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Abstract. Convergence of model projections is often considered by climate sci-
entists to be an important objective in so far as it may indicate the robustness
of the models’ core hypotheses. Consequently, the range of climate projections
from a multi-model ensemble, called “model spread”, is often expected to re-
duce as climate research moves forward. However, the successive Assessment
Reports of the Intergovernmental Panel on Climate Change indicate no reduc-
tion in model spread, whereas it is indisputable that climate science has made
improvements in its modelling. In this paper, after providing a detailed ex-
planation of the situation, we describe an epistemological setting in which a
steady (and even slightly increased) model spread is not doomed to be seen as
negative, and is indeed compatible with a desirable evolution of climate models
taken individually. We further argue that, from the perspective of collective
progress, as far as the improvement of the products of a multi-model ensemble
(e.g. means) is concerned, reduction of model spread is of lower priority than
model independence.
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1 Introduction

The complexity of the climate is such that, currently, no single model accu-
rately captures every relevant component of the system. Leeway remains as
regards model specification and implementation, thus fostering the worldwide
production of multiple models. In particular, multi-model ensembles bringing
together General Circulation Models (GCMs) embody the tremendous efforts
made in climate science to produce projections about future changes and sup-
port decision-making today. GCMs are used to represent climate dynamics
under specific emissions scenarios. They are built on a common physical basis,
but differ in the climate components they represent,1 and in the idealisations
and parameterisations of which they make use.2

The range of climate projections from a multi-model ensemble with respect
to a given emissions scenario is called “model spread”. This spread is an ef-
fect of the above-mentioned differences between models. Our main object of
inquiry in this paper is the model spread of the multi-model ensemble employed
in the Coupled Model Intercomparison Project (CMIP).3 This model spread

1State-of-the-art GCMs minimally include components of the physical climate, i.e., atmo-
sphere, ocean and their interactions, as well as external forcing induced by the Sun, volcanoes
and human activities. They can be Coupled Atmosphere-Ocean General Circulation Models
(AOGCMs) or Earth System Models (ESMs). Unlike the former, the latter include ice sheets
and biogeochemical processes.

2GCMs differ in the discretisation of the physical differential equations, in the grid reso-
lution, in the parameterisations, in the possible inclusion of stochastic components, etc. Im-
portantly, variations between models depend on their respective parameterisations, which are
approximate descriptions of subgrid-scale processes (e.g. cloud processes) used when explicit
representation of these processes requires very high computer power, or when understanding
of these processes is simply lacking.

3Nonetheless, the conclusions in this paper should extend to model spreads from ensembles
of regional models, e.g. EURO-CORDEX ensembles.
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corresponds to the range of projections from several dozen GCMs4 used as a
database for the Assessment Reports (henceforth ARs) of the Intergovernmental
Panel on Climate Change (IPCC), and more precisely for Working Group I.

It seems reasonable to expect that a positive evolution of climate models
should come with a reduction in the model spread. The assumption here is that
improved models – including better-described components – should progres-
sively converge in their projections. This assumption results from seemingly
sound robustness reasoning: if, despite being based on different hypotheses,
models converge more in their projections, this is to be interpreted as the pro-
jections being more likely. Convergence of climate projections is indeed a major
feature in the assessment of the robustness of models’ core hypotheses, which is
often supposed to ground one’s confidence in models.

However, the successive IPCC ARs do not manifest any reduction in the
model spread exhibited by CMIP ensembles (Knutti and Sedláček 2012), even
though, in recent decades, models have evolved in various ways: understand-
ing of underlying processes has improved, computational power has increased,
thus higher spatial resolution has been possible and more processes have been
integrated. This contrast with the model improvements is so important that it
is explicitly addressed in one of the IPCC’s FAQs: FAQ 1.1 “If Understanding
of the Climate System Has Increased, Why Hasn’t the Range of Temperature
Projections Been Reduced?.” The forthcoming CMIP6 even displays a slight in-
crease in the updated model spread (Hausfather 2019). Does this indicate a
problem in the evolution of climate modelling?5

The aims in this paper are to provide a detailed explanation of the fact that
model spread is remaining steady, and to assess whether, from a normative point
of view, climate scientists should actually strive to reduce model spread. First,
in section 2, we explain why model spread remains steady and can even (tem-
porarily) increase despite better process understanding and higher computer
power. Second, in section 3, we describe an epistemological setting in which a
steady (or even slightly increased) model spread need not be seen as a sign of
failure, and is indeed compatible with a desirable evolution of climate models
taken individually. In section 4 we further argue that, from the perspective of
collective progress, as far as the improvement of the products of a multi-model
ensemble (e.g. means) is concerned, the reduction of model spread is of lower
priority than model independence.

