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Abstract: Allografts consisting of demineralized bone matrix (DBM) are supposed to retain the
growth factors of native bone. However, it is not clear if transforming growth factor β1 (TGF-β1) is
maintained in the acid-extracted human bone. To this aim, the aqueous solutions of supernatants
and acid lysates of OraGRAFT® Demineralized Cortical Particulate and OraGRAFT® Prime were
prepared. Exposing fibroblasts to the aqueous solution caused a TGF-β receptor type I kinase-
inhibitor SB431542-dependent increase in interleukin 11 (IL11), NADPH oxidase 4 (NOX4), and
proteoglycan 4 (PRG4) expression. Interleukin 11 expression and the presence of TGF-β1 in the
aqueous solutions were confirmed by immunoassay. Immunofluorescence further confirmed the
nuclear translocation of Smad2/3 when fibroblasts were exposed to the aqueous solutions of both
allografts. Moreover, allografts released matrix metalloprotease-2 activity and blocking proteases
diminished the cellular TGF-β response to the supernatant. These results suggest that TGF-β
is preserved upon the processing of OraGRAFT® and released by proteolytic activity into the
aqueous solution.

Keywords: demineralized bone matrix; transforming growth factor β1; allografts; bioassay; bone
regeneration; bone augmentation

1. Introduction

Bone regeneration is an evolutionally conserved process that follows the principles
of bone development during growth [1]. Bone regeneration is not only required to bridge
large defects; it is also a common principle of regenerative medicine extending towards the
osseointegration of dental implants [2]. However, bone atrophy occurring as a consequence
of tooth loss [3] or periodontal and peri-implant inflammatory osteolysis [4] necessitates
bone reconstruction before or simultaneously to dental implant placement. Bone recon-
struction or bone augmentation requires the lost bone to be replaced; this can be achieved
by autografts [5], allografts [6], synthetic biomaterials [7], deproteinized bone of xenogeneic
origin [8], and marine-derived materials [9] applied to dentistry and craniofacial surgery.

Autografts and allografts are unique in that they either match the bone at the defect
site or are processed to maintain at least part of the original properties, respectively [10,11].
Even though autografts are considered ideal to support bone regeneration considering
their favorable osteoconductive and osteogenic properties, the amount is limited and
harvesting is invasive [12,13]. Allografts provide a viable alternative to autografts as they
are produced from human bone that usually undergoes defatting, demineralization, virus
inactivation, and gamma sterilization [14]. Each provider of allografts has established
their own protocol to produce allografts, particularly demineralized bone matrix (DBM).
Even though the basic protocols are similar, they are not the same and consequently the
biological, and presumably, also the clinical, properties of the various DBMs might differ
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from each other. The question arising is how the processing of a donor’s bone affects the
biological properties of the DBM allograft.

Research on allografts dates back to the time when the osteoinductive properties of
DBM were reported in rodent and rabbit models [15–17]. The osteoinductive properties of
DBM are caused by the bone morphogenetic proteins, which all belong to the transforming
growth factor β (TGF-β) superfamily of growth factors. Apart from the rather low amount
of bone morphogenetic proteins (BMPs) in bone [18–20], bone is a rich source of TGF-
β [21–23], a multifunctional growth factor playing a major role in bone regeneration and
remodeling [24,25]. It might be not surprising that immunoassays could detect TGF-
β1 released from mineralized allografts [26]. However, the situation for DBM is less
clear. Significant amounts of TGF-β1 were extractable only from one out of the three
commercially available products containing DBM [27]. Moreover, immunoassays do not
necessarily indicate the biological activity of the released TGF-β1. Consequently, there is a
demand to identify the TGF-β1 activity released by DBM.

