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We present an effective adaptive procedure for the numerical approximation of the steady-
state Gross–Pitaevskii equation. Our approach is solely based on energy minimization, and 
consists of a combination of a novel adaptive finite element mesh refinement technique, 
which does not rely on any a posteriori error estimates, and a recently proposed new 
gradient flow. Numerical tests show that this strategy is able to provide highly accurate 
results, with optimal convergence rates with respect to the number of degrees of freedom.
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1. Introduction

In quantum physics, Bose–Einstein condensates (BEC) are important objects of study that feature various interesting prop-
erties including macroscopic quantum effects, superfluidity, and occurrence of quantum vortices (in the presence of a 
magnetic field). In order to model the steady states of BEC consisting of a collection of bosonic quantum particles, the time-
independent Gross–Pitaevskii equation (GPE) is widely used, see [17,24,28]. It can be derived from the many-body Schrödinger 
equation with a given interaction potential in the limit of a large number of particles by applying a Hartree–Fock ansatz 
of a symmetric tensor product of a single-particle function (in contrast to a single determinant for fermions). Indeed, the 
Hartree–Fock ansatz becomes exact in the (dilute) mean-field limit (i.e. under certain assumptions on the interaction be-
tween particles such as radial symmetry, repulsive and short-range), see [42,43] for some rigorous results. The GPE is a 
nonlinear eigenvalue problem that represents the Euler-Lagrange equation of the Gross–Pitaevskii energy functional, given by

E(v) :=
∫
�

(
1

2
|∇v|2 + V (x)|v|2 + β

2
|v|4

)
dx, (1)

under the following normalization constraint for the single particle functions v:

‖v‖L2(�) = 1. (2)
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Here, � ⊂ Rd , d = {1, 2, 3}, is a bounded, connected, and open set with Lipschitz boundary, V ∈ L∞(�) is a potential 
function with V ≥ 0 almost everywhere, and β ≥ 0 is a constant. We note that the fourth-order term in E (causing the 
associated eigenvalue to be nonlinear if β > 0) results from the interaction of particles. The global minimizer of E under 
the constraint (2) is called the (normalized) ground state of (1).

State-of-the-art of numerical methods for BEC. An overview of models and numerical schemes for the GPE is provided in [7]. 
In general terms, the minimizer of the Gross–Pitaevskii energy functional (1) can be found either

(i) by solving the corresponding Euler-Lagrange formulation, i.e. the GPE,
(ii) or by direct minimization (under the normalization constraint (2)).

In the context of (i), classical spatial discretization approaches such as finite element methods [15,33,46,47], finite dif-
ference schemes [22,46], Fourier methods [12,20], or (pseudo-) spectral methods [10,13,14] can be applied in a classical 
way. One possibility to deal with the nonlinearity occurring in the eigenvalue problem is to employ the Roothaan itera-
tion scheme [21], also referred to as self-consistent field (SCF) iteration procedure. Alternatively, Newton’s method [18] or 
adaptations to the inverse power method [39] can be used. The idea of combining the iterative solution of the nonlinear 
eigenvalue problem and of mesh refinements in finite element discretizations has been addressed in [19,21,22,33].

Among the class of methods (ii) we point to the imaginary time method [3,4,8,12] which, upon employing an imaginary 
time transformation, t → −ıt , is based on the observation that the time-dependent GPE relaxes to the ground state as time 
evolves. In addition, upon interpreting the imaginary time method as a steepest descent method for the energy functional E
from (1), the closely related gradient flow approaches [9–11,25,36,40,46,48] can be derived. Further numerical solution 
methods in the scope of (ii) include a recently proposed preconditioned conjugate gradient method [5], direct energy min-
imization using symmetric properties [15] (which simplify the constraint minimization problem), or the combination of 
gradient flows and Riemannian optimization [26].

A novel approach for adaptive computations. The aim of this work is to provide an adaptive numerical approximation pro-
cedure for the ground state of the Gross–Pitaevskii functional (1), under the constraint (2), which is based on a simul-
taneous interplay of gradient flow iterations and local adaptive finite element mesh refinements. This idea follows the 
recent developments on the (adaptive) iterative linearized Galerkin (ILG) methodology [1,2,23,34,35,38], whereby adaptive dis-
cretizations and iterative nonlinearity solvers are combined in an intertwined way; we also refer to the closely related 
works [16,29,30,32].

The key novelty of our work is the introduction of an adaptive interplay that is solely based on a local minimization 
procedure for the energy (1) under the constraint (2). This is in contrast to standard approaches based on a posteriori error 
(residual) estimators. We remark, in particular, that this new strategy can be transferred, in a straightforward manner, to 
other (linear and nonlinear) variational formulations that are expressed in terms of an energy minimization problem; this, 
in turn, might be especially relevant, for instance, when a posteriori residual estimates are difficult to devise or even out of 
range due to the complexity of the underlying problem.

