
 

Postprint 

 

This document is the Accepted Manuscript version of a Published Work that appeared in 

final form in  

after peer review and technical editing by the publisher. 

 

To access the final edited and published work see:  

 

 

 

 

 

Access to the published version may require subscription. 

When citing this work, please cite the original published paper. 

 

 

 

 

 

 

 

 

 



1 
 

Observation of fractional edge excitations in nanographene spin chains 1 
 2 
Shantanu Mishra1,9*, Gonçalo Catarina2,3*, Fupeng Wu4, Ricardo Ortiz3, David Jacob5,6, Kristjan 3 
Eimre1, Ji Ma4, Carlo A. Pignedoli1, Xinliang Feng4,7,†, Pascal Ruffieux1,†, Joaquín Fernández-4 
Rossier2,† and Roman Fasel1,8 5 
 6 
1Empa – Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland 7 
2International Iberian Nanotechnology Laboratory, Braga, Portugal 8 
3University of Alicante, Sant Vicent del Raspeig, Spain 9 
4Technical University of Dresden, Dresden, Germany 10 
5University of the Basque Country, San Sebastián, Spain 11 
6IKERBASQUE, Basque Foundation for Science, Bilbao, Spain 12 
7Max Planck Institute of Microstructure Physics, Halle, Germany 13 
8University of Bern, Bern, Switzerland 14 
9Present address: IBM Research – Zurich, Rüschlikon, Switzerland 15 
 16 
*These authors contributed equally to this work. 17 
†E-mail: xinliang.feng@tu-dresden.de; pascal.ruffieux@empa.ch; joaquin.fernandez-rossier@inl.int 18 

 19 
Fractionalization is a phenomenon in which strong interactions in a quantum system drive 20 
the emergence of excitations with quantum numbers that are absent in the building blocks. 21 
Outstanding examples are excitations with charge e/3 in the fractional quantum Hall 22 
effect1,2, solitons in one-dimensional conducting polymers3,4 and Majorana states in 23 
topological superconductors5. Fractionalization is also predicted to manifest itself in low-24 
dimensional quantum magnets, such as one-dimensional antiferromagnetic S = 1 chains. 25 
The fundamental features of this system are gapped excitations in the bulk6 and, 26 
remarkably, S = 1/2 edge states at the chain termini7–9, leading to a four-fold degenerate 27 
ground state that reflects the underlying symmetry-protected topological order10,11. Here, 28 
we use on-surface synthesis12 to fabricate one-dimensional spin chains that contain the S = 29 
1 polycyclic aromatic hydrocarbon triangulene as the building block. Using scanning 30 
tunneling microscopy and spectroscopy at 4.5 K, we probe length-dependent magnetic 31 
excitations at the atomic scale in both open-ended and cyclic spin chains, and directly 32 
observe gapped spin excitations and fractional edge states therein. Exact diagonalization 33 
calculations provide conclusive evidence that the spin chains are described by the S = 1 34 
bilinear-biquadratic Hamiltonian in the Haldane symmetry-protected topological phase. 35 
Our results open a bottom-up approach to study strongly correlated phases in purely 36 
organic materials, with the potential for the realization of measurement-based quantum 37 
computation13. 38 

 39 
In one dimension, quantum fluctuations quench long-range magnetic order, enabling the 40 

emergence of exotic phenomena such as fractionalization. The notion that spin chains with an 41 
antiferromagnetic Heisenberg exchange lack a classical magnetic order, and have a gapless 42 
excitation spectrum with a continuum of excited states above the ground state, goes back to the 43 
early theoretical work of Bethe performed almost a century ago for S = 1/2 chains14 (where S 44 
denotes the total spin quantum number of the elementary building block). In contrast to half-45 
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integer spin chains, Haldane predicted that integer spin chains with periodic boundary conditions 46 
should have a gapped excitation spectrum between a singlet ground state and the first excited state6, 47 
known as the Haldane gap. It was later found that open-ended S = 1 chains additionally host 48 
fractional S = 1/2 edge states at the chain termini7–9. These edge states are coupled via an interedge 49 
effective exchange that gives rise to a singlet-triplet splitting, which decays exponentially with 50 
increasing chain length and results in a four-fold degeneracy of the ground state in the 51 
thermodynamic limit. The situation where the ground state degeneracy depends upon the open-52 
ended or closed (cyclic) nature of the chains is a hallmark of topological order. In the case of S = 1 53 
chains, topological order is associated to symmetries such as SO(3), time reversal and link inversion, 54 
and is known as symmetry-protected topological order10,11. 55 

