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Abstract: Chronic inflammation is a pathological process where cells of the mesenchymal lineage
become a major source of inflammatory mediators. Platelet-rich fibrin (PRF) has been shown to
possess potent anti-inflammatory activity in macrophages, but its impact on mesenchymal cells
has not been investigated. The aim of this study was, therefore, to expose mesenchymal cells to
inflammatory cytokines together with lysates generated from liquid platelet-poor plasma (PPP),
the cell-rich buffy coat layer (BC; concentrated-PRF or C-PRF), and the remaining red clot layer
(RC), following centrifugation of blood. Heating PPP generates an albumin gel (Alb-gel) that
when mixed back with C-PRF produces Alb-PRF. Membranes prepared from solid PRF were also
subjected to lysis. We report here that lysates of PPP, BC, and PRF decreased the cytokine-induced
expression of interleukin 6 (IL6) and nitric oxide synthase (iNOS) in the bone marrow-derived ST2
cells. Consistently, PPP, BC, and PRF greatly decreased the phosphorylation and nuclear translocation
of p65 in ST2 cells. The inflammatory response caused by Pam3CSK4 was reduced accordingly.
Moreover, PPP, BC, and PRF reduced the enhanced expression of inflammatory mediators IL6 and
iNOS in 3T3-L1 pre-adipocyte mesenchymal cells, and iNOS and CCL5 in murine calvarial cells.
Surprisingly, PRF lysates were not effective in reducing the inflammatory response of human gingival
fibroblasts and HSC2 epithelial cells. The data from the present study suggest that both liquid PRF
and solid PRF exert potent anti-inflammatory activity in murine mesenchymal cells.

Keywords: platelet-rich fibrin; inflammation; Toll-like receptor; mesenchymal cells; cytokine

1. Introduction

Chronic inflammatory diseases share a conserved pathological mechanism where the
immune response fails to remove the detrimental agents, and thus the resolution of inflam-
mation is hampered [1–3]. Chronic inflammation drives a catabolic process that culminates
in tissue destruction [4,5]. This catabolic process is not restricted to the periodontium, and
when not resolved, follows a similar mechanism of destruction as found in rheumatoid
arthritis [6], Crohn’s disease [7], psoriasis [8], and refractory leg ulcers [9]. The detrimental
agents are manifold and often use the innate immunity trigged by the activation of pattern
recognition receptors expressed on macrophages. Activated macrophages release a large
spectrum of pro-inflammatory cytokines such as IL1β, IL6, IL17, and TNFα [2,10]. The
pro-inflammatory cytokines initiate a feed-forward process whereby neighboring cells are
forced to produce pro-inflammatory cytokines and chemokines. These neighboring cells
can be of the mesenchymal lineage, including fibroblasts of the soft connective tissue [11].
Chronic inflammation not only causes tissue destruction but also undermines the cellular
process of tissue regeneration [6]. There is thus a great demand on local strategies to
dampen the inflammatory process with an emphasis on cells of the mesenchymal lineage.
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Platelet-rich fibrin (PRF), a concentrate of cells and growth factors generated from
the centrifugation of whole blood, is one local technique aimed at assisting in alveolar
ridge preservation [12–14], increasing the width of the keratinized mucosa [15], treatment
of periodontal intrabony defects [16], and treating gingival recessions [17]. Moreover,
PRF is effective in the treatment of ulcers [9] and is used in other fields such as facial
esthetics [18,19] and sports medicine [19], including meniscal repair [20]. The clinical effect
of PRF can partially be explained by its growth factors, which can be identified by proteomics
analysis [21,22] and immunoassays [23,24]. In vitro, PRF causes an M1-to-M2 transition
in macrophage polarization [25,26] and reduces osteoclastogenesis [26,27]. Injectable PRF
was shown to have an anti-inflammatory effect on macrophages and dendritic cells [28].
Recently, L-PRF was reported to suppress LPS-induced inflammatory responses in Schwann
cells [29] and lower the inflammatory response of gingival fibroblasts to LPS in vitro [30],
inspiring further research towards the various fractions and preparation of PRF.