We briefly outline the essential building block of the numerical scheme to be presented in this paper, which concerns the 
decision of whether gradient flow iterations or local mesh refinements should be given preference on a given finite element 
discretization space, and, in the latter case, of which elements should be refined. This is accomplished by monitoring the 
energy decay resulting from the gradient flow, and by performing a comparison to the energy loss caused by the latest 
mesh refinement. Then, depending on which effect is currently dominant, we either undertake another gradient flow step, 
or the mesh is refined adaptively. We emphasize that this is a very natural approach for the given problem since both the 
(conforming) finite element method and the recently proposed gradient flow method [36] are both guaranteed to be energy-
decreasing (owing to the variational principle). The proposed numerical method thereby generates a sequence of finite 
element approximations defined on adaptively refined spaces which provide a corresponding sequence of monotonically 
decreasing energies.

Proceeding along the energy minimization approach in [37], the adaptive mesh-refinement strategy in this work is based 
on identifying a subset of elements in the mesh for which a local refinement will potentially provide a significant (local) 
contribution to the total energy decay. To this end, for each element in the mesh, we first apply a local gradient flow step 
on a locally refined patch; these computations, since local and independent, can be done in parallel and only involve very 
few degrees of freedom. Then, a Dörfler marking strategy [27, Sec. 4.2] selects the most promising elements for refinement. 
The numerical tests illustrate optimal convergence rates in the number of unknowns for a variety of examples—both linear 
or nonlinear models, with smooth or irregular potentials, will be investigated.

Outline. In Section 2 we present the framework of the Gross-Pitaevskii equation and motivate its associated gradient flow 
system. Moreover, Section 3 is devoted to the finite element discretization and the adaptive mesh refinement strategy. 
Furthermore, Section 4 presents various numerical tests in 2D. Finally, we add some concluding remarks in Section 5.
2



P. Heid, B. Stamm and T.P. Wihler Journal of Computational Physics 436 (2021) 110165
2. The Gross–Pitaevskii equation and gradient flows

2.1. Nonlinear eigenvalue formulation

We observe that the energy functional E from (1) is Fréchet differentiable on the Sobolev space H := H1
0(�) (defined 

to be the space of all functions with weak gradient in L2(�)d and zero trace along the boundary ∂�); indeed, a simple 
calculation reveals that

〈E′(v), w〉 =
∫
�

(
∇v · ∇w + 2V (x)v w + 2β|v|2v w

)
dx, v, w ∈H, (3)

where 〈·, ·〉 signifies the dual product in H� ×H. The Euler-Lagrange formulation of the constrained minimization problem

arg min
v∈SH

E(v),

with SH := {v ∈H : ‖v‖L2(�) = 1} signifying the L2(�)-unit sphere in H, is given by

v ∈H : 〈E′(v), w〉 = λ(v, w)L2(�) ∀w ∈H. (4)

Here, the scalar λ takes the role of a Lagrange multiplier corresponding to the norm constraint (2). The nonlinear eigenvalue 
problem (4) is called the Gross–Pitaevskii equation (GPE). If v ∈ SH is an eigenfunction of (4) associated with an eigenvalue 
λ, then we note that

λ = 〈E′(v), v〉 = 2E(v) + β‖v‖4
L4(�)

> 0. (5)

Given that V ≥ 0 (almost everywhere in �) and β ≥ 0, the Gross–Pitaevskii eigenvalue problem (4) has a unique (L2(�)-
normalized) positive eigenfunction uGS > 0 which is the ground state of the Bose–Einstein condensate (1), see [36, Lem. 5.4]; 
in particular, uGS is an eigenfunction to the minimal (and simple) eigenvalue, signified by λGS of (4), see [20].

2.2. Continuous gradient flow

The ground state uGS will be determined iteratively. To this end, we employ a new projected gradient flow approach 
proposed only recently in [36]. As was mentioned in the introduction, there exists a wide variety of different nonlinearity 
solvers for the GPE. In the present work, for the purpose of the adaptive strategy to be developed in Section 3, it is crucial 
that the energy decays monotonically along the iterations, as is the case for the (discrete) projected gradient flow from [36]. 
For this reason, the new gradient flow, which we revisit in the sequel, is a very attractive choice. Moreover, we note that 
the proposed method is stable with respect to the parameter β , i.e., the strength of the nonlinearity.

One of the key ideas is to introduce a weighted energy inner product on H×H: For fixed z ∈H, we let

az(v, w) :=
∫
�

(
∇v · ∇w + 2V (x)v w + 2β|z|2 v w

)
dx, v, w ∈H. (6)

Owing to the Riesz representation theorem, for any v ∈H, it exists a unique Gz(v) ∈H such that

az(Gz(v), w) = (v, w)L2(�) ∀w ∈H. (7)

If z �= 0, we notice that az(Gz(z), z) = ‖z‖2
L2(�)

> 0, and therefore Gz(z) �= 0. Hence, we may consider the linear mapping

Pz : H → Tz, Pz(v) = v − (z, v)L2(�)

az(Gz(z),Gz(z))
Gz(z), (8)

where

Tz := {w ∈H : (z, w)L2(�) = 0};
for z = 0, we have T0 =H, and P0 is the identity map. Using (7), it is fairly elementary to verify that

az(v − Pz(v), w) = 0 ∀v ∈ H, ∀w ∈ Tz, (9)

i.e. Pz is the orthogonal projection onto the (tangential plane) Tz with respect to the az-inner product.
Based on the above definitions, we are now ready to present the gradient flow induced by the inner product from (6). 