In the past three decades, a plethora of experimental work has explored the existence of 56 
the Haldane gap and fractional edge excitations in materials containing quasi-one-dimensional S = 57 
1 chains of transition metal ions15, employing ensemble probes such as neutron scattering, electron 58 
spin resonance and thermodynamic property measurements. However, magnetic anisotropy of 59 
transition metal ions and a finite interchain magnetic exchange, inherently present in these 60 
materials, are detrimental for the emergence of the Haldane phase. An alternative approach to 61 
achieve physical realization of spin chains relies on the ability to image and manipulate individual 62 
atoms or molecules on solid surfaces by the scanning tunneling microscope (STM). Combined with 63 
the ability of STM to measure local electronic structure16 and magnetic excitations17 at the atomic 64 
scale, recent years have witnessed on-demand fabrication of atomic spin chains and demonstration 65 
of complex magnetic interactions and topological phenomena therein18, including the realization of 66 
quantum S = 1/2 models19,20. However, the Haldane phase has so far not been realized using this 67 
approach, despite predictions to such effect21. 68 
 69 
On-surface synthesis of triangulene spin chains 70 

Here, we use on-surface synthesis under ultra-high vacuum conditions to fabricate one-71 
dimensional (1D) spin chains on a Au(111) surface, where the elementary building block is 72 
triangulene – a diradical polycyclic aromatic hydrocarbon (hereafter, nanographene) with S = 1 73 
ground state (Fig. 1a). Magnetism in triangulene arises due to an inherent sublattice imbalance in its 74 
bipartite honeycomb lattice, which translates to a net spin imbalance22,23. Triangulene and its 75 
homologues, although challenging to synthesize by solution chemical routes24–26, have recently been 76 
synthesized on a range of metal and insulator surfaces27–30, and are shown to retain their magnetic 77 
ground states on the relatively inert Au(111) surface. We have previously shown that triangulene 78 
dimers, which consist of two triangulene units connected by a single carbon-carbon bond through 79 
their minority sublattice atoms, exhibit a large intertriangulene antiferromagnetic exchange of 14 80 
meV31. Furthermore, magnetic anisotropy in such carbon-based nanostructures is expected to be 81 
extremely weak32 (see Supplementary Note 1 for an estimation of the effect of extrinsic spin-orbit 82 
coupling on triangulenes). Therefore, we expect triangulene spin chains (TSCs) to provide an ideal 83 
platform to explore the spin physics of S = 1 chains. 84 
 The fabrication of TSCs relies on the solution synthesis of dimethylphenyl-substituted 85 
anthracene precursors 1 and 2 (Fig. 1b, see Supplementary Information for solution synthesis and 86 
characterization data), which undergo surface-catalyzed Ullmann-like polymerization and 87 
subsequent oxidative cyclization upon thermal annealing on Au(111), thereby yielding the TSCs. 88 
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We note that the use of only the dibrominated precursor 2 results in the growth of long TSCs with 89 
maximum length in excess of 100 nm (Supplementary Fig. 1). Therefore, we use a mixture of 2 and 90 
the monobrominated precursor 1 to limit the chain growth, resulting in short open-ended TSCs 91 
(oTSCs) with varying lengths, as shown in the overview STM image in Fig. 1c, which allows us to 92 
investigate the length-dependent magnetic structure of TSCs. As shown in the bond-resolved STM 93 
images in Fig. 1d,e, TSCs with both cis and trans intertriangulene bonding configurations are found, 94 
with long chains mostly containing a mixed cis/trans structure. Scanning tunneling spectroscopy 95 
(STS) measurements on TSCs over a wide bias range reveal an electronic band gap of 1.60 eV 96 
irrespective of the cis/trans structure (Extended Data Fig. 1 and Supplementary Fig. 2). Our STS 97 
results are in agreement with spin-polarized density functional theory (DFT) calculations, which 98 
show an antiferromagnetic exchange between nearest-neighbor triangulene units, and nearly 99 
dispersionless frontier bands indicative of a weak intertriangulene electronic hybridization 100 
(Extended Data Fig. 2). We also performed many-body perturbation theory GW calculations on 101 
TSCs (where G and W denote Green’s function and screened Coulomb potential, respectively), 102 
including screening effects from the underlying surface, from which we obtain a theoretical 103 
electronic band gap of 1.43 eV that is consistent with the experimental band gap. 104 
 105 
Magnetic excitations in open-ended and cyclic spin chains 106 