PRF is easily accessible and, apart from the investment into a centrifuge and consum-
ables, is a rather low-cost treatment option. Nevertheless, there is an ongoing debate on
the ideal protocol for PRF preparation with respect to the relative centrifugation force, the
time of centrifugation, and the use of horizontal versus fixed angle centrifuges [31,32]. The
debate also includes possible unwanted side effects of the silicone and silica particles found
on blood collection tubes to prepare solid PRF [33,34]. This can be entirely avoided when
liquid PRF is produced in chemical-free plastic tubes. Platelets and leucocytes accumulate
at the interface towards the red clot in a zone termed the “buffy coat” [35,36]. Moreover, the
platelet-poor plasma (PPP) layer above the buffy coat can be subjected to heat treatment so
that the albumin fraction is coagulated, thereby forming an “albumin gel” that maintains
stability for months in vivo [35,36]. We have recently shown that it is in particular the
PPP, BC, and PRF lysates that greatly suppress the inflammatory response of macrophages
in vitro [26]. However, their respective effects on cells of the mesenchymal lineage are not
fully understood.

Mesenchymal cells can maintain their potential to differentiate into tissues of mes-
enchymal origin including bone, cartilage, and adipose tissue [37]. Fibroblasts of the
gingiva or the skin are also of mesenchymal origin [38]. Cell lines represent at least some
of the major characteristics of primary cells. The bone marrow-derived mesenchymal
cell line ST2 can undergo osteogenic and adipogenic differentiation in vitro [39,40]. ST2
cells increase IL6 expression in response to prostaglandin E2 exposure [41]. The 3T3-L1
pre-adipocyte mesenchymal cells are an established model for adipogenesis, also used for
inflammation research [42]. Gingival fibroblasts are a widely used model for the investi-
gation of inflammation of the oral cavity and oral disease [43] and have been utilized in
PRF research [44,45]. The goal of the present study was to take advantage of the ST2 and
3T3-L1 cells and gingival fibroblasts to study the possible anti-inflammatory activity of the
various PRF preparations in vitro.

2. Results
2.1. PPP, BC, and PRF Reduced Cytokine-Induced Inflammation in Murine Mesenchymal Cells

To assess the anti-inflammatory effects of different fractions of PRF, we exposed
murine ST2, 3T3-L1, and calvaria cells along with human gingival fibroblast and HSC2
cells to TNFα and IL1β, either with or without 10% of PPP, BC, Alb-gel, RC, and 30%
of PRF lysates [25,26]. Gene expression analysis showed that PPP, BC, and PRF lysates
notably reduced the inflammatory response in ST2 and 3T3-L1 cells. Alb-gel and RC
fractions, however, failed to significantly reduce the expression of IL6 and iNOS genes
(Figure 1A,B and Figure 2A,B). To understand if cells with a more osteogenic phenotype
are also susceptive to PRF lysates, we preexposed ST2 cells to the strong osteogenic
differentiation factor BMP2 for 48 h [21]. Gene expression analysis showed that PPP,
BC, and PRF lysates are all capable of decreasing IL6 and iNOS under these conditions
(Figure 3A,B). To confirm these findings obtained by gene expression analysis, we measured
levels of IL6 protein in the supernatants. Consistently, PPP, BC, and PRF lysates, but not
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Alb-gel and RC, reduced the production of IL6 (Figures 1C and 2C). Moreover, in primary
calvaria cells, PPP, BC, and PRF lysates greatly dampened the expression of iNOS and
CCL5 (Figure 4A,B). IL6 was not considerably reduced, neither by PCR nor by ELISA (data
not shown). In gingival fibroblasts and HSC2, none of the fractions could significantly
reduce the inflammatory response indicated by expression of IL6 (Figure 5A,B) or IL8
(Figure S1).

