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Pressures from multiple, sometimes interacting, stressors can have negative
consequences to important ecosystem-service providing species like the western honey
bee (Apis mellifera). The introduced parasite Varroa destructor and the neonicotinoid
class of insecticides each represent important, nearly ubiquitous biotic and abiotic
stressors to honey bees, respectively. Previous research demonstrated that they
can synergistically interact to negatively affect non-reproductive honey bee female
workers, but no data exist on how concurrent exposure may affect reproductive
honey bee males (drones). This is important, given that the health of reproductive
females (queens), possibly because of poor mating, is frequently cited as a major
driver of honey bee colony loss. To address this, known age cohorts of drones
were obtained from 12 honey bee colonies—seven were exposed to field-relevant
concentrations of two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin)
during development via supplementary pollen patties; five colonies received patties
not spiked with neonicotinoids. Artificially emerged drones were assessed for natural
V. destructor infestation, weighed, and then allocated to the following treatment groups:
1. Control, 2. V. destructor only, 3. Neonicotinoid only, and 4. Combined (both mites and
neonicotinoid). Adult drones were maintained in laboratory cages alongside attendant
workers (1 drone: 2 worker ratio) until they have reached sexual maturity after 14 days
so sperm concentration and viability could be assessed. The data suggest that
V. destructor and neonicotinoids interacted synergistically to negatively affect adult
drone survival, but that they interacted antagonistically on emergence mass. Although
sample sizes were too low to assess the effects of V. destructor and combined exposure
on sperm quality, we observed no influence of neonicotinoids on sperm concentration
or viability. Our findings highlight the diverse effects of concurrent exposure to stressors
on honey bees, and suggest that V. destructor and neonicotinoids can severely affect
the number of sexually mature adult drones available for mating.
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INTRODUCTION

Stressors like habitat loss, climate change, pollution, and
invasive species have resulted in widespread anthropogenic
effects on ecosystems (Butchart et al., 2010; Geldmann et al.,
2014). Research on how multiple stressors interact to pressure
important ecosystem-service providing species have revealed
complex effects, ranging from additive, whereby the effects
of two stressors equal their combined individual effects, to
synergism for which the combined effect of two stressors is
greater than the predicted additive effects, to antagonism, when
the combined effect of two stressors is less than the predicted
additive effects (Côté et al., 2016). Mechanisms responsible for
each type of interaction vary, but they may be influenced by
exploitative competition for limited resources (Poulin, 2007)
or host stress as a result of tissue pathology or immune
suppression (Alaux et al., 2010; Pettis et al., 2013). Understanding
and predicting the circumstances surrounding each type of
interaction is currently difficult, but is expected to significantly
improve as laboratory, field, and meta-analysis investigations
on model or important ecosystem-service providing species
continue (Boyd and Brown, 2015; Piggott et al., 2015;
Kaunisto et al., 2016).

In recent years, it is believed that pressures caused by
multiple, possibly interacting, stressors are responsible for
consistently high losses of managed western honey bee (Apis
mellifera) colonies across the northern hemisphere (Kulhanek
et al., 2017; Bruckner et al., 2019; Gray et al., 2019, 2020).
Both biotic and abiotic stressors, such as poor nutrition,
introduced parasites, heavy metals, and pesticides are blamed
(Steinhauer et al., 2018). Individually, they can elicit a
range of negative consequences on honey bees, ranging
from sub-lethal physiological and behavioral effects to lethal
ones that result in reduced survival (Havard et al., 2020).
When acting in concert, diverse effects are observed, ranging
from antagonistic parasitic-pesticide interactions to synergistic
pesticide-pesticide ones (Straub et al., 2020; Bird et al., 2021;
Siviter et al., 2021).

Arguably one of the most important biotic stressors for honey
bees is the ectoparasitic mite Varroa destructor (Rosenkranz et al.,
2010; Traynor et al., 2020). Its life cycle is tightly linked to its
honey bee host, and consists of two distinct stages—dispersal
and reproduction (Traynor et al., 2020). Mature V. destructor
foundress mites produce several offspring that subsequently feed
on tissues of developing honey bees (hereafter called brood) until
they emerge from brood cells alongside their honey bee hosts
(Rosenkranz et al., 2010; Ramsey et al., 2019). Mature female
V. destructor mites prefer brood of honey bee males, also called
drones, because of specific characteristics such as an extended
reproduction period as well as the chemical signals elicited by
developing drones (Conte et al., 1989; Fuchs, 1992; Rosenkranz
et al., 2010). Mite infestation can negatively affect drone body
mass and mating efficiency through increased mortality, reduced
flight activity, and low sperm quality (Collins and Pettis, 2001;
Duay et al., 2002; Bubalo et al., 2005).