Figure 1f,g presents high-resolution STM images of N = 16 oTSC (Fig. 1f) and cyclic TSC 107 
(cTSC, Fig. 1g) (where N denotes the number of triangulene units in a TSC). dI/dV spectroscopy 108 
(where I and V correspond to the tunneling current and bias voltage, respectively) performed on 109 
these TSCs in the low-bias regime (|V| ≤ 100 mV; Fig. 1h,i) reveals two salient features. First, 110 
terminal units in the oTSC show peaks at zero bias (Fig. 1h), which exhibit an anomalous linewidth 111 
broadening with increasing temperature that is characteristic of a Kondo resonance33 112 
(Supplementary Figs. 3–5). These Kondo resonances are absent both in the non-terminal units of 113 
the oTSC and throughout the cTSC (Fig. 1i) and, as is shown later, they are indicative of the 114 
emergence of S = 1/2 edge states. Second, several conductance steps symmetric with respect to 115 
zero bias and with energies below 50 meV are found throughout the oTSC and cTSC, 116 
corresponding to inelastic excitations. We ascribe these inelastic spectral features to spin 117 
excitations34–36 in the TSCs, as has been previously observed in spin chains of magnetic adatoms on 118 
surfaces17. The spin excitation energies, which reflect the energy difference between the magnetic 119 
ground state and the excited states, show a marked dependence on both N and the open-120 
ended/cyclic topology of the TSCs. In addition, the spin excitation amplitudes exhibit a unit-to-unit 121 
modulation across a TSC that is linked to the spin spectral weight21 (see Methods), which is the 122 
probability of exciting the final state by means of spin-dependent electron tunneling across a given 123 
location. 124 
 125 
Theoretical description 126 

A natural starting point to account for our experimental observations is the 1D Heisenberg 127 
model, ܪ෡ு௘௜௦௘௡௕௘௥௚ = ܬ ∑ Ԧܵ௜	. Ԧܵ௜ାଵ௜  (here, Ԧܵ௜ denotes the spin-1 operator at site i and	0 < ܬ the 128 
exchange coupling), where individual triangulene units are described as S = 1 spins with a nearest-129 
neighbor antiferromagnetic exchange. However, the Heisenberg model, with ܬ taken to be 14 meV 130 
from STS measurements on an N = 2 TSC31, fails to provide a quantitative agreement with the 131 
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observed spin excitation energies for oTSCs (Extended Data Fig. 3). We therefore conducted 132 
extensive Hubbard model calculations using configuration interaction in the complete active space 133 
(CAS) approximation, exact diagonalization (ED) and density matrix renormalization group 134 
(DMRG), and compared them with model spin Hamiltonians solved by ED (see Methods). The 135 
results of these calculations, and their comparison with both the energies and the modulation of the 136 
spin excitation steps (Extended Data Fig. 4), show that the TSCs are well described by the S = 1 137 
Hamiltonian 138 

෡஻௅஻ொܪ  = ෍ܬ ቂ Ԧܵ௜. Ԧܵ௜ାଵ + ൫ߚ Ԧܵ௜. Ԧܵ௜ାଵ൯ଶቃ௜  (1) 

that includes both bilinear and biquadratic exchange terms, and is referred to as the bilinear-139 
biquadratic (BLBQ) model (here, ߚ is a parameter that determines the strength of the biquadratic 140 
term relative to the bilinear term). From a comparison of the BLBQ and Hubbard model 141 
calculations for an N = 2 TSC, we obtain 18 = ܬ meV and 0.09 = ߚ, which, hereafter, we adopt for 142 
all values of N. The emerging physical picture is that cTSCs have a unique S = 0 ground state, 143 
which is qualitatively similar8 to the analytical solution obtained for 1/3 = ߚ – the Affleck-144 
Kennedy-Lieb-Tasaki (AKLT) limit7 – whose ground state is the valence bond solid given by the 145 
concatenation of singlets formed between two S = 1/2 virtual spins located at adjacent triangulene 146 
units (Fig. 2a). For oTSCs, the valence bond solid picture naturally accounts for the existence of 147 
fractional edge states with S = 1/2, which can be Kondo screened on a metal surface, and gapped 148 
bulk excitations. Since the terminal S = 1 units in an oTSC only have a single neighbor, one of their 149 
constituent S = 1/2 spins is excluded from the valence bond solid, thus generating unpaired spins 150 
(Fig. 2a). An effective interedge exchange couples these unpaired spins, leading to a singlet-triplet 151 
splitting whose magnitude decays exponentially with increasing N. In contrast, complete pairing of 152 
spins is achieved in a cTSC, and therefore no edge states are to be expected. 153 