4As an illustration, CMIP5 put forward four scenarios of anthropogenic forcing called
“Representative Concentration Pathways” based on different assumptions about future global
greenhouse-gas emissions. Twenty-three models contributed to CMIP5, and eighty-eight mod-
els are currently running for CMIP6.

5In addition to the methodological problem we point out, this also raises concerns from the
perspective of public communication. A steady model spread and the even more baffling slight
increase may engender public doubt about the progress being made in climate modelling, in
that model spread is usually interpreted as quantifying uncertainty.
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2 Why model spread does not reduce despite
model improvements

Since the Charney report (1979), estimated uncertainty ranges on global aver-
ages – i.e. model spreads – have remained largely unchanged, despite improve-
ments in the GCMs used for the IPCC ARs (Knutti and Sedláček 2012). In
particular, climate sensitivity, i.e. the response of the climate system to a dou-
bling of CO2, remains in the same range. For instance, with an estimated 66%
chance of occurring, likely equilibrium climate sensitivity ranges from 1.5◦C to
4.5◦C according to CMIP3 for the IPCC AR4; from 2.1◦C to 4.7◦C according to
CMIP5 for the IPCC AR5; and between 1.8◦C and 5.6◦C according to CMIP6
for the IPCC AR6. In other words, the model spread for climate sensitivity has
in fact increased with CMIP6 (Hausfather 2019). As an illustration, Figure 1
compares the global mean temperature change in the scenarios of IPCC AR4
and of AR5, and shows how similar their respective model spreads are.

Figure 1: Global temperature change and model spread for CMIP3 and CMIP5
(Knutti and Sedláček 2012)

Why does the model spread not reduce despite the improvements in the
models themselves? In order to explain the non-reduction of the model spread,
we analyse the spread in terms of the quantification of uncertainty, and exam-
ine how each major model improvement – better process understanding and
higher computer power – affects the model spread while aiming at overcoming
shortcomings in individual models.

2.1 Quantification of uncertainty

The model spread is the range of projections of average global quantities (e.g.
mean surface temperature, precipitation, sea level, climate sensitivity) obtained
from multiple models. It is defined as the range of projections provided by a

4



particular ensemble of models and with respect to a given emissions scenario
(defined by one or several socioeconomic storylines).

For a given scenario, each projection comes with a variety of uncertainties,
including internal variability uncertainty and model uncertainty. While internal
variability uncertainty is inherent to the climate system, due to the chaotic
and spontaneously varying nature of the climate itself, model uncertainty stems
from the models being imperfect representations. More precisely, for a given
model, the best values to assign to model parameters are either unknown or
ambiguously defined; this sub-category of model uncertainty is called parameter
uncertainty. Another significant sub-category of model uncertainty is structural
uncertainty. It is induced by the idealisations, including the parameterisations,
used to represent specific processes at work in the climate system.

Idealisations vary from model to model “in terms of the fundamental numeric
and algorithmic structures, forms and values of parameterisations, and number
and kinds of coupled processes included” (Collins et al. 2013, 1039). Such di-
versity of idealisations, it is often assumed, produce alternative and allegedly
equally plausible models (Collins et al. 2013, 1036). Together these models
generate a collection of projections whose spread – i.e. the model spread – is
supposed in turn to quantify uncertainty (see also IPCC FAQ 12.1 2013). A
probability density function can also be calculated for each variable of interest
from the average projections and the assigned deviation of the ensemble mem-
bers. This function, similar to Gaussian curves, aims to indicate the chance
of occurrence of the values of said variable. Furthermore, emergent constraint
can also be derived at this stage. This is a “physically explainable empirical
relationship between intermodel variations in a quantity describing some aspect
of recent observed climate ... and the intermodel variations in a future climate
prediction of some quantity” (Klein and Hall 2015, 277), which can in turn be
used to constrain model projections under specific conditions.

In this interpretative framework, the model spread is used as a quantifica-
tion of structural and parameter uncertainty, and has been so used since the
Charney report (1979).6 It is important to highlight that the model spread is
an estimation of the model uncertainty given the set of available models, but
should not be interpreted merely as the result of all the errors made in the
modelling assumptions, among which are, importantly, the parameterisations.
Thus, the increase of the model spread is not necessarily due to an amplification
of errors in an absolute way but can instead indicate that the estimation of the
model uncertainty is improved as it can result from the inclusion of previously
unquantified sources of error. In the same way, a steady model spread should
not be interpreted as the uncertainty itself remaining constant.