Figure 1. PPP, BC, and PRF lysates reduced cytokine-induced inflammation in murine ST2 cells. ST2 cells were treated with
10% of PPP, BC, Alb-gel, RC, and 30% of PRF in the presence of the inflammatory cytokines TNFα and IL1β. (A,B) Data
indicate the x-fold changes of IL6 and iNOS gene expression (C) and the IL6 levels in the cell supernatant, n = 4. WO means
without and represents unstimulated cells.

Figure 2. PPP, BC, and PRF lysates reduced cytokine-induced inflammation in murine 3T3-L1 cells. 3T3-L1 cells were
treated with 10% of PPP, BC, Alb-gel, RC, and 30% of PRF in the presence of the inflammatory cytokines TNFα and IL1β.
(A,B) Data indicate the x-fold changes of IL6 and iNOS expression (C) and the IL6 levels in the cell supernatant, n = 4.

Figure 3. PPP, BC, and PRF lysates reduced inflammation in murine ST2 cells preincubated by BMP2. ST2 cells were treated
with BMP2 for 48 h, followed by addition of 10% PPP, BC, and 30% PRF in the presence of the inflammatory cytokines
TNFα and IL1β. (A,B) Data indicate the x-fold changes of IL6 and iNOS gene expression, n = 4.
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Figure 4. PPP, BC, and PRF lysates reduced inflammation in murine calvaria-derived cells. Calvaria
cells were exposed to 10% of PPP, BC, and 30% of PRF in the presence of the inflammatory cytokines
TNFα and IL1β. (A,B) Data indicate the x-fold changes of iNOS and CCL5 gene expression, n = 4.

Figure 5. None of the fractions reduced inflammation in gingival fibroblasts and HSC2. Gingival
fibroblasts and HSC2 were incubated with 10% of PPP, BC, and 30% of PRF in the presence of TNFα
and IL1β. In gingival fibroblasts, 10% of Alb-gel and RC were also added. (A,B) Data indicate the
x-fold changes of IL6 gene expression, n = 4.

2.2. PPP, BC, and PRF Can Suppress NF-κB Signalling

To further confirmed the ability of PPP, BC, and PRF to attenuate NF-κB p65 signaling,
we carried out Western blot analysis. ST2 cells were treated with 10% PPP, BC, Alb-gel,
RC, and 30% PRF lysates for 30 min, followed by exposure to TNFα and IL1β for another
30 min. PPP, BC, and PRF suppressed phosphorylation of p65 in ST2 cells (Figure 6A,B). To
further evaluate the inhibitory effect of PPP and BC on inflammation, we performed an
immunofluorescent analysis of NF-κB translocation. PPP, BC, and PRF strongly reduced the
NF-κB p65 translocation induced by TNFα and IL1β in ST2 cells (Figure 7). The respective
percentage of nuclear staining was calculated (Figure S2). This finding suggested that PRF
can attenuate NF-κB p65 signaling in ST2 cells.
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Figure 6. PPP, BC, and PRF could weaken phosphorylation of p65 in ST2 cells. Western blot analysis was carried out for
phospho-p65 and total p65. (A) ST2 cells were treated with TNFα and IL1β in the presence or absence of 10% of PPP, BC,
Alb-gel, RC, and 30% of PRF lysates. (B) Data indicate the relative changes normalized to p65.

Figure 7. PPP, BC, and PRF attenuated the translocation of NF-κB from the cytoplasm into the nucleus. ST2 cells were
exposed to TNFα and IL1β with or without PPP, BC, Alb-gel, RC, and PRF. Immunofluorescence analysis of intracellular
translocation of NF-κB p65 into the nucleus. Blue nuclei indicate the unstained cells and green nuclei are positive stained
cells. WO means without and represents unstimulated cells.

2.3. PPP and BC Can Suppress TLR2-Induced Inflammation in ST2 Cells

To confirm the findings observed for the cytokine-induced inflammation, we exposed
ST2 cells to Pam3CSK4, the agonist of TLR2 in the presence or absence of 10% PPP, BC, and
30% of PRF lysates. Lysates of all preparations suppressed the rather weak inflammatory
response provoked by Pam3CSK4 in ST2 cells (Figure 8A,B). Notably, all preparations
substantially reduced the IL6 levels (Figure 8C). Altogether, these results suggest that the
anti-inflammatory effects of PPP, BC, and PRF can be extended towards TLR agonists in
murine ST2 cells.

