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Abstract

Acid bone lysates (ABLs) represent the growth factors and other molecules released

during autologous graft resorption. However, the impact of these bone-derived

growth factors on the healing of bone defects has not yet been investigated. The aim

of the present study was, therefore, to examine the impact of ABLs adsorbed to col-

lagen membranes on bone regeneration. To this end, in 16 female Sprague Dawley

rats, a standardized 5-mm-diameter critical size defect on the calvarial bone was cre-

ated. The defects were covered with collagen membranes that had been soaked

either in serum-free media or ABLs followed by lyophilization. After a healing period

of 4 weeks, micro-computed tomography (μCT) and histological analyses by means of

undecalcified thin ground sections were performed. μCT analysis of the inner 4 mm

of the calvaria defect showed a greater bone defect coverage in the control group

when compared to ABL group, 29.8% (confidence interval [CI]: 17.7–50.3) versus

5.6% (CI: 1.0–29.8, p = .03), respectively. Moreover, we found significantly more

absolute bone volume (BV) in the control group when compared to ABL group,

0.59 mm3 (CI: 0.27–1.25) versus 0.07 mm3 (CI: 0.06–0.59, p = .04), respectively. His-

tomorphometry confirmed these findings with a relative BV in the central compart-

ment of 14.1% (CI: 8.4–20.6) versus 5.6% (CI: 3.4–7.9, p = .004), respectively. These

findings indicate that bone-derived growth factors contained in ABLs are able to

attenuate bone regeneration within collagen membranes.
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1 | INTRODUCTION

Bone augmentation has become a standard procedure driven by the

need to increase bone volume (BV) in atrophic jaws prior to implant

placement. One common procedure for bone augmentation is the use

of autologous bone grafts, either as bone blocks or as bone chips

(Naenni, Lim, Papageorgiou, & Hammerle, 2019). Autologous bone

grafts, however, undergo resorption leading to the shrinkage of the

bone block or the disappearance of the bone chips (Naenni

et al., 2019). Up to one-quarter of the original, graft size can be

resorbed at the time of implant placement (Mertens et al., 2013). This

osteoclastic resorption occurs during the early graft consolidation
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process at the augmented site (Saulacic et al., 2015). Despite its sus-

ceptibility to catabolic changes, autologous bone is still considered the

gold standard for bone augmentation, mainly due to the enhanced

performance compared to bone substitutes during the early phases of

bone healing (Buser et al., 1998). Apart from these favorable

osteoconductive properties of autografts, it is widely believed that

the growth factors released by osteoclasts during graft resorption,

including TGF-β, support the process of bone regeneration.

TGF-β is one of the most abundant growth factors in the bone

matrix (Bismar et al., 1999) which can be released during bone resorp-

tion or under acidic conditions (Hauschka, Mavrakos, Iafrati, Doleman,

& Klagsbrun, 1986; Pfeilschifter et al., 1998; Strauss et al., 2018). TGF-β

is then capable of binding to dental implants and collagen membranes

(Stahli, Miron, Bosshardt, Sculean, & Gruber, 2016; Strauss et al., 2019).

Nevertheless, the role of TGF-β is not so clear, as it can support but also

hinder bone regeneration. For example, bone-derived TGF-β recruits

mesenchymal cells, the progenitors of bone-forming osteoblasts, to the

site of bone remodeling (Crane & Cao, 2014). Similarly, TGF-β initiates

and promotes heterotopic ossification in mice via recruiting mesenchy-

mal progenitors (Wang et al., 2018). TGF-β1 induces bone closure of

rabbit skull defects (Beck et al., 1993) and TGF-β1-loaded implants pro-

voke an increased bone surface area in a rabbit cranial defect model

(Vehof, Haus, de Ruijter, Spauwen, & Jansen, 2002). In contrast, TGF-β1

loaded β-TCP failed to support bone formation in a rat calvaria model

(Elimelech et al., 2019) and in vitro, TGF-β reduces osteogenic differen-

tiation in cell culture models (Noda & Rodan, 1986). High-doses of

TGF-β1 also dampened bone regeneration by repressing the bone mor-

phogenetic protein 2 activity (Xu et al., 2020). Therefore, and consider-

ing that acid bone lysates (ABLs) are a rich source of TGF-β that binds

to collagen (Strauss et al., 2018), the question arises whether the local

application of ABLs supports or hinders bone regeneration.

