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We propose a data assimilationmethodology that can be used to enhance the spatial and

temporal resolution of voxel-based data as it may be obtained from biomedical imaging

modalities. It can be used to improve the assessment of turbulent blood flow in large

vessels by combining observed data with a computational fluid dynamics solver. The

methodology is based on a Stochastic Ensemble Kalman Filter (SEnKF) approach and

geared toward pulsatile and turbulent flow configurations. We describe the observed flow

fields by a mean value and its covariance. These flow fields are combined with forecasts

obtained from a direct numerical simulation of the flow field. The method is validated

against canonical pulsatile and turbulent flows. Finally, it is applied to a clinically relevant

configuration, namely the flow downstream of a bioprosthetic valve in an aorta phantom.

It is demonstrated how the 4D flow field obtained from experimental observations can be

enhanced by the data assimilation algorithm. Results show that the presented method

is promising for future use with in vivo data from 4D Flow Magnetic Resonance Imaging

(4D Flow MRI). 4D Flow MRI returns spatially and temporally averaged flow fields that are

limited by the spatial and the temporal resolution of the tool. These averaged flow fields

and the associated uncertainty might be used as observation data in the context of the

proposed methodology.

Keywords: data assimilation, Ensemble Kalman Filter, cardiovascular flow, turbulence, ensemble averaging

1. INTRODUCTION

The clinical relevance of 4D Flow Magnetic Resonance Imaging (4D Flow MRI) for quantifying
pulsatile and turbulent blood flow in the ascending aorta is limited by spatial and temporal
resolution which are in general insufficient for a precise assessment of flow related parameters such
as turbulent kinetic energy (TKE), Reynolds shear stress (RSS) and wall shear stress. In recent years,
models to overcome these limits have been proposed, e.g., to quantify TKE for assessing aortic
stenosis severity (1).

Data Assimilation (DA) can help to enhance the quality of these parameters. In DA, sparse and
noisy measurement data (observations) are combined with the forecast solution computed by a
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numerical (forward) model in order to obtain an improved
prediction of the true state of the system. A widely used and well-
known technique for DA is the Kalman Filter (KF) proposed by
Kalman (2). Computation of an appropriate filter is based on the
uncertainties of the observations and of the forwardmodel. These
uncertainties can be described by covariances of specific variables
that are typically not known a priori, such that the appropriate
design of a filter requires modeling. The original KF can be
applied to a wide range of applications if the physical system
can be described by a linear model and data observed from
measurements are affected by normally distributed noise. In this
context, the forecast computed by the linear model is perturbed
by the error of the model, and the forecast mean depends linearly
only on the previous time step since the error has zero mean. The
covariance of the error is not zero, therefore it also appears in the
forecast covariance matrix computation.

In nonlinear systems, the forecast mean and covariance
cannot be calculated directly from the previous time step
anymore, because of the nonlinear nature of the model operator.
This limitation led to enhancements of the basic KF theory. A first
example is the Extended Kalman Filter (3) which linearizes the
original nonlinear dynamics around the previous state estimates.
The ensemble KF (EnKF) (4) replaces the forecast covariance
matrix by a sample covariance and estimates the forecast mean
and covariance from an ensemble of states of system, which
represents the evolution of the state probability density function.
This makes the EnKF an important DA tool for ensemble
forecasting. If the observations can be interpreted as the result
of an ensemble of samples, the noise covariance is replaced by
the sample covariance which results in the Stochastic Ensemble
Kalman Filter (SEnKF) (5, 6) also known as Ensemble Kalman
Filter with perturbed observations.

Many examples of KF techniques applied to fluid dynamics
problems have been reported in the literature. Hœpffner et al.
(7) used a KF based on the linearized Navier–Stokes equations
to reconstruct the relevant statistics of the initial conditions
in transitional wall-bounded flow systems. The study has been
extended to turbulent wall-bounded flows to estimate the mean
turbulent flow profile in the near-wall region by using noisy
observations on the wall (8) and to capture the turbulent flow
state at the outer boundary of the buffer region of turbulent
boundary layer by using an EnKF (9). Gu and Oliver (10)
proposed an EnKF to investigate multiphase flows in porous
media. Harlim and Majda (11) compare different methods for
filtering sparsely observed turbulent geophysical flows in the
atmosphere and ocean regimes. Suzuki (12) developed a hybrid
unsteady-flow simulation technique combining particle tracking
velocimetry (PTV) and direct numerical simulation (DNS) by
using a reduced-order KF. Recently, a reduced-order model
based on KF has been proposed for turbulent flow configurations
showing a successful improvement of the prediction of turbulent
features even when the observation is provided only in a limited
region (13).

DA using methods different from KF have been also
applied to fluid dynamics problems. A variational DA technique
based on the minimization of the error between observations
and numerical solution in the context of Reynolds Averaged

Navier–Stokes (RANS) equations has been applied successfully
to reconstruct the mean flow field around a cylinder in laminar
regime (14). The variational DA technique has been used to
combinemean velocity from 2D PIV observations of flow over an
idealized airfoil and a numerical solver for RANS Equation (15).

Both variational and KF-based DA techniques for
computational fluid dynamics have been reviewed and compared
for unsteady viscous flow applications (16). These techniques
are powerful tools, because the coupling of observed data with
computational models can remove errors which cannot be
identified by using only one of these scientific methodologies
alone. However, reliable tools for accurate prediction of complex
flow configurations are still lacking.

In the field of cardiovascular flows, DA and Kalman filter
have been used in order to improve the accuracy and reliability
of physical modeling and to reduce the uncertainty due to
the lack of information about boundary conditions, patient-
specific geometries and blood viscosity. Gaidzik et al. (17)
improved hemodynamic flow prediction by merging Phase-
Contrast MRI data with CFD simulations for an idealized
aneurysm model where well-controlled laminar flow can be
obtained. Canuto et al. (18) implemented an EnKF for the
purpose of estimating parameters in cardiovascular models, i.e.,
a fully zero-dimensional model of the right heart and pulmonary
circulation and a coupled 0D–1Dmodel of the lower leg, through
the assimilation of clinical measurements of specific patients.
DeVault et al. (19) proposed a model for the blood flow in a
vital subnetwork of the cerebral vasculature, namely the Circle
of Willis. In this model the parameters of the outflow conditions
were calibrated using a subset of clinical measurements through
EnKF techniques. Arnold et al. (20) used EnKF to estimate
the inlet flow waveform in patient-specific arterial network
models. Habibi et al. (21) used a reduced-order modeling Kalman
filter to provide blood flow data that were more accurate
than the computational and synthetic voxel-based experimental
datasets with the aim of improving near-wall hemodynamics
quantification. In their recent review, Arzani and Dawson (22)
present and compare different variational and KF-based DA for
modeling cardiovascular flows. Some other studies on merging
CFD and 4D flow MRI data using data assimilation are reported
here for completeness (23–27).

The aim of this paper is to propose a DA methodology based
on the SEnKF approach that can be used to enhance the spatial
and temporal resolution of voxel-based flow observations of
turbulent pulsatile flow (as in 4D Flow MRI) to improve the
assessment of turbulent blood flow in large vessels. To the best
of the authors’ knowledge, the current work seems to be the
first study that tackles turbulence modeling in blood flow with
KF-based DA techniques. We propose to consider voxel-based
observed data as the result of a volumetric averaging of the
true state over the voxel size. The associated sample covariance
will take into account the presence of turbulence as well as the
noise. The present problem of DA could also be addressed by
the 4D-Var method (28, 29) or the Ensemble Kalman Smoother
(30) which cope with problems presenting nonlinearity and
strong sensitivity to initial conditions as in turbulent flows. Here,
we only aim at finding the correct covariance matrix of these
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fluctuations rather than trying to predict exact, instantaneous
fluctuations. The sensitivity to initial conditions ensures that
every simulated pulse results in a slightly different realization
of the turbulent flow field. The average of this ensemble of
flow realizations corresponds to the mean flow in the Reynolds
decomposition and the covariance matrix then corresponds to
the Reynolds stress tensor. We will apply the SEnKF method
mainly for these analogies with the Reynolds decomposition of
turbulent flows.