Figure 8. PPP, BC, and PRF can reduce inflammation provoked by TLR2 agonist in ST2 cells. The ST2 cells were exposed to
10% PPP, BC, and 30% PRF lysates in the presence of 5 µg/mL Pam3CSK4, agonists of TLR2. (A,B) Data show the x-fold
changes of IL6 and iNOS gene expression, and (C) the concentration of IL6 in the supernatant of ST2 cells. n = 4.
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3. Discussion

Since the clinical introduction of PRF in 2006, numerous attempts were made to parallel
the clinical research by deciphering possible cellular and molecular mechanisms that
explain the promising clinical observations [46]. Today’s basic research mainly focuses on
how PRF affects the proliferation and migration of cells of the mesenchymal lineage [47] and
the impact of PRF on gene expression driven by TGF-β [21,27,45,47]. Studies investigating
the impact of PRF on inflammation have been restricted to cells of the hematopoietic lineage,
e.g., macrophages [25,26,28] and dendritic cells [28]. This evidence suggests that PRF is
capable of shifting the pro-inflammatory M1 towards a resolving M2 phenotype [25,26,28].
Recently, L-PRF was reported to exert anti-inflammatory properties in LPS-treated gingival
fibroblasts [30]. Nevertheless, the question as to whether or not solid and liquid PRF exert
an anti-inflammatory activity in cells of the mesenchymal lineage has not yet been fully
elucidated. Moreover, the PRF fractions have not been tested. In the present study, we
clearly show the anti-inflammatory activity of the various fractions and preparations of
liquid and solid PRF in murine cells of the mesenchymal lineage.

The first main finding was that in accordance with our previous study on murine
macrophages [26], not only BC and PPP possess an anti-inflammatory activity in ST2
and 3T3-L1 cells, but also PRF lysates caused a robust inhibition of the inflammatory
response to TNFα and IL1β. This activity was independent of BMP-2, a strong inducer of
osteogenic differentiation [21]. Moreover, reduction of p65 phosphorylation and nuclear
translocation suggests an attenuated NF-κB signaling caused by PPP, BC, and PRF lysates.
When ST2 cells were exposed to Pam3CSK4, the inflammatory response was rather weak,
but nevertheless, PPP, BC, and PRF lysates exerted their anti-inflammatory activity by
reducing IL6 and iNOS expression. Further confirmation was derived from experiments
using murine calvaria cells; however, while PPP, BC, and PRF greatly reduced iNOS and
CCL5, no considerable reduction in IL6 production was observed. Taken together, the
anti-inflammatory activity of the blood fractions was not restricted to TNFα and IL1β but
extended towards the TLR signaling pathway. It would now be interesting to know which
blood-derived molecule is responsible for the anti-inflammatory activity of PPP, BC, and
PRF lysates in murine macrophages [25,26] and the respective mesenchymal cells.

