The Turkana jet has an influence
on the local climate and especially on precipitation, and a
study by Nicholson (2016a) suggests that it might even be
responsible for the suppression of the summer rainy season
in northwestern Kenya. The zonal circulation over the In-
dian Ocean further influences precipitation in Kenya, as it
is located under subsiding air masses, leading to the afore-
mentioned aridity over an equatorial region (Pohl and Cam-
berlin, 2011; Nicholson, 2017). Weak equatorial zonal circu-
lations are typically associated with floods at the coasts of
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East Africa, which coincide with scarce rain over Indone-
sia (Hastenrath and Polzin, 2004, 2005). This circulation and
thus the intensity and the vertical extent of the subsidence
account for variations in the inter-annual rainfall variability
over Kenya (Pohl and Camberlin, 2011; Nicholson, 2017).
The second-largest freshwater lake in the world, Lake Vic-
toria, also contributes to rainfall in this area. It generates its
own mesoscale atmospheric circulation system that leads to
high rainfall amounts over the lake, where lake surface tem-
peratures are strongly related to the rainfall amounts (Sun
et al., 2014). Furthermore, local thunderstorms with heavy
precipitation can be triggered over Lake Victoria, rendering
the lake–land breeze but also large-scale moisture availabil-
ity as the main control (Thiery et al., 2015; Woodhams et al.,
2019).

All these large-scale controls lead to the fact that the cli-
mate in Kenya is characterized by two rainy seasons. The
March–April–May (MAM) season is often termed as “long
rains”, as this season is associated with the longest-lasting
and heaviest precipitation events, which in some years can
even end up in flooding (e.g. Kilavi et al., 2018). The other
rainy season is called “short rains” and occurs in October–
November (ON). It plays a less important role in the total
amount of precipitation, but accounts for most of the inter-
annual variability (Camberlin and Philippon, 2002; Hasten-
rath et al., 2010). Thus, it is not surprising that the short rains
are responsible for both flooding and drought. The occur-
rence of floods in Kenya is not unusual, and often floods set
in after very dry years (Parry et al., 2012; Kilavi et al., 2018).
Droughts are found to be related to El Niño–Southern Os-
cillation (ENSO) events on inter-annual timescales (Nichol-
son, 2015), as it affects the atmospheric circulation over the
Indian Ocean and the strength and formation processes of
the Indian Ocean dipole (Behera et al., 2006). This circu-
lation has also an impact on the short rains in East Africa
(Pohl and Camberlin, 2011; Nicholson, 2016b). In general,
moisture convergence and increased convective activity over
East Africa are associated with positive sea surface temper-
ature anomalies over the western equatorial Indian Ocean
(Saji et al., 1999; Ummenhofer et al., 2009). Additionally,
the Madden–Julian oscillation can impact precipitation on
inter-seasonal timescales and is able to strengthen or weaken
the climatological convective and dynamic zonal gradients
between Southeast Asia and East Africa (Pohl and Camber-
lin, 2011). The low-level jet stream in the Turkana chan-
nel is also suggested as being able to enhance extremes in
precipitation over East Africa (Nicholson, 2016b). Neverthe-
less, in the recent past, droughts instead of floods have been
of major concern in Kenya. The more frequent occurrence
of droughts seems to be related to a negative trend in the
long rains in MAM starting in the 1980s that lasted up to the
late 2000s (Williams and Funk, 2011; Liebmann et al., 2014;
Ayugi et al., 2016). Wainwright et al. (2019) suggested that
this negative trend is caused by a shortening of the rainy sea-

son rather than a decline in daily precipitation, as the tropical
rainband moves faster to the north during the long rains.

The rather sparse observation network in East Africa and
thus Kenya, in combination with the aforementioned com-
plexity of the climate, conspires against obtaining a better
understanding of all the involved processes that dominate the
climate, as well as its changes. To overcome this issue, cli-
mate models, and regional climate models in particular, could
help understanding those processes in more detail. Neverthe-
less, capturing the convective precipitation in the tropics cor-
rectly is also a challenge for regional climate models, and
this is why several studies focus on the evaluation of their
performance in different regions (e.g. Rauscher et al., 2010;
Kendon et al., 2017; Brune et al., 2020; Wu et al., 2020).

Only in the past few years has the number of climate sim-
ulations increased over Africa generally or over East Africa
specifically. At the same time, the resolution of these simu-
lations has become much finer. Cook and Vizy (2013) per-
formed a simulation over all of Africa using the Weather
Research and Forecasting (WRF) model (Skamarock et al.,
2008) at a 90 km horizontal resolution. They concluded that
the model is able to capture the distribution of the pre-
cipitation and the corresponding circulation quite well over
East Africa, but a wet bias in the model simulation remains.
Williams et al. (2015) found an overestimation of precipita-
tion and a well-captured spatial pattern over the Lake Vic-
toria basin, which is in line with the results found in Cook
and Vizy (2013). Williams et al. (2015) used the UK Met
Office Hadley Centre Regional Climate Model at 50 km hor-
izontal resolution over Africa. Two simulations, one with
50 km resolution and the other with 25 km resolution over
East Africa were also performed by Kerandi et al. (2017).
They examined the representation of temperature and pre-
cipitation over the Tana River basin in Kenya, finding that
temperature and precipitation patterns are well captured but
have a cold temperature bias. The increase in the resolution
from 50 to 25 km resulted in a much better representation of
precipitation (Kerandi et al., 2017). Otieno et al. (2019) per-
formed different sensitivity studies with WRF to test the ef-
fect of four cumulus parameterizations (Kain–Fritsch, Kain–
Fritsch with a moisture advection-based trigger function,
Gréll–Dévényi, and Betts–Miller–Janjicon schemes) on the
representation of precipitation over East Africa during wet
years. The authors still used a rather coarse resolution of
36 km covering East Africa, including parts of the Indian
Ocean and the rainforest in central equatorial Africa, i.e. two
important moisture sources.

The most recent simulations over (East) Africa access
the convection-permitting scales (resolution finer than 5 km)
(Stratton et al., 2018). This scale, and the ability to ne-
glect the cumulus parameterization, can have a fundamen-
tal impact on model variables, in particular on precipitation
(Ban et al., 2014; Giorgi et al., 2016; Gómez-Navarro et al.,
2018). This is especially true for regions with high and com-
plex topography, such as East Africa. The simulation pub-
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lished in Stratton et al. (2018) is performed with the Met
Office Unified Model at 4.5 km horizontal resolution. Due
to its high spatial resolution, it is convection-permitting, and
hence a cumulus parameterization is not needed. This sim-
ulation is investigated in more detail in Finney et al. (2019)
with respect to East African climate and compared to a pa-
rameterized 25 km spatial resolution simulation. They found
that the diurnal cycle in rainfall especially benefits from the
convection-permitting resolution but that precipitation inten-
sities and patterns also improve. Additionally, Woodhams
et al. (2018) confirmed that a convection-permitting simu-
lation is able to better represent the sub-daily precipitation
intensities over Lake Victoria and the occurrence of storms
over land. Another recent climate simulation at convection-
permitting scales using WRF (reaching 800 m in the inner-
most domain) was used to establish the relationship between
local atmospheric conditions over Kilimanjaro and the El
Niño–Southern Oscillation and Indian Ocean zonal mode
(Collier et al., 2018).

The studies presented above already indicate that there are
several regional climate models (RCMs) available. Each of
these models have different sets of parameterizations that
can be chosen, and the ability to simulate the climate over
a certain region depends in large part on the selection of
the different parameterization options. Several studies have
evaluated the transferable skills of RCMs in different regions
(e.g. Takle et al., 2007; Jacob et al., 2007; Rockel and Geyer,
2008; Jacob et al., 2012; Bellprat et al., 2016; Russo et al.,
2019). A recent study by Russo et al. (2020) shows that the
parameterization setting depends on the region of interest.
Thus, there is a need to retune RCMs for different regions.
Hence, this study presents a set of sensitivity studies per-
formed by WRF and initiated and driven by ERA5 to find
an optimal setting for the representation of precipitation in
convection-permitting simulations over Mount Kenya.