The used forward model comprises a high-order finite-
difference flow solver for the Navier–Stokes equations for the
Direct Numerical Simulation (DNS) of turbulent incompressible
flow (31) which is thoroughly validated and has been used
for several complex flow configurations (32–34) and recently
for the study of fluid-structure interaction problems (35, 36).
The numerical forecast provided by the forward model are
decomposed in an expectation value (ensemble-average) and its
fluctuations. Such expectation values can be interpreted as a
RANS flow field and the associated covariance matrix as the
Reynolds stresses (RSS). In that spirit, our SEnKF algorithm
applies a correction to the numerical forecast based on its
covariance (RSS) and on a set of observed data and their
associated covariances.

The remainder of this paper is organized as follows: the section
2 provides a brief description of the theoretical background of
turbulent flows, EnKF and SEnKF approaches, and the proposed
DA methodology that will estimate the enhanced flow fields.
In the section 3, the proposed DA methodology is applied to
three cases: Unsteady flow past a circular cylinder confined in
a channel; Wall-bounded turbulent flow in a channel; Flow
downstream of an aortic valve. The paper concludes with a
discussion on the accuracy, efficiency, and versatility of the DA
methodology based on these results.

2. METHODS

2.1. Ensemble Averaging
We model incompressible flow of a homogeneous Newtonian
fluid with the Navier–Stokes equations

E∇ · Eu (Ex, t) = 0, (1)

∂Eu (Ex, t)

∂t
+
(

Eu (Ex, t) · E∇
)

Eu (Ex, t) +
1

ρ
E∇p (Ex, t) − ν∇2Eu (Ex, t)

− Ef (Ex, t) = 0, (2)

where Ex = {x, y, z} are Cartesian coordinates, and t is the time.
The variables ρ and ν are the fluid density and the kinematic

viscosity, respectively; p is the fluid pressure; Eu and Ef are the fluid
velocity and the volumetric forcing, respectively.

In the case of turbulent flows, the pressure and velocity
fields present chaotic, unsteady changes due to the nonlinear
nature of the system and exhibit strong sensitivity to the initial
conditions. In practice, this leads to non-reproducible flow fields
despite the deterministic nature of the Navier–Stokes (Equation
2) and a statistical approach is often used to study turbulent flow

systems. Therefore, we will not aim at predicting exact turbulent
fluctuations from noisy observations. Rather, we will formulate
a data assimilation scheme to predict statistical properties of the
turbulent flow comprising themean flow and the secondmoment
of the turbulent fluctuations.

The expectation value of a specific turbulent flow quantity
may be estimated from an ensemble of multiple realizations of
the flow field, i.e., multiple states-of-system. Each realization r
of the flow field Eu (Ex, t)(r) can be decomposed in an ensemble-

averaged field 〈Eu (Ex, t)〉 and the fluctuations Eu′ (Ex, t)(r) according
to the Reynolds decomposition

Eu (Ex, t)(r) = 〈Eu (Ex, t)〉 + Eu′ (Ex, t)(r) , (3)

with the ensemble-average on the s states-of-system defined as

〈Eu (Ex, t)〉 := lim
s→∞

1

s

s
∑

r=1

Eu (Ex, t)(r) . (4)

This leads to the following Reynolds-averaged Navier–Stokes
(RANS) equations for incompressible flows:

E∇ · 〈Eu (Ex, t)〉 = 0 (5)

∂〈Eu (Ex, t)〉

∂t
+
(

〈Eu (Ex, t)〉 · E∇
)

〈Eu (Ex, t)〉 +
1

ρ
E∇〈p (Ex, t)〉

− ν∇2〈Eu (Ex, t)〉 − 〈Ef (Ex, t)〉

= −E∇ · 〈 Eu′ (Ex, t) Eu′ (Ex, t)T〉. (6)

Equations (5) and (6) have the same form as the original
(Equations 1, 2) except for the additional term on the right-hand
side of Equation (6) comprising the so-called Reynolds Stresses

(RSS)−ρ〈 Eu′ (Ex, t) Eu′ (Ex, t)T〉.
In pulsatile flows, the flow configurations are repeated with

period T, and a generic time tn can be written as

tn = t(r),φ = tφ + (r − 1)T, (7)

where tφ is the phase time and r is the number of the
pulse. The description of the pulsatile dynamics can be
reduced to the study of the flow configurations of the
basic pulse period. Nonetheless, in presence of turbulence,
the periodically subsequent configurations of the pulsatile
flow will show differences due to the turbulent fluctuations.
Information about the turbulent dynamics of pulsatile flows can
be captured decomposing the flow field by phase-averaging, that
is obtained by building the ensemble of states-of-system from
the periodically subsequent configurations. Thus, the ensemble
definition (Equation 4) assumes the following form

〈Eu (Ex, tn)〉φ := lim
s→∞

1

s

s
∑

r=1

Eu
(

Ex, tφ + (r − 1)T
)

(8)

where 〈·〉φ is the phase-average operation on the periodically
subsequent configurations related to the basic time tφ . The
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pulsatile turbulent dynamics is then described at each basic time
tφ by the phase-averaged flow field 〈Eu

(

Ex, tφ
)

〉φ and its covariance

〈 Eu′
(

Ex, tφ
)

Eu′
(

Ex, tφ
)T
〉φ .

In turbulent configurations presenting a statistically-steady
behavior, a time-average corresponds to an ensemble-average.
Thus, the ensemble definition (Equation 4) assumes the
following form

〈Eu (Ex, t)〉t := lim
s→∞

1

s

s
∑

r=1

Eu (Ex, t0 + (r − 1) 1τ) (9)

where 〈·〉t is the time-average operation, t0 is the initial time
value and 1τ a chosen time increment. The statistically-steady
turbulent dynamics is then described by the time-averaged flow

field 〈Eu (Ex, t)〉t and its covariance 〈 Eu′ (Ex, t) Eu′ (Ex, t)T〉t . Note that
the definition of the time-average operation (Equation 9) is
formally identical to the definition ensemble average (Equation
8) if the number of phases describing the flow is equal to 1 and
1τ corresponds the time period T.

In spatially-homogeneous turbulent flows the turbulent
features are statistically the same in the flow domain such that
the ensemble-average (Equation 4) can be replaced by a volume-
average,

Eu (Ex, t) :=
1

V

∫∫∫

V

Eu
(

Eξ , t
)

dEξ (10)

where · stands for the volume-average operation over the
volume V . The spatially-homogeneous turbulent dynamics is
then described by the volume-averaged flow field Eu (Ex, t) and its

associated covariance Eu′ (Ex, t) Eu′ (Ex, t)T.
In summary, the ensemble used for statistical characterization

of a turbulent flow can be built in different ways depending
on the physical behavior of the turbulent flow configuration
(statistically-steady, periodic, spatially-homogeneous) leading to
different forms of Equation (4). Equations (8)–(10) can be seen as
special cases of the following most general form of the ensemble
definition Equation (4)

〈Eu (Ex, tn)〉φ := lim
s→∞

1

s

s
∑

r=1

Eu
(

Ex, t(r),φ
)

. (11)

2.2. Stochastic Ensemble Kalman Filtering
Approach
The SEnKF approach is used to estimate the state of the system
by filtering an ensemble forecast with observations over time.
Hereafter, a brief introduction to KF algorithms and then to the
SenKF is presented. Details of the algorithms are available in the
original papers (2, 4, 5).

The true state-of-system at time tn is denoted by the state-
vector Eun. The observation of this state is denoted by the vector
Edn which depends on Eun through the observation operatorH that
describes the measurement tool used for the acquisition of the
data, such that

Edn = HEun + Ern, (12)

where Ern is the observation noise described by a normal
distribution Ern ∼ N(E0,Rn) with zero mean and covariance Rn.
The forward model is defined through the operatorMn such that

Eun = MnEun−1 + Eqn, (13)

where the error Eqn follows a normal distribution Eqn ∼ N(E0,Qn)
with zero mean and covariance Qn. The operatorMn models the
physical behavior of the system and can be of linear or nonlinear
nature.