Insecticides like systemic neonicotinoids are important abiotic
risk factors (Simon-Delso et al., 2015; Wood and Goulson, 2017).

Neonicotinoids are among the most widely applied insecticides
globally (Simon-Delso et al., 2015), and are predominantly
employed as seed coating treatments translocating throughout
the entire plant, including pollen and nectar (Bonmatin et al.,
2007; Botías et al., 2015; Pang et al., 2020). Neonicotinoids
have been detected in honey bee collected pollen from multiple
sources, such as maize (Pilling et al., 2013) and squash (Stoner
and Eitzer, 2012), herbaceous plants (Wood et al., 2019), and
wild flowers (Botías et al., 2015), as well as in beebread,
which is processed pollen stored within the colony (Bonmatin
et al., 2015; Mogren and Lundgren, 2016; Tong et al., 2018).
Furthermore, these compounds are readily released into the
soil and water where they can persist and translocate to
adjacent vegetation, posing a risk to non-target organisms (Sur
et al., 2003; Bonmatin et al., 2015). The risk of exposure
extends from individual honey bee foragers to the entire colony
when contaminated resources are shared with other adults
and developing individuals (Sanchez-Bayo and Goka, 2014).
There is clear evidence that field-relevant concentrations of
neonicotinoids have sub-lethal effects on honey bees, eliciting
behavioral, physiological, and anatomical changes (Singla et al.,
2021). For example, drones experienced reduced development
stability and produced fewer living sperm under neonicotinoid
exposure, which can ultimately affect colony reproductive
potential and overall performance (Straub et al., 2016; Friedli
et al., 2020).

Despite V. destructor and neonicotinoids considered to
ubiquitous stressors to honey bees (Little et al., 2015; Wilfert
et al., 2016; Colwell et al., 2017; Mitchell et al., 2017), little is
known about their potential interactive effects in honey bees.
A handful of studies on non-reproductive honey bee females,
the workers, have yielded conflicting results, ranging from no
interaction to synergism (Straub et al., 2016; Siede et al., 2018;
Morfin et al., 2020; Bird et al., 2021); however, no such work has
investigated possible effects on honey bee drones, despite their
predicted greater susceptibility to environmental stressors as
proposed by the haploid susceptibility hypothesis (O’Donnell and
Beshers, 2004), which suggests that drones are likely less resilient
to environmental stressors than their worker counterparts due
to a lack in allelic variation at important immune related genes
(Hamilton, 1964; O’Donnell and Beshers, 2004; Retschnig et al.,
2014; Friedli et al., 2020). The availability of high quality drones to
mate with reproductive honey bee females, the queens, is crucial
for the fitness of those queens and their colonies (Koeniger and
Koeniger, 2007), since genetic variation confers benefits such as
increased resilience to biotic risk factors (Tarpy, 2003; Tarpy and
Seeley, 2006; Delaplane et al., 2015; Simone-Finstrom et al., 2016).

Therefore, for the first time we assessed the effects of
simultaneous exposure to neonicotinoid insecticides and the
V. destructor mite on honey bee drone emergence mass, adult
survival, and sperm quality. Based on previous studies that
employed worker honey bees, as well as the haploid susceptibility
hypothesis, we expected that both stressors individually would
have strong negative effects on drones, and that simultaneous
exposure would result in a synergistic negative effect (O’Donnell
and Beshers, 2004; Blackmon et al., 2015; Straub et al., 2016, 2019;
Maher et al., 2019; Morfin et al., 2020).
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MATERIALS AND METHODS

Twelve western honey bee (Apis mellifera) packages, each headed
by a laying sister queen and 1.5 kg workers, were installed in ten-
frame Langstroth hives in Auburn AL, United States on 18 March
2020. To promote growth, colonies were provided ad libitum
with sucrose solution (50% weight/volume with water) for 2
weeks before being randomly assigned to either a control or
neonicotinoid treatment.