The binding of a released TGF-β to the respective receptor dimer causes the activation
of the TGF-β receptor type I kinase-inhibitor that phosphorylates the cytoplasmic Smad2
and Smad3 messengers that, upon dimerization, translocate into the nucleus and change
the transcript of the TGF-β target genes [25,28]. Among those TGF-β target genes are
interleukin 11 (IL11), NADPH oxidase 4 (NOX4), and proteoglycan 4 (PRG4), which
are identified by screening approaches when mesenchymal cells are exposed to acid bone
lysates [23], acid dentine lysates (unpublished), bone-conditioned medium [29], and enamel
matrix derivatives [30]. Support for selecting those genes to identify the TGF-β activity
comes from blocking the TGF-β receptor type I kinase with the inhibitor SB431542 [23,29,30].
This canonical, biological cell response can be identified at the molecular level and can
serve as a bioassay to identify TGF-β1 activity released by DBM.

The clinical implication of identifying TGF-β1 activity released by DBM remains vague.
Nevertheless, showing that TGF-β activity is released from DBM is an indication that the
processing of the original bone into an allograft maintains part of the original growth factor
activity. Measuring TGF-β1 activity might become useful in monitoring the manufacturing
process of DBM. Our research also paves the way for future preclinical research with the
aim to determine to which extent the TGF-β activity of DBM supports graft consolidation.
Here, we took advantage of the bioassay approach to identify TGF-β activity being released
from OraGRAFT® Demineralized Cortical Particulate and OraGRAFT® Prime.

2. Results

2.1. Cell Viability in Response to Supernatants and Lysates of OraGRAFT®

To screen for a possible impact of cell viability, gingival fibroblasts were exposed to var-
ious dilutions of the aqueous solutions of OraGRAFT® Demineralized Cortical Particulate
(SC) and OraGRAFT® Prime consisting of moldable fibers (SF). At no concentration tested
did the supernatant (SC, SF) negatively affect cell viability. Acid lysates of OraGRAFT®

Demineralized Cortical Particulate (LC) and acid lysates of OraGRAFT® Prime (LF) showed
a different response (Table 1). We observed that the treatment of cells with more than 12%
and 25% of LC and LF, respectively, decreased cell viability. As a consequence, for the
bioassays, cells were treated with 30% of the supernatant (SC, SF), 6% LC, and 12% LF.
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Table 1. The viability of fibroblasts exposed to the supernatants and acid lysates of allografts.

Concentration 50% 25% 12% 6%

SC 101.4 ± 0.2 97.8 ± 0.1 93.7 ± 0.1 86.5 ± 0.1

SF 85.7 ± 0.1 100.1 ± 0.3 121.7 ± 0.3 85.2 ± 0.1

LC 17.3 ± 0.04 13.5 ± 0.04 23.3 ± 0.01 104.0 ± 0.1

LF 20.0 ± 0.1 37.5 ± 0.2 111.5 ± 0.2 115.2 ± 0.2

Gingival fibroblasts were exposed to aqueous supernatants of OraGRAFT® Demineralized Cortical Particulate
(SC) and OraGRAFT® Prime (SF), and the acid lysates of the two respective allografts (LC and LF). The data from
the four experiments represent the percentage of remaining cell viability compared to an untreated control.

2.2. TGF-β1 Identified by Immunoassay in Supernatants and Lysates of OraGRAFT®

Proteomics can identify TGF-β1 in the acid lysates of porcine bone [23]. To determine
if OraGRAFT® can release TGF-β1 spontaneously into an aqueous solution, we measured
the concentration of TGF-β1 by immunoassay. Undiluted SC and SF contain 294.0 pg/mL
TGF-β1 and 74.5 pg/mL TGF-β1, respectively (Figure 1). This represents approximately
1.4 ng TGF-β1 and 0.6 ng TGF-β1 released per unit of OraGRAFT® Demineralized Cortical
Particulate and OraGRAFT® Prime, respectively. TGF-β1 was lower in undiluted LC and
LF, which was in median 29.5 pg/mL and 17.5 pg/mL TGF-β, respectively.