To estimate the state at time level n, we assume that the state
of the system Eun−1 given all past observations to that time step
Ed1 : n−1 follows a normal distribution with mean Eµa

n−1 and with
covariance Pan−1, such that

Eun−1|Ed1 : n−1 ∼ N
(

Eµa
n−1,P

a
n−1

)

. (14)

Starting from this assumption on the previous time level n − 1,
we can estimate a forecast of the state vector Eun as

Eun|Ed1 : n−1 ∼ N

(

Eµ
f
n,P

f
n

)

, (15)

where the superscript f stands for the forecast step that is the
prior update obtained from the forward model. In the following,
the superscript a denotes the analysis step that is the posteriori
update of the system obtained by taking into account also the
observations at that time step.

The basic idea of the EnKF algorithms (4) is to estimate Eµ
f
n

and P
f
n from an ensemble of s states Eu

f
(r),n with r = 1, 2, . . . , s,

Eu
f
(r),n = M

(

Eua(r),n−1, tn

)

(16)

Eµ
f
n =

1

s

s
∑

r=1

Eu
f
(r),n (17)

P
f
n =

1

s

s
∑

r=1

(

Eu
f
(r),n − Eµ

f
n

) (

Eu
f
(r),n − Eµ

f
n

)T
. (18)

If the observations Edn can be treated as the result of an ensemble
of s samples Ed(r),n, the observation noise covariance is replaced
by a sample covariance, which leads to the following relations for
the SEnKF algorithm (5):

Ed(r),n = HEu(r),n + Er(r),n (19)

Edn =
1

s

s
∑

r=1

Ed(r),n (20)

Rn =
1

s

s
∑

r=1

(

Ed(r),n − Edn

) (

Ed(r),n − Edn

)T
. (21)

After the prior update obtained from the forecast step (Equations
16–18), the SEnKF algorithms proceeds with the analysis step
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which updates the state-vector using the observations:

Eua(r),n = Eu
f
(r),n + Kn

(

Ed(r),n −HEu
f
(r),n

)

(22)

Eµa
n =

1

s

s
∑

r=1

Eua(r),n, (23)

Pan =
1

s

s
∑

r=1

(

Eua(r),n − Eµa
n

) (

Eua(r),n − Eµa
n

)T
. (24)

Equation (22) defines the correction of the forecast Eu
f
(r),n to the

state estimate Eua
(r),n through the so-called Kalman gain Kn which

depends on the observation uncertainty Rn and the uncertainty

of the forecast estimate P
f
n according to

Kn = P
f
nH

T
(

HP
f
nH

T + Rn

)−1
. (25)

For the limiting case, where the observations are assumed to be
perfect, i.e.,Hn = I and Rn → 0 (where I is the identity matrix),
the Kalmain gain reduces to Kn = I such taht the analysis step

becomes Eua
(r),n = Ed(r),n. This limiting case illustrates that the state

estimate Eua
(r),n tends to be dominated by the observations Ed(r),n if

Rn is small. In contrast, Kn → 0 if the prior covariance P
f
n tends

to zero, i.e., if the level of forecast certainty is high. In that case,

the filter ignores the observations and Eua
(r),n ≈ Eu

f
(r),n.

2.3. Data Assimilation Methodology for
Pulsatile Turbulent Flows
In the following, we extend the SEnKF approach to formulate a
DA methodology for pulsatile, turbulent flows.

2.3.1. Data Acquisition
In the present context, we assume that observations of pulsatile,
turbulent flows are available as voxel-based data with voxel
size h. Often small turbulent length scales cannot be captured
by such observations. The measured data can be seen as the
result of a volumetric average over the voxel volume according
to Equation (10). Moreover, if the observations are run for p
repetitive pulses, the voxel data can also be phase averaged to
obtain estimates of mean and a covariance according to Equation

(11). Each observed voxel(v)-based data Edv;(s),φ measured in the
pulse s has an error Erv;(s),φ whose covariance will be considered
as the result of a voxel-phase-average. This leads to the following

definitions of the data Edv;(s),φ , the associated mean Edv;φ and
sample covariance rv;φ :

Edv;(s),φ = Eu
(

Ex, t(s),φ
)

(26)

Edv;φ = 〈Eu
(

Ex, tφ
)

〉φ =
1

p

p
∑

s=1

Edv;(s),φ , (27)

rv;φ = 〈Eu
(

Ex, tφ
)′
Eu
(

Ex, tφ
)′T

〉φ

=
1

p

p
∑

s=1

(

Edv;(s),φ − Edv;φ

) (

Edv;(s),φ − Edv;φ

)T
. (28)

In the classical relation (Equation 21), the covariance matrix

is written with respect to the entire state-vector Edn. Here for
simplicity we assume that covariance between velocities of
different voxels is zero; thus, we define the covariance matrix rv
independently for each voxel v.

2.3.2. Forecast Solution
The forecast solution is computed using a Navier–Stokes solver
for direct numerical simulation (DNS). In the EnKF formalism,
this solver represents the nonlinear forward model (M = DNS)
between two subsequent update steps n− 1 and n such that

Eun =DNS (Eun−1, tn) + Eqn, (29)

Eu
f
(r),n =DNS

(

Eua(r),n−1, tn

)

. (30)

The Kalman time step1tKF = tn+1− tn between two subsequent
updates should not be confused with the DNS time step of
the Navier–Stokes solver. Even though the DNS Equation 30

returns a deterministic solution Eu
f
(r),n affected only by a numerical

error, we know that turbulent flows have a stochastic behavior
that can be investigated a posteriori by using an ensemble-
average approach in order to evaluate the effect of the turbulent

fluctuations. The deterministic solution Eu
f
(r),n differs from the

ground-truth solution Eun of Equation 29 because of the error Eqn
which is composed of three contributions of different nature: a
numerical error EqnNUM due to the limited numerical accuracy of
the discretizedNavier–Stokes equations; an uncertainty EqnTUR due
to the stochastic nature of turbulent fluctuations; and a modeling
error EqnMOD due to the uncertainty error (e.g., unknown boundary
conditions, viscosity) typical of blood flow physical modeling:

Eqn = EqnNUM + EqnTUR+EqnMOD . (31)

Here, the numerical error EqnNUM is assumed to be negligible,
because in a DNS its magnitude must be lower than the
magnitude of turbulent fluctuations. In the case of blood flow
simulations, the error EqnMOD will add additional uncertainty that
will affect the forecast solution.

In the present work, the DNS data Eu
f
(r),n is considered as

a stochastic realization of the ground truth, i.e., it comprises
a mean flow component and a random turbulent fluctuation.
In the language of the Kalman filter theory, the mean flow
is the ground truth and the Reynolds stress tensor is the
covariance matrix P of the forecast noise. This interpretation
neglects the effect of numerical noise and modeling uncertainty.
The appropriate choice of the forcast ensemble for the SEnKF
algorithm is important for obtaining a good filter for the specific
flow configuration. For pulsatile turbulent configurations, we
propose to build the ensemble of states from multiple pulses,
i.e., each pulse is considered a different realization. First, the
pulse period T is divided in a number of intervals N8 defined
by the basic time tφ = t1, t2, . . . , tNφ

with tNφ
= T. We

generate an increasingly large ensemble by running the forward
model for multiple pulses. This is a significant deviation from the
standard SEnKF concept, where the ensemble is typically built
from multiple computations of the forward model with slightly
different initial conditions.
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FIGURE 1 | Overlapping of a 2D voxel grid (red) with respect to the 2D computational grid (blue) for gv = 4× 3 = 12.