More precisely, we consider a trajectory u : [0, ∞) →H which, for a given initial value u(0) = u0 ∈ SH , follows the dynam-
ical system
3
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u̇(t) = −Pu(t)(u(t)), t > 0. (10)

The existence of a solution u has been discussed in [36, Sec. 3.1 & 3.2].
In order to motivate the gradient flow system (10), we briefly revisit some arguments from [36, Proof of Theorem 3.2]:

(i) For any v, z ∈ H, we define ∇zE(v) ∈ H to be the Riesz representative of the steepest descend direction E′(v) at v
with respect to the az-inner product, i.e.

az(∇zE(v), w) = 〈E′(v), w〉 ∀w ∈H.

Then, using (10), employing (9) respectively (6), and recalling (3), for any t > 0, we notice that

au(t)(u̇(t), w) = au(t)(−Pu(t)(u(t)), w)

= au(t)(−u(t),Pu(t)(w))

= 〈−E′(u(t)),Pu(t)(w)〉
= au(t)(−∇u(t)E(u(t)),Pu(t)(w))

= au(t)(Pu(t)(−∇u(t)E(u(t))), w),

for any w ∈H. This implies that the gradient flow from (10) follows the orthogonal projection of the steepest descend 
direction −∇u(t)E(u(t)), for t > 0, onto the tangential plane Tu(t) .

(ii) Observe that

u̇(t) ∈Tu(t) ∀t > 0. (11)

Hence,

d

dt
‖u(t)‖2

L2(�)
= 2(u(t), u̇(t))L2(�) = 0 ∀t > 0.

In particular, it follows that ‖u(t)‖L2(�) = ‖u(0)‖L2(�) = 1. This means that the gradient flow stays on the sphere SH
for any t > 0, i.e., physically speaking, it is mass preserving; cf. [36, Lem. 3.3].

(iii) Using again (11) and invoking (9), for any t > 0, it holds that

d

dt
E(u(t)) = 〈E′(u(t)), u̇(t)〉 = au(t)(u(t), u̇(t)) = −au(t)(−Pu(t)(u(t)), u̇(t)). (12)

Thus, implementing (10) yields

〈E′(u(t)), u̇(t)〉 = −au(t)(u̇(t), u̇(t)) ≤ 0 ∀t > 0,

i.e. the energy E(t) is monotone decreasing as t → ∞; cf. [36, Lem. 3.3].
(iv) Since E(v) is nonnegative for any v ∈ H, the monotonicity property from (iii) implies that there is E� ≥ 0

with limt→∞ E(u(t)) = E� < ∞. Hence, applying (12), we obtain the identity

0 ≤
∞∫

0

au(τ )(u̇(τ ), u̇(τ ))dτ = E(u0) − E� < ∞,

which implies that 
∫ ∞

0 ‖∇u̇(τ )‖2
L2(�)

dτ is bounded. It follows that u(t) has a limit u� ∈H as t → ∞ (with ‖u�‖L2(�) =
1, cf. (ii)), and Pu� (u�) = 0 upon taking the limit in (10). Consequently, we deduce from (8) that u� = λ�Gu� (u�), where

λ� =
‖u�‖2

L2(�)

au� (Gu� (u�),Gu� (u�))
.

Therefore, exploiting (7), for all w ∈H, we infer that

〈E′(u�), w〉 = au� (u�, w) = λ�au� (Gu� (u�), w) = λ�(u�, w)L2(�), (13)

i.e. u� �≡ 0 is an eigenfunction for the GPE (4) to the eigenvalue λ� . We note that u� can be any eigenfunction satisfy-
ing (13), respectively (4); in particular, it is not necessarily the ground state.
4
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2.3. Discrete gradient flow

For the purpose of computing an approximation of the continuous gradient flow trajectory from (10), we use the forward 
Euler discretization method. For a given initial value u0 ∈ SH this yields a sequence of functions {un}n≥0 ⊂ SH which, 
for n ≥ 0, is defined by

un+1 = ûn+1∥∥̂un+1
∥∥

L2(�)

, (14a)

where

ûn+1 = un − τnPun (un) = (1 − τn)un + τn

aun (Gun (un),Gun (un))
Gun(un). (14b)

Here, {τn}n≥0 is a sequence of positive (discrete) time steps that is assumed uniformly bounded from above and below with 
bounds τmax and τmin, respectively, such that 0 < τmin ≤ τn ≤ τmax < ∞. The scheme (14) is called discrete gradient flow 
iteration (GFI).

Remark 2.1. Provided that the maximal time step τmax is sufficiently small, it can be seen that the GFI scheme (14) yields 
guaranteed energy reduction. More precisely, there exists 0 < τmax =O(min{β−1, E(u0)−1/2}) such that for all τn ≤ τmax < 2
it holds that E(un+1) ≤ E(̂un+1) ≤ E(un), see [36, Lemma 4.7]. Moreover, if τn ≤ 1 for all n ≥ 0 then, for any starting value 
u0 ∈ SH with u0 ≥ 0, the (full) sequence {un}n≥0 generated by the GFI (14) satisfies un ≥ 0 for all n ≥ 0 and converges 
strongly in H to the unique positive ground state uGS, see [36, Theorem 5.1].