In this paper, the focus on Mount Kenya is chosen, as it
plays a crucial role in the supply of freshwater both in the
highlands and in the surrounding lowlands (Liniger et al.,
2005). The availability of fresh water decreases drastically
with longer distances from Mount Kenya and is further re-
duced by evapotranspiration from the vegetation in the drier
savannas of the lowlands (Ngigi et al., 2007). Population
growth through migration puts further pressure on water
availability (Ngigi et al., 2007), which may result in disputes,
marginalization, and conflicts (Wiesmann et al., 2000). This
situation is exacerbated by progressive climate change that
will affect water availability through changes in precipitation
amounts and patterns, induced by either local or large-scale
changes. To understand the behaviour of precipitation in this
complex topographical area and to obtain possible adaptation
strategies, it is vital to create reliable regional climate simu-
lations that can also be used for climate projections in a next
step.

The paper gives a detailed description of the sensitivity
simulations performed with WRF, as well as its initial and

boundary conditions provided by the reanalysis data from
ERA5. Furthermore, the different observation-based gridded
data for precipitation and temperature and the weather station
data are presented in Sect. 2. Section 3 provides an analy-
sis of the temporal and spatial representation of precipitation
patterns over the area around Mount Kenya. In addition, the
sensitivity of the different parameterization options to precip-
itation amounts and patterns are investigated. The analysis is
topped off with a brief description of the 2 m temperature
around Mount Kenya. Finally, the paper is wrapped up by
summarizing and concluding remarks in Sect. 4.

2 Model configuration and data

2.1 WRF Model

We adopt the numerical weather prediction model WRF (ver-
sion 3.8.1; Skamarock et al., 2008) to obtain fine-scale and
local precipitation patterns. This model allows us to dynam-
ically downscale initial and boundary conditions, which in
this study are provided by ERA5 reanalysis. To determine an
optimal setup for Kenya, and the Mount Kenya area in partic-
ular, we test different parameterization schemes, focusing on
cumulus parameterizations, with two different model setups
and nesting ratios. The experiments are described in more
detail in the following and are summarized in Table 1. The
experiments are all run for the same period of time, i.e. the
year 2008, except for a single experiment that is repeated for
the year 2006 to evaluate the robustness of the results for
2008 under different climate conditions. To permit the soil
and the atmosphere to adjust to the initial conditions, we al-
low for 2 months of spin-up. Since the soil variables are well
equilibrated in the ERA5 data, the used spin-up time of 2
months in our simulations is enough to bring the soil and the
atmosphere into an equilibrium. Previous studies (Angevine
et al., 2014; Jerez et al., 2020; Velasquez et al., 2020) back up
the idea that rather short spin-up periods are enough for vari-
ables such as temperature or precipitation to reach the equi-
librium in WRF, but for soil moisture longer periods are rec-
ommended (a few months). This means that the simulations
start on 1 November 2007 and end on 31 December 2008.

Two different nesting ratios, i.e. 1 : 3 and 1 : 5, have been
used in different model domain settings to estimate the effect
of the nesting ratio on the modelled precipitation and temper-
ature (see Fig. 1). For the nesting ratio of 1 : 3, a four-domain
(i.e. 27, 9, 3, 1 km horizontal resolution) and a three-domain
(i.e. 9, 3, 1 km horizontal resolution) setup have been tested.
In addition, the 1 : 5 nesting ratio is run with two different
setups, i.e. a three-nested (25, 5, 1 km horizontal resolution)
and two-nested domain setup (5, 1 km horizontal resolution).
To test if the coarser setups affect the representation of pre-
cipitation and temperature over the study area, simulations
with a coarser and finer parent grid are performed. This is
because for the coarser setups the downscaling resolution is
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Table 1. Experimental design of the sensitivity simulations: name of the experiment, parameterizations used, and other parameters important
for each experiment, such as nesting option and ratio, number of domains, the spatial resolution of the used domains, and their corresponding
names as they appear in Fig. 1. Domains written in bold indicate that the according cumulus parameterization is turned on, while domains
printed in normal fonts do not parameterize cumulus processes. The last column provides the name of the innermost domain, which is used
in figures to identify nesting and resolution options. All other options used for the simulation can be found in the namelist files on Zenodo
(see code and data availability section).

Parameterizations Other parameters Name

Name Cumulus LW-Rad. PBL Nesting Nest ratio No. of dom Resolutions Doms in Fig. 1 1 km domain

E
ur

op
e Grell–Freitas CAM ACM2a two-way 1 : 3 4 27, 9, 3, 1 km (a) D1, D2, D3, D4 27km_D04

Grell–Freitas CAM ACM2 two-way 1 : 3 3 9, 3, 1 km (a) D2, D3, D4 9km_D03
Grell–Freitas CAM ACM2 two-way 1 : 5 3 25, 5, 1 km (b) D1, D2, D3 25km_D03
– CAM ACM2 two-way 1 : 5 2 5, 1 km (b) D2, D3 5km_D02

So
ut

h

A
m

er
ic

a Kain–Fritsch RRTMb YSUc two-way 1 : 3 4 27, 9, 3, 1 km (a) D1, D2, D3, D4 27km_D04
Kain–Fritsch RRTM YSU two-way 1 : 3 3 9, 3, 1 km (a) D2, D3, D4 9km_D03
Kain–Fritsch RRTM YSU two-way 1 : 5 3 25, 5, 1 km (b) D1, D2, D3 25km_D03
– RRTM YSU two-way 1 : 5 2 5, 1 km (b) D2, D3 5km_D02d

C
um

ul
us

3 Grell–Freitas RRTM YSU two-way 1 : 3 4 27, 9, 3, 1 km (a) D1, D2, D3, D4 27km_D04
Grell–Freitas RRTM YSU two-way 1 : 3 3 9, 3, 1 km (a) D2, D3, D4 9km_D03
Grell–Freitas RRTM YSU two-way 1 : 5 3 25, 5, 1 km (b) D1, D2, D3 25km_D03
– RRTM YSU two-way 1 : 5 2 5, 1 km (b) D2, D3 5km_D02

C
um

ul
us

3

on
e-

w
ay

Grell–Freitas RRTM YSU one-way 1 : 3 4 27, 9, 3, 1 km (a) D1, D2, D3, D4 27km_D04
Grell–Freitas RRTM YSU one-way 1 : 3 3 9, 3, 1 km (a) D2, D3, D4 9km_D03
Grell–Freitas RRTM YSU one-way 1 : 5 3 25, 5, 1 km (b) D1, D2, D3 25km_D03
– RRTM YSU one-way 1 : 5 2 5, 1 km (b) D2, D3 5km_D02

N
o

cu
m

ul
us – RRTM YSU one-way 1 : 3 4 27, 9, 3, 1 km (a) D1, D2, D3, D4 27km_D04

– RRTM YSU one-way 1 : 3 3 9, 3, 1 km (a) D2, D3, D4 9km_D03
– RRTM YSU one-way 1 : 5 3 25, 5, 1 km (b) D1, D2, D3 25km_D03
– RRTM YSU one-way 1 : 5 2 5, 1 km (b) D2, D3 5km_D02e

a Asymmetric Convection Model Version2. b Rapid Radiative Transfer Model. c Yonsei University. d This simulation is identical to the last one in “Cumulus3” and therefore it is only
shown related to the Cumulus3 parameterization option in Figs. 3, 4, and 5; e This simulation is identical to the last one in “Cumulus3 one-way”, and therefore it is only shown related
to the Cumulus3 one-way parameterization option in Figs. 3, 4, and 5.

very similar to the one of ERA5, which provides the initial
and boundary conditions. Such coarse spatial resolutions in
the outermost domains are tested because the final goal is to
also apply the WRF setup to climate simulations, which nor-
mally have a coarser resolution (around 100 km) than reanal-
ysis data (around 30 km for ERA5). In that case, a climate
simulation with a parent domain starting at 9 or 5 km is not
possible. Nevertheless, the parameterizations are tested using
ERA5 as boundary condition in order to be able to compare
the simulations against observations of the year 2008. Note
that in the simulations with a reduced number of nests (three
domains instead of four for the 1 : 3 ratio, and two instead
of three for the 1 : 5 ratio), the parent domain always corre-
sponds to the second domain of the experiment with one nest
more (Table 1). All simulations have 49 vertical eta levels
up to 50 hPa and an innermost domain located over Mount
Kenya with 1 km horizontal resolution. When comparing the
different sensitivity experiments in the results (Sect. 3), the
focus is always on the innermost domain of all the simula-
tions. To save some computational costs, an adaptive time
step is used, which is between 54 and 810 s in the outermost
domain for the 1 : 3 ratio experiments and between 50 and

750 s for the 1 : 5 ratio. For the smaller domains, the time
steps are reduced by the factor of the nesting ratio. A small
sensitivity test, starting the simulation twice from the same
restart file, indicates that the simulation is also reproducible
with an adaptive time step.