In accordance with Equations (16)–(18), the forecast state-
vector, its mean and associated sample covariance at each
computational grid node g are then computed as:

Eu
f
g;(s),φ ≡ Euf

(

Exg , t(s),φ
)

, (32)

Eµ
f
g;(s),φ ≡ 〈Euf

(

Exg , t
)

〉(s),φ =
1

s

s
∑

r=1

Eu
f
g;(r),φ , (33)

〈 Eu′
f (
Exg , t

)

Eu′
f (
Exg , t

)

〉(s),φ =
1

s

s
∑

r=1

(

Eu
f
g;(r),φ − Eµ

f
g;(s),φ

)

(

Eu
f
g;(r),φ − Eµ

f
g;(s),φ

)T
. (34)

Here for simplicity we assume that covariance between
velocities of different grid nodes is zero. Thus, we

define the covariance matrix p
f
g independently for each

grid node.
The ensemble will be very small in the beginning and only

becomes a statistically useful sample of realizations after several
pulses. In the first pulse of the numerical simulation (s = 1), the

sample covariance p
f
g;(1),φ would be equal to zero according to

Equation (34). Therefore, the covariance p
f
g;(s),φ is computed in

the following way:

p
f
g;(s),φ =

1

s

(

D+

s
∑

r=1

(

Eu
f
g;(r),φ − Eµ

f
g;(s),φ

) (

Eu
f
g;(r),φ − Eµ

f
g;(s),φ

)T
)

,

(35)
where D is a diagonal matrix whose elements are on order of
magnitude larger than the expected covariance one of the specific

flow configuration. D ensures the positiveness of p
f
g;(s),φ at the

beginning of the simulation, and then its influence disappears for
increasingly larger ensembles.

2.3.3. Data Assimilation Algorithm
The proposed methodology aims at using observed data
on a voxel-grid in combination with the forecast solution
computed by DNS on a finer computational grid. To this
end, the voxels mv of the voxel grid are overlapped with
the computational grid nodes mg , where the state-vector at
each time tn is defined on each grid node g as Eug;n =
{

ux, uy, uz
}

g;n
. For Cartesian grids, gv computational grid-

nodes will lie inside each voxel v; and it is possible that a
grid node g belongs to more than one voxel, i.e., the grid
node is located exactly on the borders of adjacent vg voxels
(Figure 1).

In the present context, Edv;(s),φ is the value that the solution
would have on all computational grid nodes gv lying inside

the voxel v, if the data Edv;(s),φ was constant over the whole
voxel volume. It is clear that this is generally not the case. The
discrete form of the observation operatorH that maps the voxel-
based data to the grid is a 3mv × 3mg matrix assuming the
following form:

[

Hij

]

v,g
= φv,gδij (36)

where δij is the Kronecker delta, i, j = 1, 2, 3 and

φv,g =

{

1
gv
, if g lies inside v,

0, otherwise.
(37)

Solving the analysis step to update the entire state-vector
Eu1 :mg ;(s),φ requires the computation on huge matrices P,
R and H of size 3mg × 3mg , 3mv × 3mv, and 3mv ×
3mg , respectively. However, we can exploit the block-structure
of H comprising of blocks h of size 3 × 3gv which
correspond to single voxels. From an algorithmic point of
view, this allows to only use mv dense matrices h instead
of the huge sparse matrix H which dramatically reduces the
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computational cost. There, the Kalman gain term is written
as

Ekg;(s),φ =

mv
∑

v=1

9g,v

[

p
f
1 : gv;(s),φ

hT
(

hp
f
1 : gv;(s),φ

hT + rv,φ

)−1

(

Edv;(s),φ − hEu
f
1 : gv;(s),φ

)]

g
, (38)

where 9g,1 :mv are weights for interpolating data between
the discrete values of the Kalman gain obtained from the
different mv voxels to the grid node g. Since each grid-
node solution depends only on the data of the vg voxels, we
define

9g,v =

{

1
vg
, if g lies inside v,

0, otherwise.
(39)

Finally, the updated solution Eua
(s),φ is computed in the analysis

step of the SEnKF as

Euag;(s),φ = Eu
f
g;(s),φ + Ekg;(s),φ . (40)

In conclusion, the proposed methodology deals with data
obtained by observations on coarse grids, and enhances them
by means of the SEnKF algorithm, obtaining a new set of data
on finer grids. The entire DA methodology is summarized in the
Algorithm 1.

2.4. Direct Numerical Simulation
All numerical simulations have been performed using a high-
order Navier–Stokes solver for the DNS of incompressible
flows. The governing Equations (1) and (2) are discretized on
a staggered Cartesian grid using sixth-order finite-difference
schemes. A multigrid method is used for solving the Poisson
problem and time integration is performed using a three-step
Runge–Kutta scheme. Details of the implementation are given in
Henniger et al. (31).

The simulations use a combination of periodic boundary
conditions and the fringe forcing technique (37) which
damps incoming flow disturbances and forces the flow field
toward a desired velocity profile by applying a suitable

volume force Ef of the right-hand side of the Navier–Stokes
(Equation 1). The general form of the fringe forcing is
given by

Ef (Ex, t) = λ (Ex)
(

EU (Ex, t) − Eu (Ex, t)
)

(41)

where λ (Ex) is the fringe function and EU (Ex, t) is the desired
velocity to be imposed. The fringe function is non-zero
only within the so-called fringe region which is typically
located at the edge of the computational domain. In the
physically relevant regions of the DNS, the fringe function
is zero.

This technique has been exploited to impose inflow
velocity profiles, to model outflow conditions and to model
complex geometries by setting EU = 0 within immersed
objects. The fringe forcing has similarities to the Kalman

Algorithm 1: Data Assimilation algorithm for computing
enhanced volex-based data

- Initialization: Euag;(0),Nφ
= Eui.c. (initial conditions)

- Data Assimilation:
for s = 1 to p do

Euag;(s),0 = Euag;(s−1),Nφ

for φ = 1 to Nφ do

Eu
f
g;(s),φ = DNS

(

Eua
(s),φ−1

)

Eµ
f
g;(s),φ = 1

s

∑s
r=1 Eu

f
g;(r),φ

p
f
g;(s),φ =

1
s

(

D+
∑s

r=1

(

Eu
f
g;(r),φ − Eµ

f
g;(s),φ

) (

Eu
f
g;(r),φ − Eµ

f
g;(s),φ

)T
)

Ekg;(s),φ =
∑mv

v=1 9g,v

[

p
f
1 : gv;(s),φ

hT
(

hp
f
1 : gv;(s),φ

hT + rv,φ

)−1

(

Edv;(s),φ − hEu
f
1 : gv;(s),φ

)]

g

Euag;(s),φ = Eu
f
g;(s),φ + Ekg;(s),φ

for φ = 1 to Nφ do

Result: Eµa
g;φ = Eua

(

Exg , t
)

= 1
p

∑p
r=1 Eu

a
g;(r),φ

Result: pag;φ = 〈 Eu′
a (

Exg , t
)

Eu′
a (

Exg , t
)T
〉g;φ =

1
p

∑p
r=1

(

Euag;(r),φ − Euag;φ

) (

Euag;(r),φ − Euag;φ

)T

analysis step (Equation 22), where the Kalman gain K acts

like a fringe function and the observation Ed corresponds
to the desired velocity EU. However, the fringe forcing is
added to the right-hand side of a differential equation
and drives the solution toward Eu with a time scale 1/λ,
whereas the Kalman update is an algebraic equation which
nudges the solution toward the observation at a time scale
1tKF/‖K‖, where 1tKF is the time between two subsequent
analysis steps.

3. RESULTS

In the present study, all observations are available on Cartesian
voxel grids and obtained either by experiments or other
numerical simulations (synthetic data). In case of synthetic data,
the voxel data are extracted from the computational grid, and
each voxel comprises multiple gv grid nodes of the computational
grid. The observations have been run for p multiple pulses,
and the synthetic voxel data are collected in order to obtain a
mean and a covariance estimate in accordance with Equation

(11). Each voxel data Edv;(s),φ computed in the specific pulse s
has an error Erv;(s),φ whose covariance will be considered as the
result of a voxel-and-phase-average; Equation (26) assumes the

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 November 2021 | Volume 8 | Article 742110

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


De Marinis and Obrist Enhancing Turbulent Cardiovascular Flow Data

FIGURE 2 | Periodically oscillating flow: configuration of the cylinder confined in the channel. In the green fringe region the inflow is imposed. The cylinder is modeled

in the yellow fringe region with Eu = 0.

following form:

Edv;(s),φ ≡ Eu
(

Ex, t(s),φ
)

=
1

gv

gv
∑

g=1

Eug;(s),φ . (42)

The methodology has been validated for test problems of
increasing complexity, starting with a periodic and non-
turbulent configuration, then extending the application of the
methodology to a turbulent configuration, and finally applying
the methodology to a pulsatile and turbulent configuration.
Results have been evaluated comparing global flow-related
parameters and local profiles with respect to the ground truth and
observed data.