3. Adaptive gradient flow finite element discretization

We now focus on the adaptive spatial discretization of the gradient flow iteration scheme (14).

3.1. Finite element discretization

Consider a sequence of conforming and shape-regular partitions {TN }N∈N of the domain � into simplicial elements TN =
{κ}κ∈TN (i.e. triangles for d = 2 and tetrahedra for d = 3). Moreover, for a (fixed) polynomial degree p ∈ N and any sub-
set ω ⊂ TN , we introduce the finite element space

V (ω) = {
v ∈H : v|κ ∈ Pp(κ), κ ∈ ω, v|�\ω = 0

}
, (15)

with Pp(κ) signifying the (local) space of all polynomials of maximal total degree p on κ , κ ∈ TN . Furthermore, similarly as 
before, we denote by

SV (ω) = {
v ∈ V (ω) : ‖v‖L2(�) = 1

}
the L2(�)-unit sphere in V (ω). In the sequel, we apply the notations XN := V (TN ) and SN := SV (TN ) . We further denote 
by EN := E|XN the restriction of the energy functional E from (1) to the Galerkin space XN . Then, due to the compactness 
of SN , it exists a minimizer uN ∈ XN of EN , i.e. E(uN) = minv∈SN E(v), with (uN , 1)L2(�) ≥ 0. It is not known, however, if 
uN is unique (up to the sign), see, e.g., [20]. Furthermore, if {XN}N∈N is a dense family of finite element subspaces of H, 
then any sequence of minimizers uN ∈ SN of EN with (uN , 1)L2(�) ≥ 0 converges in H1(�) to the ground state uGS of E; we 
refer to [20, Theorem 1] or [50, Theorem 3.1].

3.2. Discrete GFI

Let us define the (space) discrete version of the gradient flow iteration (14) on a finite element subspace XN ⊂ H. For 
u ∈XN we denote by GN (u) ∈XN the unique solution of

au(GN(u), v) = (u, v)L2(�) ∀v ∈XN ; (16)

cf. (7). For given u ∈XN , note that the computation of GN (u) is a standard linear source problem; it can be solved by any 
linear solver at the disposal of the user. Then, for n ≥ 0, the space discrete GFI is given by

un+1
N = ûn+1

N∥∥∥̂un+1
N

∥∥∥
L2(�)

, (17a)

where
5
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Fig. 1. Local element patches associated to a triangular element κ . Left: Mesh patch ωκ consisting of the element κ and its face-neighbours. Right: Modified 
patch ω̃κ constructed based on red-refining κ and on green-refining its neighbours.

ûn+1
N = (1 − τn

N)un
N + τn

N

aun
N
(GN(un

N),GN(un
N))

GN(un
N), (17b)

with a sequence of discrete time steps {τn
N }n≥0 as in (14).

Remark 3.1. Consider a fixed mesh TN and associated approximation space XN . Let {un
N}n≥0 ⊂ XN be the sequence gener-

ated by the discrete GFI (17) with some initial value u0
N ∈ SN . If τn

N ≤ τmax, with τmax as in Remark 2.1, for all n ≥ 0, then 
the corresponding energies are strictly monotone decreasing, and there exists a limit energy E�

N = limn→∞ E(un
N ). Further-

more, up to subsequences, we have un
N → u�

N strongly in H, where u�
N ∈ SN , with E(u�

N ) = E�
N , is a discrete eigenfunction 

of the corresponding GPE, i.e. there is λ�
N so that

au�
N
(u�

N , v) = λ�
N(u�

N , v)L2(�) ∀v ∈XN . (18)

We refer to [36, Corollary 4.11] for details.

Remark 3.2. In practical computations, in order to guarantee a positive energy decay in each iteration step, we propose the 
time step strategy within (17) given by

τn
N = max

{
2−m : E(un+1

N (2−m)) < E(un
N), m ≥ 0

}
, n ≥ 0,

where, for 0 < s ≤ 1, we write un+1
N (s) to denote the output of the discrete GFI (17) based on the time step τn

N = s and 
on the previous approximation un

N . We observed in several examples that for the choice τ 0
N = 1, i.e. using m = 0 above, no 

time correction was needed; we also refer to [36, Remark 4.8] for a discussion of the fixed time step τ = 1. For that reason, 
and for the sake of keeping the computational cost minimal, we fix the time step τ = 1 in the local GFI from Algorithm 1
below. We still use, however, the time step strategy for the global GFI in Algorithm 2.

3.3. Local energy decay and adaptive mesh refinements

For any element κ ∈ TN we consider the open patch ωκ comprising of κ and its immediate face-wise neighbours. 
Moreover, given κ ∈ TN , we define the modified patch ω̃κ by uniformly (red) refining the element κ into a (fixed) number 
of subelements; here, we assume that the introduction of any hanging nodes in ωκ is removed by doing (e.g. green) 
refinements, see Fig. 1. We remark that the notions of red and green refinements refer to standard element subdivision 
techniques in automatic mesh adaptation; further details can be found, e.g., in [41, §4.10.2.2] (or [6], where red refinement
is termed bisection-type mesh refinement).