Figure 1. Supernatants that are the aqueous solution of OraGRAFT® Demineralized Cortical Particu-
late (SC) and OraGRAFT® Prime (SF) contain TGF-β1. The immunoassay identified less TGF-β1 in
the acid lysates of OraGRAFT® (LC and LF). N = 4. Statistic is based on a paired t-test.

2.3. TGF-β1 Activity by Bioassay in Supernatants and Lysates of OraGRAFT®

We next evaluated if the TGF-β1 released from OraGRAFT has a biological activity.
Gingival fibroblasts were exposed to the supernatant (SC and SF) and acid lysates (LC and
LF) of OraGRAFT®. Gene expression analysis revealed a robust increase of IL11, NOX4,
and PRG4 (Figure 2). The supernatants of OraGRAFT® (SC and SF) were more potent to
increase gene expression than the respective acid lysates (LC and LF).
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Figure 2. Gene expression of fibroblasts exposed to the supernatants and acid lysates of allografts. Gingival fibroblasts
were exposed to aqueous supernatants of OraGRAFT® Demineralized Cortical Particulate (SC) and OraGRAFT® Prime (SF)
and the acid lysates of the two respective allografts (LC and LF). The expression of (A) interleukin 11 (IL11), (B) NADPH
oxidase 4 (NOX4), and (C) proteoglycan 4 (PRG4) was measured by quantitative RT-PCR. N = 4. Statistic is a paired t-test.

To confirm the translation of gene expression into protein signals, IL11 levels in the
culture medium of fibroblasts were evaluated. The supernatants from OraGRAFT® Dem-
ineralized Ground Cortical (SC) and its respective acid lysate (LC) significantly increased
the release of IL11 by the gingival fibroblasts. (Figure 3). Supernatants of OraGRAFT®

Prime (SF) and its respective acid lysate were less potent, but also stimulated the production
of IL11.

Figure 3. IL11 levels in the culture medium of fibroblasts exposed to supernatants and acid lysates of
allografts. Gingival fibroblasts were exposed to aqueous supernatants of OraGRAFT® Demineralized
Cortical Particulate (SC) and OraGRAFT® Prime (SF) and the acid lysates of the two respective
allografts (LC and LF). The IL11 levels were measured by immunoassay. N = 4. Statistic is an
uncorrected Friedmann test against untreated controls.

2.4. Blocking the TGF-β Receptor Type I Kinase Activity by SB431542

To confirm that the changes in gene expression are mediated via the TGF-β receptor
type I kinase signaling, the antagonist SB431542 was used. As indicated in Figure 4,
SB431542 greatly abolished the expression of IL11 that was provoked by exposing the
gingival fibroblasts to supernatants of OraGRAFT® Demineralized Cortical Particulate (SC)
and OraGRAFT® Prime (SF) as well as to the acid lysates (LC and LF).
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Figure 4. TGF-β receptor type I kinase with the inhibitor SB431542. Gingival fibroblasts were exposed to aqueous
supernatants of (A) OraGRAFT® Demineralized Cortical Particulate (SC) and (B) OraGRAFT® Prime (SF) and (C,D) the
acid lysates of the two respective allografts (LC and LF). The expression of IL11 was diminished by SB431542, the TGF-β
receptor type I kinase. N = 4. Statistic is a paired t-test.

2.5. TGF-β1 Activity by Immunoassay in Supernatants of OraGRAFT®

To underpin the TGF-β activity, gingival fibroblasts were exposed to the supernatant of
OraGRAFT® and the translocation of Smad2/3 was analyzed by immunostaining (Figure 5).
We observed that the supernatant of OraGRAFT® Demineralized Cortical Particulate (SC)
and OraGRAFT® Prime (SF), both and similar to recombinant TGF-β1, caused a nuclear
translocation of Smad2/3 but not in the presence of the TGF-β receptor type I kinase-
inhibitor SB431542.