Different physical parameterization schemes have been
tested to optimize the representation of precipitation over
Kenya. Tests have been done by varying the cumulus, the
longwave (LW) radiation, and the planetary boundary layer
(PBL) parameterization schemes. For cumulus parameteri-
zation, the Kain–Fritsch (Kain, 2004) and the scale-aware
Grell–Freitas ensemble (Grell and Freitas, 2014) schemes
have been used in the domains with resolutions > 5 km, and
one experiment is performed without using any cumulus pa-
rameterization in all of the domains. Note that the cumulus
parameterization is switched off in all experiments for do-
mains with horizontal resolutions ≤ 5 km. The LW radiation
scheme has been varied between the Rapid Radiation Trans-
fer Model (RRTM; Mlawer et al., 1997) and Community At-
mosphere Model (CAM; Collins et al., 2004). The two first-
order non-local-closure PBL schemes of Yonsei University
(Hong et al., 2006) and the second version of the Asym-
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Figure 1. The two different nesting settings for the sensitivity experiments are depicted. The four domains (D1= 27 km, D2= 9 km,
D3= 3 km, D4= 1 km) of the nesting ratio 1 : 3 are shown in row (a), with the topography of the innermost nest D4 in the right panel.
The three domains (D1= 25 km, D2= 5 km, D3= 1 km) of the nesting ratio 1 : 5 are shown in row (b), with the topography of the innermost
nest D3 in the right panel. The grey shading indicates elevation in metres above sea level using the WRF topography Global Multi-resolution
Terrain Elevation Data (GMTED2010) provided by USGS. The location of the weather station data is provided in D4, and a more detailed
description of each station is available in Table 2. The black star in D4 indicates the summit of Mount Kenya. Note that at least 30 grid
points from the edge of the boundaries of an inner domain to the limit of an outer domain are used to avoid effects from the relaxation zone
(spanning five grid points) between two nests (Rummukainen, 2010).

metric Convection Model (Pleim, 2007) have been tested.
Table 1 provides a summary of the used parameterizations
for each experiment and the exact setting can be found in
the namelist files on Zenodo (see the code and data avail-
ability section). The rest of the parameterization options are
kept constant throughout the different experiments, i.e. WRF
single-moment 6-class scheme (Hong and Lim, 2006) for mi-
crophysics, Dudhia shortwave (SW) scheme for the SW radi-
ation (Dudhia, 1988), and the Noah–MP land surface model
(Niu et al., 2011; Yang et al., 2011) to describe surface pro-
cesses. In all the simulations the lake model is turned on. The
1-D physically based lake model (Subin et al., 2012) helps to
simulate lake internal processes and interactions at the sur-
face of the lake with the atmosphere (Gu et al., 2015). It in-
creases the eddy diffusivity, and it thus also strengthens the
heat transfer in the lake column (Gu et al., 2015). This is con-
sidered to be beneficial for the description of the lake surface
temperature, which again helps to better represent evapora-

tive effects and thus precipitation over the lake and in the sur-
rounding areas. A comparison of one simulation with the lake
model turned off and one including the lake model reveals
that the lake model is slightly beneficial for representing tem-
poral and spatial precipitation patterns around Mount Kenya.
Hence, the experiment without lake model is not presented in
the following analysis. Please note that the aforementioned
parameterization options are selected from an even larger set
of experiments not included in this paper and are only tested
with one nesting ratio and four nested domains. In addition,
a simulation with the latest version of the model (V4.2.1)
was run. However, it showed that the included improvements
are not enough to reduce the root-mean-square error (RMSE)
and to improve the temporal correlation against the weather
station data compared to the other sets of experiments. It fur-
ther indicates that model versions and compilers can impact
the simulations performed with WRF. Consequently, it has
not been included in the analysis presented here.
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As already shown in Table 1, each experiment obtained a
name, chosen based on the area used in the literature or on
the main parameterization that it employs. The “Europe” ex-
periment is based on the parameterization options used with
WRF over Europe in previous studies by the authors (Mess-
mer et al., 2017) but also including some updated schemes
such as the Noah-MP land surface model. “South America”
is based on the parameterizations used for the optimal sim-
ulation of storms over the central Andes (Zamuriano et al.,
2019). The remaining “Cumulus” experiments are similar
to the configurations applied over East Africa in previous
studies (Pohl et al., 2011; Otieno et al., 2019), but they in-
clude the updated Noah-MP land surface model and changes
in the cumulus scheme option (option 3 in WRF – “Cumu-
lus3” experiment) or no use of cumulus parameterizations at
all (“No Cumulus”). The No Cumulus experiment is moti-
vated by a recent study (Vergara-Temprado et al., 2020) that
shows some improvements in resolving convective precipita-
tion explicitly compared to parameterized convection in hor-
izontal resolutions of around 25 km. The difference between
the Cumulus3 and “Cumulus3 one-way” is the communica-
tion between the parent and the respective child nest. In the
one-way nested options, results from the inner domain are
not overwritten on the parent grid, while this is the case for
two-way nested domains. Note that the two-domain simu-
lation starting at 5 km horizontal resolution is equal for the
Cumulus3 one-way and the No Cumulus experiment, as they
differ only in the cumulus parameterization. As both in that
particular simulation explicitly resolve convective processes,
the simulations are identical and will be presented as Cumu-
lus3 one-way. This is also the case for the experiments South
America and Cumulus3, as they both explicitly resolve con-
vective processes in simulations starting at 5 km horizontal
resolution. Thus, both experiments are also identical and will
be presented as Cumulus3.

2.2 ERA5

ERA5 is the latest reanalysis provided by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF). At the
moment, it is available from January 1979 until 3 months
before present (Copernicus Climate Change Service, 2017).
ERA5 provides different variables on the surface and vari-
ous pressure levels with an hourly output. Nevertheless, we
use 6-hourly data for our boundary conditions. The data are
available globally on a 0.25◦ horizontal grid spacing and use
137 vertical model levels. A vast number of observations and
satellite data are assimilated to the ERA5 gridded data us-
ing the integrated forecasting system cycle 41r2. A total of
24 vertical pressure levels were fed to WRF (1000, 925, 900,
850, 800, 775, 750, 700, 650, 600, 550, 500, 450, 400, 350,
300, 250, 200, 150, 100, 50, 30, 20, 10 hPa).

As stated before, our analysis will focus only on the
year 2008, although 2006 is used to test the performance of
the best setting using a different year. Compared to the cli-

matology of Kenya for the year 1981–2010, the year 2008 is
one of the warmer years, but when considering the constant
warming since the beginning of the current millennium, it
can be considered as a new normal (Fig. 2a). The analysis of
the detrended data also supports this (not shown). In terms
of precipitation, 2008 is on the dry side compared to the cli-
matology (Fig. 2b), but it is a year with two clear rainy sea-
sons, the long rains, and the short rains (Fig. 2c). Addition-
ally, the year 2006 is selected as it is rather wet compared to
the year 2008.