Neonicotinoid Exposure
Following an established method (Straub et al., 2019; Friedli et al.,
2020), neonicotinoid treatments were administered ad libitum via
pollen patties (60% corbicular pollen, 30% powdered sugar, 10%
organic honey), as pollen is a common route of neonicotinoid
exposure for honey bees (Wood et al., 2019). The pollen
was sourced from corbicular pollen removed from honey bee
foragers returning to colonies that were located in a low
intensity agricultural region of Colorado; subsequent analysis
using ultra-high-performance liquid chromatography-tandem
mass spectrometry (UHPLC-MS/MS) by the United States
Department of Agriculture (USDA) National Science Laboratory
(Gastonia, North Carolina, United States) detected no traceable
levels of agricultural chemicals (Supplementary Figure 1; AOAC
International, 2007). As in previous experiments (Straub et al.,
2019; Friedli et al., 2020), colonies allocated to the neonicotinoid
treatment (n = 7) received pollen patties spiked with field-
relevant concentrations of two neonicotinoids—thiamethoxam
and clothianidin (4.5 and 1.5 ppb, both Sigma-Aldrich) (Stoner
and Eitzer, 2012; Pilling et al., 2013; Botías et al., 2015;
Wood et al., 2019). To create these spiked pollen patties, pure
analytical standards of both neonicotinoids (purities of > 99%;
Sigma-Aldrich R©, Burlington, Massachusetts, United States) were
dissolved in distilled water (1 mg/L). Aliquots of a single
stock solution for each compound were then added to the
organic honey, which was then thoroughly mixed by kneading
the components of the patties in a large plastic container
until a homogenous paste was made (Sandrock et al., 2014).
Concentrations were confirmed by the USDA National Science
Laboratory (Gastonia, North Carolina, United States) using
ultra-high-performance liquid chromatography-tandem mass
spectrometry (UHPLC-MS/MS) (AOAC International, 2007)
4 ppb for thiamethoxam and < 6 ppb for clothianidin; levels
of detection were 1 and 6 ppb, respectively) (Supplementary
Figure 2). The control treatment (n = 5) was fed non-
neonicotinoid spiked pollen patties. Prior to feeding, each
colony was equipped with a Sundance pollen trap (Rossman
Apiaries, LLC., Moultrie, GA, United States) to promote in-
hive patty consumption and prevent the influx of natural
pollen (Sandrock et al., 2014; Williams et al., 2015). Following
a previously employed feeding regime (Forfert et al., 2015;
Williams et al., 2015; Straub et al., 2019), pollen patties were
provided for 49 days to cover two entire brood cycles (Winston,
1991), and to mimic a realistic exposure period encountered
by foraging honey bees. Earlier studies have demonstrated that
foraging honey bees can be exposed to neonicotinoid residues
for a similar period because of overlapping bloom periods of

treated crops (Tsvetkov et al., 2017), contaminated planter dust
that is exhausted to the environment (Krupke et al., 2012),
and crops and neighboring non-agricultural foraging areas
being contaminated as a result of leaching (Botías et al., 2015;
Schaafsma et al., 2015; Long and Krupke, 2016; Mogren and
Lundgren, 2016).

Experimental Drones
To obtain a known age cohort of drones for the experiment,
at 42 days post initial neonicotinoid exposure the queen of
each colony was caged for 2 days onto a drone brood frame
previously drawn-out by her own colony during neonicotinoid
exposure (Williams et al., 2013). These drone frames remained
in their respective colonies for 20 days more. Subsequently, the
frames were moved on day 22 to an incubator (34◦C and 60%
RH, DR-41NL, Percival Scientific, Inc., Perry, IW) (Williams
et al., 2013). The next day, which was 1 day prior to expected
natural emergence (Winston, 1991), drones were artificially
emerged from the capped brood cells using forceps. Each
brood cell and drone were visually inspected for V. destructor
parasitism, defined as the observation of one or more adult
female V. destructor. Each drone was also inspected for wing
deformities, which are typically clinical symptoms of deformed
wing virus (Dainat et al., 2012), weighed to the nearest 0.1
mg using an analytical scale (VWR B2-Series, VWR, Radnor,
PA, United States), and then assigned to one of the four
treatment groups based on their previous colony-level exposure
to neonicotinoids and individual V. destructor parasitism status
(Straub et al., 2019): (1) No neonicotinoids and No V. destructor
(Control), (2) No neonicotinoids and Yes V. destructor parasitism
(V. destructor only), (3) Yes neonicotinoids and No V. destructor
parasitism (Neonicotinoid only), and (4) Yes neonicotinoids and
Yes V. destructor parasitism (Combined).