Figure 5. Nuclear translocation of Smad2/3 in response to the allograft supernatants. Gingival fibroblasts were exposed
to aqueous supernatants of OraGRAFT® Demineralized Cortical Particulate (SC) and OraGRAFT® Prime (SF) with and
without the TGF-β receptor type I kinase-inhibitor SB431542. Recombinant TGF-β1 served as a positive control. Without
(wo) is the serum-free medium alone. The positive signals induced by SC and SF are indicated by the nuclear staining that
is blocked by the SB431542.

2.6. Gelatin Zymography of Supernatants and Lysates of OraGRAFT®

Considering that TGF-β, which is adsorbed by decorin linked to collagen, is re-
leased by matrix metalloproteinases (MMPs) [31] and MMPs are involved in TGF-β activa-
tion [32], we have tested the gelatinolytic activity of the supernatants and the acid lysates
of OraGRAFT® Demineralized Cortical Particulate (SC and LC) and OraGRAFT® Prime
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(SF and LF) by zymography (Figure 6). We noticed a single band that indicates the presence
of MMP2, but not MMP9, in all preparations. Thus, the supernatants and the acid lysates
of the allografts digest gelatin.

Figure 6. Gelatin zymography of allograft supernatants and acid lysates. Aqueous supernatants of OraGRAFT® Demineralized
Cortical Particulate (SC) and OraGRAFT® Prime (SF) and the respective acid lysates (LC and LF) were subjected to gelatin
zymography. The bands representing the digestion of gelatin indicate the presence of matrix metalloproteinase-2 (MMP2).

2.7. Blocking of Protease Activity Reduces TGF-β1 Activity in Supernatants of OraGRAFT®

Finally, we blocked proteases and measured the TGF-β1 activity released from the
allograft. (Figure 7). The presence of protease inhibitors reduced TGF-β1 activity of the
aqueous supernatants of OraGRAFT® Prime, as indicated by the expression of IL11, NOX4,
and PRG4, compared with preparations without the inhibitors. Accordingly, the proteases
intrinsic to allografts are involved in the release and/or the activation of TGF-β1.

Figure 7. Protease inhibitors lower the TGF-β activity in the supernatant of OraGRAFT® Prime. Gingival fibroblasts were
exposed to aqueous supernatants of OraGRAFT® Prime in the absence (SF) or presence (SFP) of the protease inhibitors. The
expression of (A) IL11, (B) NOX4, and (C) PRG4 was decreased significantly by protease inhibitors. The expression of IL11,
NOX4, and PRG4 was measured by quantitative RT-PCR. N = 4. Statistic is a paired t-test.

3. Discussion

Allograft DBM is widely applied in regenerative medicine, particularly to reconstruct
bone defects that otherwise would not heal adequately. In dentistry, the reconstruction of
bone that is lost due to atrophy [3] or as a consequence of inflammatory osteolysis [4] is a
prerequisite for the placement of dental implants. It was particularly the osteoinductive
property of DBM that have inspired the search for growth factors [15–17], ultimately leading
to the discovery of the members of the BMP family [18–20]. Today, recombinant BMP2
is clinically approved for bone graft in sinus augmentation and localized alveolar ridge
augmentation [33,34], as well as spinal fusion procedures in skeletally mature patients with
degenerative disc disease [35]. TGF-β, despite giving the name for the superfamily, has
not been studied extensively in the context of DBM [27]. This is likely because one might
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assume that TGF-β, which is rich in the original bone matrix, is removed by the acid lysis
of the demineralization step. In contrast to this assumption, we show here that the aqueous
solution of OraGRAFT® allografts not only releases TGF-β1 detected by immunoassay, but
that the aqueous solution has the capacity to increase IL11, NOX4, and PRG4 expression
in gingival fibroblasts. Our data further suggest that gene expression changes require the
activation of the TGF-β receptor type I kinase as well as the activation of the Smad2/3
downstream signaling pathway. Finally, we show that the release of TGF-β activity from
the OraGRAFT® allografts requires the intrinsic proteases.