2.3 Observational data sets

To analyse the output of the WRF simulations and to identify
the best parameterization options, the downscaled product
must be compared to some independent observational data
sets. Hence, the precipitation results are compared to ERA5,
three satellite-based data sets and independent weather sta-
tion measurements. For temperature, the results are com-
pared to ERA5. A comparison to the temperature data of Cli-
matic Research Unit (CRU) data has also been performed,
but the patterns are very similar to ERA5 and are there-
fore not shown here. Please note that the gridded data sets
are bilinearly interpolated (Climate Data Operator (CDO);
Schulzweida, 2019) to the grid of the WRF domain that it is
compared to, and the nearest point to the station is consid-
ered afterwards. Consequently, small differences can appear
in the values related to the gridded observational data sets.
However, when the pattern correlation is calculated against
gridded data sets, the grid of this data set is taken as a ref-
erence, and the WRF simulations are bilinearly interpolated
to that grid. In the following, the different products are de-
scribed in more detail.

2.3.1 Tropical Rainfall Measurement Mission (TRMM)

The Tropical Rainfall Measurement Mission (TRMM) com-
prises several data sets based on satellite data, and it is pro-
vided by NASA and the Japanese Aerospace Exploration
Agency (JAXA). In this study we use the gridded data prod-
uct TRMM 3B42 for precipitation estimates. Note that we
use the research-grade TRMM 3B42 and not the near-real-
time version, as the first is considered to be more suitable
for research (Liu, 2015). Version 7 of TRMM 3B42 (TMPA
3B42 v7) is a combined product and merges satellite rainfall
estimates with gauge data. To obtain the 3-hourly precipi-
tation estimates, radars are calibrated to the microwave im-
ager precipitation, which should result in a 3 h microwave-
only best estimate. In a next step, infrared precipitation is
calibrated to the microwave product to fill regional gaps. Fi-
nally, the 3-hourly estimate is summed up to monthly val-
ues and recalibrated using a rain gauge analysis (Huffman
et al., 2007, 2010). This monthly surface precipitation gauge
analysis is obtained from the Global Precipitation Climatol-
ogy Centre (GPCC). The result is a Level-3 product with
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Figure 2. Annual anomalies of mean 2 m temperature (in ◦C) from
ERA5 (Copernicus Climate Change Service, 2017) (a) and of pre-
cipitation (in metres per year) from CHIRPS (Funk et al., 2015) (b).
The anomalies are calculated with respect to the climatological
mean of the years 1981 to 2010. The stippled (straight) lines il-
lustrate plus (minus) 1 standard deviation. Monthly accumulated
values of precipitation (in millimetres per month) for the selected
year 2008 (in purple) and 2006 (in orange) compared to the cli-
matology (1981–2010, in grey, using a box and whisker plot) are
shown in (c). All values are means over the territory of Kenya in
each subplot. The whiskers extend to the value that is no more than
1.5 times the interquartile range away from the box. The values out-
side this range are defined as outliers and are plotted with dots. The
dark blue and light blue shading indicate the long rains and short
rains, respectively.

3-hourly temporal and 0.25◦× 0.25◦ spatial resolution on
a quasi-global (50◦ N–50◦ S) grid. With this resolution the
TRMM 3B42 data is very similar to ERA5. TRMM 3B42 is
available for the period 29 February 2000 to 2 January 2020.

2.3.2 IMERG

The Integrated Multi-satellitE Retrievals from GPM
(IMERG) provides a multi-satellite product, currently avail-
able in its sixth version. It is the successor to the TRMM
data set. Several products with different latency periods
are available, but for this study we make use of the final
product, which is suitable for scientific purposes. Similar
to TRMM, several microwave measurements are used to
estimate precipitation, and it is further calibrated against
instrument products. The half-hourly precipitation estimates
are further recalibrated with a CMORPH Kalman filter and
the PERSIANN Cloud Classification System artificial neural
network. The product is finally adjusted to the monthly
GPCC rain gauge measurements and is available in half-
hourly time steps and on a spatial resolution of 0.1◦× 0.1◦

(approximately 10 km× 10 km). The available time period
is from June 2000 until present.

2.3.3 CHIRPS

The Climate Hazards group Infrared Precipitation with Sta-
tions (CHIRPS V2.0) provides a high-resolution data set with
daily rainfall amounts (Funk et al., 2015). The 0.05◦ spa-
tially resolved data are available for parts of the mid-latitudes
and the tropics (50◦ S–50◦ N). The data set is generated us-
ing thermal infrared precipitation products from different in-
stitutions. To calibrate global cold cloud duration rainfall
estimates, the Tropical Rainfall Measuring Mission Multi-
satellite Precipitation Analysis version 7 (TMPA 3B42 v7)
is used (Funk et al., 2015). In a first step, the World Meteo-
rological Organization’s Global Telecommunications System
(GTS) rain gauge data, which are relatively sparsely avail-
able, are combined with cold cloud-duration-derived precip-
itation estimates. In a second step, the best available weather
station data are combined with cold cloud-duration-based
precipitation to get a product that on a monthly mean is simi-
lar to those produced by the GPCC or the CRU from the Uni-
versity of East Anglia (Funk et al., 2015). Note that IMERG
and TRMM also recalibrate their monthly output to results
obtained from GPCC, and CHIRPS is based on the same
satellite product as TRMM, hence the three data sets used
for the model verification are not fully independent of each
other, especially when monthly sums are investigated.
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2.3.4 Weather station data

Compared to other tropical areas in Africa, Kenya (and es-
pecially the area around Mount Kenya) is covered by a com-
parably large number of weather station data with long pre-
cipitation measurement series. Many of these measurement
series are maintained by farmers. Thanks to the support and
involvement of the University of Nairobi and University of
Bern, these series are still available today (Gichuki et al.,
1998; Liniger et al., 2005; MacMillan and Liniger, 2005).
In addition to private stations, there are also some that are
operated by the government of Kenya, i.e. the Kenya Forest
Service or the Kenyan Meteorological Department. For pre-
cipitation, we use data from 28 stations that have been qual-
ity controlled by Schmocker et al. (2016). Table 2 provides
some information on the stations used in this study, but for
more detailed information the reader is referred to Table 1
in Schmocker et al. (2016). The station ID in both tables
are identical to ease comparison. We obtained four stations
with temperature records from the Social Hydrological In-
formation Platform (SHIP), which is associated with the Wa-
ter and Land Resources Centre (WLRC) project of the Cen-
tre for Training and Integrated Research In ASAL Develop-
ment (CETRAD). Three additional stations for precipitation
and temperature are included in the World Weather Records
(WWR) database from the World Meteorological Organiza-
tion (WMO). These are the three first lines of Table 2. Note
that the weather station data have not been adjusted to the
height of the model topography, as the differences in height
are in the range of a few metres. The maximum difference
between the station and model height is around 60 m, and
hence the maximum discrepancy between station and mod-
elled temperature is around 0.4 ◦C if we consider the standard
environmental lapse rate of 6.5 Kkm−1 (Barry, 2008). Addi-
tionally, the quality control performed by Schmocker et al.
(2016) suggests that several stations are only suitable for
monthly analyses. As the number of stations in the innermost
domain should stay as large as possible, the study is mainly
based on the monthly resolution. Most of the weather stations
are located on the northwestern slopes of Mount Kenya, and
they are rather scarce to the southeast of it, which could affect
the reliability of our results. However, we reduce this uncer-
tainty by also comparing our results against several gridded
observational data sets.

3 Results

3.1 Sensitivity of precipitation

3.1.1 Temporal analysis

To investigate the sensitivity of simulated precipitation due
to different parameterization options of the WRF model,
we first show the annual cycle based on monthly means.
Thereby, the sensitivity simulations with WRF and the three

gridded observational data sets are compared to in situ data
from weather stations (see Table 2 for more details). To com-
pare gridded data with point measurements at weather sta-
tions, the grid point that is closest to the corresponding lati-
tude and longitude of the weather station is considered in the
WRF simulation and the gridded observations. Two perfor-
mance measures for each weather station are calculated and
summarized in box and whisker plots (Fig. 3): the temporal
correlation and the RMSE. For correlations we use the Spear-
man correlation, which is a rank correlation that is suitable
for the small sample sizes that are explored here. Addition-
ally, the standard deviation of each data set is compared to the
one extracted from the weather stations (not shown). Several
different gridded observational data sets are employed here
to compare the sensitivity simulations and to classify which
WRF setting performs best. As not only the weather station
data but also the gridded observational data sets are subject
to a range of uncertainties, we rely on more than one prod-
uct. Note that because the gridded data sets are bilinearly in-
terpolated to the respective WRF grid, small differences can
appear in the values of temporal correlations and RMSEs of
each setup, and hence the shape of bars corresponding to
these data sets in the box and whisker plots can also look
slightly different.

