
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
6
4
2
1
1
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
9
.
4
.
2
0
2
4

RESEARCH ARTICLE Open Access

Genomic insight into diet adaptation in the
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Abstract

Background: The ladybird beetle Cryptolaemus montrouzieri Mulsant, 1853 (Coleoptera, Coccinellidae) is used
worldwide as a biological control agent. It is a predator of various mealybug pests, but it also feeds on alternative
prey and can be reared on artificial diets. Relatively little is known about the underlying genetic adaptations of its
feeding habits.

Results: We report the first high-quality genome sequence for C. montrouzieri. We found that the gene families
encoding chemosensors and digestive and detoxifying enzymes among others were significantly expanded or
contracted in C. montrouzieri in comparison to published genomes of other beetles. Comparisons of diet-specific
larval development, survival and transcriptome profiling demonstrated that differentially expressed genes on
unnatural diets as compared to natural prey were enriched in pathways of nutrient metabolism, indicating that the
lower performance on the tested diets was caused by nutritional deficiencies. Remarkably, the C. montrouzieri
genome also showed a significant expansion in an immune effector gene family. Some of the immune effector
genes were dramatically downregulated when larvae were fed unnatural diets.

Conclusion: We suggest that the evolution of genes related to chemosensing, digestion, and detoxification but
also immunity might be associated with diet adaptation of an insect predator. These findings help explain why this
predatory ladybird has become a successful biological control agent and will enable the optimization of its mass
rearing and use in biological control programs.

Keywords: Genome, Biological control, Ladybird, Cryptolaemus montrouzieri, Prey adaptation, Immunity, Evolution

Background
The remarkable evolutionary success of insects is associ-
ated with adaptations to a vast diversity of food sources
and access to multiple trophic niches. For example, the
emergence of gene families encoding odorant binding
proteins and odorant receptors allowed insects to locate
new diet sources [1]. The expansion of diet range is

associated with the expansion of gene families related to
detoxification and digestion [2, 3]. In beetles, several
studies have demonstrated that the adaptation to plant
feeding includes the evolution of genes encoding chemo-
sensors for finding appropriate food sources [4], digest-
ive enzymes for breaking down plant cell walls [5–7],
and detoxifying enzymes for eliminating harmful plant
toxins [7, 8]. In addition, diet also affects insect immun-
ity [9]. The evolution of insect immunity allows insects
to change their phenotype in response to changes in the
environment, including diet and microbiota [10]. For
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example, insect antimicrobial peptides (AMPs) can
maintain a core microbiota while protecting against mi-
crobes [11]. In ladybird beetles, the invasive species Har-
monia axyridis (Pallas, 1773) has more genes encoding
AMPs than non-invasive species, which might reflect its
invasive biology [12]. However, it is not clear whether
feeding related traits, e.g. predatory efficiency, prey
specialization and adaptability to feeding on unnatural or
artificial foods in some beetle species is associated with
similar patterns of genomic evolution, while these traits
are of particular importance in biological control use.
The use of predatory insects in classical and augmen-

tative biological control programs has yielded in some
cases huge economic and ecological benefits. After the
successful control of cottony cushion scales using the
vedalia ladybird beetle Novius cardinalis (Mulsant, 1850)
[13] in California in 1888–1889, hundreds of predatory
insects were introduced from abroad for biological con-
trol purposes all around the world, but most of them
failed to establish or provide pest control [14]. Some
species used in classical or augmentative biological con-
trol programs even became invasive and harmed local
biodiversity [15]. In contrast, the mealybug destroyer
Cryptolaemus montrouzieri Mulsant, 1853 is a successful
predator and is still being used worldwide [16]. This
predatory ladybird beetle is native to Australia and has
been introduced to at least 64 countries or regions for
classical or augmentative biological control purposes
since 1891 [16]. The success of C. montrouzieri can be
attributed to its efficient predation of mealybug pests
and easy mass rearing [16–18].
Mealybugs (Hemiptera, Sternorrhyncha, Pseudococci-