If we relate the findings to those of others, we can confirm previous observations where
immunoassays have identified TGF-β1 in guanidine HCl-treated DBM of one manufacturer,
whereas two other products have negligible amounts of TGF-β1 [27]. Thus, DBM is not
necessarily a synonym for acid-soluble TGF-β. Moreover, TGF-β detected by immunoassay
upon guanidine HCl treatment does not indicate TGF-β activity. Here, we used an aqueous
extraction to release a TGF-β activity from OraGRAFT® products. Our findings suggest that
processing of the original allogenic bone into a final product allows for TGF-β activity to
be preserved; processing means defatting and clearing, virus inactivation and sterilization,
and a process termed the Allowash XG [36]. Moreover, processing of the original allogenic
bone maintains at least part of the original MMP2 activity, a protease known to activate
latent TGF-β [37]. Our data support the notion that the proteolytic activity of the allografts
contributes to the liberation and activation of the TGF-β of the extracellular matrix. Taken
together, our observations extend existing knowledge on allograft TGF-β activity.

The clinical relevance remains a matter of debate, but the data suggest that the
OraGRAFT® products release a TGF-β activity that becomes available to the cells at the
augmentation site. If the host cells indeed respond to the TGF-β, considering that TGF-β1
attracts mesenchymal cells capable of becoming bone-forming osteoblasts during remodel-
ing [24], then OraGRAFT®’s TGF-β might affect the overall process of graft consolidation.
However, this is a hypothesis, rather than a conclusion, which leaves room for future
research. We can further assume that the TGF-β activity of DBM is an easy-to-handle
predictor, a surrogate parameter of a BMP activity that is usually tested by ectopic implan-
tation in a preclinical setting [15–17,38]. Both molecules are rather similar in nature, being
resistant to the low pH required for demineralization and heating becoming important
in virus inactivation [18–20,39]. The bioassay presented here can be further standardized
towards a reporter cell line that allows screening the TGF-β activity for quality control
while manufacturing the DBM [40], considering that testing the osteoinductive activity of
each batch is not feasible on an industrial level.

The study presented here leaves many questions unanswered. For instance, by which
mechanism is TGF-β released into the aqueous fraction and why is the amount of TGF-β
lower in the respective acid lysates of the OraGRAFT® product? Our observations that
the aqueous fraction of the OraGRAFT® product contains MMP2 activity together with
the findings observed with a protease inhibitor propose a mechanism for how the TGF-
β that is usually bound to the extracellular matrix is released into the supernatant [31].
The underlying mechanism required further research. Other questions are related to
identifying other growth factors released from the OraGRAFT® products. The bioassay
presented here, based on IL11, NOX4, and PRG4 expression, is designed to show TGF-β
activity, thus not covering the other growth factors released from DBM. Moreover, IL11
and NOX4 in particular are critically involved in mediating downstream TGF-β effects in
cardiovascular and liver fibrosis [16,17] as well as systemic sclerosis [18]. However, further
investigation is required to determine if IL11 and NOX4 mediate the TGF-β activity during
bone regeneration. There is at least support for IL11 together with BMP-2 to accelerate bone
regeneration [41] and for NOX4 to modulate osteoblast BMP-2 activity [42]. Additionally,
PRG4 supports endochondral bone formation [43]. Future research should determine the
possible role of the three selected genes to mediate part of the TGF-β activity released
from allografts.
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Future research should identify the proteomic signature of the aqueous solution of
OraGRAFT® and an overall allograft similar to what we have shown recently with acid
bone lysates [23] and collagen-based biomaterials used for guided bone regeneration and
soft tissue augmentation [44]. We should further consider a whole genome screening to
identify all target genes, apart from IL11, NOX4, and PRG4, being activated in fibroblasts,
for instance by gene arrays or RNAseq [23,29,30]. In line with this research strategy is to
identify the overall cellular responses of progenitors of bone-forming osteoblasts and bone-
resorbing osteoclasts. By this approach, we could identify further growth factors released
by OraGRAFT® products and uncover the mechanism involved in bone regeneration and
thus graft consolidation. Finally, the possible variation of TGF-β activity depending on
the lot requires attention in future studies. Thus, the data presented here are a primer
for future research to broaden existing knowledge towards the refining and controlling
manufacturing processes and to study the impact of allograft-derived TGF-β in the process
of graft consolidation.