The first flow related parameter that has been chosen is the
friction Reynolds number Reτ which is defined using the friction
velocity Uτ ,

Reτ =
UτLref

ν
= Uτ

Re

Uref
= Re

√

√

√

√

1

Re

Lref

Uref

∣

∣

∣

∣

∣

〈〈

∂ux (Ex, t)

∂y

〉〉∣

∣

∣

∣

∣

,

(43)
where Re is the Reynolds number based on reference values (Uref ,
Lref ) of the flow configuration, the average 〈〈·〉〉 is calculated at the
specific time t over the wall. The velocity gradient is discretized
with a first-order finite difference scheme on the computational
grid. Mean velocity and RSS profiles are commonly described in
wall units, i.e., by dimensionless variables y+ and u+ obtained
by normalization with respect to friction velocity Uτ and
flow parameters,

u+ =
u

Uτ

, y+ =
yUτ

ν
, (44)

where y is the distance to the wall and u is the velocity component
parallel to the wall.

The turbulent kinetic energy (TKE) is a second parameter
used to quantify the turbulence in the bulk flow. We define TKE
within a given volume interest V , such that

TKE (t) =
1

2
〈u′x (Ex, t)2 + u′y (Ex, t)2 + u′z (Ex, t)2〉 (45)

Finally, voxel-and-phase(time)-averaged velocity fields and/or
RSS fields are presented for the different configurations.

3.1. Periodically Oscillating Flow
The proposed DA methodology is first validated for an unsteady
flow past a cylinder confined in a channel (Figure 2). The size
of the channel is 32h × 2h × h where h = 1 [m] is the channel
half-width. The positive x-direction is the stream-wise direction,
the y-axis is perpendicular to the walls at y = 0 and y = 2h
and the z-axis points in span-wise direction. The diameter of the
cylinder is equal to h and its center C has coordinates

(

x, y
)

=
(

9h, h
)

and an axis parallel to the z-direction. Periodic boundary
conditions have been imposed in both the stream-wise and span-
wise direction, whereas a no-slip condition is enforced at the top
and bottom wall. Fringe forcing at the end of the domain (green
region in Figure 2) is used to enforce plug flow with velocity
Ux = 1, Uy = 0, Uz = 0 [m/s] at the inflow (using λ = 50 in
Equation 41). The presence of the cylinder is modeled by using an
another fringe region with EU = 0 and λ = 100 for the grid nodes
within the cylinder (yellow region in Figure 2). The combination
of the plug flowwith the no-slip b.c. will produce a thin boundary
layer in the green fringe region. The thickness of this boundary
layer will increase and the flow will develop a parabolic profile
upstream of the cylinder. The Reynolds number is set equal to
150 based on h and the inflow velocity Ux.

3.1.1. Ground Truth
First, a DNS has been run to obtain the ground truth, using a
computational grid of 257 × 33 × 3 grid nodes. At the given
Reynolds number, the flow past a confined cylinder presents
vortex shedding where the vortices detach periodically with a
period of T =1.9951 [s] from either side of the body forming a
Von Kármán vortex street in the wake of the cylinder (Figure 3).

3.1.2. Data Acquisition
Second, the observation data Edv;(s),φ have been extracted from
the ground-truth DNS. The period T has been divided in
N8 = 20 equal time intervals and the data are collected for
p = 500 periods starting after 100T in order to overcome the
initial transient leading to the periodic solution. Six different
regions of interest (windows) have been selected to sample
the data (Figure 4A). Window 1 includes the cylinder and the
downstream region from where the vortex shedding originates.
Window 2 and window 3 are obtained as the left and right
half of window 1, respectively, to study the capability of the
proposed method to reconstruct the flow downstream of the
cylinder with and without the data of the cylinder itself. The
windows 1, 2, and 3 have the lengths 4, 2, and 2, h, respectively.
Their height is h and they are centered in the y-direction and
extend over the whole z-direction. Extending the windows 1,
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FIGURE 3 | Periodically oscillating flow: vorticity ω fields for two different phase averaging. φ1 corresponds to basic time t1 = 0.099755 [s], while φ11 corresponds to

basic time t11 = 1.097305 [s]. Von Kármán vortex street develops downstream the cylinder.

FIGURE 4 | Periodically oscillating flow. (A) Windows where the data are extracted from the ground-truth flow field. (B) Mean x-velocity and associated xx- covariance

component observed from the ground-truth DNS within window 1.

2, and 3 to the overall y-domain leads to the windows 4, 5,
and 6, respectively. The choice of window 4, 5, and 6 allows
to assess whether the availability of data close to the channel
walls will improve the flow reconstruction by using the DA
algorithm or not.

Each Edv;(s),φ is computed for a voxel formed by gv = 2 ×
2 × 2 grid nodes by averaging the ground-truth solution of
the corresponding gv nodes. These voxel-averaged values are
then further phase-averaged in order to obtain voxel-and-phase

averaged data Edv;φ and the associated covariances rv;φ for all the
phases, within the specific window (Figure 4B). Because the flow
is not turbulent, the covariance will be almost zero and its value
will just include the covariance of the numerical error of the

DNS solver and the (very low) inaccuracy of the chosen period
value T.

3.1.3. Comparison Between Ground Truth and DA

Predictions
In the DA predictions only the no-slip b.c. at the walls and the
fringe forcing for the inflow are imposed a priori. The cylinder
fringe region is not used anymore and only the use of the
observed data in the SEnKF algorithm, will reconstruct the flow
field in the wake of the cylinder. The diagonal matrix D in
Equation (35) is set to {Dii} = 1, 000. Six DA predictions, i.e., DA
1, DA 2, . . .DA 6, have been run by using the data set extracted
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from the six windows of interest, i.e., window 1, window 2,
. . .window 6, respectively.

The voxel-and-phase averaged velocity profiles 〈ux
(

Ex, tφ
)

〉φ
computed after 500T are shown in Figure 5A (left) along a line
parallel to the y-axis and crossing the center of the cylinder
at x = 9 [m]. When the data window includes the cylinder
(windows 1, 2, 4, 5) the SEnKF forces the flow velocities to zero,
because the data inside the cylinder have mean and covariance
both equal to zero. In contrast, the DA predictions using data
from window 3 and 6 show a nearly parabolic velocity profile,
which is the velocity profile that the flow assumes due to the
inflow and boundary conditions. This indicates that the proposed
methodology has limitations in propagating the information
from the observed data in upstream direction. Figure 5A (right)
shows the axial velocity profiles at x = 15 [m] in the wake of the
cylinder: all the DA predictions present good agreement with the
ground truth except for the DA prediction performed by using
data from window 2. This shows that the window 2 is too small
and do not contain enough data to guide the solution of the DA
prediction toward the ground truth. Figure 5B shows the xx-
covariance component profiles at x = 15 [m] (right) and at x = 9
[m] (left). DA predictions present an error with respect to the
ground truth DNS due to the additional uncertainty related to
the cylinder boundary condition and to the convergence history
of the DA methodology. On the other hand the information is
well propagated in downstream direction by the proposed DA
methodology as can be seen in Figure 5C for all DA predictions.
DA 2 presents a phase-shift with respect to the DNS due to the
absence of data in the region surrounding the cylinder which
apparently led to a counter-phase vortex detachment.

3.2. Turbulent Channel Flow
Hereafter, the DA methodology is extended to turbulent flows,
and validated for turbulent channel flow. To this end, the
dimensions of the channel are set to 4πh × 2h × 2πh according
to Kim et al. (38), see Figure 6. The laminar Poiseuille flow
Eu = {[y(2h − y)/h2]Ux, 0, 0} having maximum velocity Ux = 1
[m/s] has been used as initial condition for the velocity field. The
Reynolds number (based on the channel half-width h = 1 [m]
and the initial maximum velocity Ux) is set to 5, 000 which is
in the range of the intended final application for blood flow in
the aorta (39). Periodic boundary conditions have been imposed
in both the stream-wise and span-wise direction, while a no-slip
condition is ensured at the top and bottom wall. A constant non-
dimensional bulk velocity Ubk

x = 0.667 [m/s] has been enforced
in the stream-wise direction according to Schlatter et al. (40).