In that sense, we now examine how the most significant kinds of improve-
ments impact the uncertainty estimates – while, we assume, these improvements
generally aim to handle various shortcomings and associated sources of uncer-

6We should note that an additional estimation of the uncertainty is in practice applied in
the model spread based on expert judgments (using e.g. a Bayesian probabilistic methodology)
since the multi-model ensemble is an “ensemble of opportunity” that imperfectly spans model
uncertainty (e.g. Thompson et al. 2016).
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tainty in models (e.g. parameterisations, spatial resolution, omission of relevant
processes). The model spread has not decreased despite worldwide efforts at
improving models and at integrating these improvements within CMIP. Our
aim here is to provide an explanation of this fact.

2.2 Process understanding

The evolution of climate models in recent decades has been built upon improve-
ments in process understanding – thus allowing for better-described components
– and in computer power – thus allowing for higher resolution and progressive
integration of additional processes.7

Better process understanding has been possible thanks to continuing spa-
tial, paleoclimatic and historical-records-based investigations, measurements
and data analysis, enhancing the collection of data about the cryosphere, at-
mosphere, land, biosphere and ocean systems, and thereby feeding into further
theoretical work. In particular, climate scientists have gained better under-
standing of “the role of clouds, sea ice, aerosols, small-scale ocean mixing, the
carbon cycle and other processes” (IPCC FAQ 1.1 2013).

Larger collections of data can constitute a more solid empirical basis for
model validation. As emphasised by the IPCC, “More observations mean that
models can now be evaluated more thoroughly, and projections can be bet-
ter constrained” (IPCC FAQ 1.1 2013). Such observational constraints might
reduce the model spread as this has been recently documented (e.g. Brun-
ner et al. 2020; Ribes et al. 2021). Furthermore, better process understanding
allows for less idealised representations of the different physical and biogeo-
chemical mechanisms within models. It notably allowed for “an elimination of
artificial adjustments to atmosphere and ocean coupling (so called ‘flux adjust-
ment’)” (IPCC FAQ 9.1 2013, “Are Climate Models Getting Better, and How
Would We Know?”). From a general perspective, there is some expectation
that, with better process understanding, parameterisations can be replaced by
explicit theoretically-based equations of subgrid-scale processes, and, as a re-
sult, that projections from each individual model can become more accurate.
That said, it may not necessarily ensue a reduction in the model spread, even
though the IPCC expects an – albeit slow – evolution in this direction.

The uncertainty range around projected [greenhouse gas (GHG)]
and aerosol precursor emissions (which depend on projections of fu-
ture social and economic conditions) cannot be materially reduced.
Nevertheless, improved understanding and climate models – along
with observational constraints – may reduce the uncertainty range
around some factors that influence the climate’s response to those
emission changes. The complexity of the climate system, however,
makes this a slow process. (IPCC FAQ 1.1 2013)

7Note that the evolution of climate models is intrinsically limited by the internal variability
of the climate and constrained by the choice of emissions scenarios.
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Improvements in process understanding are expected to reduce the uncer-
tainty due to the parameterisations in each individual model, and might result
in a corresponding decrease in model spread. To our knowledge, there is at
least no reason to believe that better-described components in individual mod-
els would increase the model spread. That said, in the near future, it would be
worth scrutinising the Cloud Feedback Model Intercomparison Project (CFMIP)
which deals with a major source of spread, i.e. cloud feedback (Webb et al.
2017), and investigating how the forthcoming outcomes will influence the model
spreads. Today, as we have seen, the model spread of the CMIP remains largely
unchanged. The reason, we now argue, stems mainly from the integration of
more processes in models.

2.3 Computer power: high resolution and comprehensive-
ness

The power of supercomputers in recent decades has increased from megaflops to
petaflops and this trend is expected to continue. Such technical progress allows
for more calculation steps in a given computing time. Higher computer power
thus can allow for higher spatial resolution in models, and thereby the inclusion
of relevant processes occurring at finer scales in models. Higher computer power
can also enable scientists to produce increasingly comprehensive models, inte-
grating and coupling more processes, heterogenous in nature, into their models.
While higher resolution and more comprehensiveness address shortcomings in
previous individual models, they can both introduce new sources of errors.

The current endeavour in climate model development is to construct higher-
resolution models in order to inform policy-making at local scales of interest.
Higher resolution is supposed to enable one to describe relevant subgrid-scale
process (e.g. convection, cloud formation). While it can help to reduce model
spread (e.g. Fosser et al. 2020), it can also increase model spread as recently
shown (Pichelli et al. 2021). The possible increase of the model spread due to
higher resolution can be explained as follows: higher resolution allows for more
inclusion of small-scale processes and thereby can introduce additional sources
of error related to the representations of those processes.8

Simultaneously, the general tendency in climate model development is to
construct increasingly comprehensive models, integrating more and more pro-
cesses (e.g. carbon cycle, dynamic vegetation), in response to the political need
for reliable projections (see e.g. Dahan 2010). Figure 2 illustrates this tendency.