The temporal correlations show that the observational data
sets (ERA5, TRMM, and especially IMERG) are well corre-
lated (Fig. 3a). This is expected as the data are not fully in-
dependent from each other. IMERG has the best correlation
with the highest median but also with the smallest spread.
Generally, the observational datasets show a good correlation
of around 0.8 in the median value. The fact that IMERG and
the weather station data show such a good agreement further
confirms the quality of the latter. The temporal correlations of
the sensitivity simulations show a strong dependence on the
nesting options. The simulations with fewer nests (right part
of Fig. 3a) exhibit a higher correlation and a smaller spread
than the two simulations that have one additional nest (left
part of Fig. 3a). In particular, the No Cumulus simulation
and the Europe setup show a poor performance in the tem-
poral correlation. Note that the poor performance of the No
Cumulus setup can only be observed in nesting options with
a larger number of domains, i.e. setups with a parent grid of
27 or 25 km. The fact that the nesting option is important here
suggests that with fewer domains (only three instead of four
nests for the 1 : 3 ratio and two instead of three for the 1 : 5
ratio), the simulation in the innermost domain is still more
strongly influenced by the boundary conditions of the driv-
ing data, i.e. ERA5. Thus, the simulations with fewer nests
cannot evolve with the same freedom as the ones with more
nests, resulting in a better temporal agreement of the simula-
tions. This is especially clear in the No Cumulus simulation.

While all the gridded observational data sets yield a rather
high temporal correlation, the RMSE of ERA5 is rather
high compared to the ones of TRMM, IMERG and CHIRPS
(Fig. 3b). A reason for this is that the precipitation in ERA5
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Table 2. Weather station information: station number used in our study (labels in Figs. 1, 6, and 7), station name, location (latitude and
longitude), altitude (in metres above sea level), number of missing values, variables available, and station ID from WMO (first three lines)
or from Table 1 in Schmocker et al. (2016). RR stands for precipitation and T2 for 2 m temperature.

Number Station Lat Long Altitude [m] No. missing Variable ID

1 Embu WMO −0.5 37.45 1493 0 RR, T2 637200
2 Nyeri WMO −0.5 36.967 1759 0 RR, T2 637170
3 Meru WMO 0.083 37.65 1554 0 RR, T2 636950
4 Archers Post 0.6375 37.6675 839 0 RR, T2 1
5 Ardencaple Farm 0.0852 37.258 2271 0 RR 2
6 Castle Forest Station −0.4083 37.3107 1927 0 RR 5
7 El Karama 0.1952 36.9038 1781 0 RR 95
8 Embori Farm 0.0677 37.3482 2691 0 RR 12
9 Embu Met Station −0.5047 37.4579 1743 0 RR 14
10 Gathiuru Forest Station −0.1018 37.1159 2333 0 RR 17
11 Hombe Forest Station −0.3508 37.1158 2017 0 RR 20
12 Jacobson Farm −0.0432 37.0444 1913 0 RR 23
13 Kabaru Forest Station −0.2814 37.1535 2279 0 RR 25
14 Kisima Farm 0.1118 37.4181 2465 0 RR 35
15 Loldaiga Farm 0.2117 37.1219 2135 0 RR 34
16 Loruku Farm −0.0136 37.0839 1896 0 RR 38
17 Meru Forest Station 0.0557 37.6277 1737 0 RR 45
18 Mogwoni Ranch 0.2284 36.9862 1683 0 RR 47
19 Mpala Farm 0.3227 36.9038 1844 0 RR 48
20 Naro Moru Gate Station −0.1744 37.148 2471 0 RR 61
21 Naro Moru Met Station −0.1704 37.214 3048 0 RR, T2 62
22 Nicholson Farm −0.0886 37.0259 1916 0 RR 66
23 Nyeri Mow −0.4162 36.9489 1854 92 RR 67
24 Ol Donyo Farm 0.0938 37.2929 2375 0 RR 69
25 Ontulili Forest Station 0.0206 37.1723 2056 0 RR 75
26 Satima Farm −0.1475 37.0101 1944 0 RR 82
27 Solio Ranch −0.2493 36.8797 1943 0 RR 87
28 Tharua Farm −0.1046 36.8985 1865 0 RR 92
29 Kalalu 0.0817 37.1638 2027 0 T2 –
30 Munyaka -0.1833 37.0596 2048 0 T2 –

is independent of the weather station data, as precipitation
is not assimilated into this product. Otherwise, the RMSE
shows similar results to the correlations for both the grid-
ded observations and the sensitivity simulations. Hence, the
parameterization of the simulation is only of minor impor-
tance compared to the nesting options. Similar findings are
obtained when using the standard deviation (not shown).
Here, the WRF simulations are generally within the range of
the standard deviation observed in the weather station data,
except for the Europe parameterization in the nesting op-
tions with fewer nests. In that case, the standard deviation
is strongly underestimated, indicating that the variability of
precipitation is not fully captured. Additionally, the standard
deviations of the gridded observational data sets are smaller
than the ones of the weather station data, which is owed to the
coarser resolution of the first. At finer temporal resolutions
than monthly sums, these temporal correlations and RMSEs
reproduce the differences between the experiments as dis-
cussed for monthly means. However, using finer timescales

leads to a general reduction of the correlation coefficients and
an increase in RMSEs. This is expected, as the variability
is higher and because it is more and more challenging for
the model to capture the exact timing of precipitation (not
shown).

3.1.2 Pattern correlation analysis

Since the temporal correlation and the RMSE do not clearly
define which parameterization option of WRF delivers the
best results for precipitation in the region around Mount
Kenya, we investigate the pattern correlation of the simula-
tions compared to weather station data in a first step and to
the gridded observational data set CHIRPS in a second step.
Figure 4 shows the pattern correlation between the WRF-
simulations and the weather station data for each month in
the first row. The different columns indicate different param-
eterization options, and the symbols within each panel show
the nesting option. The vertical black line in each panel is
equal to a correlation coefficient of 0.5. This value is a mod-

https://doi.org/10.5194/gmd-14-2691-2021 Geosci. Model Dev., 14, 2691–2711, 2021



2700 M. Messmer et al.: Sensitivity of precipitation to physics parameterizations over Mount Kenya

Figure 3. The temporal correlation (a) and root-mean-square error (RMSE) (b) between the annual cycle for the year 2008 of measured and
simulated monthly precipitation sums at the nearest grid point to the station’s location shown for the different parameterization options (see
legend to the right, Table 1) and grouped by the different nesting options and number of nests. The box and whisker plots show the values in
relation to 28 stations for the different domains with 1 km spatial resolution. The whiskers extend to a value that is no more than 1.5 times
the interquartile range away from the box. The values outside this range are defined as outliers and are plotted with dots.

erate correlation and still explains roughly 25 % of the vari-
ance, but it is a visual support to more easily determine which
simulations and nesting options perform better than others.
The number of months that are equal to or exceed this limit
of 0.5 in correlation are counted and summed up in the table
below each panel (“# months” column).

