Reciprocal maximum likelihood degrees of diagonal linear concentration models

Eur, C.; Fife, T.; Samper, J. A.; Seynnaeve, T. (2021). Reciprocal maximum likelihood degrees of diagonal linear concentration models. Le Matematiche, 76(2), pp. 447-459. Dipartimento di Matematica e Informatica of the University of Catania 10.4418/2021.76.2.10

[img]
Preview
Text
2256-Article_Text-6547-3-10-20211015.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (180kB) | Preview

We show that the reciprocal maximal likelihood degree (rmld) of adiagonal linear concentration model L⊆C^n of dimension r is equal to (−2)^r χ_M(1/2), where χ_M is the characteristic polynomial of the matroid M associated to L. In particular, this establishes the polynomiality of the rmld for general diagonal linear concentration models, positively answering a question of Sturmfels, Timme, and Zwiernik.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematics

UniBE Contributor:

Seynnaeve, Tim

Subjects:

500 Science > 510 Mathematics

ISSN:

0373-3505

Publisher:

Dipartimento di Matematica e Informatica of the University of Catania

Funders:

[UNSPECIFIED] US national science foundation

Projects:

Projects 0 not found.

Language:

English

Submitter:

Sebastiano Don

Date Deposited:

11 Feb 2022 07:56

Last Modified:

05 Dec 2022 16:05

Publisher DOI:

10.4418/2021.76.2.10

BORIS DOI:

10.48350/164791

URI:

https://boris.unibe.ch/id/eprint/164791

Actions (login required)

Edit item Edit item
Provide Feedback