3.2.1. Ground Truth
DNS simulations have been run in order to obtain grid-
converged solutions that will be considered the ground truth.
In order to ensure the transition to turbulence in the channel
flow, the initial Poiseuille flow has been perturbed with a
two-dimensional (stable) Tollmien–Schlichting (TS) wave with
maximum stream-wise velocity amplitude of 3% of the laminar
center-line velocity and two superimposed weak oblique (stable)
three-dimensional waves with amplitude 0.1% with the same
fundamental stream-wise wavelength as the two-dimensional

disturbance. The computation of the TS waves was performed
using a standard Chebyshev collocation method involving the
solution to the Orr–Sommerfeld and Squire equations (41).
Sufficient convergence for Reτ and TKE was achieved for a
resolution of 65× 65× 65 points.

3.2.2. Data Acquisition
The data Edv;t to be used in the DA predictions have been extracted
from the flow field of the ground-truth DNS starting after 200 [s]
when a statistically-steady turbulent flow had been established.
The ensemble of states-of-system is chosen in accordance with
Equation (9).

Four different windows have been selected (Figure 7A).
Window 1 has a size of (π/2) h in x-direction and h in y-
direction. It is centered in y-direction. Windows 2 and 3 are
obtained by extending the window 1 over the whole y- and x-
direction, respectively, in order to evaluate the influence of the
amount of available data on the flow reconstruction. Window 4,
which covers the whole domain has been chosen to mimic the
configuration of clinical applications where the data are available
for the entire blood vessels. All windows are spread over the
whole domain in z-direction.

Data Edv;t are collected for 4, 000 [s] in order to compute the

covariance rv;t in an accurate way onto the voxel-grid. Each Edv;t
is obtained by averaging the ground-truth solution over voxels
formed by gv = 3 × 3 × 3 adjacent grid-nodes; these voxel-
averaged values are then further time-averaged in order to obtain
time-and-space averaged data. Because the flow is turbulent, the
covariance will be not zero and its value will include both the
covariance of the numerical error of the DNS solver and the
turbulent fluctuations covariance (Figure 7B).

3.2.3. Comparison Between Ground Truth and Data

Assimilation Predictions
In the DA predictions the contribution of each voxel-
based data is spread onto the gv grid-nodes according to
Equation (38). The initial conditions of the velocity are set
to Poiseuille flow without any perturbations such that the
flow would not show a transition to turbulence without
any additional external forcing due to the SEnKF. The
diagonal matrix D in Equation (35) is set to {Dii} =
10.

Four DA predictions, i.e., DA 1, DA 2, DA 3, DA 4, have
been run by using the data set extracted from the four windows
of interest, i.e., window 1, window 2, window 3, window
4, respectively.

The results of the DA predictions have been evaluated by
comparing the evolution in time of the friction Reynolds number
〈Reτ 〉 and TKE (t) with the ground truth (Figure 8). At the
beginning of the DA predictions, filtering the initial Poiseuille
flow by the observed data leads to a transient evolution of
the flow to the statistically-steady turbulent configuration. This
transient is different for each window with regard to the mean
value to which the solution tends and the time required to
overcome the transient. After this transient, Reτ present the
same qualitative behavior in time of the ground truth, even
though with different mean value for the different selected data
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FIGURE 5 | Periodically oscillating flow. Velocity profiles 〈ux
(

Ex, tφ1
)

〉φ1 (A) and xx-covariance component profiles 〈u′x
(

Ex, tφ1
)

u′x
(

Ex, tφ1
)

〉φ1 (B) from DNS and from DA

predictions: along a line parallel to the y-axis crossing the center of the cylinder at x = 9 (left); along a line parallel to the y-axis crossing the vortex street at x = 15

(right). (C) Comparison between the flow field of the ground-truth DNS and of the DA predictions: 〈ux
(

Ex, tφ1
)

〉φ1 .
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FIGURE 6 | Configuration of the turbulent channel flow. The initial Poiseuille flow has maximum stream-wise velocity Ux .

FIGURE 7 | Turbulent channel flow. (A) z-plane sections of the selected windows in the channel. (B) Mean x-velocity and associated xx- covariance component

observed from the ground-truth DNS within window 2.

windows. The results are in good agreement with the ground
truth, even though they are slightly underestimated. The value
of the TKE computed in the DA predictions are also good for all
configurations. The values of TKE stabilize around 0.55 [m2/s2]

for all the DA predictions and the more visible differences with
respect to the ground truth are in the amplitude of fluctuations.
The best agreement is obtained in DA 4. In contrast, the other
data windows lead to a loss of accuracy with respect to the ground

Frontiers in Cardiovascular Medicine | www.frontiersin.org 12 November 2021 | Volume 8 | Article 742110

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


De Marinis and Obrist Enhancing Turbulent Cardiovascular Flow Data

FIGURE 8 | Turbulent channel flow: 〈Reτ 〉t (left) and TKE(t) (right) evolution over time obtained by using data acquired from different windows.

FIGURE 9 | Turbulent channel flow: comparison between DA predictions and ground truth on a line parallel to the y-axis and centered in the z-direction, i.e., z = πh,

for x = 3πh. Left: stream-wise mean velocity profiles 〈ux (x = 3πh, y, z = πh, t)〉t. Right: RSS profiles 〈u′x (x = 3πh, y, z = πh, t) u′x (x = 3πh, y, z = πh, t)〉t. Results are

plotted in wall units and are shown for the bottom half part of the channel, i.e., y ≤ h.

truth. DA 1 returns the least accurate trends, and extension of the
window in x- and y-directions, i.e., DA 2 and DA 3, significantly
improves accuracy. This means that larger amounts of available
data yields DA predictions that tend closer to the ground truth
with a shorter numerical transient. For the same reason, DA 4
returns the most accurate predictions.

The time-averaged velocity 〈u+x (Ex, t)〉t profiles computed after
4,000 time units are in almost perfect agreement with the
ground-truth profile. Figure 9 shows the comparison between
DA prediction and ground truth of the velocity profile 〈u+x (Ex, t)〉t
and the RSS profile 〈u′+x (Ex, t) u′+x (Ex, t)〉t on a line parallel to
the y-axis and centered in the z-direction, for x = 3πh. The
DA predictions recover the logarithmic law of the wall u+ =
Ay++B (42). The precision slightly decreases for DA 1 where not
enough data have been used. Moreover, in the boundary region,
the RSS profile 〈u′+x (Ex, t) u′+x (Ex, t)〉t present different peaks in
the different DA predictions. The more data are used in DA

predictions, the higher the accuracy is. The loss of accuracy for
DA 1 is in agreement with the loss of accuracy of the global
parameters evolution shown in the Figure 8.

3.2.4. Downsampling
In the previous section we evaluated the influence of different
window sizes on the accuracy of the results in the DA predictions.
Here we want to evaluate the influence of the spatial resolution
of the data extracted from the ground-truth solution. To do
this, the resolution of the data in window 4 has been down-
sampled meaning that the data voxels have a bigger size and
the data values are obtained averaging the ground-truth solution
over voxels formed by a bigger number of adjacent grid-nodes.
The downsampling factor (dw) characterizes the resolution of
the data acquisition: for instance, a dw of 2 means that each
Edn is obtained averaging the ground-truth solution over voxels
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FIGURE 10 | Turbulent channel flow: 〈Reτ 〉t (left) and TKE (t) (right) evolution over time obtained by using data acquired from window 4 with different downsamplings.

