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Abstract

Every tropical ideal in the sense of Maclagan–Rincón has an associated tropical variety,
a finite polyhedral complex equipped with positive integral weights on its maximal
cells. This leads to the realisability question, ubiquitous in tropical geometry, of which
weighted polyhedral complexes arise in this manner. Using work of Las Vergnas on the
non-existence of tensor products of matroids, we prove that there is no tropical ideal
whose variety is the Bergman fan of the direct sum of the Vámos matroid and the
uniform matroid of rank two on three elements and in which all maximal cones have
weight one.

1 Introduction
An ideal in a polynomial ring over a field with a non-Archimedean valuation gives rise to
a tropical variety, either by taking all weight vectors whose initial ideals do not contain a
monomial or, equivalently if the field and the value group are large enough [4, Theorem
4.2], by applying the coordinate-wise valuation to all points in the zero set of the ideal.
In the middle of this construction sits a tropical ideal, obtained by applying the valuation
to all polynomials in the ideal. This ideal is a purely tropical object, in that it does not
know about the field or the valuation, and it contains more information than the tropical
variety itself. For these reasons, tropical ideals, axiomatised in [6], were proposed as the
correct algebraic structures on which to build a theory of tropical schemes.We review the
relevant definitions below.
It was proved in [6] that tropical ideals, while not finitely generated as ideals—nor in

any sense that we know of!—have a rational Hilbert series, satisfy the ascending chain
condition, and define a tropical variety: a finite weighted polyhedral complex. Later in
[7], it was shown that the top-dimensional parts of these varieties are always balanced
polyhedral complexes. This leads to the following realisability question.

Question 1.1 Which pure-dimensional balanced polyhedral complexes are the variety of
some tropical ideal?

If the tropical ideal is the tropicalisation of a prime classical ideal, then the tropical
variety is pure-dimensional and balanced [8, Theorem 3.3.5]. The question of which bal-
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anced polyhedral complexes are realised by classical ideals has received much attention,
especially in the case of curves (see e.g. [2,3,13]). But for general tropical ideals, very little
is known about Question 1.1: for instance, no natural algebraic criterion that ensures that
the variety is pure-dimensional is known. In fact, until recently we had no intuition as
to whether tropical ideals are flexible enough that they can realise basically any balanced
polyhedral complex, or rather more rigid, like algebraic varieties. In view of the following
theorem, we now lean towards the latter intuition.

Theorem 5.2 Let M and N be loopless matroids of ranks a and b that do not have a
quasi-product of rank a · b. Then, there exists no tropical ideal whose tropical variety is the
Bergman fan of the direct sum of M and N, with all maximal cones having weight 1.
In particular, there exists no tropical ideal whose tropical variety is the Bergman fan of

the direct sum of the Vámos matroid V8 and the uniformmatroid U2,3 of rank two on three
elements, with all maximal cones having weight 1.

In this theorem, a quasi-product of two looplessmatroids is amatroid analogue of tensor
products; see Sect. 4. The fact that the Vámos matroid V8 and the uniform matroid U2,3
have no quasi-product of rank 8 was proved by Las Vergnas in [5].
Webelieve that this theoremmarks the beginning of an interesting researchprogramme,

which, in addition to the pureness and balancing questions mentioned above, asks which
tropical ideals define matroids on the set of variables, and which matroids are, in this
sense, tropically algebraic—See Problem 3.5 and Question 3.6.

2 Definitions and basic results on tropical ideals
Consider the tropical semifield (R := R∪{∞},⊕, ◦· ) with⊕ := min and ◦· := +. LetR be a
sub-semifield of R. The example most relevant to us is the Boolean semifield B := {0,∞},
which is not only a sub-semifield but also a quotient of R.