Integrating aspects of the climate that have been previously neglected is
supposed to produce better representations – i.e. less idealised representations
– of the system overall. However, as recognised by the IPCC, this greater
integration may also incorporate new “sources of possible error”.

Climate models of today are, in principle, better than their pre-
decessors. However, every bit of added complexity, while intended

8Interestingly, in Pichelli et al. 2021, the estimated ensemble means are more accurate,
which, as we argue in the rest of the paper, is an important progress in climate modelling.
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Figure 2: The development of climate models over the last 35 years (Stocker
et al. 2013, 144)

to improve some aspect of simulated climate, also introduces new
sources of possible error (e.g., via uncertain parameters) and new
interactions between model components that may, if only temporar-
ily, degrade a model’s simulation of other aspects of the climate
system. (IPCC FAQ 9.1 2013)

We contend, indeed, that higher-resolution and more comprehensive models
may generate an increase in the model spread that is probably not compen-
sated by improvements in process understanding. In order to understand why
this is so, it is useful to follow Le Treut’s (2009) two-part analysis of climate
model components: models are analysed as composed of well-understood and
stable components, on the one side, and lesser-understood and yet sensitive
components, on the other.

Well-understood and stable components of climate models derive from fun-
damental principles including conservation laws and orbital mechanics. They
enable climate scientists to describe dominant phenomena in the climate, e.g.
that greenhouse gases absorb the infrared radiation emitted by the Earth and
warm up the atmosphere. They are well-confirmed because they are based on
parts of physics that are themselves well-confirmed and of longstanding.

Lesser-understood and yet sensitive components concern the behaviour of
possible amplifiers of the greenhouse effect, i.e. water vapour, the carbon cycle,
methane, and clouds or ice albedo. They include cloud feedback, the effect of
polar ice sheets on sea level, the effect of aerosols on clouds, the effect of solar
wind on clouds, and climate–ecosystem feedback. They are required in order
to obtain more detailed projections, but are also responsible for uncontrolled
amplification and dampening effects within the models – i.e. these components
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have the unintended effect of amplifying (resp. dampening) the contribution of
other components in such a way that the processes in which they are involved
within the models are difficult to trace. This results in uncontrolled variability
within the outputs of individual models. These sensitive components are not
included within the fundamental equations of the models, unlike the stable
components, but are instead included in the form of parameterisations.

Sensitive components tend to be of higher importance in current modelling
because of the general tendency to produce higher-resolution and more compre-
hensive models. The more comprehensive a model is, the more it contains non-
stable, sensitive components that may produce higher variability among their
outputs, therefore increasing the estimates of structural uncertainty and param-
eter uncertainty. Because distinct models contain different lesser-understood
and yet sensitive components, discrepancies between their respective projec-
tions are likely to increase.

In a nutshell, better process understanding and higher computer power aim
to overcome previous shortcomings in individual models. Yet at the same time
the development of higher-resolution and increasingly comprehensive models
can amplify the model spread.

3 Why the reduction of model spread should not
be an unconditional objective

Now that we have provided an explanation of the steady level (and even slight
increase) of the model spread, the question arises: are climate scientists actually
on the right track in integrating more processes into their models, or should
they strive to reduce the model spread instead? In this section, we tackle the
normative question of whether convergence of model projections is a priority for
the purpose of improving models.

On the one hand, convergence of model projections is often considered by
climate scientists to be an important objective in so far as it may indicate the
robustness of the models’ core hypotheses. In the philosophy of climate science,
Parker (e.g. 2011; 2013) is skeptical about the fact that the agreement between
climate models guarantees robustness. As she highlights, climate models are all
imperfect representations, and therefore none can claim to be truth-conducive
– assuming that a model within the ensembles is required to have this prop-
erty. Furthermore, ensembles of climate models are hardly random collections
of independent models. But, more commonly, philosophers argue that, if models
developed by different centres agree in their outputs, and if the models’ hypothe-
ses are independent of each other, then the models’ hypotheses may be deemed
robust although models might still exhibit structural uncertainty (Lloyd 2009,
2010, 2015; Vezér 2016, 2017). In particular, for Lloyd, this grounds our con-
fidence that the “causal core” (Lloyd 2015) shared by climate models captures
the fundamental behaviour of the climate system, and that models can in turn
be relied upon in producing further projections. “But if models disagree, this
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indicates model ‘unreliability.’ In addition, if the mean model average disagrees
with the mean observation, it suggests a systematic deficiency in the models”
(Lloyd 2010, 979). On Lloyd’s view, an important additional specification is the
variety of evidence that empirically supports model hypotheses and parameter-
isations. For Winsberg (2018), the more the models agree with each other, the
higher our degree of confidence in the projections can be, provided model hy-
potheses are RA diverse (for Robustness Analysis) (following Schupbach 2018’s
analysis), in the sense of being able to rule out “competing hypotheses” or “rival
explanations”.