4. Materials and Methods
4.1. Preparation of Allograft Supernatants and Lysates

OraGRAFT® Demineralized Cortical Particulate (1.2 cm3; IDs: 1817033-3066; 1817033-
3079; 1817003-3080; 1817033-3086; and 1817033-3094) and OraGRAFT® Prime consisting of
moldable fibers of DBM (1.0 cm3; IDs: 1910583-3057; 1910583-3060; 1910583-3064; 1910583-
3067; and 1910583-3069; LifeNet Health Europe GmbH, Vienna, Austria) were submerged in
4.8 mL and 8.0 mL, respectively, of serum-free Dulbecco’s Modified Eagle Medium (DMEM)
for 72 h (Sigma Aldrich, St. Louis, MO, USA) and left under continuous shaking overnight
at room temperature. Supernatants of each respective OraGRAFT® were obtained upon
centrifugation at 21,000 g for 10 min (Centrifuge 5420, Eppendorf, Hamburg, Germany).
The supernatant of OraGRAFT® Demineralized Cortical Particulate (SC) and OraGRAFT®

Prime consisting of moldable fibers (SF) were collected. The pelleted remaining allografts
were resuspended in 1N HCl and left shaking for 72 h at room temperature. Acid lysates
from each respective OraGRAFT® (LC and LF) were collected through one centrifugation
step. Their pH was then neutralized. All samples were stored in aliquots at –20 ◦C.

4.2. Cell Culture

Tissue samples of human gingiva were harvested from the extracted third molars of
patients who had given informed and written consent. Prior to sample attainment, the
Ethics Committee of the Medical University of Vienna (EK NR 631/2007) approved the
protocol. In total, three strains of fibroblasts were established through explant cultures and
less than 10 passages were used for the experiments. Cells were cultured in a humidified
atmosphere at 37 ◦C in a growth medium consisting of DMEM, 10% fetal calf serum
(Bio&Sell GmbH, Nuremberg, Germany), 1% of 10,000 units penicillin, and 10 mg of
streptomycin/mL (Sigma Aldrich, St. Louis, MO). Cells were seeded at a concentration
of 30,000 cells/cm2 onto culture dishes one day prior to stimulation. The stimulation was
done by cell exposure to the supernatants and the lysates of the allografts. To examine
the influence of TGF-β signaling, the inhibitor of TGF-β receptor type I kinase SB431542
(Calbiochem, Merck, Billerica, MA, USA) was used at 10 µM. Gene expression analysis
and immunostainings were done as indicated. To identify the influence of proteases, the
protease inhibitor cocktail tablet (Roche Diagnostics, Mannheim, Germany) was solved in
50 mL of serum-free DMEM and used for preparing the supernatant of OraGRAFT® Prime.
Gene expression analysis was done as indicated.

4.3. Cell Viability Assay

For the viability assay, gingival fibroblasts were seeded in the 96-well plate, then the
following day, they were treated with 6 to 50% of aqueous solutions of the supernatants
and acid lysates from both allografts overnight. For cell viability, MTT reagent (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Sigma Aldrich, St. Louis, MO,
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USA) at a final concentration of 0.5 mg/mL was added to each well of a microtiter plate
and incubated for 2 h at 37 ◦C, 5% CO2, and 95% humidity. The medium was removed, and
the formazan crystals were solubilized with dimethyl sulphoxide (Sigma Aldrich, St. Louis,
MO, USA). The optical density was measured at 570 nm. The data from independent
experiments are presented as percentages of the optical density in the treatment groups
normalized to the unstimulated controls that were considered 100% viability regardless of
the optical density.