dae) are the predominant prey of C. montrouzieri.
Whereas mealybugs produce wax secretions to protect
themselves from a range of natural enemies, these wax
secretions act as an attractant and oviposition stimulant
for C. montrouzieri [16], indicating ladybird-mealybug
specialization. Under laboratory and mass rearing condi-
tions, C. montrouzieri can also feed on other Sternor-
rhyncha species (e.g., whiteflies, aphids and other
coccids), lepidopteran eggs and even artificial diets [18–
21]. Some of these alternative diets can support the
complete life cycle of the ladybird (provided that an arti-
ficial oviposition substrate is supplied) but will to some
extent decrease fitness of the predators. Previously, we
detected a large number of differentially expressed genes
(DEGs) in C. montrouzieri in response to a diet shift
from mealybugs to aphids [21]. This suggests that C.
montrouzieri can adapt to a variety of nutritional condi-
tions via phenotypic and transcriptional plasticity.
In this study, we hypothesize that diet adaptation of C.

montrouzieri is associated with evolution and regulation
of genes related to chemosensing, digestion, detoxification
and immunity. We used genomic and transcriptomic

approaches to examine the extent of dietary adaptation in
C. montrouzieri (Fig. 1). We assembled a high-quality gen-
ome of C. montrouzieri and compared its content to eight
other Coleoptera genomes. We further tested for gene ex-
pression differences between C. montrouzieri larvae that
were experimentally fed different diets.

Results
General genomic features of C. montrouzieri
A total of 115.55 Gb of raw data and 106.63 Gb of high-
quality clean reads were generated with PromethION
DNA sequencing (Oxford Nanopore, UK). These Nano-
pore data together with additional 151.03 Gb Illumina
data were assembled using Wtdbg, followed by Racon
and Pilon polishing, which produced a 988.11Mb gen-
ome assembly with 398 contigs and a contig N50 of
9.22Mb (shortest: 39,165 bp; longest: 32,637,267 bp).
This genome size of C. montrouzieri was larger than that
of published ladybird and other Coleoptera genomes
(largest among the ladybirds, Propylea japonica (Thunberg,
1781), 850.90Mb; largest among Coleoptera, Anoplophora
glabripennis (Motschulsky, 1853), 981.42Mb) [5, 22]. Ap-
plication of the Benchmarking Universal Single-Copy
Orthologs (BUSCO, Insecta set) pipeline [23] showed that
this C. montrouzieri genome compared well with the other
insect genomes in the OrthoDB v10.1 database in terms of
completeness, with 97.1% complete genes (96.0% single
copy and 1.1% duplicated), 0.7% fragmented and 2.2% miss-
ing at the genome level.
Annotation of the C. montrouzieri genome using the

Braker pipeline [24] yielded a final set of 27,858 genes
and 32,187 protein sequences. Application of the
BUSCO pipeline showed that this C. montrouzieri gene
set has 93.1% complete genes (91.9% single copy and
1.2% duplicated), 4.2% duplicated and 2.7% missing at
the protein level in the Insecta of OrthoDB database. In
the functional annotation of this protein set, 31,632 were
found in the National Center for Biotechnology Informa-
tion (NCBI) nonredundant (NR) Hexapoda subset, 30,
884 in Swiss-Prot, 16,042 in at least one protein domain
in Pfam, 7613 in Gene Ontology (GO) and 8290 in
Kyoto Encyclopedia of Genes and Genomes (KEGG) da-
tabases (Additional file 2: Table S1).

Comparative genomics
A genome-wide scan of gene family evolution was per-
formed among the genomes of C. montrouzieri and
eight other Coleoptera species with different feeding
habits (Table 1) [4, 5, 25–29]. As revealed by the clus-
tering algorithm implemented in CAFE software [30],
we found that 2426 and 2577 gene families of the C.
montrouzieri genome underwent expansion and con-
traction, respectively (Additional file 1: Fig. S1). Among
these, only 28 gene families underwent significant
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contraction (P < 0.05), among which two encode che-
mosensors and eight encode digestive or detoxifying
enzymes (Table 2 and details in Additional file 2: Table
S2). Of the 598 significantly expanded gene families in
C. montrouzieri (P < 0.05), one encodes chemosensors,
nine encode digestive or detoxifying enzymes, and one
encodes immune effectors (Table 2 and details in Add-
itional file 2: Table S2). Further identification of
immunity-related genes showed that C. montrouzieri had
a large number of genes encoding immune effectors in-
cluding 18 antimicrobial peptides (AMPs) and 15 lyso-
zymes. This number of immune effector genes is equal to
those of the beetle Onthophagus taurus (Schreber, 1759)
[25] and larger than the other beetles (Fig. 2). In contrast,
only 33 genes of C. montrouzieri are involved in recogni-
tion, while some of the other beetles have around 60 of
these genes (Fig. 2).