Following the predominant philosophical view on robustness in climate sci-
ence, convergence of models’ projections is interpreted as due to a general im-
provement of the capacity of each individual model to provide reliable projec-
tions, itself due to an improvement of the hypotheses underlying the parameter-
isations. Here, convergence of projections indicates that the models’ hypotheses
are not only robust but are also being refined as time goes by. In other words,
additional idealisations and parameterisations – including sensitive components
– are expected at some point to produce similar effects on the outputs. Such
refinement should lead to the reduction of the model spread over time.

This view may lead one to conclude that the steady (or slightly increased)
model spread is an indication that the up-to-date higher-resolution and more
comprehensive models are unreliable, unless we take into account the explana-
tion provided in section 2.

On the other hand, if one holds that climate scientists should aim for higher-
resolution and more comprehensive models as a priority, then one may still view
the introduction of sensitive components as something positive, since these com-
ponents concomitantly improve the understanding of detailed processes. As the
IPCC remarks, increases of the model spread “merely reflect the quantification
of previously unmeasured sources of uncertainty”.

As science improves, new geophysical processes can be added to
climate models, and representations of those already included can
be improved. These developments can appear to increase model-
derived estimates of climate response uncertainty, but such increases
merely reflect the quantification of previously unmeasured sources of
uncertainty [. . . ]. As more and more important processes are added,
the influence of unquantified processes lessens, and there can be more
confidence in the projections. (IPCC FAQ 1.1 2013, emphasis ours)

Therefore, the increase in model spread can be interpreted in terms of model
improvements that are in agreement with the overall progress of climate mod-
elling. Indeed, this is simply part of the evolution of climate modelling, by
which the climate models are deemed to improve because they come to include
more and more climate components, which itself tends to increase the estimated
value of model uncertainty.

On this view, as climate research moves forward, one might even expect that
the sensitive components will become better understood and be included among
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the stable components. This in turn would reduce model spread. In other words,
the situation might just be temporary. This possibility is suggested by Knutti
and Sedláček:

defining progress in climate modelling in terms of narrowing uncer-
tainties is too limited. Models improve, representing more processes
in greater detail. This implies greater confidence in their projections,
but convergence may remain slow. The uncertainties should not stop
decisions being made. (Knutti and Sedláček 2012, 1, emphasis ours)

This positive interpretation of the actual evolution of the model spread in-
vites us to posit an epistemological setting in which reduction of model spread
is not deemed a priority, and is treated as on a par with other criteria in the as-
sessment of the progress of climate models. We will argue that the robustness of
models’ core hypotheses should be considered alongside other indicators of im-
provement: the evolutions of model fit, of variety of evidence (Lloyd 2009, 2010),
and of consistency with background knowledge (Baumberger et al. 2017).9

Reduction of sources of error, where available, of course improves individual
GCMs; uncertainties can be assessed by comparing model outputs with em-
pirical data about past and present climate. Thus, an important indicator is
the evolution of the model fit. Model fit measures the discrepancies between
simulated quantities (e.g. global distributions of temperature, precipitation,
radiation etc.) and available past and present observations, via quantitative
statistical measures referred to as performance metrics (Reichler and Kim 2008).

In this respect, consistency with background knowledge is also an important
indicator. As Baumberger et al. 2017 argues, when data are lacking, model pro-
jections being consistent with available scientific laws and empirical correlations
provides an additional reason to believe that models capture the fundamental
behaviour of the climate system beyond the set of available data.

Furthermore, models improve if they yield outcomes or retrodictions con-
cerning more and more variables about the past and present climate. Thus,
another indicator is the increased number of variables that are accurately simu-
lated by models, e.g. not only global mean temperature, but also “precipitation,
radiation, wind, oceanic temperatures, and currents” (Lloyd 2009, 217); this is
related to the evolution of the variety of evidence (see Lloyd 2009).

The evolution of the model spread should be confronted with the indica-
tors of improvement that we just mentioned. Since model fit, consistency with
background knowledge and variety of evidence are steadily getting better from
one generation of models to the next, the nonimprovement (or slight increase)
of model spread, instead of pointing toward a pessimistic conclusion about the
evolution of climate modelling, cannot but be an indication that progress has
been attained overall. By contrast, a significant increase of the model spread
would have been a serious indicator of something going wrong. Overall, climate

9These authors discuss model fit, variety of evidence or consistency with background
knowledge as criteria of confirmation, whereas we take the respective evolutions of model fit,
variety of evidence and consistency with background knowledge as indicators of improvement.