Definition 2.1 Let N be a finite set. A set L ⊆ RN is a tropical linear space if it is an
R-submodule (i.e. (∞, . . . ,∞) ∈ L and f, g ∈ L, c ∈ R ⇒ (c◦· f ) ⊕ g ∈ L) and if, moreover,
L satisfies the following elimination axiom: for i ∈ N and f, g ∈ L with fi = gi 	= ∞, there
exists an h ∈ L with hi = ∞ and hj ≥ fj ⊕ gj for all j ∈ N , with equality whenever fj 	= gj .
The R-submodule L

R
of R

N generated by L is a tropical linear space in R
N and has the

structure of a finite polyhedral complex; we denote its dimension as such by dim L.

If K is a field equipped with a non-Archimedean valuation onto R and if V ⊆ KN is
a linear subspace, then the image of V under the coordinate-wise valuation is a tropical
linear space in RN , but not all tropical linear spaces arise in this manner. Tropical linear
spaces are well-studied objects in tropical geometry and matroid theory: the definition
above is equivalent to that of [12], except that we allow some coordinates to be ∞. A
tropical linear space L gives rise to a matroid M(L) in which the independent sets are
those subsets A ⊆ N for which L ∩ (RA × {∞}N\A) = {∞}N , and L is the set of vectors
(R-linear combinations of valuated circuits) of a valuated matroid on M(L) [10]. With
this setup, dim L = |N | − rk(M(L)). We will freely alternate between these different
characterisations of tropical linear spaces.
SetN := {0, 1, 2, . . .}, and let n ∈ N. Denote by R[x1, . . . , xn] the semiring of polynomials

in the variables x1, . . . , xn with coefficients in R. We write Mond andMon≤d for the set of
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monomials in x1, . . . , xn of degree equal to d and at most d, respectively, and we identify
a polynomial in R[x1, . . . , xn] of degree at most d with its coefficient vector in RMon≤d .

Definition 2.2 A subset I ⊆ R[x1, . . . , xn] is a tropical ideal if xi◦· I ⊆ I for all i = 1, . . . , n
and if for each d ∈ N the set I≤d := {f ∈ I : deg(f ) ≤ d} is a tropical linear space in
RMon≤d .

This definition is equivalent to [6, Definition 1.1]. Indeed, there, in addition to the
requirement that I≤d be a tropical linear space, it is required that I is an ideal in the
semiring R[x1, . . . , xn]. This is equivalent to the statement that I is closed under tropical
multiplication by each xi and closed under tropical addition. However, as tropical linear
spaces are already closed under tropical addition, this does not need to be included as an
explicit axiom.
If I is homogeneous, then the latter condition is equivalent to the condition that for

each d the set Id of homogeneous polynomials in I of degree d is a tropical linear space
in RMond . There is a natural notion of tropical ideals in the Laurent polynomial ring
R[x±1

1 , . . . , x±1
n ] that we will also use, and if I is a tropical ideal in R[x1, . . . , xn], then the

set I ′ := {f /xu | f ∈ I,u ∈ N
n} is a tropical ideal in R[x±1

1 , . . . , x±1
n ].

Tropical ideals were introduced by Maclagan and Rincón in [6] as a framework for
developing algebraic foundations for tropical geometry. Tropical ideals are much better
behaved than general ideals of the polynomial semiring R[x1, . . . , xn], as we explain below.

Definition 2.3 For w ∈ R
n and f = ⊕

u cu ◦· xu ∈ R[x1, . . . , xn], define the initial part of
f relative to w as

inw(f ) :=
⊕

u : cu+u·w=f (w)
xu ∈ B[x1, . . . , xn].

For a tropical ideal I , define its initial ideal relative to w as

inw I := 〈inw f | f ∈ I〉B.

Note that in this paper we only consider weights w in R
n, not in R

n as in [6]. In other
words, we do geometry only inside the tropical torus.

Definition 2.4 The Hilbert function of a tropical ideal I ⊆ R[x1, . . . , xn] is the map
HI : N → N given by d �→ (n+d

d
) − dim I≤d .