FIGURE 11 | Turbulent channel flow: comparison between DA predictions obtained by using data acquired from window 4 with different downsamplings and ground

truth on a line parallel to the y-axis and centered in the z-direction, i.e., z = πh, for x = 3πh. Left: stream-wise mean velocity profiles 〈ux (x = 3πh, y, z = πh, t)〉t. Right:

RSS profiles 〈u′x (x = 3πh, y, z = πh, t) u′x (x = 3πh, y, z = πh, t)〉t. Results are plotted in wall units and are shown for the bottom half part of the channel, i.e., y ≤ h.

formed by
(

1+ dw
)

×
(

1+ dw
)

×
(

1+ dw
)

adjacent grid-nodes;
these voxel-averaged values are then further time-averaged in
order to obtain time-and-space averaged data. Here, we analyze
the impact of the dw on the results starting from the effect on
the 〈Reτ 〉t and TKE (t) evolution, see Figure 10. Essentially, a
bigger dw (lower data resolution) reduce the accuracy of the
solution in the DA predictions: this loose of accuracy is due to
the. The results obtained with dw = 2 and dw = 4 are in a very
good agreement with the ground-truth results for both 〈Reτ 〉t
and TKE (t).

Figure 11 shows the comparison between DA prediction
and ground truth of the velocity profile 〈u+x (Ex, t)〉t profile and
the RSS profile 〈u′+x (Ex, t) u′+x (Ex, t)〉t on a line parallel to the
y-axis and centered in the z-direction, computed after 4,000
time units. Downsampling the data increases the magnitude of
the covariance rn such that the filter will trust in them less
than in the forecast solution given by the numerical solver.

The recovery of the log law and the RSS peak predictions
slightly deteriorate for higher downsamplings. Even though
the unperturbed initial conditions of the flow would not have
shown a transition to turbulence without the filter forcing, the
boundary conditions are able to maintain the turbulence. After
the numerical transient, the loose of accuracy due to the down-
sampled data is compensated by the numerical solver. This is an
important result because it means that the filter is able to give the
correct importance to the two different sources of information.

3.3. Pulsatile Turbulent Flow Downstream a
Bioprosthetic Transcatheter Aortic Valve
Here, the configuration setup for a pulsatile turbulent flow past a
self-expandable Transcatheter Aortic Valve (TAV) with a heart-
rate equal to 70 [beat/min] is investigated in the aortic region
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TABLE 1 | Pulsatile turbulent flow downstream a bioprosthetic heart valve: division of the pulse period T in N
exp
8 = 22 intervals and Nnum

8 = 66 intervals.

φ
exp

i
1 2 3 4 5 6 7 8 9 10 11

tφexp
i

[s] 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

φ
exp

i
12 13 14 15 16 17 18 19 20 21 22

tφexp
i

[s] 0.16 0.17 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.60 0.70

φ
exp

i
1 2 … … 21 22

φnum
i

1 2 3 4 … … 61 62 63 64 65 66

tφnum
i

[s] 0.05 0.0533 0.0566 0.06 … … 0.60 0.633 0.666 0.70 0.769 0.838

Numerical time intervals have been obtained by refining by a factor of 3 the temporal resolution of each time interval of the experimental data.

downstream the valve. The positive y-direction define the stream-
wise direction, while the x- and z-direction are the span-wise
ones. The Reynolds number is set to 4, 900, based on the nominal
diameter d = 23 [mm] of the TAV, on the peak (systolic) velocity
Uy = 1 [m/s] and on the kinematic viscosity ν of the fluid.
In this case, no ground truth is available but only experimental
data. Moreover, blood flow modeling uncertainty has to be taken
into account.

3.3.1. Data Acquisition
The generation of the data Edv;(s),φ to be used in the DA
predictions has been provided by an experimental setup. The
TAV was implanted in a quasi-stiff aortic silicon phantom of
the aortic root and integrated in a hydraulic pulse duplicator.
Tomographic Particle Image Velocimetry (Tomo-PIV) (43, 44)
was used to reconstruct the three-dimensional flow fields in the
region of interest. The pulse period T = 60.0/70 [s] has been
divided in N

exp
8 = 22 intervals as described in the Table 1.

The experimental grid domain has a size of 35 [mm] × 50
[mm] × 35 [mm] and consists of 42 × 59 × 42 voxels. Each
voxel-and-phase-averaged data has been computed by using 24
repetitions of the heart-pulse, and the covariance of the error
of the PIV data results from a phase averaging of instantaneous
voxel data fields taken at 24 pulses. Outside the region of interest,
the data (velocity and corresponding uncertainty) have been set
to zero in order to replicate the presence of the aortic walls. Of
course there are additional errors due to the PIV methodology
itself which are not considered in the present investigation.

3.3.2. Comparison Between Experiments, Direct

Numerical Simulation and Data Assimilation

Prediction
Two simulations have been performed for a time equal to 120T: a
DNS where the experimental data are used only to impose inflow
and wall boundary conditions; and a DA prediction where the
experimental data are used also to filter the forecast flow field by
using the DA methodology. The pulse period has been divided
in Nnum

8 = 66 intervals obtained by refining by a factor of 3
the temporal resolution of each time interval of the experimental
data, as shown in the Table 1.

The computational grid used for both DNS and DA prediction
has been obtained by refining the experimental grid by a factor of
2 in each direction and then adding an external padding equal to
at least 10% to each side of the three-dimensional domain. The
final size of the computational grid domain is 44 [mm] × 60

[mm] × 44 [mm] and consists of 105 × 145 × 105 grid nodes.
Mapping the voxel-grid onto the computational grid leads to
gv = 3 × 3 × 3 grid-nodes lying inside the corresponding voxel.
We use periodic boundary conditions for the full computational
domain with padding. In both simulations, the presence of the
aortic wall and the physical inflow conditions are enforced via
the fringe forcing method (cf. Section 2.4). The experimental
data forced to zero outside the region of interest and the lowest
5 y-plane slices data are used as desired values EU of the fringe
forcing applied in order to impose wall and inflow boundary
conditions, respectively. Since the inflow is time dependent, it
is not appropriate to use a constant value for λ in the Equation
(41). Here, a time-dependent λ has been chosen such that it
guarantees the stability condition of the Runge–Kutta time-
advancement scheme:

λ(RKsubstep,1t) =
1.0

α(RKsubstep)1t
, (46)

where 1t is the numerical time step and α is the first Runge–
Kutta coefficient for each Runge–Kutta substep RKsubstep. The
inflow boundary conditions for the intermediate numerical time-
steps have been imposed by linear interpolation in time of the
voxel data. The bulk flow voxel data are used only to perform
DA prediction. The initial flow field is set to zero. A sketch of the
configuration can be seen in Figure 12.

The results obtained by the experiments, DNS and DA
prediction have been compared to evaluate the capability of
the DA methodology to enhance the spatial and temporal
resolution of the observations and to increase the reliability of
the characteristic flow patterns captured from the numerical
solver. Herein, the systolic phase-averaged velocity 〈uy

(

Ex, tφ
)

〉φ
obtained by the Tomo-PIV experiments, DNS and the DA
prediction are shown in Figures 13A,B for x-plane and z-plane,
respectively.

The DNS and DA prediction present an enhancement in
time resolution with respect to the experimental data. The
boundary conditions extracted by the experimental data drive
the flow in the intermediate iterations between two subsequent
applications of the filter. This is an important result because it
has been possible to simulate the cardiovascular turbulent flow
downstream the heart valve numerically without the need for
Fluid-Structure-Interaction methods.
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FIGURE 12 | Pulsatile turbulent flow downstream of a transcatheter aortic valve: Numerical setup. The experimental grid is overlapped onto the computational

domain (blue). The wall boundary conditions are imposed in the yellow region which includes data masked in the experiments; The inflow boundary conditions are

imposed in the green region; DA is performed in the red region.

In the DNS, the results show a global overestimation of the
velocity field. This is due to boundary condition uncertainty and
blood modeling uncertainty. The DA prediction is affected by
the same boundary condition and blood modeling uncertainties
but the DA prediction strongly reduces the overestimation of the
DNS velocity field. It means that the use of the DA methodology
has improved the reliability of the velocity field results. The
three leaflet jet coming from the bioprosthetic valve seems to be
better defined in DA prediction (see, e.g., t = 0.175T slice, in
Figure 13A). In the lower part the back flow near the left wall,
the DA prediction present a smoother flow field (see Figure 13B).
This is due to the higher capability of the numerical solver to
investigate that region which is, on the contrary, a more difficult
challenge for the experimental tool. It is noteworthy that the DA
prediction presents a smaller reverse flow region: the filter trust
more in the numerical solver and consider the bigger reverse flow
region present in the experiments too uncertain with respect to
the forecast solution. Moreover, the DA methodology filters the
information coming from those voxel data near the wall that are
evidently affected by a tool acquisition error. This error is not
visible anymore in DA prediction.