We consider basis functions {ξ1
κ , . . . , ξmκ

κ } of the locally supported space V (ω̃κ ). Furthermore, for any given v ∈V (TN ), 
we introduce the extended space

V̂ (ω̃κ ; v) := span{ξ1
κ , . . . , ξmκ

κ , v}.
Suppose we have found an accurate approximation un

N ∈XN of the discrete GPE (18), for some n ≥ 0. Then, by performing 
one local discrete GFI-step in V̂ (ω̃κ ; un

N ) ⊂ H we obtain a new local approximation, denoted by ũn
N,κ ∈ V̂ (ω̃κ ; un

N), with ∥∥∥̃un
N,κ

∥∥∥
L2(�)

= 1. We emphasize that V̂ (ω̃κ ; un
N ) has a small dimension, and hence the discrete GFI (17) based on V̂ (ω̃κ ; un

N )

entails hardly any computational cost (for instance, for dimension d = 2 and polynomial degree p = 1, the dimension of the 
locally refined space V̂ (ω̃κ ; un

N ), cf. Fig. 1, is typically 3 or 4).
By modus operandi of the discrete GFI (17), the above construction leads in general, see Remark 3.2, to the (local) energy 

decay

−�En
N(κ) := E(̃un

N,κ ) − E(un
N) ≤ 0, (19)

for all κ ∈ TN . The value �En
N (κ) indicates the potential energy reduction due to a refinement of the element κ . This 

observation motivates the energy-based adaptive mesh refinement procedure outlined in Algorithm 1.
6
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Algorithm 1 Energy-based adaptive mesh refinement.
1: Prescribe a mesh refinement parameter θ ∈ (0, 1).
2: Input a finite element mesh TN , and an L2(�)-normalized finite element function un

N ∈XN for some n ≥ 1.
3: for all elements κ ∈ TN do
4: Perform one discrete GFI-step in the low-dimensional space V̂ (ω̃κ ; un

N ) to obtain a potentially improved local approximation ũn
N,κ .

5: Compute the local energy decay �En
N (κ) from (19).

6: end for
7: Mark a subset K ⊂ TN of minimal cardinality which fulfils the Dörfler marking criterion

∑
κ∈K

�En
N (κ) ≥ θ

∑
κ∈TN

�En
N (κ).

8: Refine all elements in K for the sake of generating a new mesh TN+1.

3.4. Adaptive strategy

From a practical viewpoint, once the discrete GFI approximation from (17) is close to a solution of (18), on a given finite 
element space, we expect that any further GFI steps will no longer contribute an essential decay to the energy in (20). In 
this case, in order to further reduce the energy, we need to enrich the finite element space appropriately. More specifically, 
for N ≥ 1, suppose that we have performed a reasonable number n ≥ 1 (possibly depending on N) of GFI-iterations (17)
in XN−1. Consider now a (hierarchically) refined mesh TN of TN−1, for example, obtained by Algorithm 1. Then we may 
embed the final guess un

N−1 ∈XN−1 on the previous space into the enriched finite element space XN in order to obtain an 
initial guess on the refined mesh TN :

u0
N := un

N−1 ∈XN .

For each GFI-iteration n we monitor two quantities. Firstly, we introduce the increment on each iteration given by

incn
N := E(un−1

N ) − E(un
N), n ≥ 1.

Secondly, we compare incn
N to the energy loss as compared to the previous mesh refinement, i.e.

�En
N := E(u0

N) − E(un
N), n ≥ 1. (20)

We stop the iteration for n ≥ 1 as soon as incn
N becomes small compared to �En

N , i.e. once there is no notable benefit 
(relatively speaking) in performing any more discrete GFI steps on the current space XN . Specifically, for n ≥ 1, this is 
expressed by the bound

incn
N ≤ γ �En

N ,

for some parameter 0 < γ < 1.
We implement this procedure in Algorithm 2.

Algorithm 2 Adaptive finite element gradient flow procedure.
1: Prescribe the three parameters θ, γ ∈ (0, 1), and 0 < ε � 1.
2: Choose a sufficiently fine initial mesh T0, and an initial guess u0

0 ∈ SH with u0
0 ≥ 0. Set N := 0.

3: loop
4: Set n := 1, perform one discrete GFI-step in XN to obtain u1

N .
5: Compute the indicator inc1

N (which equals �E1
N ).

6: while incn
N > γ �En

N do
7: Update n ← n + 1.
8: Perform one GFI-step in XN to obtain un

N (starting from un−1
N ).

9: Compute the indicators incn
N and �En

N .
10: end while
11: if �En

N > εE(un
N ) then

12: Mark and adaptively refine the mesh TN using Algorithm 1 to generate a new mesh TN+1.
13: Define u0

N+1 := un
N ∈XN+1 by canonical embedding XN ↪→XN+1.

14: Update N ← N + 1.
15: else
16: return un

N .
17: end if
18: end loop
7



P. Heid, B. Stamm and T.P. Wihler Journal of Computational Physics 436 (2021) 110165
3.5. Computational complexity

We comment on the computational cost of one loop occurring in Algorithm 2. This is essentially comprised of a number 
of GFI steps on a given Galerkin space XN , and on one adaptive (local) mesh refinement (using Algorithm 1).