The gridded observational data sets agree reasonably well
in terms of the spatial pattern of precipitation, except for
ERA5. The fact that ERA5 shows a poor correlation with
the weather station data is because the domain is located
over steep terrain, where a high resolution is needed to re-
solve precipitation patterns appropriately. CHIRPS has the
highest spatial resolution and shows a slightly better pattern
correlation than IMERG (especially in June), and hence we
have decided to also compare the WRF simulations against
the CHIRPS gridded data set (second row of Fig. 4). Addi-
tionally, CHIRPS shows high correlations and low RMSEs
in the temporal analysis. Similarly to the temporal correla-

tion, the simulations with fewer nests obtain a better pattern
correlation compared to the ones with an additional nest. The
South America and the No Cumulus parameterizations show
the highest agreement with the weather station data for the
nesting options that have an additional nest, while clearly
the Cumulus3 one-way option is the best of the simulations
with fewer nests. Overall, the simulations have a better per-
formance in the rainy seasons MAM and ON, while the dry
months (and June in particular) are not very well captured by
the model simulations.

Besides the comparison to the weather station data, the
simulations and gridded observational data are compared to
CHIRPS (see the second row of Fig. 4). As mentioned be-
fore, all the simulations were bilinearly interpolated to the
grid of CHIRPS for this spatial analysis. The gridded ob-
servational data sets perform well compared to CHIRPS (in-
cluding ERA5). Again this is expected as the data are not
fully independent. The pattern correlation of the WRF sim-
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Figure 4. Pattern correlation of monthly precipitation sums for the year 2008 between weather station data and the respective WRF simulation
(upper row) and between CHIRPS and the respective WRF simulation (interpolated onto the CHIRPS grid, lower row). The different panels
indicate the different parameterization options (Table 1), and the symbols stand for the different nesting options. The labelling of the symbols
is given in the table below each panel, along with the number of months (# months) in which the nesting option obtain correlation patterns
above the reference value of 0.50 (a moderate correlation used to visually evaluate the performance of nesting options). The last panel on
each row represents the gridded data sets used throughout the paper. Even if the gridded data sets are interpolated onto different domains for
each independent setup, here only one setting is shown (27km_D04, only first row). The rest was omitted as only marginal changes can be
observed.

ulations compared to CHIRPS are rather high in all the sim-
ulations. No clear difference between the different nesting
options are evident. The South America and the No Cumulus
options show the best agreement with CHIRPS in precipi-
tation patterns, but Cumulus3 one-way also performs well.

The Europe parameterization is clearly the worst, even if it
shows one of the highest correlations in the dry months of
June and July. This is because the Europe parameterization
setup produces rather dry conditions over Africa, and hence
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the dry months are better represented compared to the others
that simulate generally wetter conditions.

3.1.3 Annual cycle

To further understand how well the different parameteriza-
tion and nesting options are able to represent precipitation
around Mount Kenya, the annual cycle is plotted as grid point
averages of monthly precipitation sums of the innermost do-
main (1 km; Fig. 5). Please note that the gridded observa-
tional data sets do not obtain exactly the same values for the
different nesting ratios 1 : 3 (first row) and 1 : 5 (second row),
as the domain sizes are not exactly equal. The innermost do-
main in the 1 : 5 nesting ratio setup is slightly bigger. The
three gridded observational data sets TRMM, IMERG, and
CHIRPS agree well and are considered the reference here be-
cause they show a good temporal and pattern correlation with
the weather station data. This is true except for November,
when CHIRPS records a much higher value in precipitation
amounts than TRMM and IMERG. As CHIRPS shows one
of the weakest pattern correlations in November compared
to the weather station data, IMERG and TRMM should be
considered the reference in this month. ERA5 also agrees,
but the long rains (MAM) have the peak intensity a bit too
early, while the intensity in the short rains (ON) is too in-
tense on average. For the dry months, ERA5 also overesti-
mates precipitation compared to the other gridded observa-
tional products. Overall, the gridded data sets come up with
similar annual precipitation sums (see the inset of Fig. 5),
except for ERA5, which shows a slight overestimation in
annual precipitation sums. Comparing the monthly precipi-
tation sums of the sensitivity simulations with the gridded
observational reference, we find again that the Europe pa-
rameterization option is not well suited for this area as it
is not able to correctly capture the two rainy seasons near
Mount Kenya. The long rains show a clear deficit in precipi-
tation, while the outcome of the short rains strongly depends
on the number of nests. With fewer nests the short rains are
also clearly underestimated but with an additional nest pre-
cipitation is either almost correct or is overestimated. The
differences between the Europe setup and the others are re-
lated to the parameterization of the longwave radiation and
PBL, which are both responsible for the reduction in precip-
itation amounts according to previous sensitivity tests with
these parameterizations (not shown). The No Cumulus setup
performs well in both wet seasons, but it overestimates pre-
cipitation during the dry season. The Cumulus3 options show
a clear sensitivity of the precipitation amounts in the long
rains to the number of nests, with a much better representa-
tion with fewer nests. In the short rains, the Cumulus3 op-
tions follow the curve of CHIRPS and therefore shows an
overestimation. The fact that the Europe setting is not suited
for this region becomes even clearer when including the an-
nual precipitation sums. Except for the 25 km parent grid,
the Europe setting captures only around 50 % of the annual

precipitation, and hence it clearly underestimates the water
availability. All the other settings perform similarly well on
an annual basis (insets in Fig. 5). It is also noteworthy that the
WRF model with the Cumulus 3 options is able to correct the
overestimation obtained by ERA5, which is the driving data
set of the simulations.

3.1.4 Precipitation patterns

Another measure used to identify the best setup of WRF for
this region is the precipitation patterns of the WRF simula-
tions. Due to the aforementioned motivation to use the tested
settings in a climate simulation, in the following the simu-
lation of the innermost domain (D4; 1 km) with the parent
domain of 27 km horizontal grid spacing and a nesting ra-
tio of 1 : 3 is presented. Note that the simulations with a
25 km parent grid and a nesting ratio of 1 : 5 show similar
results and are hence not shown here. To present the results,
months within the three main seasons are presented, i.e. the
long rains, short rains, and the dry season. April (Fig. 6a)
is chosen as it is in the midst of the long rains. November
(Fig. 6b) is selected as it is within the short rains and has a
larger spread between the different experiments than Octo-
ber. Finally, June (Fig. 6c) represents a month in the dry sea-
son and shows stronger deviations compared to station data.
As CHIRPS is the data set that shows the best agreement with
the weather station data (as shown in Fig. 4) and because it
also shows the highest resolution and detail, in the follow-
ing only this gridded observational data set is presented as a
reference. Additionally, the Europe experiment is discarded
because of its weak performance in the previous analyses.

In April, the precipitation from CHIRPS is similar to the
measured amounts of precipitation, with the exception of a
small region located to the north of Mount Kenya where pre-
cipitation is overestimated by this gridded data set (Fig. 6a).
Bearing in mind that the observational data set is also sub-
ject to some uncertainties, the South America parameteriza-
tion shows similar precipitation amounts and patterns along
a diagonal band from southwest to northeast, lacking some
of the precipitation southeast of Mount Kenya, as indicated
by CHIRPS. The northern part of the domain seems to be
too dry compared to CHIRPS, but stations along the northern
slope of Mount Kenya agree relatively well. The other three
setups manage to produce a precipitation pattern as observed
in CHIRPS. Nevertheless, the No Cumulus parameterization
is too wet, especially in the northwestern part of the domain,
and the steep gradient from high precipitation rates in the
vicinity of Mount Kenya to dryer conditions to the northwest
of it is not well captured. The two Cumulus3 parameteriza-
tion options capture this pattern the best, including also some
finer details along the right and bottom boundaries of the do-
main.

CHIRPS also captures the precipitation pattern quite well
in November, with some deviations compared to the weather
station data south and northwest of Mount Kenya (Fig. 6b).

Geosci. Model Dev., 14, 2691–2711, 2021 https://doi.org/10.5194/gmd-14-2691-2021



M. Messmer et al.: Sensitivity of precipitation to physics parameterizations over Mount Kenya 2703

Figure 5. Grid point averages of monthly precipitation sums in millimetres per month for the year 2008 in the innermost domain (1 km) for
each of the tested setups: 27 km (a), 9 km (b), 25 km (c), and 5 km (d). The five tested parameterization options are included, along with the
driving reanalysis ERA5 and the three observational gridded data sets (IMERG, TRMM, and CHIRPS). All the gridded data sets are plotted
with different shades of pink, while ERA5 is coloured in grey. The inset of a bar plot in each panel indicates the grid point average annual
precipitation sum in millimetres per year for each parameterization option and gridded data set.