Note that, as usual in commutative algebra, the Hilbert functionmeasures the codimen-
sion of I≤d in its ambient space RMon≤d . A homogeneous variant of this Hilbert function
applies only to homogeneous ideals and measures the codimension of Id in RMond . The
Hilbert function of a not necessarily homogeneous ideal I in R[x1, . . . , xn] equals the
homogeneous Hilbert function of its homogenisation in R[x0, . . . , xn].
The following is a special case of [6, Corollary 3.6].

Theorem 2.5 For a homogeneous tropical ideal I ⊆ R[x1, . . . , xn] and any w ∈ R
n,

inw I ⊆ B[x1, . . . , xn] is a homogeneous tropical ideal, and Hinw I = HI .

Theorem 2.5 allows one to pass to monomial initial ideals and show that the Hilbert
functionHI (d) of a homogeneous tropical ideal I becomes a polynomial ind for sufficiently
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large d and also that homogeneous tropical ideals satisfy the ascending chain condition.
Via homogenisation, one sees that both statements also hold for non-homogeneous trop-
ical ideals (but, as in the classical setting, the theorem does not apply directly, since, for
instance, when n = 1, in(1)(0 ⊕ x1) = 0 generates an ideal—the entire semiring—with a
smaller Hilbert function than any tropical ideal containing 0 ⊕ x1 but not 0).
Furthermore, Maclagan and Rincón prove that tropical ideals have tropical varieties

that are finite polyhedral complexes [6, Theorem 5.11].

Theorem 2.6 If I ⊆ R[x1, . . . , xn] is a tropical ideal, then its (tropical) variety

V (I) := {w ∈ R
n : inw I contains no monomial}

is the support of a finite polyhedral complex.

Indeed, if I is homogeneous, they show that the sets of w where inw I is constant
form the relatively open polyhedra of a polyhedral complex with support R

n called the
Gröbner complex of I and that the cells where inw I contains no monomial form a
subcomplex with support V (I). By homogeneity, all cells then contain in their lineality
space the linear span of the all-ones vector 1. In the case where I ⊆ R[x1, . . . , xn] is
not necessarily homogeneous, let Ih be its homogenisation in R[x0, x1, . . . , xn]. Then,
w �→ (0,w) is a bijection between V (I) and the intersection of V (Ih) with the zeroeth
coordinate hyperplane, andwe giveV (I) the corresponding polyhedral complex structure.
The variety of a tropical ideal comes equipped with positive integral weights on its

maximal polyhedra; this is inspired by [8, Lemma 3.4.7], and studied more in depth in [7].

Definition 2.7 Let I ⊆ R[x1, . . . , xn] be a tropical ideal, let σ be a maximal polyhedron of
V (I), and let w be in the relative interior of σ . Themultiplicity of σ in V (I) is defined as
follows. First, let I ′ ⊆ R[x±1

1 , . . . , x±1
n ] be the (tropical) ideal in the Laurent polynomial ring

generated by I . After an automorphism of the Laurent polynomial ring given by xu �→ xAu

with A ∈ GLn(Z), we can assume that the affine span of σ is a translate of span(e1, . . . , ed)
for some d. In this case, by [7, Lemma 6.2], the tropical ideal J := inw(I ′)∩B[xd+1, . . . , xn]
is zero-dimensional, i.e. HJ (e) is a constant for e � 0. The multiplicity of σ is defined to
be equal to this constant, called the degree of J .

Remark 2.8 A more coordinate-free version of Definition 2.7 is the following. Consider
the linear span of σ , defined as

span(σ ) := R≥0{v − v′ | v, v′ ∈ σ }.

Let S ⊆ B[x±1
1 , . . . , x±1

n ] be the sub-semiring spanned by monomials xu ofw-weightw ·u
equal to zero for all w ∈ span(σ ). Then, S itself is isomorphic to a Laurent polynomial
semiring in n − d variables. The multiplicity of σ is the degree of the zero-dimensional
tropical ideal inw(I ′) ∩ S.

We will need the following results.