• The cost of one GF iteration is dominated by the computation of the Riesz-representative GN (un
N ) from (16), and, 

thereby, depends primarily on the dimension dim(XN ) of the finite element space XN . Specifically, the solution of (16)
(for given un

N ) amounts to a computational work that scales like O(dim(XN )α), with a parameter α ≥ 1 depending on 
the linear solver employed.

• The local finite element space V̂ (ω̃κ ; un
N ) contains mκ local and one global basis function, namely un

N , which is the 
same for all elements κ . The mesh-refinement procedure contains one GF iteration as described in (17), however, on 
each local space V̂ (ω̃κ ; un

N) for κ ∈ TN . This, in turn, requires the solution of a linear system involving mκ local and 
one global degrees of freedom. In particular, only one entry of the corresponding matrix requires a global integration, 
which can be computed element-by-element (and, therefore, in parallel); all other matrix entries are represented by 
local integrals. Finally, note that the entry requiring global integration is the same for all local GF iterations and all elements 
κ , and, thus, needs to be computed only once within each step of the loop in Algorithm 2.
A similar observation holds for the computation of the local energy decays. In fact, for un

N ∈ XN , denoting, as in Algo-
rithm 1, the locally improved approximation by ̃un

N,κ , we have the linear combination

ũn
N,κ = μun

N +
mκ∑
i=1

μiξ
i
κ ,

for suitable μ, μi ∈R, i ∈ {1, . . . , mκ }. Then, it is elementary to verify that

E(̃un
N) = E(μun

N) − Ew̃κ (μun
N) + Ew̃κ (̃un

N,κ ),

where Eω̃κ (·) represents the contribution from the elements comprising the patch ω̃κ to the total energy E(·). We 
emphasize that the second and third terms on the right-hand side only require the computation of a local integral. 
Moreover, for the term E(μun

N) we observe that E(μun
N ) =: μ2En

N,1 + μ4En
N,2, with

En
N,1 =

∫
�

(
1

2
|∇un

N |2 + V (x)|un
N |2

)
dx, En

N,2 =
∫
�

β

2
|un

N |4 dx.

Thus, for each patch, the energy E(μun
N ) is a combination of the above two global integrals, which need to be computed 

once only, and can be split into elementwise contributions.
Altogether, the computational cost for the local GF iterations and corresponding local energy decays therefore scales 
linearly with the number of elements in the mesh, i.e. with dim(XN ), and can be performed fully in parallel. The same 
observation applies to the element marking and local mesh refinement procedure, which compares to the evaluation of 
standard residual based a posteriori error estimators.

In summary, we find that the computational work for one loop in Algorithm 2 scales with O(dim(XN )α), where α ≥ 1
depends on the global finite element solver. In particular, our scheme exhibits a similar complexity as standard adaptive 
finite element discretization procedures for linear problems (provided that the number of GFI steps remain reasonably 
modest).

4. Numerical experiments

We apply Algorithm 2 in the context of piecewise affine approximations, i.e., we set p = 1 in (15), for some numerical 
computations in two space dimensions, i.e. d = 2, with Cartesian coordinates denoted by x = (x, y) ∈ R2. In all examples, 
we choose the initial guess u0

0 ∈ S0 such that u0
0(x) = c for any node x in the interior of the corresponding (coarse and 

uniform) initial mesh T0, where c > 0 is the appropriate constant to fulfil the norm constraint (2); we remark that numerical 
experiments based on other positive initial guesses (not presented here) have resulted in analogous convergence rates of 
the minimal energy approximation, thereby indicating a certain robustness with respect to the starting values. Moreover, we 
set θ = 0.5, as well as γ = 0.1 and ε = 10−8 in Algorithms 1 and 2, respectively. Even if the stopping criterion in Line 12 
of Algorithm 2 may not be satisfied, for the purpose of our tests, we stop the computations once the number of degrees of 
freedom (i.e. the dimension of the finite element space XN ) exceeds 106.

4.1. Laplace EVP on L-shaped domain

We begin by testing our algorithm for the Laplace eigenvalue problem, which is to find u ∈ H = H1
0(�) and λ > 0 such 

that
8
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Fig. 2. Experiment 4.1 Left: Convergence plot for the ground state energy. Right: Adaptively refined mesh after 10 refinements.

Fig. 3. Experiment 4.2. Left: Convergence plot for the energy of the ground state. Right: Adaptively refined mesh after 10 refinements.

−�u = λu in �; (21)

here, � = (0, 2)2 \ [1, 2] × [0, 1] is an L-shaped domain. This problem is of interest since the eigenfunction to the lowest 
eigenvalue λ1, i.e. the ground state, has a singularity at the re-entrant corner point (1, 1). From [31] it is known that 
9.6397238 ≤ λ1 ≤ 9.6397239. Taking the lower bound (divided by 2, cf. (5) for β = 0) as reference value, Fig. 2 demonstrates 
the optimal convergence rate for the minimal energy approximation.