Recently, we characterized the molecular composition of ABLs pre-

pared from porcine bone chips (Strauss et al., 2018). We showed that

activation of the TGF-β signaling pathway is the major response of mes-

enchymal cells upon their exposure to ABLs along with revealing the

expected decrease of in vitro osteogenic differentiation (Strauss

et al., 2018). Since TGF-β adsorbs to collagen (Hempel et al., 2012) and

thus to the classical collagen barrier membranes (Stahli et al., 2016), these

membranes can be considered as suitable carriers to investigate ABLs on

bone regeneration in vivo. Using this approach, we recently demon-

strated that bone-conditioned medium lyophilized onto collagen mem-

branes slightly reduces bone formation in rat calvaria defects (Kuchler

et al., 2018). Taking advantage of this established model, the aim of the

present study was, therefore, to examine the impact of ABL adsorbed to

collagen membranes on bone regeneration in rat calvaria defects.

2 | MATERIAL AND METHODS

2.1 | Study design

The present study was conducted at the Department of Biomedical

Research of the Medical University of Vienna following the ARRIVE

guidelines (Kilkenny, Browne, Cuthill, Emerson, & Altman, 2011).

Before starting the study, an approval of the study protocol was

obtained by the local ethical committee at the Medical University of

Vienna (GZ BMWFW-66.009/0217-WF/V/3b/2015). Briefly, sixteen

7-month old (200–300 g) female Sprague Dawley rats from the Divi-

sion for Biomedical Research (Himberg, Austria) were randomly allo-

cated into two groups with eight animals each: control group received

collagen membranes soaked in serum-free medium (SFM) and ABLs

group received collagen membranes soaked in ABLs. Collagen mem-

branes (25 mm × 25 mm; Bio-Gide®, Geistlich, Wolhusen, Switzer-

land) were loaded with SFM or with 1 ml of pooled ABLs and frozen

at −80�C. Lyophilization was then performed using a freeze dryer

Alpha 1–2 LDplus (Martin Christ, Osterode am Harz, Germany). Ran-

domization was performed via a computer-generated randomization.

The animals were treated according to the guidelines for animal care

with free access to water and a standard diet (Kilkenny, Browne,

Cuthill, Emerson, & Altman, 2010).

2.2 | Acid bone lysate

ABL was prepared as recently described (Strauss et al., 2018; Strauss

et al., 2019). Bone was obtained from adult pigs within 6 hr post-mortem

(Fleischerei Leopold Hödl, Vienna, Austria). Bone chips from the mandi-

ble, calvaria, and tibia were harvested with a bone scraper (Hu-Friedy,

Rotterdam, The Netherlands). Thereafter, the bone chips were cleaned

using Dulbecco's modified Eagle medium that was supplemented with

antibiotics (Invitrogen Corporation, Carlsbad, CA). Five grams of wet

bone chips were incubated while being stirred with 50 ml of 0.1 N HCl

(10% weight/volume) at room temperature. ABLs were harvested after

16 hr, centrifuged, and then pH neutralized. Subsequently, another cen-

trifugation was performed. ABLs were then filtered sterile using a 0.2 μm

syringe filter (VWR International, PA) and kept frozen at −80�C. Right

before each experiment, the stocks were thawed.

2.3 | Surgical procedures and postoperative
treatment

The surgical procedures were performed as previously described

(Kuchler et al., 2018). Briefly, all rats received ketamine (50 mg/kg i.p.)