Lemma 2.9 Let I be a tropical ideal in R[x1, . . . , xn]. Denote by I ′ the ideal generated by I
in R[x±1

1 , . . . , x±n
n ], and set I sat := I ′ ∩ R[x1, . . . , xn]. Then, I sat ⊇ I is a tropical ideal, and

V (I sat) = V (I) as weighted polyhedral complexes.
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We call I sat the saturation of I with respect to m := x1 · · · xn, and we call I saturated
with respect tom if I sat = I .

Proof That I sat is a tropical ideal containing I is straightforward from the definition. Since
I sat ⊇ I , we have V (I sat) ⊆ V (I). Conversely, let w ∈ V (I) and f ∈ I sat. Then, xu ◦· f ∈ I
for some u ∈ N

n, hence inw(xu ◦· f ) is not a monomial, and therefore, neither is inw f . This
shows that V (I) = V (I sat). That the multiplicities are the same follows from the fact that
the multiplicities in V (I) are defined using I ′. ��

If � is a polyhedral complex in R
n and σ is a polyhedron in �, the star starσ � of � at

σ is a weighted polyhedral fan, whose cones are indexed by the cones τ of � containing
σ . The cone indexed by such τ is

τ := R≥0{v − w | v ∈ τ and w ∈ σ },

with weight equal to the weight of τ in �.
The following can be found in [7, Corollary 2.11 and Proposition 6.4].

Proposition 2.10 Let I be a tropical ideal in R[x1, . . . , xn], σ be a polyhedron in V (I), and
w be in the relative interior of σ . Then, inw I ⊆ B[x1, . . . , xn] is homogeneous with respect
to every vector v ∈ span(σ ) and V (inw I) = starw V (I) as weighted polyhedral complexes.

3 The independence complex of a tropical ideal
Definition 3.1 Let I ⊆ R[x1, . . . , xn] be a tropical ideal. The independence complex of
I is the simplicial complex

I(I) := {A ⊆ {1, . . . , n} : I ∩ R[xi : i ∈ A] = {∞}}. (3.1)

When I(I) is the collection of independent sets of a matroid M, we will say that I is a
matroidal tropical ideal and thatM is its associated algebraic matroid.

The independence complex of a tropical ideal I can be recovered from its variety V (I),
at least if R = R.

Proposition 3.2 If I ⊆ R[x1, . . . , xn] is a tropical ideal, then

I(I) = {A ⊆ {1, . . . , n} : πA(V (I)) = R
A}, (3.2)

where πA : R
n → R

A is the coordinate projection onto the coordinates indexed by A. In
particular, the independence complex I(I) depends only on the variety V (I).

Proof Let A ⊆ {1, . . . , n}. If A /∈ I(I), then there exists f ∈ I ∩ R[xi : i ∈ A] such that
f 	= ∞, and V (I) ⊆ V (f ). We then have πA(V (I)) ⊆ πA(V (f )) � R

A, as claimed. For
the reverse inclusion, suppose that πA(V (I)) � R

A, and let w ∈ R
A \ πA(V (I)). For any

polynomial f ∈ R[x1, . . . , xn], denote by f |w the polynomial in R[xi : i /∈ A] obtained by
specialising each variable xi with i ∈ A to wi ∈ R. Consider the ideal I |w ⊆ R[xi : i /∈ A]
defined as I |w := {f |w : f ∈ I}. By [7, Theorem 3.6], the ideal I |w is a tropical ideal.
Moreover, we must have V (I |w) = ∅, as any point v ∈ V (I |w) would lift to the point
(v,w) ∈ V (I), contradicting that w /∈ πA(V (I)). By the weak Nullstellensatz [6, Corollary
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5.17], the tropical ideal I |w must contain the constant polynomial 0. But then 0 = f |w for
some f ∈ I , which in particular implies that f ∈ I ∩ R[xi : i ∈ A] and f 	= ∞. ��
Proposition 3.2 also follows from the fact that a coordinate projection of the variety of a
tropical ideal is the variety of the corresponding elimination ideal [7, Theorem 4.7].
Recall that the Hilbert function HI (e) of a tropical ideal I ⊆ R[x1, . . . , xn] eventually

agrees with a polynomial in e, called theHilbert polynomial of I [6, Proposition 3.8]. The
dimension dim(I) of I is defined as the degree of its Hilbert polynomial.