11



modelling being a complex endeavour, its progress has to be assessed based on
a variety of indicators, among which model spread is only one potential indica-
tor.10

To sum up, we have argued the following. First, it would be methodologi-
cally misleading to consider reduction of model spread as the priority to aim for.
Second, model spread can remain steady without threatening the progress of cli-
mate models (integrating more processes). Third, in order to assess the progress
made in improving climate models, the evolution of the model spread should be
considered as only one indicator of improvement, to be assessed alongside with
other indicators including model fit, variety of evidence and consistency with
background knowledge.

4 Taking ensembles seriously and valuing model
independence

So far in this paper, and as is common in state-of-the-art philosophy of climate
science (Katzav and Parker 2015 being a remarkable exception), it has been
assumed that progress in climate modelling, conceived as improvement in rep-
resentation, occurs at the scale of individual models (versus the collective scale
of the CMIP). On this view, the evolution of climate modelling is understood as
tending towards the production of ever more reliable models to understand past
and present climates and provide climate projections; in other words, towards
a “collection of even better guesses”. This grounds the interpretation of model
spread as a criterion of assessment with respect to the improvement of models
taken individually.

However, we now want to consider progress in climate modelling from the
perspective of ensembles, assuming that progress in climate modelling can also
be evaluated in terms of the reliability of the products we can derive from ensem-
bles. These products include the means of projections, but also the probability
density functions, and the emergent constraints.

In this regard, and as we are about to argue, convergence of projections is,
from a normative point of view, of lower priority than model independence –
whereas the latter is often considered as a precondition for the robustness of
models’ core hypotheses.11 To that end we now propose two hypotheses and
discuss them in turn: (a) convergence of model projections, leading to reduction
of model spread, is not a straightforward indicator of the robustness of models’

10Another lesson can be learned from the comparison between model spread and other
indicators of improvement in climate modelling. When used without taking model spread
into consideration, the other indicators are insufficient for two reasons. First, no climate
model can be said to perform better that others in respect of every purpose. Second, the fact
that a particular model improves its performance is not a sufficient indication that our general
understanding of the climate system has improved.

11As Parker (2011; 2013; 2018) argues, a challenge in climate science is to produce better
ensembles by properly sampling the space of models. We therefore believe that, in this respect,
the priority is to build a statistical sample of models that are independent of each other, in
order to get notably better means.
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core hypotheses because it may be due to common biases or other undesired
dependence among models; (b) divergence of model projections, enlarging model
spread, may indicate genuine independence between models, a desirable feature
for the purpose of establishing more reliable statistical means.

(a) As said earlier, convergence of models’ outputs is often taken as one
indication that the models’ hypotheses are robust and reliable. However, con-
vergence of models’ outputs may also indicate dependence among models, which
may originate in common biases. Accordingly, convergence of models outputs
may be (partly) due to dependence, that is, to the fact that models do share
hypotheses and pieces of code.

In practice, two different circumstances may result in dependence among
models. First, a given modelling centre may simultaneously contribute to several
models in the CMIP ensemble, which may then share identical pieces of code
(Leduc et al. 2016). Second, it is not uncommon to observe that modellers can be
be prone to a type of conformism: scientists are more inclined to produce models
whose projections fit the “consensus range” than models whose projections are
far outside it. As mentioned by Knutti, “[a]lthough this is hard to confirm
or reject, there may even be an element of ‘social anchoring’ and a tendency
towards consensus” (Knutti 2010, 397). Such a social tendency might lead to
more dependence between models. We cannot but emphasise that this tendency
makes convergence among models rather worrisome.

Recent attempts at dealing with dependence among models, showing how
seriously this concern is viewed by the community of modellers, come in two dif-
ferent guises. First, in order to go beyond the “one-model-one-vote” approach,
in which each model in an ensemble receives the same weight, methods have
been developed to assign different weights to ensemble members (Sanderson
et al. 2015a,b). Assessments of whether this approach is on the right track are
still ongoing. Second, it has recently been proposed to built subsets of models,
within the main ensemble, that meet the criterion of independence with regard
to specific results of interest (Abramowitz et al. 2018; Herger et al. 2018).

(b) Accordingly, divergence among models may also be interpreted in two
different ways: first, as due to detrimental dissensus among modellers, some of
them being right whereas others are wrong; second, as due to normal dissensus
among modellers, who place their trust in different hypotheses but do have good,
although differing, reasons to do so. The second interpretation importantly
implies that it is irrelevant and even detrimental to force the convergence of
models’ outputs, which is after all not so difficult to reach, because the cost of
artificiality is then too high (i.e. it cannot be interpreted as indicating robustness
of models’ core hypotheses). When divergence among models is interpreted
according to the second interpretation, it is not a legitimate object of worry.