South America captures the precipitation amounts of the sta-
tions quite well, but the pattern shows some deviations com-
pared to CHIRPS, especially in the northwestern corner of
the domain. The two Cumulus3 and the No Cumulus op-
tions are able to capture the patterns well with some over-
estimation in the simulations driven by the first option and a
slight underestimation in precipitation amounts for the latter
parameterization option. Given the uncertainty range within
the observation-based data, it cannot be expected that a sin-
gle sensitivity simulation can agree with all the stations or
with one of the gridded observational data sets.

June is clearly much drier than April, and CHIRPS also
records too much precipitation compared to the weather sta-
tion data (see Fig. 6c). Given the uncertainty range of the
observation-based data, the South America parameterization
option does not fully agree with CHIRPS in terms of the gen-
eral pattern, as no dry corridor in the east is simulated and
precipitation is overestimated at most of the stations. This is
also true for the No Cumulus parameterization option, but
here the pattern agrees better, with a clear overestimation
in precipitation amounts. Cumulus3 and Cumulus3 one-way
again result in the best pattern, rendering it difficult to choose
between the two, as some stations are better in one setting
and other stations are better described in the other. Since

one-way nesting does not overwrite the solution of the cor-
responding parent grid, this option should be preferred over
the two-way nesting option. It allows us not only to focus
on the innermost domain but also investigate the larger-scale
picture without any disturbances within the domain.

All the WRF simulations reasonably resemble the pre-
cipitation pattern over Mount Kenya in the year 2008. The
Europe setting provides the worst performance and too dry
conditions throughout the whole year. The No Cumulus pa-
rameterization and the Cumulus3 options provide the best
performances throughout the analysis. The fact that the No
Cumulus option is generally too wet allows us to define the
Cumulus3 one-way option as the best for our purpose. Note
also that the No Cumulus parameterization option produces a
patchy picture in the outermost domain with monthly sums,
which is a clear sign of a structural problem, i.e. convec-
tion always being induced at the same location (not shown),
which is rather unrealistic. Hence, this simulation is also un-
suitable for a larger-scale analysis of precipitation and pre-
cipitation changes in a warmer climate. Even if we are only
interested in the results on a kilometre-level scale, it must be
noted that the timing (not necessarily the amount) of the peak
precipitation rates on a sub-daily basis are captured more re-
alistically with respect to IMERG by the No Cumulus exper-
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Figure 6. Monthly precipitation sums for (a) April 2008 (long rains), (b) November 2008 (short rains), and (c) June 2008 (dry season) in
millimetres per month for the innermost domain (1 km) of the four-domain nested setup, with an outermost domain of 27 km resolution and a
nesting ratio 1:3 for the different parameterization setups (see Table 1). Weather station data are described in Table 2. The white star indicates
the summit of Mount Kenya, and missing values are marked in black. The numbers in the lower-right corner of each panel indicate the spatial
correlation with respect to the stations (upper line) and CHIRPS (lower line).

iment compared to the other setups. This is only true for do-
mains where the others use a cumulus parameterization (e.g.
D2; see Fig. S1 in the Supplement).

3.1.5 Evaluation of performance under wet climatic
conditions: year 2006

With the best parameterization option (Cumulus3 one-way)
and the setup with a parent domain of 27 km horizontal grid
spacing and a nesting ratio of 1 : 3, a further experiment is
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performed in order to test the applicability to other years.
Therefore, the rather wet year 2006 is selected, as indicated
in Fig. 2b. Here, we no longer compare the results to TRMM,
as IMERG and CHIRPS provide finer resolved precipitation
information. The temporal correlation of monthly precipita-
tion sums with respect to the station data (see Fig. S2a) is
even slightly higher in 2006 than in 2008, while ERA5 per-
forms worse in 2006 than 2008. CHIRPS and IMERG per-
form similarly in both years. The RMSE of all the different
analysed precipitation data is slightly larger than in 2008 but
still shows a good performance (see Fig. S2b). Both CHIRPS
and IMERG show a similarly good pattern correlation with
the station data in 2006 as in 2008. ERA5 shows also a sim-
ilar behaviour in the 2 years, being not able to capture the
main precipitation pattern of the stations. Cumulus3 one-way
reflects the precipitation pattern against weather station data
reasonably well (see Fig. S2c), with 7 months of higher cor-
relations than 0.5, which is a clear improvement compared to
2008. The spatial pattern correlation with respect to CHIRPS
(see Fig. S2d) results in values higher than 0.5 in 11 months,
which none of the parameterization experiments reached in
the year 2008. Only December is just below this limit, with a
spatial correlation of 0.476.

Cumulus3 one-way captures the precipitation patterns (see
Fig. S3) well, especially in the two rainy seasons of 2006, i.e.
April and November. In April the northern part of the domain
is a bit too dry compared to the stations and CHIRPS, while
in November the eastern part is slightly too dry compared to
CHIRPS and compared to the station data. In June, CHIRPS
and WRF produce very similar patterns, but compared to the
station data they are both too wet, especially on the northern
foothills of Mount Kenya. All in all, this setting even shows
a better performance in the wet year 2006 than in the slightly
dry year 2008.

3.2 Sensitivity of temperature

Once we have investigated the sensitivity of simulated pre-
cipitation due to different parameterization options, we fo-
cus on temperature. To do so, the sensitivity simulations with
WRF, except for Europe because of its bad performance in
precipitation, are compared to the driving reanalysis ERA5
and the in situ data from weather stations (see Table 2 for
more details). To measure how the different settings simulate
the temperature near Mount Kenya, the 2 m temperature pat-
terns are evaluated. The same months are selected for tem-
perature as for precipitation: April (Fig. 7a) and November
(Fig. 7b) within the long and short rains, respectively, and
June (Fig. 7c) within the dry season. In order to highlight the
differences between the sensitivity experiments, only the ab-
solute values of the gridded data sets and the Cumulus3 one-
way experiment are depicted. For the remaining sensitivity
experiments, the anomalies compared to our best setting ex-
periment are presented.

ERA5 temperature serves as boundary and initial condi-
tions for the WRF simulation. Given this constraint, we ex-
pect a better representation of the simulated 2 m tempera-
ture than of precipitation. In addition, the region of interest is
dominated by steep topography, which is directly related to
temperature, and consequently strong gradients of tempera-
ture are expected near Mount Kenya.

It is not surprising that ERA5 represents temperature rel-
atively similarly and independent of season (rainy or dry) as
Kenya is located at the Equator. ERA5 describes the orogra-
phy of the domain clearly and most of the few weather station
data agree well with ERA5, but the WRF simulation Cumu-
lus3 one-way produces a better temperature profile, which
is mainly owed to the better resolution and a more detailed
characterization of the topography.

In April (Fig. 7a), the two Cumulus3 simulations have a
very similar representation of temperature, as the only dif-
ference is the communication between the nests. The differ-
ence for the South America experiment is mainly in the range
of ±0.5 ◦C, with positive anomalies over Mount Kenya and
negative anomalies in the surrounding plains. In the case of
the No Cumulus parameterization, strong negative anomalies
are observed over the entire region, particularly in the south-
eastern corner where anomalies reach −2 ◦C. This negative
temperature anomaly is probably related to the overestima-
tion in precipitation, as most of the domain obtains more pre-
cipitation than in the Cumulus3 one-way simulation. This ex-
cess in water can be transformed into latent heating through
evaporation and can contribute to a cooling effect over the
domain.

In November, the Cumulus3 one-way option overestimates
the precipitation somewhat, which generally results in cooler
temperatures compared to observations in some stations (e.g.
stations 1 and 4 in Fig. 7b). As the other sensitivity exper-
iments simulate a drier monthly climate in the plains espe-
cially, a positive temperature signal is found in these areas
as well. Generally, the temperature differences between the
experiments are again rather small and below 1 ◦C.