Corollary 3.3 For any tropical ideal I , we have

dim I(I) + 1 = dimV (I) = dim I.

Proof From (3.2), it is clear that dimV (I) ≥ dim I(I) + 1. Now, if V (I) contains a poly-
hedron σ of dimension d, then there is some coordinate projection πA(σ ) that is d-
dimensional, and thus, from (3.1) we see that A ∈ I(I), and thus, dim I(I) + 1 ≥ d. This
shows that dim I(I) + 1 = dimV (I). The equality dimV (I) = dim I is proved in [7,
Theorem 4.3]. ��
In the classical setting, primality of an ideal implies matroidality.We do not know about

a similarly appealing sufficient condition for matroidality of general tropical ideals.

Example 3.4 If J ⊆ K [x1, . . . , xn] is a prime ideal, where K is a field with a non-
Archimedean valuation, then trop(J ) is a matroidal tropical ideal. Its associated algebraic
matroid is the matroid that captures algebraic independence among the coordinate func-
tions x1, . . . , xn in the field of fractions of K [x1, . . . , xn]/J .

Problem 3.5 Find algebraic conditions on a tropical ideal that imply matroidality.

As shown in Example 3.4, any (classically) algebraic matroid is the algebraic matroid
of a tropical ideal. However, in principle, it is possible that the class of matroids that are
“tropically algebraic” is strictly larger than the usual class of algebraic matroids.

Question 3.6 Which matroids arise as the algebraic matroid of a tropical ideal?

4 Quasi-products of matroids
Tomotivate the definition of quasi-products, let v1, . . . , vm be nonzero vectors in a vector
space V and let w1, . . . , wn be nonzero vectors in a vector space W over the same field.
The vi define a matroidM with ground set [m] in which S ⊆ [m] is dependent if and only
if the set {vi : i ∈ S} is linearly dependent. Similarly, thewj define amatroidN with ground
set [n]. Now consider the vectors vi ⊗ vj ∈ V ⊗ W, i ∈ [m], j ∈ [n]. In the same manner,
these define a matroid P with ground set [m]× [n]. One can check that P is in general not
determined by M and N , i.e. the linear dependencies among the vi ⊗ wj cannot be read
off from those among the vi and those among the wj . However, some features of P are
predicted byM and N : for each fixed i ∈ [m], the linear dependencies among the vectors
vi ⊗wj, j ∈ [n] are precisely those recorded byN ; here we use that vi is nonzero. Similarly,
for each j ∈ [n], the restriction of P to [m] × {j} is isomorphic toM. Furthermore, if B is
a basis ofM and C is a basis of N , then B×C is a basis of P. In particular, the rank of P is
the product of the ranks of M and N . Following Las Vergnas, we use these observations
to define quasi-products of general matroids, as follows.
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Definition 4.1 ([5]). LetM,N be looplessmatroidswith ground sets [m], [n], respectively.
A quasi-product of M and N is a matroid P with ground set [m] × [n] with the property
that for each i ∈ [m] the map [n] → [m]× [n], j �→ (i, j) is an isomorphism fromM to the
restriction of P to {i} × [n], and for each j ∈ [n] the map [m] → [m] × [n], i �→ (i, j) is an
isomorphism fromM to the restriction of P to [m] × {j}.
The properties of a quasi-product P of M and N imply that if B ⊆ [m] is a basis of

M and C ⊆ [n] is a basis of N , then B × C is a spanning set of P, so the rank of P is at
most the product of the ranks ofM andN . By the discussion above, two matroids that are
representable over the same field always admit a quasi-product whose rank is the product
of their ranks. In general, however, a quasi-product with this property need not exist.