(AniMedica, Senden, Erlangen, Germany) and xylazine hydrochloride

(10 mg/kg i.p) (Bayer Austria, Vienna, Austria). A standardized 5-mm-

diameter critical size defect was created on the calvaria bone by the use

of a trephine burr (Medos Medizintechnik; Vienna, Austria). The colla-

gen membrane was trimmed and placed onto the defects. The mem-

brane overlapped the walls of the defect by at least 1 mm. Thereafter,

the membrane was stabilized and the flap was sutured in layers with

resorbable sutures (Vicryl 5-0; Ethicon GmbH, Norderstedt, Germany).

Buprenorphine 0.06 mg/kg, (Temgesic®, Temgesic, Reckitt, and Colman

Pharm., Hull, UK) and piritramide in drinking water ad lib was adminis-

tered for pain relief. After 4 weeks of healing, animals were sacrificed

by an intracardial overdose of sodium pentobarbital (300 mg/kg).
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Samples from each calvarium was obtained and further processed for

micro-computed tomographic (μCT) and histological analysis.

2.4 | μCT analysis

After euthanasia, the 16 heads were fixed in phosphate-buffered for-

malin (Roti-Histofix 4%, Carl Roth, Karlsruhe, Germany). μCT was car-

ried out at 90 kV/200 μA with an isotropic resolution of 17.2 μm and

an integration time of 500 ms (μCT 50 Scanco Medical AG,

Bruttisellen, Switzerland). The images were rotated using Amira 6.2

(Thermo Fisher Scientific, Waltham, MA) to obtain the drill direction

in the Z axis with the defect near the center of the image. Via the

Definiens Developer XD2® software (Munich, Germany, Version

2.1.1), the region of interest (ROI) was segmented from the μCT

images with an individually developed ruleset. The mineralized tissue

within the inner 4 mm of the defect was measured.

2.5 | Histological and histomorphometric analysis

The 16 samples were dehydrated with ascending alcohol grades and

embedded in light-curing resin (Technovit 7200 VLC + BPO; Kulzer &

Co., Wehrheim, Germany). Blocks were further processed using

EXAKT cutting and grinding equipment (Exakt Apparatebau, Nor-

derstedt, Germany). Thin-ground sections from all samples were pre-

pared in a plane parallel to the sagittal suture and through the center

of the defect and stained with Levai–Laczko dye. The slices were

scanned using an Olympus BX61VS digital virtual microscopy system

(DotSlide 2.4, Olympus, Japan, Tokyo) with a 20× objective resulting

in a resolution of 0.32 μm per pixel and then quantified using Adobe

Photoshop® software (Adobe, San Jose, CA). Histomorphometric

analysis was performed at three ROIs representing (a) the central

compartment within the defect margins, (b) the adjacent ectocranial

compartments, and (c) the outer compartment on the surface of the

host's cortical bone.

2.6 | Statistics

Statistical analysis was based on the data observed with the μCT and

histomorphometric analysis. The Shapiro–Wilk test was used to test

the normality of the data sets. For μCT, median values and confidence

intervals (CIs) of the primary outcome (percentage of bone defect cov-

erage) and the BV between control and test group were compared

with Mann–Whitney U test due to the distribution of the data. For

histomorphometry, BV per tissue volume (BV/TV in %) between con-

trol and test group were compared with Mann–Whitney U test. Ana-

lyses were performed using Prism v7 (GraphPad, La Jolla, CA). Owing

to the pilot nature of the study, the sample size was chosen based on

experience from previous studies (Kuchler et al., 2018) to balance the

ability to measure significant differences while reducing the number

of animals used. Significance was set at p < .05.