Figure 14A shows the evolution of the flow field for
increasingly larger number of pulses performed by the DA
algorithm. Velocity profiles from DA prediction, DNS, and
experiments are compared in Figure 14B along two lines parallel
to y-axis. The results show that the flow field prediction has
reached a good convergence after 120 pulses.

The finer spatial and time resolution obtained in the DA
prediction enhanced the flow field of this specific configuration.
This is an important and promising result for future applications
of the proposed DAmethodology on in vivo data from Flow-MRI
of patient-specific configurations.

4. DISCUSSION

In the present manuscript, a new DA methodology has been
presented. The robust theoretical background of the (S)EnKF

approaches has been applied to pulsatile and turbulent flow
configurations. The different ensemble-averaging approaches,
that were presented here, show how the study of turbulent
flows can be reduced to the definition and the subsequent
investigation of the most important statistical properties
of the flow, such as mean velocity and the associated
fluctuations covariance.

In the context of turbulent flows, the proposed SEnKF-based
methodology states as hypothesis that the “true” state-of-system
is the mean velocity field. Turbulent fluctuations are deviations
from the ensemble-averaged quantities. This leads to the formal
equality between turbulent fluctuations and the observation error
Ern required in the derivation of a SEnKF.

In the derivation of our DA methodology, the definition
of the states of the ensemble allows us to treat the forecast
error Eqn in the proper way: this error has zero mean and
the contribution of the covariance of the numerical error
EqnNUM will be negligible compared with the one of the
turbulent error EqnTUR and modeling error EqnMOD . In the first
two test cases (sections 3.1, 3.2), the model is well defined
and therefore EqnMOD is zero. In the last test case (section
3.3), DNS and DA predictions are affected by the same
EqnMOD . Therefore, only the turbulent error is relevant in the
present study.

The choice of the ensemble of states-of-system in the case
of pulsatile and turbulent flows allows one to filter the forecast
solution at each time tn with the corresponding data flow field;
this yields to an additional but constant computational cost for
each pulse interval.

From a numerical point of view, filtering the forecast
solution with a forcing term only in nonconsecutive time-
step iterations could be seen as forcing the flow field with
a temporal Dirac δ function. This would lead to numerical
oscillations in the intermediate iterations between two filtering
iterations and to a local non-smooth advancement in time of the
numerical solution.

First, the DA methodology has been validated vs. an unsteady
flow past a cylinder confined in a channel using data acquired
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FIGURE 13 | Pulsatile turbulent flow downstream of a transcatheter aortic valve: comparison between experiments, DNS, and DA prediction of velocity field

〈uy
(

Ex, tφ
)

〉φ for x = 0 (A) and for z = 0 (B).
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FIGURE 14 | Pulsatile turbulent flow downstream of a transcatheter aortic valve: (A) velocity field 〈uy
(

x, y, z = 0, tφ = 0.175T
)

〉φ obtained by the DA algorithm for

increasingly larger number of pulses. (B) Velocity profiles along a line parallel to y-axis and crossing the reverse flow region, x = −13.5 mm and z = 0, (left) and along

the centerline, x = z = 0, (right).

from previous numerical simulations. In the DA predictions, the
presence of the cylinder was not taken into account by using
any boundary conditions but nevertheless the reconstruction
of the wake downstream the cylinder has been successfully
reconstructed by filtering the forecast solution with the data. The
test shows that the DA method, and in particular the proposed
choice of the ensemble of states-of-system, copes with unsteady
flow field presenting a periodicity in time.

Second, the methodology was extended to turbulent flow
applications. The statistically-steady configuration of the wall-
bounded turbulent flow shows that the turbulent features can
be reconstructed by using the data even though the numerical
simulation is initialized with a laminar flow which would not
exhibit a transition to turbulence by itself. The effect of the
different data configurations on the bulk flow and on the walls
has been investigated. Downsampling the resolution of data
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acquisition leads to a loss of accuracy in the DA prediction that is
limited to 5%.

Finally, the methodology has been applied to pulsatile and
turbulent configuration of a flow past a bioprosthetic heart valve.
The data of a pulsatile turbulent flow past a TAV, acquired
by a Tomo-PIV technique have been used to reconstruct the
wake in the aorta in a computational simulation with higher
spatial and temporal resolution. The test-case shows how the
DA methodology deals with FSI applications even though no
structural modeling is required. The results show the capability,
the robustness and the accuracy of the proposed methodology to
cope with realistic configurations of biomedical applications.

The presented results show that the filter is capable of
interpreting the accuracy and reliability of the data with respect
to the numerical solution giving locally a different weight to the
two different sources of information. A bigger amount of data,
although with greater uncertainty, allows to lead the solution
of the DA method closer to the true-state of the system. This
is useful in heart valve applications where the data acquired by
experimental investigations or through 4D Flow MRI techniques
suffer from lower accuracy near the walls; these noisy data are
filtered and the higher accuracy of the numerical solver will
return a better description of the flow field in such regions. On the
other hand the available data of the specific-patient configuration
will increase the accuracy of the numerical solution in the bulk
flow if compared with the solution obtained by using a FSI
solver employing a simplified morphology of the aortic valve and
aortic root.

A first limitation of the methodology is that we consider the
covariance across different voxels to be zero. This is equivalent
of assuming that the autocorrelation length is less than the voxel
size h. This limitation might be overcome solving with higher
computational cost the analysis step by using the global matrices
H, Pf and R instead of h, pf and r. A second limitation of the
methodology is represented by the definition of the matrix D

which is required to ensure positiveness of covariance matrix
pf . From a theoretical point of view D influence disappears for
increasingly large ensembles, but the choice of its value strongly
affects the convergence history of the DA prediction. For D

too high, the DA prediction will require a larger number of
cycles in order to reach a converged solution for both mean
velocity and covariance. Moreover, a large value of D reduces
the physical meaning of the matrix pf and this will influence
the sensitivity of the filter. On the other hand, for D too low
the forecast solution would be considered closer to the “true”
state-of-system by the filter even though it cannot be stated a
priori. In conclusion, the value of D has to be chosen high and
run the DA prediction for the required number of cylces until
convergence is reached. For this reason, in the DA prediction
of the pulsatile turbulent flow downstream a bioprosthetic heart
valve, 120 pulses (5 times the number of repetitions available by
the experiments) have been enough to enhance the description
of the mean flow fields with respect to the observations, but
have not produced a significant improvement of the RSS fields.

The investigation of the RSS fields requires to collect a larger
ensemble for both matching the classical requirements on the
ensemble size of turbulent statistics and fully overcoming the
influence of D. The sensitivity of the proposed methodology to
the matrix D and the size of ensemble needed for convergence
in these cardiovascular applications in the ascending aorta will
be further investigated in order to estimate the computational
cost required to enhance RSS fields. A further limitation is that
synthetic experimental data have been created without adding
any Gaussian error after spatially averaging inside the voxel,
even though this has been previously done in literature. This
choice has been made here, because we want to focus our
investigations on the effect of turbulent fluctuations (considered
as measurement noise). Additional noise may pose additional
problems to the described method, in particular, because the real
noise in MRI data has a non-Gaussian character. In practice, 4D
flow MRI quantification would require more complex methods
in order to quantify the effects of these hardware source of errors.
Specific methods have been developed for creating synthetic 4D
flowMRI data from raw Phase Contrast MRI data to better assess
turbulent features, e.g., turbulence intensity and TKE (45–50),
and for completely excluding the effects of the hardware source
errors by generating synthetic MRI data fields (51).

In conclusion, the results show that the method is promising
for future use with in vivo data from 4D Flow MRI.
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