Eur, C.; Fife, T.; Samper, J. A.; Seynnaeve, T. (2021). Reciprocal maximum likelihood degrees of diagonal linear concentration models. Le Matematiche, 76(2), pp. 447-459. Dipartimento di Matematica e Informatica of the University of Catania 10.4418/2021.76.2.10
|
Text
2256-Article_Text-6547-3-10-20211015.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (180kB) | Preview |
We show that the reciprocal maximal likelihood degree (rmld) of adiagonal linear concentration model L⊆C^n of dimension r is equal to (−2)^r χ_M(1/2), where χ_M is the characteristic polynomial of the matroid M associated to L. In particular, this establishes the polynomiality of the rmld for general diagonal linear concentration models, positively answering a question of Sturmfels, Timme, and Zwiernik.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematics |
UniBE Contributor: |
Seynnaeve, Tim |
Subjects: |
500 Science > 510 Mathematics |
ISSN: |
0373-3505 |
Publisher: |
Dipartimento di Matematica e Informatica of the University of Catania |
Funders: |
[UNSPECIFIED] US national science foundation |
Projects: |
Projects 0 not found. |
Language: |
English |
Submitter: |
Sebastiano Don |
Date Deposited: |
11 Feb 2022 07:56 |
Last Modified: |
05 Dec 2022 16:05 |
Publisher DOI: |
10.4418/2021.76.2.10 |
BORIS DOI: |
10.48350/164791 |
URI: |
https://boris.unibe.ch/id/eprint/164791 |