3 | RESULTS

3.1 | μCT analysis

Figure 1 shows three representative samples per group of the calvaria

defect, corresponding to the minimum (a, b), median (c, d), and maxi-

mum (e, f) value in terms of bone regeneration. The control group dis-

played higher amounts of BV compared to the ABL group. Moreover,

there was a subjective impression of a bone formation pattern, possi-

bly caused by the fibrils of the collagen membrane (Figure 1). Quanti-

tative analysis of the inner 4 mm of the defect showed that the

relative bone area was significantly higher in the control group than in

the collagen membranes soaked and lyophilized with ABLs, 29.8% (CI:

17.7–50.3) versus 5.6% (CI: 1.0–29.8), respectively (p = .03) (Fig-

ure 2a). Quantitative analysis further displayed that also the BV was

significantly higher in the control group compared to the ABL group,

0.59 mm3 (CI: 0.27–1.25) versus 0.07 mm3 (CI: 0.06–0.59), respec-

tively (p = .04) (Figure 2b). Taken together, these findings suggest that

ABLs lyophilized onto collagen membranes reduce bone formation in

a rat calvarial defect model.

F IGURE 1 Micro-CT overview of the defect anatomy, bone in
contact with host bone and bony islands after 4 weeks of healing. Rat
calvaria defects were treated with collagen membranes either soaked
in (a, c, e) serum-free medium, or (b, d, f) in acid bone lysates (ABL).
Micro-CT pictures representing the samples with (a, b) minimum, (c, d)
median, and (e, f) maximum bone volume based on quantitative
analysis
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3.2 | Histomorphometric analysis

Figure 3 shows three representative ground sections per group of the cal-

varia defect, corresponding to the minimum (a, b), median (c, d), and maxi-

mum (e, f) values in terms of bone regeneration according to the μCT

analysis. In agreement with the μCT analysis, the control group showed

more bone formation as compared to ABL group. To confirm these subjec-

tive impressions, an histomorphometric analysis was conducted (Figure 4a).

The histomorphometric analysis revealed that in the central compartment

of the defect, the percentage of BV per tissue volume (BV/TV) was signifi-

cantly higher in the control group compared to ABL group, 14.1% (CI: 8.4–

20.6) versus 5.6% (CI: 3.4–7.9, p = .004), respectively (Figure 4b). Next, and

in order to determine whether the effect of ABL was restricted to the cen-

tral compartment, two other ROIs were analyzed. The percentage of BV/

TV did not differ between the control and ABL group, neither in the

ectocranial compartments of the defect, 8.0% (CI: 4.6–14.9) versus 7.5%

(CI: 1.9–10.5, p > .05) (Figure 4c), nor in the outer compartment

encompassing the external surface of the defect's margin, 14.2% (CI: 9.0–

20.4) versus 15.4% (CI: 8.1–29.13, p > .05), respectively (Figure 4d). Over-

all, these observations indicate that the effects of ABLs are restricted to the

area encompassed by the collagenmembrane.

3.3 | Histological analysis

Histological analysis confirmed previous findings that bone formation

mainly occurs inside the collagen membrane (Figure 5) (Kuchler

et al., 2018). The fibers of the original collagen membrane (light pink)

are either surrounded by the new bone or soft tissue. The calvarial

defect in the control group was mainly filled by woven bone (dark pur-

ple). This woven bone formed trabecular ridges with random orientation

and was enclosed either by thin layers of parallel-fibered bone (light

purple) or thin layers of osteoid. These observations together with the

histomorphometric analysis suggest that the effects of ABLs on bone

regeneration are restricted to the area of the collagen membrane.

4 | DISCUSSION

The main finding of the present study was that ABLs lyophilized on

collagen membranes reduce bone formation in a critical size defect on

F IGURE 2 Acid bone lysate (ABL) reduces bone regeneration in
the calvaria defect. Quantitative analysis of (a) bone defect coverage
and (b) bone volume in the region of interest (the inner 4 mm
diameter of a 5 mm defect). Statistical analysis was based on the data
observed with the μCT analysis. The two groups were compared with
Mann–Whitney U test. p-values are indicated