Feeding experiment and transcriptome profiling
The responses of both life history traits and gene expression
to different diets were experimentally studied. Second-
instar C. montrouzieri larvae were raised on 13 diets,

including one natural prey diet and 12 factitious prey or
artificial diets (Table 3). The natural prey Planococcus citri
(Risso, 1813) (MEALYBUG) has been used to maintain the
tested laboratory population for more than 10 years. Thus,
the use of this prey for C. montrouzieri as a control allows
comparison of the responses to different diets.
In the comparison of life history traits, we found large

differences in the performance of the larvae among these
13 diets (Fig. 3 and details in Additional file 1: Table S3).
The natural prey diet (MEALYBUG) was clearly favor-
able, with the highest adult weight, second shortest de-
velopment time and lowest mortality rate (Fig. 3a). The
two factitious prey diets PEAAPHID and FLOURMOTH
were second only to the natural prey diet in terms of
adult weight. Individuals in the remaining ten diet treat-
ments performed much worse, with > 70% mortality or
failure to develop to the adult stage on six of those diets.
The 12 unnatural diets overall led to significantly longer
larval survival than no food (Fig. 3b), especially the
POLLEN diet, which sustained larvae for up to 50 days.
Gene expression was then profiled in 4th-instar larvae

(< 24 h after molting) fed different diets. An overview of

Fig. 1 The study design for exploring the genomic basis of diet adaptation of Cryptolaemus montrouzieri

Table 1 Genomes of Coleoptera species with different feeding habits used for comparative genomic analyses. Species IDs were
ordered based on the species tree topology (Additional file 1: Fig. S1)

Species ID Species Family Feeding habit Reference

APLAN Agrilus planipennis Fairmaire, 1888 Buprestidae Herbivorous [25]

PPYRA Photinus pyralis (Linnaeus, 1767) Lampyridae Carnivorous in larva stage [26]

NVESP Nicrophorus vespilloides Herbst, 1783 Staphylinidae Saprophagous [27]

OTAUR Onthophagus taurus (Schreber, 1759) Scarabaeidae Saprophagous [25]

CMONT Cryptolaemus montrouzieri Mulsant, 1850 Coccinellidae Carnivorous This study

TCAST Tribolium castaneum (Herbst, 1797) Tenebrionidae Herbivorous [28]

DPOND Dendroctonus ponderosae (Hopkins, 1902) Curculionidae Herbivorous [29]

AGLAB Anoplophora glabripennis (Motschulsky, 1854) Cerambycidae Herbivorous [5]

LDECE Leptinotarsa decemlineata Say, 1824 Chrysomelidae Herbivorous [4]
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Table 2 Significant expansion (E) or contraction (C) of Cryptolaemus montrouzieri in gene families encoding chemosensor, digestive
and detoxifying enzymes and immunity as detected with CAFE in comparison to the other beetle genomes. Orthologous genes
were identified by Orthofinder. The number of genes in each family are shown for each species. These gene families contain protein
domain of: odorant receptors (OR), odorant binding protein (OBP), maltase, glycosyl hydrolase (GH), trypsin, cathepsin, cytochrome
P450 (P450), UDP-glucuronosyltransferases (UGT), carboxylesterase (CE) and attacin. Abbreviations of the tested species are defined
in Table 1