Drone Survival and Sperm Quality
For each colony, we established up to five hoarding cages per
treatment group from each available colony which resulted in a
total of 60 experimental cages (Williams et al., 2013). Cages were
made of 250 cm3 plastic cups (Plastikbecher.de GmbH, Giengen,
Germany) equipped with a round lid. A ventilation hole (6 cm in
diameter) was cut out from the lid and covered with a felt cloth
(Maier Haushaltspflege GmbH, Murg, Germany). Generally, each
cage contained 10–12 adult drones and 20–24 adult workers from
the same colony. Adult workers were collected from a brood
frame and added to the cage to provide caretaking duties for
the drones (Ruttner, 1966; Straub et al., 2016). If a colony did
not yield 10 drones for each cage we nonetheless collected all
available drones. Therefore, we did not obtain 10 drones for nine
of the 60 cages. Regardless, the adult drone to worker ratio was
maintained at 1:2 for all cages for the duration of the experiment.
Hoarding cages were kept in the incubator (30◦C and 60% RH,
DR-41NL, Percival Scientific, Inc., Perry, IW) and equipped
with a 5 ml syringe containing sucrose solution (50% w/v) to
feed the honey bees (Williams et al., 2013). Additionally, a 1.5
ml polypropylene tube (Eppendorf, Enfield, CT, United States),
modified to act as an in-cage feeder containing sucrose solution
(50% w/v), and a 1.5 ml polypropylene tube, modified to act
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as an in-cage feeder containing pollen (60% corbicular pollen,
40% powdered sugar), were added to facilitate autonomous
drone feeding and to promote development and maturation
of male reproductive organs, respectively (Brodschneider and
Crailsheim, 2010; Williams et al., 2013). All food resources were
provided ad libitum; feeders were replaced every 4 days (Fryday
et al., 2015; Minnameyer et al., 2021). An orientation flight was
simulated 8 days post cage initiation by exposing cages to indirect
sunlight for 24 h; this has been suggested to mark the completion
of sperm transition from testis to the seminal vesicles and initiate
full maturation of the ejaculate (Schlüns et al., 2005; Hayashi and
Satoh, 2019). Adult drones were maintained in hoarding cages
for 14 days post emergence, when all surviving individuals were
expected to be sexually mature (Rhodes et al., 2011); dead drones
and workers were removed daily from each cage.

All individuals surviving to day 14 post emergence were
then sacrificed for subsequent in vivo sperm quality assessments
to prevent sperm migration from seminal vesicles to the bulb
(Straub et al., 2016). In brief, the abdomen of each drone
was detached from its thorax using dissection scissors, then
pinned onto a wax plate before removing ventral sternites so
that the testes, mucus glands, and seminal vesicles could be
removed using a forceps. For each individual, all structures
were placed in a 1.5 ml polypropylene tube (Eppendorf, Enfield,
CT, United States) containing 500 µl Kiev+ buffer and crushed
to make a diluted sperm stock solution (SSS) (Carreck et al.,
2013). Subsequently, sperm viability and concentration were
assessed following Straub et al. (2016, 2021). For sperm viability,
a 50 µl aliquot of the SSS was added to a 1.5 ml polypropylene
tube containing 50 µl Kiev+ buffer (Company, City, State,
United States). Then, 2 µl of Hoechst 33342 (0.5 mg ml−1) and
1 µl of propidium iodide (1 mg ml−1) (both Sigma-Aldrich R©,
Burlington, Massachusetts, United States) were added to label
living (viable; green) and dead (non-viable; red) sperm. The
suspension was then incubated for 20 min in complete darkness
and then gently vortexed. Next, 10 µl of the solution were
examined on a microscope slide at 400x magnification using a
fluorescent light microscope (Leica, DM2500 LED, Morrisville,
NC, United States). Ten arbitrary visual fields were selected
to count the quantity of viable and non-viable sperm; an
average value was then calculated from these fields. For sperm
concentration, 20 µl SSS were diluted with 80 µl Kiev+ buffer
(1:5 dilution) in a 1.5 ml polypropylene tube, then an aliquot
was transferred to a cell counting chamber (Thermo Fisher
Scientific, Waltham, MA, United States) to count sperm using
the fluorescent light microscope. Total sperm concentration (in
500 µl SSS) was calculated by multiplying the average number of
sperm counted in two chambers by the dilution factor (1:5) by the
volume used for the counting chamber (10 µl) by the SSS volume
(500 µl). Lastly, living sperm concentration was determined by
multiplying average sperm viability by total sperm concentration.