The discussions of our two hypotheses (a) and (b) thus result in symmetrical
conclusions: in the same way as divergence among models is not always wor-
risome, dependence might not be a problem. For instance, that fundamental
physics is common to all models is no reason to worry. By contrast, models’
idealisations, parameterisations and calibrations are often “in-house” produc-
tions of modelling centres, and these are responsible for a large part of the
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model uncertainty. Therefore, their being passed on from one model to another
is epistemically more risky. This implies that the risks involved in dependence
have to be assessed on a case-by-case basis.

Our discussion leads to the suggestion that divergence among models outputs
may be desirable. As mentioned above, independence among models does not
necessarily result from detrimental dissensus among modellers, undermining our
overall confidence in (the evolution of) climate models, but does certainly bring
about discrepancies among their outputs and thereby increases model spread.

Besides suggesting that divergence among models’ outputs, where it is due
to independence among models, is not necessarily worrying, we also point out
that independence among models might be a higher desideratum than conver-
gence of models’ outputs. The main argument is that the ensemble means
constitute more accurate projections than model-based projections, and inde-
pendence among models improves the accuracy of the ensemble means.

Figure 3, from Reichler and Kim 2008, illustrates that the statistical means
based on the ensemble models provide more accurate projections than any indi-
vidual model (see also Schmidt 2018). It shows the evolution of one performance
index, named I 2, in the successive updates of CMIP. I 2 “consists of the aggre-
gated errors in simulating the observed climatological mean states of many dif-
ferent climate variables” (Reichler and Kim 2008, 304). Each dot corresponds
to a model, grey circles show the average of all models within the ensemble,
and black circles indicate the performance of the ensemble mean. A root mean
square score is provided, increasing from left to right, meaning that the best
models and the best means are those furthest to the left. The black circles, rep-
resenting the ensemble means, are furthest to the left unlike the colored circles
representing the individual models. This means that the statistical means of the
multi-model ensemble are more accurate than the projections of each individual
model.

Having more accurate means is progress in climate modelling, and yet, inde-
pendence among models, leading to divergent model outputs, may favour more
accurate means. This is best seen by borrowing Gab Abramowitz’s pedagogical
analogy (see Abramowitz 2017). The analogy is between a hilltop estimation
and a mean estimation from an ensemble. Figure 4 provides an illustration. Let
us consider that the green disk is a mountain; one wants to know where the top
is; in the figure, the top of the mountain is supposed to be at the center of the
disk. Let us imagine that people climb the mountain and indicate their respec-
tive positions once every minute; their positions are indicated by the red dots.
A good estimation of the top of the mountain is the average of the positions
only if the people are appropriately scattered around the mountain. Otherwise,
as the configuration on the left shows, this average is a bad estimation. Let us
now translate the illustration into the CMIP context: the distance to the top
of the mountain can be read as the performance of each ensemble member. On
the left side, all the red dots are closer to the target but their average is not
a good estimation of the top. This nicely illustrates that, in the case of CMIP
ensemble, convergence of models’ outputs does not point to the best estimation
of the mean. By contrast, on the right side, the red dots are scattered but
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Figure 3: Performance for individual models and averages (Reichler and Kim
2008, Fig.1, 306). “Performance index I 2 for individual models (circles) and
model generations (rows). Best-performing models have low I 2 values and are
located toward the left. Circle sizes indicate the length of the 95% confidence
intervals. Letters and numbers identify individual models; flux-corrected models
are labeled in red. Grey circles show the average I 2 of all models within one
model group. Black circles indicate the I 2 of the multimodel mean taken over
one model group.” c© American Meteorological Society. Used with permission.

their average provides a good estimation of the top. This illustrates that, in the
case of the ensemble, divergence among models outputs, when resulting from
independence among models, may be the right path to improved means.

Figure 4: “Hilltop estimation analogy of mean estimate”, reproduced from
Abramowitz 2017 with the author’s approval. Illustration that independence
leading to divergent model outputs may favour more accurate means.

Let us go further, however, and claim that this authorises the inclusion,
within the ensemble, of models that reproduce generally under-sampled phe-
nomena including extreme phenomena (Räisänen 2007; Herger et al. 2018). As
we will now show, this may allow one to adopt a possibilist approach instead of
a probabilistic one. Within the scientific and philosophical literature, there are
a range of views about the meaning of statistics, dividing into probabilistic and
possibilist interpretations of ensemble projections. The probabilistic approach
aims at identifying the most likely scenarios by assessing their probability, while
the possibilist approach aims at identifying a space of serious or “real possibili-
ties”, e.g. high-impact low-probability phenomena (Katzav 2014; Betz 2015).