Function Gene family E/C APLAN PPYRA NVESP OTAUR CMONT TCAST DPOND AGLAB LDECE

Chemosensor OR C 0 0 4 3 0 18 5 15 12

OR C 9 1 5 2 0 0 1 3 6

OBP C 4 3 19 14 2 15 7 18 6

OBP E 0 0 0 0 5 0 0 0 2

Digestive
enzyme

Maltase E 20 2 0 2 5 2 1 3 1

GH1 C 23 8 6 5 6 13 19 22 26

GH16 E 4 0 1 1 5 1 10 2 3

Trypsin C 30 4 2 17 3 4 14 22 4

Trypsin C 5 39 26 19 5 6 14 20 5

Trypsin C 26 2 2 6 0 1 4 10 1

Trypsin C 2 4 5 2 0 2 0 3 7

Cathepsin L E 0 0 0 0 20 0 7 10 24

Cathepsin B E 1 1 1 1 6 2 1 1 14

Detoxifying
enzyme

P450 C 16 22 2 18 7 34 3 27 7

P450 E 3 4 1 4 9 3 2 12 4

UGT C 6 12 3 1 3 25 7 10 8

UGT C 0 8 5 9 0 3 1 4 3

UGT E 0 1 0 2 10 0 0 0 2

UGT E 5 0 0 2 5 3 1 0 0

UGT E 0 0 0 0 11 0 0 0 0

CE E 1 25 5 1 7 1 1 1 1

Immunity Attacin E 0 0 1 5 7 2 1 6 5

0 16 32 48 64 0 8 16 24 32

APLAN
PPYRA
NVESP
OTAUR
CMONT
TCAST
DPOND
AGLAB
LDECE

Recognit ion
GNBP

PGRP

C-type Lect in

Response
At tacin

Defensin

Coleoptericin

Thaum at in

Apolipophorin

I-type Lysozym e

C-type Lysozym e

Fig. 2 Evolution of immunity-related genes in Cryptolaemus montrouzieri. Number of genes related to immune recognition and response
identified from nine beetle genomes. The species’ ultrametric tree was adapted from Mckenna et al. [6]. Each term contains genes that produce
the same protein. Abbreviations of the tested species can be found in Table 1
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relative gene expression levels in the 13 treatments is
presented by a heatmap of r2 values in Fig. 4. All of the
treatments had r2 values between the two replicates ex-
ceeding 0.88, indicating repeatability within treatments.
The top three favorable treatments in life history trait
comparisons (MEALYBUG, PEAAPHID and FLOUR-
MOTH) shared also high r2 values among each other
(0.82–0.93, mean = 0.88). Gene expression patterns in
these three treatments were usually more different from
the inferior diet treatments (r2: 0.56–0.88, mean = 0.73).
When comparing the 12 unnatural (i.e. factitious prey or
artificial diet) treatments with the MEALYBUG treat-
ment, DEGs were enriched in 32 KEGG pathways (Q <
0.05), among which 29 were related to nutrient or toxin
metabolism (Fig. 5). Similarly, the DEGs were enriched

in GO terms mainly related to nutrient metabolism pro-
cesses and catalytic/oxidoreductase activities (Q < 0.05,
Additional file 1: Fig. S2).
As we found a significant expansion in a gene family

involved in the immune response in C. montrouzieri
(Table 2), the pattern of expression of immune effector
genes including those encoding antibacterial peptides
(AMPs) and lysozymes was specifically analyzed. We
found a general down regulation of the immune effector
genes (log2-fold change mean ± SE: − 1.73 ± 0.15) as
compared to the natural prey MEALYBUG treatment.
Among them, 6 of 28 were dramatically downregulated
when larvae shifted their diet from mealybugs to unnat-
ural diets, with most of the log2-fold change values
lower than − 3 (i.e. nine times lower than those in the

Table 3 Diet design for Cryptolaemus montrouzieri larvae

Diet type Protein sources Processing Code

Invertebrate whole bodies Mealybug Planococcus citri (Risso, 1813) Live prey MEALYBUG

Pea aphid Megoura japonica (Matsumura) Live prey PEAAPHID

Larvae of yellow mealworm Tenebrio molitor Linnaeus, 1758 Dry powder and solid medium MEALWORM

Larvae of house fly Musca domestica Linnaeus, 1758 Dry powder and solid medium HOUSEFLY

Earthworms Dry powder and solid medium EARTHWORM

Pupae of honeybee Apis mellifera Linnaeus, 1758 Dry powder and solid medium HONEYBEE

Larvae of black soldier fly Hermetia illucens Linnaeus, 1758 Dry powder and solid medium SOLDIERFLY

Invertebrate eggs Eggs of flour moth Ephestia cautella (Walker, 1863) Frozen FLOURMOTH