The second main result was that the expected decrease of IL6 and IL8 by PRF was
not observed in human gingival fibroblast or the HSC2 oral squamous cell carcinoma cell
line. Knowing that the cell source is important [48], there is obviously a difference in the
responsiveness of murine and human cells to PPP, BC, and PRF lysates with respect to
the anti-inflammatory activity in vitro. This was unexpected as L-PRF suppressed the
LPS-induced inflammatory responses in gingival fibroblasts [30]. In the present study,
however, the origin of the blood fractions is human, and the effects were restricted to the
murine cells. The findings that murine but not human cell of the mesenchymal lineage
were susceptible to PRF leaves room for speculations. We used culture-expanded gingival
fibroblasts, which can undergo cellular aging and senescence [49]. Aging and senescence
might affect the responsiveness of the gingival fibroblast cells to PRF, but this is unlikely
because the cells showed a robust response to TNFα and IL1β. Moreover, we used an
allogenic and xenogenic model; donors of PRF and fibroblasts are not identical and were
even tested with murine cells. Allogenicity is critical when the immune system recognizes
foreign molecules upon organ donation [50]. However, when considering the blood
group and rhesus factor, research has found that blood transfusion is of low risk for the
patient [51]. Moreover, mesenchymal cells are not classical immune cells; thus, graft versus
host reactions can be ruled out. Mice’s blood volume is also too low to generate PRF for
in vitro testing. Another potential limitation is that we have not tested platelet-rich plasma
(PRP), the first generation of platelet concentrates prepared from anticoagulated blood [52].
Overall, the in vitro setting seems acceptable. Nevertheless, we need to understand why
the anti-inflammatory activity blood-derived molecules are restricted to mesenchymal cell
of murine origin.
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The study has more limitations. While the role of heating PPP and its effect on
anti-inflammatory activity is obvious, the impact of lysates prepared from the remaining
red clot remains enigmatic. The data leave us with the impression that the red lysates
occasionally enhance the already strong inflammation signal induced by TNFα and IL1β in
ST2 and 3T3-L1 cells. Our observation suggests that further studies need to be conducted
to elucidate whether or not the red cells can intensify inflammation. This is a reasonable
assumption since the red blood cells from healthy individuals regulate proliferation and
activity of T cells through modulating cytokine interactions [53] and they serve as a cytokine
reservoir [54]. Future studies discovering the inflammatory role of erythrocytes in the
blood fractions are proposed. The knowledge acquired from comparing the in vitro effects
of a natural blood clot to PRF membranes will aid in the resolution of this problem. Finally,
another study limitation is that we can only speculate about the clinical relevance of our
findings. The pro-resolving PRF might generate a local milieu that supports bone formation
to occur. The clinical implications of the current findings should, however, be interpreted
carefully particularly because we could not show the anti-inflammatory effects of PRF in
human cells.

Taken together, we report here that it is not only the cell-rich BC but also the PPP and
the PRF lysates derived from the PRF membrane that hold a potent anti-inflammatory ac-
tivity in murine mesenchymal cells. The same effect was not observed in the mesenchymal
cells of human origin, which emphasizes the importance of the cell source and the species.

4. Materials and Methods
4.1. Isolation and Culture of Murine ST2, 3T3-L1, and Calvaria Cells, and Human Gingival
Fibroblasts and HSC2

The ST2 mesenchymal stromal cells were isolated from mouse bone marrow (RIKEN
Cell Bank, Tsukuba, Japan), 3T3-L1 murine preadipocyte cell line kindly was donated by
Christian Wolfrum (ETH Zürich, Switzerland), and the oral squamous cell carcinoma cell
line HSC2 was obtained from Health Science Research Resources Bank (Sennan, Japan).
The cells were expanded in growth Dulbecco’s modified Eagle’s medium (DMEM, Sigma-
Aldrich, St. Louis, MO, USA), 10% fetal calf serum (Bio&Sell GmbH, Nuremberg, Germany),
and 1% antibiotics (Sigma Aldrich, St. Louis, MO, USA) and seeded at 3 × 105 cells/cm2

into 24-well plates. Human gingiva was harvested from extracted wisdom teeth from
patients who had given informed and written consent. An approval was obtained from the
Ethics Committee of the Medical University of Vienna (EK NR 631/2007). A total of three
strains of fibroblasts were generated by explant cultures, and fewer than five passages
were used for the experiments. Gingival fibroblasts were also expanded in the growth
medium. To prepare calvaria cells, we euthanized mouse pups less than 5 days old. Organ
donation from mice required an informal approval of the local veterinarian authorities but
not a formal approval by the Ethics Committee according to Austrian law. Murine calvaria
was subjected to 0.1% collagenase I and 0.2% dispase (both Gibco, Life Technologies Corp.,
Thermo Fisher Scientific, Waltham, MA, USA) sequential digestion. The first digest was
discarded, and the subsequent digests were pooled and expanded before freezing. For each
experiment, cells were seeded at a concentration of 3 × 105 cells/cm2 onto culture dishes
one day prior to stimulation. Cells were treated overnight with and without different 10%
of PPP and BC and 30% of PRF lysates in serum-free media under standard conditions
at 37 ◦C, 5% CO2, and 95% humidity. This setting was performed with and without
TNFα and IL1β at 20 ng/mL (both Sigma Aldrich, St. Louis, MO, USA) or Pam3CSK4 at
5 µg/mL (InvivoGen, Toulouse, France) to induce an inflammatory response. In indicated
experiments, ST2 cells were exposed to 300 ng/mL recombinant BMP-2 (ProSpec-Tany
TechnoGene Ltd., Rehovot, Israel) for 48 h prior to provoking the inflammatory response.