Colony Parameters
Just prior to queen caging at 39 days post initial neonicotinoid
exposure, adult bees and capped brood (bees developing under
a wax capping) were visually assessed in each colony using the
Liebefeld estimation method (Delaplane et al., 2013). For this,

both colony strength parameters were first estimated for each
frame in each colony as a percentage of frame coverage from 0 to
100. Then, percent coverage was converted to an absolute value
of number of bees and area (cm2) for adults and capped brood,
respectively. Colony-level V. destructor infestation was assessed
at the same time using the alcohol wash method to determine the
number of mites per 100 adult bees by sampling ∼300 adult bees
from the brood nest (Dietemann et al., 2013).

Statistics
All statistical analyses were performed in R (version 4.0.2.,
11/2/20) using a significance level of α = 0.05. Colony-
level neonicotinoid exposure and individual-level V. destructor
infestation were always contained as fixed factors in the model,
like (Straub et al., 2019). Employing a backward selection
approach, we built linear Mixed Effect Models (lmm) for
normally distributed data and Generalized Linear Mixed Effect
Models (glmm) for data that was not normally distributed;
data were tested for normality using the ggdensity and ggqqplot
function from the R package ggpubr. All models started as a full
model including all explanatory variables that could potentially
affect observed variation in response variables (e.g., sperm
viability). When a significant effect was detected, explanatory
variables were included as random factors. The significance of
individual explanatory variables was assessed using the Akaike
Information Criterion (AIC function in R). Based on this
approach, a lmm was built using the lmer function from R
package lme4 to assess effects of neonicotinoids and V. destructor
parasitism on emergence body mass of drones, while including
colony and cage identification number as random factors.

The R package survival was used to fit a Cox proportional
hazards regression model using the coxph function to assess
effects of individual and combined neonicotinoid exposure
and V. destructor infestation on drone survival. Furthermore,
survival curves (Kaplan-Meier plots) were plotted using the
ggsurvplot function and hazard rates for each treatment
group and calculated using the tbl_regression function.
Subsequently, cumulative survival was compared between
treatment groups by using the pairwise_survdiff function
from the R package survminer which allowed for pairwise
comparisons with a Bonferroni correction [Survival Bonferroni
Multiple Comparison Test (sbmct)].

For sperm concentration and living sperm concentration, a
glmm including cage identification number as random factor to
account for potential clustering effects was built. Data were not
transformed. Therefore, a best fit distribution was incorporated
(family = Poisson). For sperm viability data, a l mm was fitted
to assess fixed factor effects, with cage and drone identification
numbers as a random factors to account for potential clustering
effects. For each model, post hoc pairwise comparisons of all
treatment groups were performed by using the lsmeans function
from the emmeans package in R and using a Bonferroni
correction for multiple comparisons [Bonferroni Multiple
Comparison Test (bmct)]. To identify potential interactions
between neonicotinoid exposure and V. destructor infestation,
an additive effects framework was employed (Folt et al., 1999).
Interactions were considered synergistic or antagonistic if the
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effect of the combined stressor treatment group was greater
or smaller than the sum resulting from individual stressors
(V. destructor and neonicotinoid) (Hay, 1996). To assess this, the
percent difference in treatment groups compared to the controls
were calculated using mean survival [d], total sperm quantity [#],
living sperm quantity [#], and sperm viability [%].

To assess the effects of the colony-level neonicotinoid
treatment on number of adult bees, a glmm was built with
a best fit distribution (family = negative binomial) to account
for overdispersed count data. Similarly, a glmm with a best
fit distribution (family = poisson) was fitted to assess effects
on colony-level V. destructor infestation. Both glmm’s were
followed by a Wilcoxon Rank Sum Test (wrt) using the wilcox.test
function. For capped brood area, a lmm was fitted, followed by a
Two-Samples t-test (t-test) using the t.test function.