Eggs of rice moth Corcyra cephalonica (Stainton, 1866) Frozen RICEMOTH

Cysts of brine shrimp Artemia salina (Linnaeus, 1758) Medium BRINESHRIMP

Vertebrate materials Pork liver Dry powder and solid medium PORKLIVER

Chicken egg Solid medium CHICKENEGG

Plant materials Pollen of Brassica campestris Linnaeus Solid medium POLLEN

Fig. 3 Comparison of life history traits of C. montrouzieri fed different diets. a Effect of different diets on the development, adult weight and
mortality of C. montrouzieri larvae. Error bars show the standard deviation. b Survival time of larvae with different diets that did not allow
development to the adult stage
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Fig. 4 Relationship (r2) of gene expression between the studied transcriptomes with different diet treatments. Abbreviations of diet treatments
can be found in Table 3

Fig. 5 Heatmap of adjusted P values (Q) in KEGG pathway enrichment analysis for the transcriptome comparisons of alternative diets versus the
natural prey of C. montrouzieri larvae. Enrichment with Q < 0.05 is marked with an asterisk. Twenty-nine out of 32 enriched pathways were related
to metabolism
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natural prey control, Fig. 6). These genes include two
attacin genes, two defensin genes, one coleoptericin gene
and one cwh gene. In contrast, only slight regulation of
expression (log2-fold change mean ± SE: − 0.69 ± 0.08)
was detected in genes related to immune recognition in-
cluding those encoding c-type lectin, peptidoglycan rec-
ognition protein (PGRP) and gram-negative binding
protein (GNBP) (Fig. 6).

Discussion
Gene expansion/contraction related to feeding habits
The order Coleoptera is the most speciose group of ani-
mals with highly diverse feeding habits. Most of the spe-
cies in the suborder Adephaga are predaceous while
Polyphaga (e.g. weevils, longhorn beetles and leaf bee-
tles) are predominantly phytophagous species. The high
diversity of phytophagous beetles can be explained by
their complex interactions with flowering plants [8, 31,
32]. However, Polyphaga also includes the ladybird

beetles (Coccinellidae), most of which are predaceous
[33]. Evolutionary studies have suggested that the ances-
tral ladybirds have switched from mycophagy to a preda-
tory life style [33–35]. This is associated with the
diversification of ladybirds into more than 6000 reported
species [34].
In this study, we explored the evolutionary patterns of

gene families involved in the functions of chemosensing,
digestion, detoxification and immunity in the predatory
ladybird C. montrouzieri as compared with other beetles
with different feeding habits. We found that the C. mon-
trouzieri genome has undergone significant expansion or
contraction of several gene families encoding chemosen-
sors, digestive and detoxification enzymes. It seems that
these gene families are usually involved in diet adapta-
tion of not only phytophagous but also predatory bee-
tles. The evolution of these gene families of C.
montrouzieri might be associated with adaptation to
mealybug feeding. However, we also need to be aware of
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the other potential factors (e.g. the distinct phylogenetic
relationship of the tested species, the different qualities
of genome assemblies and annotations) that affect these
patterns of genome evolution.

Deficiencies of novel diets and diet-induced gene
regulation
The availability of a cost-effective factitious prey or arti-
ficial diet is key to the successful mass production of
arthropod natural enemies for use in biological control
[36]. The availability of molecular markers that could be
used as early indicators of insect responses to general
and specific nutritional levels may greatly advance the
practice of insect mass rearing [37–40]. However, very
few biological control agent species have completely se-
quenced genomes. In this study, with the help of our
new completely sequenced C. montrouzieri genome,
diet-induced gene regulation was explored, which might
further benefit diet development. We found that the per-
formance of C. montrouzieri larvae fed unnatural diets
decreased to different degrees. Both life history trait per-
formance and the pattern of gene expression congru-
ently revealed that the feeding treatments with another
Sternorrhyncha species (PEAAPHID) or lepidopteran
eggs (FLOURMOTH) were relatively close to those with
natural prey. In comparison, individuals in the rest of
the treatments performed much worse and had more di-
vergent patterns of gene expression. DEGs in the unnat-
ural diet treatments compared to the natural prey
treatment were mainly enriched in nutrient metabolism.
This finding explores a relationship between diet and
regulation of gene expression, and suggests that the de-
crease in performance might be caused by a dietary nu-
trient imbalance. Several studies have tried to explore
the relationship between gene expression patterns and
diet limitation of predatory biological control agents,
and have tried to further optimize the diet formulations
[37–41]. However, the mechanism of how diet compo-
nents affect gene expression of these predators is still
not clear. Similarly, our current data are insufficient to
pin down the exact deficiencies of the tested diets. More
detailed studies are needed to explore the relationship
between diet components and gene expression.