4.4. RT-PCR and Immunoassay

Total RNA was isolated with the ExtractMe total RNA kit (Blirt S.A., Gdańsk, Poland).
Reverse transcription (RT) was performed with the LabQ FirstStrand cDNA Synthesis Kit
(LabQ, Labconsulting, Vienna, Austria). Reverse transcription-polymerase chain reaction
(RT-PCR) was done (LabQ, Labconsulting, Vienna, Austria) on a CFX Connect™ Real-Time
PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA). Primer sequences are
in Table 2. IL11 primer qHsaCEP0049951 was from Bio-Rad Laboratories, Inc. (Hercules,
CA, USA). The mRNA levels were calculated by normalizing to the housekeeping genes
GAPDH and 18s using the ∆∆Ct method. The immunoassay was done with the TGF-β1
and human IL11 Quantikine ELISA kit (R&D Systems, Minneapolis, MN, USA).

Table 2. The primer sequences

Primers Sequence_F Sequence_R

hNOX4 TCTTGGCTTACCTCCGAGGA CTCCTGGTTCTCCTGCTTGG

hPRG4 CAGTTGCAGGTGGCATCTC TCGTGATTCAGCAAGTTTCATC

hGAPDH AAGCCACATCGCTCAGACAC GCCCAATACGACCAAATCC

h18s CCGATTGGATGGTTTAGTGAG AGTTCGACCGTCTTCTCAGC

4.5. Immunofluorescence

Gingival fibroblasts were plated in growth medium onto Millicell® EZ slides (Merck
KGaA, Darmstadt, Germany). The following day, cells were treated with serum-free
medium overnight. The next day, cells were exposed to 30% of supernatants (SC and
SF) with and without SB431542 for 30 min. Cells were then fixed in paraformaldehyde
and blocked in 5% bovine serum albumin (BSA) and 0.3% Triton X-100 in phosphate-
buffered saline (PBS) at room temperature, after which permeabilization with 0.1% Triton
X-100 took place. Cells were incubated with Smad2/3 antibody (D7G7 XP® rabbit mAb
#8685, Cell Signaling, MA) overnight at 4 ◦C. Then, an Alexa Fluor® 488-conjugated
secondary antibody (Anti-Rabbit, Cell signaling Technology, Danvers, MA, USA) for 1 h
at room temperature was used. Finally, cells were washed and mounted onto glass slides.
Images were captured under a fluorescent microscope (Axio Imager M2, Carl Zeiss AG,
Oberkochen, Germany).

4.6. Gelatin Zymography

Aqueous solutions of the supernatants and acid lysates from both allografts were
mixed with Laemmli buffer and run on 10% sodium dodecyl sulfate (SDS-PAGE) gels
containing 0.1% gelatin (Sigma Aldrich, St. Louis, MO, USA). After electrophoresis, gels
were washed (50 mmol/L Tris HCl pH 7.5, 2.5% Triton X-100, 1 µM ZnCl2, 5 mmol/L
CaCl2) two times for 30 min. Gels were then incubated overnight in incubation buffer
(50 mmol/L Tris HCl pH 7.5, 1% Triton X-100, 1 µM ZnCl2, 5 mmol/L CaCl2) at 37 ◦C.
The following day, gels were stained in Brilliant Blue R staining solution (Sigma Aldrich,
St. Louis, MO, USA) for 30 min following destaining (methanol:acetic acid:water; 50:10:40).
MMP2 activity appears as a clearance zone of digested gelatin within the stained gel at
72 kDa.
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4.7. Statistical Analysis

Data points represent independent experiments with the median. The paired t-test
was used to compare the two groups (SC and LC; SF and LF) in Figures 1, 2, 4 and 7. For
the data in Figure 3, we used the uncorrected Friedmann test against untreated controls.
Analyses were performed using Prism v8 (GraphPad Software, La Jolla, CA, USA). p-Values
are indicated in the figures.
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