Theorem 4.2 ([5]). Any quasi-product of the rank-4 Vámos matroid V8 and the rank-2
uniform matroid U2,3 has rank at most 7 < 4 · 2.

5 Not every Bergman fan is the variety of a tropical ideal
We now prove that not every balanced polyhedral complex can be obtained as the variety
of a tropical ideal. Our counterexample will be the Bergman fan of a matroid; see [1] for
details.

Definition 5.1 Let M be a loopless matroid of rank d on the ground set {1, . . . , n}. The
Bergman fan B(M) ofM is the pure d-dimensional polyhedral fan in R

n consisting of the
cones of the form

σF := cone(eF1 , eF2 , . . . , eFk ) + R·e{1,...,n},

where F = {∅ � F1 � F2 � · · · � Fk � {1, . . . , n}} is a chain of flats in the lattice of
flats L(M) of M and where eS stands for the sum of the standard basis vectors ei with i
running through S. The Bergman fan of any matroid is given the structure of a balanced
polyhedral complex by defining the multiplicity of each maximal cone to be equal to 1.

Bergman fans of matroids are the tropical linear spaces (more specifically, their part
inside the torus R

n) that correspond to valuated matroids where the basis valuations all
take values in B.
The following is our main result.

Theorem 5.2 Let M be a loopless matroid of rank a with ground set [m] and let N
be a loopless matroid of rank b with ground set [n]. Suppose that every quasi-product
of M and N has rank strictly less than a · b. Then, there exists no tropical ideal I ⊆
R[x1, . . . , xm, y1, . . . , yn] such that V (I) is equal to B(M ⊕ N ) as weighted polyhedral
complexes, even up to common refinement.
In particular, there is no tropical ideal I ⊆ R[x1, . . . , x3, y1, . . . , y8] such that V (I) is

equal to B(U2,3 ⊕ V8) as weighted polyhedral complexes, even up to common refinement.

Note that we do not require the polyhedral structure on V (I) coming from the Gröbner
complex of the homogenisation of I to be equal to the fan structure on the Bergman fan
described above.
To prove the theorem, in addition to the fundamental results from Sect. 2, we will need

results relating V (I) to HI for any tropical ideal I .
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Lemma 5.3 Let L, L′ ⊆ RN be tropical linear spaces. If dim L + dim L′ > |N |, then
L ∩ L′ 	= {(∞, . . . ,∞)}.

Proof The notion of stable intersection for tropical linear spaces was studied by Speyer in
[12] when the underlying matroids of both tropical linear spaces were uniform matroids
and later generalised by Mundinger [9] for arbitrary tropical linear spaces in RN . The
stable intersection L ∩st L′ is a tropical linear space contained in both L and L′, and it has
dimension a least dim L + dim L′ − |N | > 0, which implies the desired result. ��

Proposition 5.4 Let I ⊆ R[x1, . . . , xn] be a tropical ideal. If the independence complex
I(I) contains a subset A of size r, then HI (d) ≥ (r+d

d
)
for all d ∈ N.

Proof The space R[xi : i ∈ A]≤d is a tropical linear space in RMon≤d of dimension
(r+d

d
)

and, by assumption, it does not intersect I≤d . Hence, by Lemma 5.3, dim I≤d ≤ (n+d
d

) −
(r+d

d
)
, and therefore, HI (d) ≥ (r+d

d
)
. ��

Proposition 5.5 Let I � R[x1, . . . , xn] be a tropical ideal, and set r := HI (1) − 1. Then,
HI (d) ≤ (r+d

d
)
for all d ∈ N.