Potential roles of immune enhancement in prey
adaptation
Previous studies have demonstrated that many genes en-
coding AMPs and lysozymes of ladybirds are dramatic-
ally upregulated under the challenge of bacterial
infection [12, 42]. In our study, the expression of some
genes encoding AMPs and cell wall hydrolases was dra-
matically downregulated when using unnatural diets.
Change of nutritional condition is known to cause sig-
nificant changes in the physiology of ladybirds [43] and

other predatory insects [44]. Thus, it is possible that
using an unnatural diet has a negative effect on the
physiology of ladybirds, including immune defense. Sev-
eral studies have demonstrated the impact of diet on in-
sect immune response [45–47]. However, their findings
show that diet changes can positively impact on certain
immune traits but negatively affect others. In addition,
little evidence in insects supports a relationship between
diet changes and downregulation of immune effector
genes [48]. Alternatively, it seems that using natural
prey, i.e. mealybugs, is one of the factors inducing im-
mune responses in C. montrouzieri. Furthermore, the
gene family encoding attacin has expanded in compari-
son to other Coleoptera genomes. These two pieces of
evidence together suggest a potential role of immune en-
hancement in prey adaptation of C. montrouzieri.
The main prey of predatory ladybirds include aphids,

coccids (e.g., mealybugs and scale insects), psyllids and
whiteflies, all of which are in the suborder Sternor-
rhyncha (Hemiptera). These sap-feeding insects have a
specific bacteriome that harbors a large number of sym-
biont bacteria [49]. It is possible that the symbiont bac-
teria of mealybugs cause an immune response in
ladybird predators. A growing body of evidence shows
that bacterial symbionts can protect their hosts from
parasites and predators [50–52]. For example, the sym-
biont of Paederus beetles synthesizes a chemical toxin
that beetles can use as a defense against predators [53].
Also, the symbionts of the ladybird H. axyridis produce
pyrazines that have a function in defense behavior [54].
It would be interesting to investigate whether and which
bacteria in prey cause immune responses in their
predators.

Conclusions
The high-quality whole genome assembly of the preda-
tory ladybird C. montrouzieri provides insights into its
diet adaptation, including the expansion or contraction
of the gene families encoding chemosensors and digest-
ive and detoxifying enzymes, and the enrichment of dif-
ferentially expressed genes in pathways of nutrient
metabolism when using unnatural diets. We highlight
the potential role of immune enhancement and evolu-
tion of genes encoding immune effectors in diet adapta-
tion of this species. This genomic study of a biological
control agent is valuable for improving our basic under-
standing of its feeding habits, and may assist in improv-
ing its utilization in biological control.

Methods
DNA extraction, genome sequencing and assembly
DNA was extracted from the whole body of ten female
adults of C. montrouzieri. These individuals were derived
from a population that has been reared under laboratory
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conditions (27 ± 1 °C, 80 ± 1% relative humidity (RH)
and a 14:10 (L:D) h photoperiod) at Sun Yat-sen Univer-
sity since 2005 [55]. Genomic DNA was extracted using
the CTAB method [56]. The quality and concentration
of the extracted genomic DNA were checked using 1%
agarose gel electrophoresis and a Qubit fluorimeter
(Invitrogen, Carlsbad, CA, USA). High-quality DNA was
used for subsequent Nanopore and Illumina sequencing.
Approximately 15 μg of genomic DNA was used to