RESULTS

Colony Parameters
No significant differences were observed between neonicotinoid
treated colonies and control colonies for number of adult bees
(wrt, W = 90, p = 0.42), capped brood area (t-test, t = 0.54,
p = 0.59), or V. destructor mite infestation (wrt, W = 11,
p = 0.19) (Supplementary Table 1). The V. destructor count
per 100 bees for neonicotinoid treated colonies was 1.5 ± 1.6
(median ± SD) compared to 1 ± 0.5 (median ± SD) for control
colonies. Wing deformities were not observed for any of the
newly emerged drones.

Drone Emergence Body Mass
Body mass of newly emerged drones (n = 792) was significantly
affected by both neonicotinoid exposure (Linear Mixed Effect
Model (l mm), t = 2.99, p = 0.003) and V. destructor infestation
(lmm, t = −7.20, p < 0.001) (Figure 1 and Supplementary
Table 1). Compared to drones from the Control (n = 247),
V. destructor only (n = 91) and Combined stressor (n = 86)
treatment groups, emergence body mass was significantly higher
in Neonicotinoid only drones (n = 368, mean ± SE, 274.2 ± 3.9
mg; Bonferroni Multiple Comparison Test (bmct), all p < 0.05).
The lowest body mass was recorded in V. destructor only
drones, which was significantly different from the Control
(mean ± SE, 245.9 ± 4.4 mg; bmct, p < 0.001) and Combined
treatment groups (bmct, p = 0.02). Body mass of Control
(mean± SE, 261.8± 4.3 mg) and Combined drones (mean± SE,
258.3 ± 4.3 mg) did not differ from each other (bmct, p > 0.05)
(Supplementary Tables 2, 3). Exposure to the Combined
stressors reduced worker body mass by 0% compared to the
Controls. This was higher than the sum of the individual
stressors, which was −2.1% because of a 4.0% increase for
Neonicotinoid only and 6.1% reduction for V. destructor only
treatment workers. This suggests an antagonistic interaction.

Drone Survival
Significant differences in adult drone survival were observed
among treatment groups (Figure 2). Although no difference
in survival was observed between V. destructor only and

Control drones (sbmct, z = 1.96, p = 0.16), Neonicotinoids
only (sbmct, z = 2.84, p = 0.03) and Combined drones
(sbmct, z = 6.61, p < 0.001) experienced significantly reduced
survival compared to Controls (Supplementary Tables 2, 3).
Despite the lack of a statistical difference, hazard rate (HR)
for V. destructor only drones was 135% (95% CI [100,
182%]) compared to Controls, whereas it was 136% (95% CI
[110, 168%]) and 267% (95% CI [200, 358%]) for drones
belonging to Neonicotinoid only and Combined treatment
groups, respectively (Supplementary Table 4). Compared to
Controls, the reduction in survival of adult drones that were
exposed to Combined stressors (55%) was greater than the
sum of individual stressor effects, which were 17 and 28%
reductions for Neonicotinoid only and V. destructor only drones,
respectively. This suggests a synergistic interaction between the
two stressors. This is further supported by the increase in HR
for the Combined stressors (167%) compared to Controls, which
was also greater than the sum of increased HRs for individual
stressors, which was 35% for V. destructor only and 36% for
neonicotinoid only.

Sperm Quality
Compared to Controls, Neonicotinoid only drones did not
experience a significant reduction in sperm concentration
[Kruskal-Wallis rank sum test (KW), χ2 = 2.11, p = 0.15], sperm
viability (t-test, t = 1.72, p = 0.09), or living sperm concentration
(KW, χ2 = 0.69, p = 0.41) (Supplementary Tables 1, 3). Sample
sizes of drones belonging to the V. destructor only and the
Combined treatment group were lower than 15 for each sperm
quality trait. Therefore, these two treatment groups were omitted
from statistical analyses regarding sperm quality traits.

DISCUSSION

Pressure caused by stressor interactions is believed to be
responsible for widespread negative effects on biodiversity
(Butchart et al., 2010; Barnosky et al., 2011), including on the
economically and ecologically important honey bee (Alaux et al.,
2010; Straub et al., 2019). For the first time, we investigated the
potential effects of simultaneous pressure from neonicotinoid
insecticides and V. destructor mites on adult male honey bee
(drone) emergence mass and survival. The data revealed that
combined exposure to both stressors resulted in a negative
synergistic effect on adult drone survival, but an antagonistic
effect on emergence mass. Our results suggest that combined
exposure to these two ubiquitous stressors can severely affect
the availability of drones for mating, and further highlight
the complexity of potential interactive effects of simultaneous
stressor pressures on honey bees.