F IGURE 3 Histological overview of the defect anatomy after 4 weeks of healing. Rat calvaria defects were treated with native collagen
membranes either soaked in serum-free medium (a, c, e), or in acid bone lysate (ABL) (b, d, f). Histological pictures representing the samples with
minimum (a, b), median (c, d), and maximum (e, f) bone volume based on quantitative analysis. The local host calvaria bone demarcates the defect
borders and appears in light purple. The newly formed bone stained in dark purple appears in the spongy part of the collagen membranes
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rats. Despite the high variation within each group, the impact of ABL

compared to a SFM control was consistent and significant. This obser-

vation was somehow unexpected based on the widely held belief that

growth factors released by osteoclast during graft resorption support

bone regeneration. Certainly, acid treatment of bone chips cannot

simulate the complex activity of osteoclasts via a continuous acidifica-

tion and a simultaneous proteolytic cleavage of the collagen-rich

extracellular matrix by the cathepsin K and other proteases

(Teitelbaum, 2000). ABLs can only partially, if at all, represent the

osteoclastic activity during the early stage of graft resorption. Never-

theless, there are functional similarities between the ABL and what is

released from osteoclasts. For example, in vivo, TGF-β liberated by

osteoclasts recruits mesenchymal cells to the site of bone remodeling

(Crane & Cao, 2014). ABL, apart from being a rich source of TGF-β,

can activate the respective signaling pathways on mesenchymal cells

(Strauss et al., 2019). It should be noted, however, that the proposed

involvement of TGF-β signaling regarding the attenuating effects of

ABLs remains to be examined, for example, by using a pharmacologic

inhibition of TGF-β receptor type I kinase such as SB431542 (Inman

et al., 2002).

These findings with ABLs are partially consistent with our earlier

observation gathered with bone conditioned medium, which is also a

bone-derived aqueous fraction containing TGF-β1 (Peng et al., 2015),

leading to a slight reduction of bone formation in a rat calvaria defect

model (Kuchler et al., 2018). Since bone conditioned medium is not

subjected to acid lysis (Peng et al., 2015), this previous report may be

considered a related control experiment (Kuchler et al., 2018). In vitro,

TGF-β signaling dramatically inhibits the BMP-2-dependent calcifica-

tion (Kawahara et al., 2015), similar to what we have observed with

the platelet secretome (Gruber, Kandler, Fischer, & Watzek, 2006).

The present observations are supported by other reports showing

that the canonical TGF-β1 signaling, via smad-3, decreases wound

healing in mouse models (Ashcroft et al., 1999). This also holds true

for fracture healing (Kawakatsu et al., 2011). In contrast, non-

F IGURE 4 The effect of acid bone lysates is restricted to the central compartment. (a) Histomorphometry on bone volume per tissue volume
BV/TV (%) was performed at three regions of interest (ROI); (b, Red ROI) the central compartment within defect margins, (c, yellow ROI) the
adjacent ectocranial compartments, and (d, green ROI) the outer compartment on the surface of the host cortical bone. The groups were
compared with Mann–Whitney U test. p-values are indicated

F IGURE 5 Detailed overview on the new bone in the control group (CG) and in the acid bone lysate (ABL) group. Note the characteristic
features of immature woven bone indicated by the intense purple stain and the large osteocyte lacunae. The dense art of the membrane is visible
in the upper part of control group also showing that new bone grows on the spongy part of the collagen membrane
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canonical signaling via TGF-β-activated kinase 1 (TAK1) supports cuta-

neous tissue repair (Guo, Hutchenreuther, Carter, & Leask, 2013). In

this context, it should be mentioned that ABL is a complex cocktail of

394 proteins, including but not limited to TGF-β1 (Strauss et al., 2018),

therefore possible explanations of the findings presented here should

not be limited to TGF-β signaling. Notably, bone regeneration is

almost restricted to the spongy part of the collagen membrane

(Kuchler et al., 2018). Again, one might speculate that bone-derived

TGF-β tends to accumulate onto the collagen matrix increasing its

concentration thereby attenuating bone formation.