generate Oxford Nanopore long reads, and the sequen-
cing reaction was performed in a PromethION DNA se-
quencer (Oxford Nanopore, Oxford, UK). The raw data
were then filtered to remove short sequence reads (< 5
kb) and reads with low-quality bases (Q30 < 90%) using
Nanofilt v2.3.0 [57]. For assembly of Nanopore sequen-
cing data, Canu v1.5 [58] was implemented to generate
more accurate self-corrected reads with a corrected error
rate of 0.05. Assembly was then performed by Wtdbg
(https://github.com/ruanjue/wtdbg) with default settings.
Racon v1.32 [59] was implemented to correct the assem-
bly with Nanopore reads through two rounds with de-
fault settings. For further error correction, genomic
DNA was also sequenced on the Illumina HiSeq X Ten
platform (Illumina, San Diego, CA, USA). The Illumina
sequenced data were filtered to remove reads with low-
quality bases and adapters using Trimmomatic v0.36
[60] with default settings. Pilon v1.21 [61] was imple-
mented to correct the Nanopore assembly with Illumina
reads through three rounds with default settings.

Gene prediction and functional annotation
First, the repetitive elements of the assembled genome
were identified and masked. Repetitive elements of the
assembled genome were classified into families with five
rounds of RepeatModeler v2.0.1 analysis with default
settings, followed by genome masking with RepeatMas-
ker v4.1.0 (http://www.repeatmasker.org/) with default
settings. Second, genes were automatically predicted
based on our RNA-Seq data of C. montrouzieri in differ-
ent life stages and diet treatments (SRA accession:
SRR2971112, SRR2971116, SRR6981477, SRR8325176,
SRR8325159). RNA-Seq reads were mapped to the as-
sembled genome sequence using HISAT2 v2.1.0 [62].
Augustus 3.0.3 [63] was trained with the mapped data
according to the Braker2 pipeline [24], and further used
to predict genes in the genome sequences ab initio.
BUSCO v4.1.2 [23] with the Insecta set of the OrthoDB
v10.1 database was then used to assess the quality of the
predicted gene set.
The protein sequences of the automatically predicted

genes were subjected to similarity searches against the
NCBI NR Hexapoda subset and UniProtKB Swiss-Prot
databases using BLASTp with a cutoff E-value of 10− 5.
Only the longest protein isoform for each gene was used

as a query. Protein domains within genes were searched
against the Pfam v32 database using InterProScan v5
[64] with a cutoff E-value of 10− 5. Sequences were also
mapped to the GO database [65, 66] and KEGG refer-
ence pathways [67] using eggNOG-mapper [68] with a
cutoff E-value of 10− 5.
In addition, specific genes with immune functions of

beetles were identified based on searches against the da-
tabases UniProtKB/Swiss-Prot, Pfam v32 or KEGG path-
way. These genes are classified into three major roles in
immunity: recognition, signaling cascade and response
[12, 42, 69]. Recognition genes included c-type lectin
(containing the Pfam protein domain: ID:PF00059), pep-
tidoglycan recognition protein (PGRP, identified by Swiss-
Prot annotation) and gram-negative binding protein
(GNBP, identified by Swiss-Prot annotation). Signaling
cascade genes included those in the Toll and IMD path-
way (KEGG: map 04624) and JAK/STAT pathway (KEGG:
map 04630). Immune response genes included those en-
coding antimicrobial peptides, e.g., attacin (containing the
Pfam domain: ID: PF03769), defensin (PF01097), coleopter-
icin (PF06286), thaumatin (PF00314) and apolipophorin
(PF07464), and lysozymes, e.g., c-type and i-type lysozyme
(identified by Swiss-Prot annotation). In addition, a puta-
tive antimicrobial gene, cell wall hydrolase (containing the
Pfam domain: ID: PF07486), in ladybirds was also in-
cluded in the analyses [70].

Orthology search and gene family evolution
OrthoFinder v2 [71] was used to identify orthologous
genes by retrieving the protein sequences of the C. mon-
trouzieri and the other published Coleoptera genomes
with default settings. A total of nine gene sets of Coleop-
tera genomes predicted from RNA-Seq data were used
(Table 1), and their longest protein isoforms were ex-
tracted as input of OrthoFinder. Protein domains within
genes were searched against the Pfam v32 database using
InterProScan v5 with a cutoff E-value of 10− 5. Informa-
tion of protein domain was subsequently assigned to the
orthogroups using KinFin [72]. Furthermore, these
orthogroups were used as input for CAFE v4.1 [30] to
assess gene family contraction and expansion dynamics
using the birth/death parameter (λ). The species tree
used in CAFE was adapted from a recently published
Coleoptera phylogeny [6]. In each branch, orthologous
groups with p-values < 0.05 were considered significant
expansions or contractions.