The two Cumulus3 options are able to correctly simulate
the observed temperature in June (Fig. 7c), and their differ-
ences are rather small (below ±0.25 ◦C). The temperature
bias for the South America experiment is higher in June than
in April, but the patterns are similar (positive anomalies over
Mount Kenya, but negative ones in the plains). Again, nega-
tive anomalies are simulated in the No Cumulus experiment,
which could also be related to an increase in precipitation
amounts, especially in the southeastern corner of the domain.

As described above, the differences in the patterns in the 3
months resemble the differences in precipitation to some ex-
tent; i.e. where more precipitation is simulated compared to
Cumulus3 one-way, temperatures are reduced. One process
which partly explains this is the transformation of energy into
latent heating through evaporative processes. Where precip-
itation is comparably reduced to the Cumulus3 one-way pa-
rameterization, a warming is found. This is potentially due
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Figure 7. Monthly 2 m temperature averages for (a) April 2008 (long rains), (b) November 2008 (short rains), and (c) June 2008 (dry season)
in K are shown for the innermost domain (1 km) of the nested four-domain setup, with the outermost domain of 27 km resolution and a
nesting ratio 1 : 3 for the different parameterization setups (Table 1). Absolute values are given for ERA5 and the Cumulus3 one-way option.
The others depict differences compared to the Cumulus3 one-way option. Weather station data are described in Table 2. The black star
indicates the summit of Mount Kenya.

to energy that is transformed into sensible heating. Addition-
ally, moisture advection and small differences in the descrip-
tion of cloud cover are additional relevant processes explain-
ing some of the changes in temperature.

4 Summary and conclusions

The goal of this study was to find a setup for WRF in order
to realistically simulate precipitation patterns and amounts
over and around Mount Kenya at a kilometre scale. This task
is challenged by the fact that this region has a complex to-
pographic structure and is influenced by large-scale circula-
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tion controls, which leads to heterogeneous precipitation pat-
terns. As this is one of the first studies to resolve the Mount
Kenya region at such a fine scale, different parameterization
options and combinations must be tested to obtain an op-
timal result for this area. We employ the WRF model and
experiment with different combinations of cumulus (Kain–
Fritsch, Grell–Freitas, no cumulus), LW (CAM, RRTM), and
PBL (ACM2, YSU) parameterizations and with the number
of nested domains and nesting ratios (1 : 3 and 1 : 5). The
different simulations are not only compared to different grid-
ded observational data sets, such as IMERG, TRMM, and
CHIRPS, but also to a large number of weather station data
operated by private farms, CETRAD, and the Kenyan gov-
ernment.

Correlating the annual cycle as monthly sums reveals that
the gridded observations and the weather station data agree
very well, indicating that the weather station data presented
here are reliable. The temporal correlations further lead to
the conclusion that if ERA5 is used as boundary conditions
in a smaller and higher-resolved domain (i.e. simulations
with one nest fewer) the simulation is more constrained, and
hence the temporal correlation is better with a reduced num-
ber of nests. This result is mainly important for simulations
driven with reanalysis data, as they capture most of the atmo-
spheric circulation and processes well and are therefore reli-
able, which is not necessarily true for climate simulations.
The No cumulus parameterization scheme is especially sen-
sitive to changes in the number of nests in terms of temporal
correlation. Concerning the nesting ratio, we are not able to
distinguish between the two options, so either of the two is
able to produce realistic results.

Also important for water availability in the area around
Mount Kenya are the precipitation patterns and amounts. The
objective pattern correlations indicate that fewer nests also
result in a better spatial correlation, but when comparing
against the most accurate gridded data set, CHIRPS, there
is not much difference between the number of nests in spa-
tial patterns. Compared to the temporal correlation, the No
Cumulus parameterization results in rather accurate pattern
correlations. The pattern correlation is a valuable tool to eval-
uate not only the sensitivity simulations but also the gridded
observational data sets. The comparison to the weather sta-
tion data reveals that CHIRPS yields a pattern closer to the
weather stations. One important factor for this result is cer-
tainly the nominal resolution of the data, as CHIRPS reveals
the finest precipitation structure of all the gridded observa-
tional data sets.

The Europe configuration obtains one of the worst tempo-
ral correlations and pattern correlations. The actual patterns
within the innermost domain reveal that the Europe config-
uration is clearly too dry in both the rainy and dry seasons.
The underestimation in precipitation can be attributed to both
the LW and PBL parameterizations. However, not only are
the precipitation amounts underestimated, the precipitation
pattern is also not fully captured. The South America set-

ting is more accurate when it comes to monthly precipitation
sums in the rainy season, but it clearly has a wet bias in the
dry season, and the precipitation pattern is also missing some
details compared to CHIRPS. While the two Cumulus3 op-
tions and the No Cumulus option provide rather good precip-
itation patterns, the latter clearly overestimates the monthly
sums. Hence, we conclude that the Cumulus3 one-way op-
tion is the best parameterization setting in WRFV3.8.1 for
the area around Mount Kenya. The one-way nesting option
is preferred over the two-way option, as the latter affects the
representation of the domain when cumulus parameterization
is turned off. Hence, with the one-way option, all domains
and scales of the simulation can be integrated into the analy-
sis.

The Cumulus3 one-way setting provides even better re-
sults for the year 2006 in terms of temporal correlations, and
pattern correlations and precipitation amounts show a good
agreement with respect to CHIRPS and to the weather station
data. This result further supports the robustness of the results
presented here, as not only rather dry years but also very wet
years are reasonably well captured by this WRF model setup
and driven with ERA5.

Similar to other studies, we also find an overestimation
in precipitation compared to observations (Cook and Vizy,
2013; Williams et al., 2015). Nevertheless, with our sensi-
tivity experiments we identify a parameterization setting that
represents precipitation amounts rather well in the rainy sea-
sons, while a wet bias remains in the dry season. Certainly,
the very high resolution of our simulations helps to better
represent the pattern not only of precipitation but also of tem-
perature, resembling findings of Kerandi et al. (2017). It is
not surprising that a high resolution can add value in the rep-
resentation of precipitation and temperature, as this region is
located within complex topographic structures.

Having found the optimal setting for the Mount Kenya
area, climate change simulations can be performed. These
allow to get a detailed picture of the climate sensitivity in
this area and the possible changes in water availability and
the actual warming in the area. Next steps also include sensi-
tivity experiments related to land use changes. This will help
to understand how future changes in agriculture will affect
water availability in the flat lands around Mount Kenya.

Code and data availability. The Weather Research and Forecast-
ing (WRF) model V3.8.1 is freely available online and can
be downloaded from the users’ page: https://www2.mmm.ucar.
edu/wrf/users/download/get_sources.html (last access: 17 Novem-
ber 2020). All the namelist files necessary to reproduce the
simulations performed in this study and the codes created by
the authors to read, analyse, and plot the results included in
this paper are available within a zip file that can be down-
loaded from: https://doi.org/10.5281/zenodo.4090589 (Messmer et
al., 2021). Additionally, this link also includes the post-processed
outputs for precipitation and temperature from our WRF sen-
sitivity experiments. All the observational gridded data sets for
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precipitation included in this study are freely available online.
TRMM and IMERG can be downloaded from the Earth Ob-
serving System Data and Information System (EOSDIS) from
NASA (https://doi.org/10.5067/TRMM/TMPA/3H-E/7, Huffman,
2016, and https://doi.org/10.5067/GPM/IMERG/3B-HH/06, Huff-
man et al., 2019, respectively), and CHIRPS can be download from
the Climate Hazards Center of the UC Santa Barbara (https://www.
chc.ucsb.edu/data/chirps, last access: 11 June 2020). The weather
station data from WMO used in this study can be downloaded from
the World Weather Records website (https://www.ncei.noaa.gov/
access/search/data-search/global-summary-of-the-day, last access:
10 February 2020). The data from the stations maintained by CE-
TRAD in Kenya can be downloaded from the Social Hydrological
Information Platform (http://www.wlrc-ken.org/admin/dashboard/
home, last access: 11 February 2020).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-2691-2021-supplement.
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