Within the probabilistic views, various statistical methodologies are used to
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infer probabilities of future climate phenomena from the ensemble projections.
The current methods consist in assigning a distribution of probability to each
uncertain component (Murphy et al. 2004). Emphasis is put on the “truth”
that the ensemble projections are supposed to encircle;12 “truth” can here be
defined as the values of climate magnitudes that have been measured in the
past and will be measured in the future. The challenge for these methods is
to express the deviation of the projections from the “truth”. They include the
“truth-plus-error”, the “statistically-indistinguishable”, the “replicate-Earth”,
and the Bayesian frameworks, and differ by their idealisations – e.g., whether
ensemble members compose a random sample, or whether ensemble members
and truth belong to the same statistical distribution (see Parker 2018 for more
explanation). Such views have received a certain number of criticisms which
emphasise that “probabilistic uncertainty estimates have a false precision and,
in that sense, are misleading about the actual state of knowledge” (Parker 2018).

In the possibilist interpretation of model projections, deviation of model
projections from the “truth” is not given such a heavy weight; rather, the en-
semble of models is seen as a population of possible climates. The virtue of the
possibilist approach is that it takes into account high-impact-low-probability
phenomena that are often underestimated by the probabilistic views, whereas
such phenomena can be important for decision-making (e.g. destruction of the
Amazonian rainforest) (see Clarke 2008). Once such possibilities are identified
via the models, their consequences for populations and economies can be drawn
up and mitigated.

The possibilist interpretation, as we take it, implies that the ensemble can
only be improved if a more informative sample is involved, whereas, within
the probabilistic interpretation, the ensemble is improved whenever de-idealised
models providing more likely projections are included. The former encourages
modellers to take extreme phenomena into account even though this results in
increased model spread.

In a nutshell, convergence of model projections is of lower priority than model
independence as far as the production of means is concerned. What about the
other products of ensembles? First and foremost, regarding quantification of un-
certainty, it is legitimate to consider that increase of model spread corresponds
to better estimation of uncertainty, in that it “merely reflect[s] the quantifica-
tion of previously unmeasured sources of uncertainty” (IPCC FAQ 1.1 2013).13

Once we consider that an increase of model spread can correspond to better esti-
mations of uncertainty, then we might expect that they should come with better
probability density functions,14 and more reliable emergent constraints. Thus,
increase in model spread should not be seen as detrimental to impact assessment

12Hence the model spread is sometimes interpreted as the “distance from the truth”.
13There are at least three interpretations which can be assigned to model spread as a

quantification of uncertainty. As Parker 2013 remarks, it can be seen as 1. “a lower bound
on response uncertainty, indicating changes in climate that cannot yet be ruled out” (218),
2. “precise probabilities” (218) assigned to model projections, or 3. “interval probability
specifications” (218), i.e. as specifications of the range of imperfect yet plausible projections.

14As emphasised notably by Carrier and Lenhard (2019, 4) and supported by the scientific
literature, the tails in those functions are currently not well estimated.
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studies in which model spreads, used as quantifications of model uncertainty,
are often taken as inputs, and in which probability density functions are applied
in order to calculate probabilities about the climate projections. Better prob-
ability density functions should better serve inductive risk reasoning when one
has to choose the model outputs that have the less favourable impacts for the
purpose of adaptation strategies (see Parker and Lusk 2019 for a discussion of
inductive risk reasoning in climate services).

5 Conclusion

In this paper we addressed the fact that although improvements have been made
in process understanding and computer power, model spread over recent decades
has remained steady. We gave a tentative explanation of this fact: models are
getting more and more complex by including more and more non-stable, sen-
sitive components. These components enlarge the uncertainty range. We then
discussed the normative relevance of reducing model spread with respect to the
improvement of climate models taken individually. We provided reasons to be-
lieve that the model spread can remain steady without threatening the progress
of climate models, and highlighted that the evolution of the model spread is
not an indicator of improvement per se. Taking seriously that more accurate
means of projections may be obtained from ensembles displaying broader model
spread, we finally argued that, with respect to the improvement of the ensem-
bles, a reduction of model spread may not be the priority.

The upshot of our discussion is that the persistence of model spread should
not be viewed as a reason to doubt the reliability of climate models. Rather, it
underlines a tension between two goals: robustness on the one side, and indepen-
dence on the other, because independence yields divergence among projections.
As we have argued, it seems as reasonable to look for robustness as it is to look
for independence. In an ideal world, one would be able to distinguish between
the set of hypotheses that yield (potentially artificial) robust outcomes and the
set of hypotheses that are independent from each other and for this reason yield
genuine and relevant divergence within model projections (creating an uncer-
tainty range that does represent the set of alternatives we want to explore).
Such a distinction is nevertheless hard to make in practice.
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