Feeding experiment: diet-specific life history traits and
transcriptome
Diet materials for C. montrouzieri were selected based
on common protein sources used for insect diets. The
selected protein sources covered whole bodies of seven
invertebrate species, the eggs of three invertebrate
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species, two types of vertebrate products and one type of
plant tissue (Table 3). Most solid materials were first
dried in an oven (60 ± 1 °C) for 24 h and then ground to
a powder using a kitchen blender. For materials that
could not be directly fed to ladybirds, media were made
with 2.5 g of protein source, 1.5 g of sucrose, 0.23 g of
agar, and 19 mL of distilled water; sucrose was included
as a feeding stimulant and agar as a thickener. A prelim-
inary blank control treatment in which C. montrouzieri
was offered the medium without a protein source from
the 2nd instar onwards showed that none of the larvae
developed to the 4th instar. We also set up a starvation
treatment with no food or water provided by the 2nd in-
star onwards.
The developmental traits of C. montrouzieri were in-

vestigated from the 2nd instar onwards because we ob-
served that some first instars died from non-nutritional
factors (e.g., they were stuck in the medium). Before the
treatments, all larvae were fed mealybugs in communal
cultures. Thereafter, 52 to 137 2nd-instar larvae of C.
montrouzieri (< 24 h after molting) derived from the
population at Sun Yat-sen University [55] were placed
individually in plastic Petri dishes (diameter: 5 cm,
height: 2 cm) for the different diet treatments. All diets
were offered ad libitum and replenished daily. The sur-
vival and development of C. montrouzieri larvae and
pupae were monitored daily. Newly emerged adults were
weighed. All feeding experiments were performed in a
climatic chamber at 27 ± 1 °C with an 80 ± 1% relative
humidity (RH) and a 14:10 (L:D) h photoperiod. A
Kolmogorov-Smirnov test indicated that survival time of
larvae and adult weight were normally distributed and
therefore could be analyzed using a one-way analysis of
variance (ANOVA). As a Levene test indicated homosce-
dasticity, the means were separated using Tukey tests. In
all tests, p values below 0.05 were considered significant.
All data were analyzed using SPSS 17.0 (SPSS Inc.).
Two 4th-instar larvae (< 24 h after molting) of C. mon-

trouzieri from each diet treatment in the above life
history experiment were randomly collected for tran-
scriptome analysis. After ~ 12 h of starvation, the total
RNA of each individual was extracted using TRIzol
reagent (CWBIO, Beijing, China). RNA quality and
quantity were determined using a Nanodrop 1000 spec-
trophotometer (Thermo Fisher Scientific, Wilmington,
US). Only RNA samples with a 260/280 ratio from 1.8
to 2.0, a 260/230 ratio from 2.0 to 2.5 and an RNA in-
tegrity number (RIN) greater than 8.0 were used for se-
quencing. Sequencing was performed on the Illumina
HiSeq 2500 platform, generating 2 × 125 bp reads. Adap-
tors and low-quality sequences were removed using the
default settings for Trimmomatic v0.36.
Transcript assembly and abundance estimation were

performed using the TopHat2 + Cufflinks method [73].

The coefficient of determination (r2) from Pearson’s cor-
relation analysis was used to analyze the relationship of
each sample pair based on fragments per kilobase of
transcript per million mapped reads (FPKM) values. The
regulation of gene expression was tested using Cuffdiff
in Cufflinks, with a false discovery rate (FDR) < 0.05 for
defining differentially expressed genes (DEGs). We used
natural prey as a control to test for transcriptional regu-
lation when ladybirds were fed unnatural diets. Thus,
analyses of DEGs were performed only in the compari-
sons of the 12 factitious prey or artificial diet treatments
against the MEALYBUG treatment. We investigated
which GO terms and KEGG pathways the DEGs were
involved in and evaluated statistical significance of GO
and KEGG enrichment by hypergeometric distribution
testing.
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