4.2. Linear GPE with smooth potential V

We consider the case where β = 0 in (1), and V (x, y) = 1/2(x2 + 9y2) is a smooth function:

E(u) = 1

2

∫
�

(
|∇u|2 +

(
x2 + 9y2

)
|u|2

)
dx.

Note that the associated eigenvalue problem (4) is linear for this example. It is known that, for � = R2, the energy of the 
ground state is given by E(uGS) = 2, see, e.g., [7]. We note that the mass of uGS is essentially concentrated in a vicinity of 
the origin 0 due to the global minimum of V at 0. Therefore, the restriction to the bounded domain � := (−10, 10)2 ⊂
R2, which we use in our computations, has almost no effect on the minimal value of the ground state energy. Fig. 3
(left) illustrates that the approximation of the energy converges with optimal rate in terms of the numbers of degrees of 
freedom. In addition, we see that the mesh is mainly refined around the origin, where the mass of the ground state uGS
is concentrated, see Fig. 3 (right). These results underline that the proposed adaptive gradient flow procedure effectively 
detects the local behaviour of the model.

4.3. Linear GPE with singular potential V

We perform another experiment with β = 0 in (1), i.e. the associated eigenvalue problem (4) is again linear. In contrast 
to the previous example, however, we consider a potential V (x) = (2|x|)−1 which features a severe point singularity at the 
origin 0 = (0, 0). Specifically, the energy functional is given by
9
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Fig. 4. Experiment 4.3. Left: Convergence plot for the energy of the ground state. Right: Adaptively refined mesh after 11 refinements.

Fig. 5. Experiment 4.4. Left: Potential function V consisting of four Gaussians bells. Right: Visualization of the computed ground state. (For interpretation 
of the colours in the figure(s), the reader is referred to the web version of this article.)

E(u) = 1

2

∫
�

(
|∇u|2 + |x|−1|u|2

)
dx,

with � = (−1/2, 1/2)2. This experiment has been conducted already in [45], where the authors obtained an approximated 
minimal eigenvalue λGS = 25.934923921168 for the corresponding GPE (4); we compare our results to this reference value 
(divided by 2 on account of (5)). We can see from Fig. 4 that the proposed Algorithm 2 achieves a sequence of energy 
approximations for the ground state which decays at an (almost) optimal rate.

4.4. Linear GPE with potential wells

We test a final example with β = 0. The potential V is given by the sum of four Gaussian bells, see Fig. 5 (left). 
This experiment is borrowed from [44, Experiment 4.2], however, with a (constant) shift such that V ≥ 0 in the underlying 
domain � = (0, 2π)2. As we can see from Fig. 5 (right), the mass of the ground state is mainly concentrated at two adjacent 
hills in the lower left part of the domain; we note that this is perfectly in line with the results obtained in the paper [44]. 
Moreover, the energy-based adaptive mesh refinement has properly resolved the two local hills featured in the ground state 
uGS, see Fig. 6.

The authors from [44] have computed an approximated minimal eigenvalue λGS = 16.6879, whereby this is the value 
adapted for our reformulation of the problem. Based on this approximation, we observe an optimal rate of convergence for 
the energy of the ground state in Fig. 7 (left). We remark, for this example, that the performance of Algorithm 2 crucially 
depends on the choice of the parameter γ in Line 6. Indeed, if γ = 0.5 (instead of γ = 0.1) is selected, then the numerical 
results exhibit a considerably less favourable asymptotic convergence regime, see Fig. 7 (right). An explanation can be 
inferred from Fig. 8: We see that the choice γ = 0.1 leads to a significantly higher number of gradient flow steps on each 
Galerkin space XN , which seems to be essential for the effective numerical solution of this problem.

4.5. Nonlinear GPE with harmonic confinement potential

We now consider a nonlinear Bose-Einstein condensate, i.e. β = 1000 � 0 in (1), and use the smooth potential V (x) =
1/2|x|2:
10



P. Heid, B. Stamm and T.P. Wihler Journal of Computational Physics 436 (2021) 110165
Fig. 6. Adaptively refined mesh after 11 refinements.

Fig. 7. Experiment 4.4. Left: Convergence plot for the ground state energy with γ = 0.1. Right: Convergence plot for the ground state energy with γ = 0.5.

Fig. 8. Experiment 4.4: Evolution of the minimal energy approximation E(un
N ) −E(uGS) with respect to the number of gradient flow steps n and the number 

of adaptive mesh refinements N , for γ = 0.1 (left) and γ = 0.5 (right): For each Galerkin space XN an individual line illustrates the energy decay with 
respect to the number of gradient flow steps.

E(u) = 1

2

∫
�

(
|∇u|2 +

(
x2 + y2

)
|u|2 + 1000|u|4

)
dx;

the domain is given by � = (−6, 6)2. This experiment was conducted previously in [36], where an approximation E(uGS) ≈
11.9860647 for the energy of the ground state has been documented. Based on the adaptive Algorithm 2 presented in this 
work, a smaller value for the ground state energy has been computed; we suppose that this (improved) approximation 
results from the adaptive (and thereby more effective) refinement of the meshes. To be specific, we have obtained the 
approximation E(uGS) ≈ 11.98605121 . . . based on an adaptively refined mesh with O(107) degrees of freedom; here, the 
underlined digits are stable (i.e. the computations indicate that they do not change any more as the iterations continue). 
Using this as reference value, we obtain optimal convergence for the approximation of the energy of the ground state, see 
Fig. 9.
11
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Fig. 9. Experiment 4.5. Left: Convergence plot for the ground state energy. Right: Approximated ground state.