Proof Let Ih ⊆ R[x0, . . . , xn] be the homogenisation of I . Then, dim(Ih)d = dim I≤d for all
d ∈ N, and inparticular dim(Ih)1 = dim I≤1 = n+1−HI (1) = n−r.Moreover, by applying
Theorem 2.5 with a sufficiently general weight vector w, the Hilbert function of Ih is also
that of somemonomial ideal J .We find that J contains precisely n−r of the n+1 variables
x0, . . . , xn, and therefore all theirmultiples. This implies that dim Jd ≥ (n+d

d
)−(r+d

d
)
, where

the last term counts monomials in the remaining r + 1 variables of degree d. We then
have

HI (d) = (n+d
d

) − dim I≤d = (n+d
d

) − dim Jd ≤ (n+d
d

) − (n+d
d

) + (r+d
d

)
,

as desired. ��
The following proposition shows that the algebraic matroid of a Bergman fan B(M) (as

in Proposition 3.2) is equal to the matroidM.

Proposition 5.6 ([14, Lemma 3]). The independence complex of the Bergman fan B(M)
of a loopless matroid M is the same as the independence complex of M.

We now present a key step towards proving our main result.

Proposition 5.7 Let M be a loopless matroid on the ground set {1, . . . , n}. Suppose
J ⊆ B[x1, . . . , xn] is a homogeneous tropical ideal, saturated with respect to x1 · · · xn,
whose variety V (J ) has a common refinement, as weighted polyhedral complexes, with the
Bergman fan B(M) (with weight 1 in all its maximal cones). Then, the matroid M(J1) is
equal to M, under the identification xi ↔ i of ground sets.

Proof Let B = {b1, . . . , bd} be a basis of M. For 0 ≤ i ≤ d, consider the flat Fi of M
obtained as the closure of the set {b1, . . . , bi}, and let σ be the maximal cone of B(M)
corresponding to the chain of flats ∅ = F0 � F1 � · · · � Fd−1 � Fd = {1, . . . , n}. Let
τ ⊆ σ be a maximal cone in a common refinement of both V (J ) and B(M). The linear
span span(τ ) = span(σ ) consists of all vectorsw ∈ R

n for whichwi = wj whenever {i, j} ⊆
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Fk \ Fk−1 for some k = 1, . . . , d. A monomial xu in B[x±1
1 , . . . , x±1

n ] hasw-weight equal to
zero for all such w if and only if for every k we have

∑
i∈Fk\Fk−1

ui = 0. As in Remark 2.8,
let S be the subsemiring of B[x±1

1 , . . . , x±1
n ] consisting of all polynomials involving only

such monomials, and let J ′ be the (tropical) ideal in B[x±1
1 , . . . , x±1

n ] generated by J .
Take v to be a vector in the relative interior of τ . Since τ has multiplicity 1 in V (J ),

inv(J ′) ∩ S is zero-dimensional of degree 1 and contains no monomials. Hence, for any
pair of distinct monomials xu , xu′ in S, inv(J ′) ∩ S contains the binomial xu ⊕ xu′ . In
particular, if {i 	= j} ⊆ Fk \ Fk−1 for some k then 0 ⊕ x−1

i xj ∈ inv(J ′) ∩ S, and thus,
xi ⊕ xj ∈ inv(J ′). As J is homogeneous and saturated with respect to x1 · · · xn, this implies
that there is a polynomial of the form xi ⊕ xj ⊕ f in J1 where f is a sum of variables
all contained in Fk−1. It follows that xi is in the closure of Fk−1 ∪ {xj} in the matroid
M(J1). We conclude that {b1, . . . , bd} is a generating set in the matroid M(J1), and thus,
rank(M(J1)) ≤ rank(M). Now, the tropical prevariety cut out by the linear polynomials in
J is equal to B(M(J1)), so we have B(M(J1)) ⊇ V (J ) = B(M). It follows from [11, Lemma
7.4] that B(M(J1)) = B(M), and thus,M(J1) = M, completing the proof. ��

We conclude with the proof of the main theorem.