Effects of concurrent exposure from multiple stressors on
honey bees have garnered considerable attention of late. This is
especially the case considering negative synergistic interactions
for which the effect of multiple concurrent factors are worse
than the sum of individual effects (Maher et al., 2019). As
hypothesized, we observed a synergistic effect of neonicotinoids
and V. destructor on adult drone survival. Interestingly, this
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FIGURE 1 | Emergence body mass of experimental western honey bee (Apis mellifera) drones across four treatment groups: Control—drones without neonicotinoid
exposure and without Varroa destructor parasitism (n = 247), Neonicotinoid only—drones exposed to neonicotinoids during development but free from V. destructor
parasitism (n = 368), V. destructor only—drones infested by V. destructor during development, but not exposed to neonicotinoids (n = 91), and Combined—drones
exposed to both neonicotinoids and V. destructor during development (n = 86). Boxplots show the inter-quartile range (box), the mean (black circles), the median
(black line within box), data range (vertical black lines from box), and outliers (open circles). Different letters above boxplots indicate statistically significant differences
(p ≤ 0.05).

FIGURE 2 | Kaplan-Meier survival curves of experimental western honey bee (Apis mellifera) drones during a 14-day laboratory cage assay. Summary of survival
curves for all four treatment groups: Control—drones without neonicotinoid exposure and without Varroa destructor parasitism, Neonicotinoid only—drones exposed
to neonicotinoids during development but free from V. destructor parasitism, V. destructor only—drones parasitized by V. destructor during development but not
exposed to neonicotinoids, and Combined—drones exposed to both neonicotinoids and V. destructor during development. Different letters placed before treatment
groups indicate statistically significant differences (p ≤ 0.05).
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same interaction was not observed for adult worker survival by
a similar experiment performed during the same time of year
(Straub et al., 2019). Although that study was performed in a
different location, comparative results between the two suggest
that differences in observed combined stressor effects on adult
drone and worker survival could be explained by the haploid
susceptibility hypothesis. This hypothesis states that drones
experience higher susceptibility to environmental stressors due
to their hemizygosity at loci involved in immune response
(O’Donnell and Beshers, 2004; Blackmon et al., 2015). Since
both neonicotinoids and V. destructor are known to impair the
immune response of honey bees (Claudianos et al., 2006; Prisco
et al., 2013; Brandt et al., 2016), a reduction in allelic diversity due
to hemizygosity may result in more severe consequences when
exposed, although future studies should be performed under the
same conditions to further explore this as a reason for differences
observed between these two types of honey bees.

In contrast to the observed synergistic negative effect on
adult drone survival, we found that the two stressors had
an antagonistic effect on drone emergence mass. Similar,
contradictory observations were observed by a recent meta-
analysis of agrochemical pesticide interactions, whereby proxies
of honey bee fitness like behavior and physiology revealed
additive or antagonistic effects, whereas synergistic effects were
common on honey bee mortality (Siviter et al., 2021). A possible
explanation for our observation may be because neonicotinoids
are known to affect honey bee carbohydrate and lipid metabolism
(Derecka et al., 2013; Cook, 2019). For example, Cook (2019)
found that honey bees exposed to low concentrations of
clothianidin had high lipid contents compared to controls.
Thus, feeding by V. destructor during development may
possibly offset the gain in body mass resulting from metabolic
dysfunction associated with exposure to neonicotinoids, since
V. destructor parasitism alone reduced emergence body mass
in our experiment. Unfortunately, due to low sample size as a
result of synergistic effects on mortality, we could not sufficiently
examine possible interactions of neonicotinoids and V. destructor
on sperm traits. Although examining all stressor combinations
on multiple proxies of honey bee fitness are not realistic (Côté
et al., 2016), the synergistic interaction that we observed on drone
mortality by the time of sexual maturity could justify further
attempts to understand how these two ubiquitous stressors affect
the reproductive health of drones at this important time period,
as a reduction in queen health, possibly due to poor mating, is
frequently reported as a primary reason for honey bee colony
mortality (Pettis et al., 2016).