4.2. Preparation of PPP, Buffy Coat, Red Clot, and PRF Lysates

Volunteers signed informed consent, and the ethics committee of the Medical Uni-
versity of Vienna (1644/2018) approved the preparation of PRF. All experiments were
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performed in accordance with relevant guidelines, and regulations and were conducted
in accordance with the Declaration of Helsinki (1975), as revised in 2013. For preparing
liquid PRF fractions from non-coagulated blood, we collected venous blood from healthy
volunteers, three females and three males from 23 to 35 years, in plastic tubes (“No Addi-
tive“, Greiner Bio-One GmbH, Kremsmünster, Austria) and centrifuged it at 2000× g for
8 min (swing-out rotor; Z306 Hermle, Universal Centrifuge, Wehingen, Germany). The
uppermost 2 mL PPP, the 1 mL buffy coat (C-PRF), and the 1 mL erythrocyte fraction next
to BC/C-PRF were collected. To generate Alb-gels, we immediately heated PPP at 75 ◦C
for 10 min (Eppendorf, Thermomixer F1.5, Hamburg, Germany) before it was placed on
ice. Every 1 mL fraction of the solid Alb-gel was then transferred into 1 mL of serum-free
media. PRF membranes from coagulated blood were produced using glass tubes with
no silica/silicon added (Bio-PRF, Venice, FL, USA) with centrifugation at 1570 RPM for
12 min (RCF-max = 400 g). PRF membranes were produced using a centrifuge device
with universal swing-out rotors (Z306 Hermle, Universal Centrifuge, Wehingen, Germany).
The PRF clot was separated from the remaining red thrombus and compressed between
two layers of dry gauze. Thereafter, each PRF membrane was transferred into serum-free
medium (1 cm PRF/mL). All the blood fractions and the Alb-gel were subjected to two
cycles of freeze–thawing followed by sonication (Sonopuls 2000.2, Bandelin electronic,
Berlin, Germany). After centrifugation (Eppendorf, Hamburg, Germany) at 15,000× g for
10 min, 1 mL aliquots of lysates were stored at −20 ◦C for no longer than one month. The
lysates were thawed, and cells were exposed as indicated above.

4.3. Reverse Transcription Quantitative Real-Time PCR (RT-qPCR) and Immunoassay

For RT-qPCR [55], after overnight stimulation, total RNA was isolated with the Ex-
tractMe total RNA kit (Blirt S.A., Gdańsk, Poland) followed by reverse transcription (LabQ,
Labconsulting, Vienna, Austria) and polymerase chain reaction (LabQ, Labconsulting, Vi-
enna, Austria) on a CFX Connect™ Real-Time PCR Detection System (Bio-Rad Laboratories,
Hercules, CA). Primer sequences were mIL6-F: GCTACCAAACTGGATATAATCAGGA,
mIL6-R: CCAGGTAGCTATGGTACTCCAGAA; mGAPDH-F: AACTTTGGCATTGTGGAA
GG, mGAPDH-R: GGATGCAGGGATGATGTTCT; miNOS-F: GGTGAAGGGACTGAGCT-
GTT, miNOS-R: ACGTTCTCCGTTCTCTTGCAG; mCCL5-F: CCTGCTGCTTTGCCTAC-
CTC, mCCL5-R: ACACACTTGGCGGTTCCTTC; hIL6-F: GAAAGGAGACATGTAACAA-
GAGT, hIL6-R: GATTTTCACCAGGCAAGTCT; hIL8-F: AACTTCTCCACAACCCTCTG,
hIL8-R: TTGGCAGCCTTCCTGATTTC; hGAPDH-F: AAGCCACATCGCTCAGACAC,
hGAPDH-R: GCCCAATACGACCAAATCC. The mRNA levels were calculated by nor-
malizing to the housekeeping gene GAPDH using the ∆∆Ct method. Supernatants were
analyzed for IL6 secretion by immunoassay according to the manufacturer’s instruction
(R&D Systems, Minneapolis, MN, USA). RT-PCR data are represented in comparison with
the untreated control, which was considered 1.0 in all the measurements, and therefore
there was no need to show it as a separate group. However, in IL6 ELISA, the absolute
amount of secreted protein from the cells was reported, and therefore untreated cells
were also considered to show the amount of protein in all the samples and compare the
protein concentration.