When considering the histologic section and μCT, some of the

newly formed bone was located outside of the defect margin and

within the space created by membrane and host bone. This has raised

the question whether this bone formation is independent of the pres-

ence of ABL. Apart from the central compartment, where bone regen-

eration was significantly advanced in the control group compared to

ABL group, two other ROIs were analyzed, the ectocranial compart-

ment and the outer compartment. Interestingly, ABL had no impact

on bone formation in these two regions. It can thus be assumed that

the impact of ABL is restricted to the area defined by the collagen

membrane that adsorbs TGF-β1 and other molecules serving as an

osteoconductive carrier with a retard function. This osteoconductive

function is supported by the regeneration pattern displayed on the

μCT images suggesting that collagen membranes are not just passive

barriers (Omar, Elgali, Dahlin, & Thomsen, 2019). However, it cannot

be ruled out that ABLs may have modified the structure of the original

collagen membrane, particularly after lyophilization and thus having

an impact on bone regeneration. From these observations, it becomes

crucial to determine which proteins and other molecules within the

ABL remain adsorbed to the collagen membranes and are limiting

bone regeneration.

The clinical relevance of the present investigation is a matter of

speculation, but it provides at least a possible explanation why during

the resorption phase of graft consolidation bone formation is attenu-

ated (Saulacic et al., 2015). An abundance of TGF-β in the local micro-

environment may reduce the migration of mesenchymal cells for

coupled bone formation (Xu et al., 2018). At physiological levels, how-

ever, TGF-β1 might trigger the local expression BMP-2 thereby pro-

moting osteogenic differentiation. Some support for this hypothesis

comes from our findings that ABLs support the expression of BMP-2

in mesenchymal cells (Strauss et al., 2019). Based on this theory, it is

not the TGF-β released from bone by osteoclasts that initiates osteo-

genic differentiation, but rather an indirect effect that involves the

local expression of BMP-2. Another related aspect is the fact that

demineralized bone is osteoinductive, whereas the ABL has the oppo-

site effect. In this context, what does demineralized matrix retain that

promotes bone formation contrary to the suppression in osteogenic

differentiation induced by ABLs? One may speculate that the osteo-

inductive BMPs remain attached to the original bone extracellular

matrix and are not released by the acid treatment (Wang et al., 1988).

Indeed, proteomic analysis of ABLs failed to detect BMPs (Strauss

et al., 2018). From a clinical point of view, it is relevant to understand

how autograft resorption is coupled with bone regeneration and how

the process is controlled. The present findings might become clinically

relevant once it can be demonstrated that the growth factors released

from bone during resorption of grafts indeed reduce or even increase

bone formation.

The present study has other limitations that should be taken into

consideration. First, the present report involved a xenogenic setting,

using a porcine peritoneum-derived collagen membrane and porcine

ABL tested on a rat defect model. Second, the collagen membranes

underwent lyophilization together with a SFM or the ABLs. Consider-

ing that we did not include a regular collagen membrane, care should

be taken when interpreting the results regarding the osteoconductive

properties of the original collagen membrane. Since TGF-β and pre-

sumably also other growth factors adsorb to collagen membranes

(Stahli et al., 2016), lyophilization may be avoided in future research.

Potential research could focus on the question whether ABLs reduce

the formation of h-type endothelial cells that carry the osteogenic

progenitors into the defect (Sivaraj & Adams, 2016), or if the migra-

tion, proliferation, or osteogenic differentiation of osteogenic cells is

impaired in vivo. Research is also required to understand which of the

numerous proteins in ABLs are responsible for the decrease in bone

regeneration and whether the effects of ABLs only occur when loaded

onto collagen membranes. The present investigation certainly pro-

vides a few answers but raises many other new questions.

Taken together, these findings indicate that bone-derived growth

factors comprised in ABLs are able to attenuate bone regeneration in

a rat calvaria defect model.
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