Table 1
Experiment 4.5. Number of GF iterations on the first 15 finite element spaces for different values of β .

β X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

200 2 3 3 3 2 2 2 2 2 2 2 2 2 2 2

400 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2

600 3 3 3 4 3 3 2 2 2 2 2 2 2 2 2

800 3 3 4 4 3 3 3 2 2 2 2 2 2 2 2

In order to study the dependence of the computational work on the strength of the nonlinearity, we have performed the 
same experiment for different values of β . We remind the reader that we always use the same initial guess u0

0 ∈ S0 such 
that u0

0(x) = c for any node x in the interior of the initial mesh T0, where c > 0 is the appropriate constant to fulfil the 
norm constraint (2). As can be seen from Table 1, our algorithm does not seem to be sensitive with respect this parameter. 
Indeed, after an initial phase, the number of GF iterations on a given mesh is independent of β . Moreover, for γ = 0.5, this 
holds true already from the start, i.e. even for the initial mesh (not displayed here). We remark that analogous results have 
been observed recently in [49] for a multigrid method.

4.6. Nonlinear GPE with optical lattice potential

As before, we choose � = (−6, 6)2 and β = 1000, with an oscillating potential function V , see Fig. 10 (left) for its 
contour plot. More precisely, the energy functional is given by

E(u) = 1

2

∫
�

(
|∇u|2 + 2

( |x|2
2

+ 20 + 20 sin(2πx) sin(2π y)

)
|u|2 + 1000|u|4

)
dx.

This experiment was also considered in [36] with an asserted approximation E(uGS) ≈ 30.40965 of the ground state energy. 
Based on a sufficiently fine uniform initial mesh (with 128 elements), our algorithm yields the approximation E(uGS) ≈
30.387533 . . . for O(107) degrees of freedom. In Fig. 11 (left) we have depicted the error for the approximations of the 
ground state energy with respect to our reference value. This plot indicates an asymptotically optimal rate of convergence 
of Algorithm 2 for the given problem.

As in Example 4.4, we have also run this experiment for both values γ = 0.1 and γ = 0.5. In contrast to the previous 
test, we observe no considerable difference in the performance of the corresponding computations. Indeed, except for the 
first two meshes, the number of gradient flow steps on each Galerkin space is the same for both cases, see Fig. 12.

4.7. Nonlinear energy functional with a nonsymmetric potential V

Finally, we revisit the test problem [11, Example 4.3.II]:

E(u) = 1

2

∫
�

(
|∇u|2 +

(
|x|2 + 8 exp

(
−((x − 1)2 + y2)

))
|u|2 + 200|u|4

)
dx,

with the symmetric domain � = (−8, 8)2. In [11] an approximated value of E(uGS) ≈ 5.8507 for the energy of the ground 
state uGS has been obtained. Like in the previous experiments, for an adaptively refined mesh with O(107) degrees of 
freedom, a smaller value of E(uGS) ≈ 5.85058738 . . . is obtained. Applying this value as reference ground state energy, we 
12
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Fig. 10. Experiment 4.6. Left: Contour plot of the potential V . Right: Contour plot of the ground state. (For interpretation of the colours in the figure(s), the 
reader is referred to the web version of this article.)

Fig. 11. Experiment 4.6. Left: Convergence plot for the ground state energy. Right: Approximated ground state.

Fig. 12. Experiment 4.6. Evolution of the minimal energy approximation E(un
N ) − E(uGS) with respect to the number of gradient flow steps n and the 

number of adaptive mesh refinements N , for γ = 0.1 (left) and γ = 0.5 (right).

observe optimal convergence in Fig. 13. Furthermore, following the previous Experiment 4.5, we have run this test problem 
for different values of β , with similar results, see Table 2.

5. Conclusions

In this work, we have considered a computational procedure for the numerical approximation of the ground state and its 
associated energy of the Gross-Pitaevskii equation, which applies an effective interplay of a gradient flow iteration method 
and a novel adaptive mesh refinement strategy. Both of these techniques rely on energy minimization and guaranteed energy 
reduction. Thereby, they are based on the underlying structure of the problem at hand in a very natural way. Our scheme is 
fairly simple to implement and, for the test problems presented here, exhibits either optimal or close to optimal convergence 
rates for the approximation of the ground state energy. Moreover, in our experiments, the effect of the parameter β (steering 
the strength of the nonlinearity) on the computational work seems to be negligible.
13
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Fig. 13. Experiment 4.7. Left: Convergence plot for the ground state energy. Right: Approximated ground state.

Table 2
Experiment 4.7. Number of GF iterations on the first 15 finite element spaces for different values of β .

β X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

0 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2

200 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

400 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

600 3 3 4 3 2 2 2 2 2 2 2 2 2 2 2

800 3 4 4 3 3 2 2 2 2 2 2 2 2 2 2
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