Both neonicotinoids and V. destructor have each been shown
to negatively affect drone health and performance (Rangel and
Fisher, 2019; Friedli et al., 2020; Straub et al., 2021). On its own,
V. destructor parasitism reduced drone emergence body mass
by 6% compared to controls during our experiment. This has
been shown for both workers and drones (Bowen-Walker and
Gunn, 2001; Duay et al., 2003; Blanken et al., 2015; Ramsey
et al., 2019; Straub et al., 2019), and is likely the result of mites
feeding on the honey bees’ fat bodies during development. In
contrast, exposure to neonicotinoids alone resulted in increased
emergence body mass of drones (+ 4%). Low concentrations

of neonicotinoids are known to affect carbohydrate and lipid
metabolism, both which could affect body mass (Derecka et al.,
2013). Other examples suggest that hormesis, a biphasic dose
response in which biological processes can be stimulated by low
concentrations of normally harmful chemical (Calabrese, 2005),
can result in increased body mass, possibly at the expense of
fitness (Cutler, 2012; Cutler and Rix, 2015). Indeed, our results
suggest a negative effect of neonicotinoids on drone survival until
sexual maturity, 14 days post emergence. A possible explanation
for this could be a reduction in detoxification-competence
(Claudianos et al., 2006). Additionally, experimental drones
might have been nourished by compromised worker nurses
during development, as previous investigations demonstrated
that neonicotinoid exposure negatively affected nurse food
glands. Additionally, experimental drones might have been
nourished by compromised worker nurses during development,
as previous investigations demonstrated that neonicotinoid
exposure negatively affected nurse food glands (Hatjina et al.,
2013). In contrast, V. destructor parasitism had no effect on
adult drone survival. This is unexpected, since mites prefer
drone brood cells and have been shown to negatively affect adult
worker survival (Straub et al., 2019). Surprisingly few efforts have
investigated the effects of V. destructor on drone survival (Fuchs,
1992; Rinderer et al., 1999; Collins and Pettis, 2001). For example,
Collins and Pettis (2001) found that survival of drones parasitized
by more than one reproductive female mite was not impacted
when only one female V. destructor was present. Thus, low levels
of colony-level infestation in our study could explain why we
also did not observe a negative effect of V. destructor alone on
drone survival. Despite a lack of a significant reduction in drone
survival, it is noteworthy that V. destructor parasitism during
development still increased the hazard ratio for drones (35%
compared to Controls, Supplementary Table 4); thus, parasitized
drones still likely experience increased stress. We were not able
to assess effects of V. destructor only on sperm quality traits due
to low sample size at the end of the cage trial. Relative to the
Control and Neonicotinoid only treatment groups, fewer drones
were assigned to this treatment groups at the start of the trail,
potentially because parasitized developing drones were removed
from their cells prior to artificial emergence (Harbo and Harris,
2005). Low adult survival of drones exposed to V. destructor
during development further limited sample size. However, we
found that there was no effect of neonicotinoids on sperm
quality traits when drones were exposed during development.
These results align with Ciereszko et al. (2017), but they contrast
Straub et al. (2016) who found negative effects on sperm
viability and concentration of living sperm, but not total sperm
concentration. Given that spermatogenesis begins during the
larval stage and terminates at pupation (Yániz et al., 2020), drones
were potentially only exposed to a low dose of insecticides for
a portion of the total spermatogenesis process, during the larval
stage. This highlights that testing arena and experimental design
likely contribute to the complexity of comparing observations
among multiple studies, and demonstrates the importance of
controlled ring tests performed in multiple laboratories when
investigating stressor effects (Medrzycki et al., 2013; van der Sluijs
et al., 2015).
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Our results highlight that interaction effects between two
important stressors, like V. destructor mites and neonicotinoid
insecticides for honey bees, can range from synergism to
antagonism depending on the variable measured. According
to our findings, neonicotinoids and V. destructor interacted
synergistically to induce a severe lethal effect on adult honey
bee drones, but interacted antagonistically on drone emergence
body mass. The complexity of stressor interactions in the
honey bee warrants future work elucidating outcomes of
simultaneous pressure from multiple stressors, especially for risk
assessment schemes that may otherwise not accurately estimate
the interactive effects of stressors. Additionally, extrapolating
effects observed under laboratory conditions to the field remain
a major challenge and additional field-studies are required to
confirm our findings.
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