Proof of Theorem 5.2 Suppose that suchan I exists, anddenoteO := M⊕N .Wefirst argue
thatwemay replace I by an ideal J that is homogeneous aswell as saturated. To this end, let
σ be a polyhedron inV (I)whose affine span isR·1 (which is contained in the lineality space
ofB(O)), and letw be in the relative interior ofσ . Set J ′ := inw I ⊆ B[x1, . . . , xm, y1, . . . , yn].
By Proposition 2.10, the tropical ideal J ′ is homogeneous (with respect to 1) and has
variety V (J ′) = starw V (I), which is equal to B(O) up to common refinement. Consider
the homogeneous ideal J := (J ′)sat. By Lemma 2.9, we have that V (J ) is also equal to B(O)
up to common refinement.
Now, by Proposition 5.7,M(J1) is equal to O. Since rkO = a + b, we find that HJ (1) =

1+a+b, and thus, by Proposition 5.5,HJ (d) ≤ (a+b+d
d

)
for all d. On the other hand, since

V (J ) = B(O), by Propositions 5.6 and 3.2 the tropical ideal J is matroidal, with associated
algebraic matroid O = M ⊕ N . Hence, by Proposition 5.4 we have HJ (d) ≥ (a+b+d

d
)
. We

conclude that HJ (d) = (a+b+d
d

)
.

Denote Q := M(J2). The matroid Q has rank HJ (2) − HJ (1) = (a+b+1
2

)
on the ground

set S1 � S2 � S3, where S1 := {xixj | 1 ≤ i ≤ j ≤ m}, S2 := {yiyj | 1 ≤ i ≤ j ≤ n}, and
S3 := {xiyj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The restriction Q|S1 is spanned by all products
of two elements in a basis of M(J1)|{x1, x2, . . . , xm}, and hence has rank at most

(a+1
2

)
.

Similarly, the restriction Q|S2 has rank at most
(b+1

2
)
. Hence, Q|S3 has rank at least

(a+b+1
2

) − (a+1
2

) − (b+1
2

) = ab.
Since J is saturated, for each 1 ≤ i ≤ m, multiplication by xi yields an isomorphism

between the matroidM(J1)|{y1, . . . , yn} ∼= N and the restriction of Q to xi · {y1, . . . , yn} ⊆
S3. Similarly, for each 1 ≤ j ≤ n, the restriction of Q to yj · {x1, . . . , xm} is isomorphic
to M. Hence, Q|S3 is a quasi-product of M and N in the sense of Definition 4.1. But the
assumption in the theorem is that such a quasi-product has rank strictly less than a · b, a
contradiction. Hence, no such ideal I exists.
The second part of the main theorem is a direct consequence of the first part and

Theorem 4.2 by Las Vergnas. ��
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6 Concluding remarks
Using the result by Las Vergnas that U2,3 and V8 do not have a quasi-product of rank 8,
we have showed that the Bergman fan of their direct sum is not the tropical variety of any
tropical ideal, with weight 1 on all the maximal cones.
We do not know whether there exists a tropical ideal whose tropical variety is the

Bergman fan of U2,3 ⊕ V8 as a set, without the condition that all weights be 1.
We also do not know whether B(V8) itself is the tropical variety of any tropical ideal

with weight one on the maximal cones. To study this question for a matroid M, one
needs to develop the theory of symmetric squares of matroids, in a fashion similar to Las
Vergnas’s quasi-products from Sect. 4. But already for V8, this seems considerably harder
than quasi-products of U2,3 with V8.
Finally, we’d like to point out that for any m ≥ 3, the matroids U2,m and V8 do not

admit a quasi-product of rank 8. Indeed, if P were such a quasi-product on [m]× [8], then
for any basis C ⊆ [8] of V8 the set [2] × C , which spans P, would have to be a basis. But
then the restriction of P to [3] × [8] would be a quasi-product of U2,3 and V8 of rank 8,
a contradiction to Las Vergnas’s Theorem 4.2. This simple observation yields infinitely
many matroids to which our Theorem 5.2 applies. However, it would be interesting to
find more intricate families of pairs of matroids that do not admit quasi-products of the
correct rank.
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