4.4. Immunofluorescence

The immunofluorescent analysis of p65 nuclear translocation was performed in ST2
cells plated onto Millicell® EZ slides (Merck KGaA, Darmstadt, Germany) at
1.5 × 105 cells/cm2. Cells were exposed to 10% of PPP, BC, Alb-gel, and RC or 30% of
PRF lysates for 30 min following overnight serum starvation. Thereafter, the cells were
exposed to TNFα and IL1β for another 30 min. The cells were fixed with 4% paraformalde-
hyde, blocked with 1% bovine serum albumin (Sigma Aldrich, St. Louis, MO, USA), and
permeabilized with 0.3% TritonX-100 (Sigma Aldrich, St. Louis, MO, USA). We used NF-
κB p65 antibody (anti-rabbit IgG, 1:800, Cell Signaling Technology, Cambridge, United
Kingdom) at 4 ◦C overnight. Detection was with the goat anti-rabbit Alexa 488 secondary
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antibody (CS-4412, 1:1000, Cell Signaling Technology). Images were captured under a
fluorescent microscope with a dual excitation filter block DAPI-FITC (Echorevolve Flu-
orescence microscope, San Diego, CA, USA). The number of blue nuclei to green nuclei
were calculated.

4.5. Western Blot

ST2 cells were seeded at 5 × 105 cells/cm2 into 12-well plates. The following day,
serum-starved cells were exposed to 10% of PPP, BC, Alb-gel, and RC or 30% of PRF lysates
for 30 min, and then they were exposed to TNFα and IL1β for another 30 min. Extracts con-
taining SDS buffer with protease and phosphatase inhibitors (cOmplete ULTRA Tablets and
PhosSTOP; Roche, Mannheim, Germany) were separated by SDS-PAGE and transferred
onto PVDF membranes (Roche Diagnostics, Mannheim, Germany). Membranes were
blocked, and the binding of the first antibody phospho-NF-κB p65 antibodies (anti-rabbit
IgG, 1:1000, Cell Signaling Technology) and NF-κB p65 antibody (1:1000, Cell Signaling
Technology) was detected with the second antibody labelled with HRP (CS-7074, anti-
rabbit IgG, 1:10,000, Cell Signaling Technology). After their exposure to the Clarity Western
ECL Substrate (Bio-Rad Laboratories, Inc., Hercules, CA, USA), chemiluminescence sig-
nals were visualized with the ChemiDoc imaging system (Bio-Rad Laboratories). For
densitometric analysis of blots, the WB images were analyzed using Image Lab software
(Bio-Rad Laboratories).

4.6. Statistical Analysis

All experiments were performed four times. Statistical analysis of the IL6 and iNOS
expression and immunoassay for IL6 was performed with the Kruskal–Wallis test for
multiple comparison without correction of p-values. The results for the treatment groups
were compared with TNFα and IL1β, or Pam3CSK4 group as the positive control. Analyses
were performed using Prism v8 (GraphPad Software, La Jolla, CA, USA). Significance was
set at p < 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222111333/s1.
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