In addition to the low-energy edge excitations for oTSCs, the BLBQ model features 154 
multiple spin excitations at higher energies for both oTSCs and cTSCs. Some of them are spin 155 
waves spread across the entire TSC, while others are spin waves hybridized with the edge states 156 
(Extended Data Fig. 5). In Fig. 2b, we present the BLBQ spin excitation energies of oTSCs with N 157 
= 2–16, calculated with ED, where the size of the symbols accounts for the spin spectral weight of 158 
the corresponding spin excitation, with a larger weight leading to a more prominent step amplitude 159 
in dI/dV spectroscopy. Our calculations show that (1) the edge excitation energy exponentially 160 
decreases with increasing N, and (2) the lowest energy bulk excitation extrapolates toward the 161 
Haldane gap with increasing N, in agreement with the experimental results (Extended Data Fig. 6). 162 
Figure 2c,d shows the average magnetization (Fig. 2c) and the spin spectral weight (Fig. 2d) of the 163 
edge state with the quantum numbers |ܵ, ܵ௭ۧ = |1, +1ۧ for an N = 16 oTSC, revealing a strong 164 
localization of this state at the terminal triangulene units. 165 
 166 
Length-dependent magnetic excitations 167 

We performed a systematic experimental study of spin excitations in seventeen oTSCs with 168 
N between 2 and 20 (Fig. 3 and Supplementary Figs. 6–17), and eight cTSCs with N = 5, 6, 12, 13, 169 
14, 15, 16 and 47 (Fig. 4 and Supplementary Figs. 18–23) that validate our theoretical picture. 170 
Figure 3 shows dI/dV spectroscopy performed on oTSCs with N = 2–6 (Fig. 3a–e) and 9 (Fig. 3f), 171 
which reveals three principal features. First, all TSCs exhibit multiple spin excitations, with the 172 
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exception of the N = 2 TSC, which shows a single (singlet-triplet) spin excitation at 14 meV. It is 173 
notable that the BLBQ model accurately accounts for both the energies and amplitude modulation 174 
of the spin excitation steps across the triangulene units for these chain lengths. The spin excitation 175 
energies calculated by ED of the BLBQ model for TSCs with N ≤ 16 exhibit a good agreement 176 
with the corresponding experimental spin excitation energies (Extended Data Fig. 6). Deviations 177 
between theory and experiments can be partially accounted for by the renormalization of excitation 178 
energies due to interactions with the metal surface37,38. Second, with the exception of the N = 3 179 
TSC, the energy of the lowest energy spin excitation progressively decreases with increasing N, as 180 
predicted by the BLBQ model (Fig. 2b). Third, TSCs with N ≥ 9 exhibit Kondo resonances at the 181 
terminal units, which are a hallmark of topological degeneracy and fractionalization – Kondo 182 
resonances arise at the edges due to screening of the emergent S = 1/2 edge states by the 183 
underlying metal surface. The Kondo exchange competes with the interedge magnetic exchange, 184 
whose magnitude decays exponentially with increasing N, but overcomes the Kondo exchange for 185 
a small enough N (experimentally, for N ≤ 8). 186 

We note that the zero-bias resonances observed at the terminal units of the N = 3 oTSC 187 
do not correspond to the emergent S = 1/2 edge states, given that N is smaller than the spin 188 
correlation length ζ = 4 (Fig. 2b). It is observed that the amplitude of the zero-bias resonance for 189 
the N = 3 oTSC is considerably lower than that of the Kondo resonances for oTSCs with N ≥ 9. 190 
We calculated the spectral function for the N = 3 oTSC with a non-perturbative treatment of a 191 
multi-orbital Anderson model (MOAM), including coupling to the surface (see Methods and 192 
Extended Data Fig. 7). These calculations show that the zero-bias resonance in the N = 3 oTSC 193 
can be associated to a Kondo resonance of an S = 1 ground state, in agreement with previous 194 
works39. Our calculations also account for the spin excitation steps that are experimentally observed 195 
for the N = 3 oTSC. Given the large computational cost of such calculations, we presently cannot 196 
employ them for TSCs with N > 3. 197 

A final confirmation of the validity of the BLBQ model to describe TSCs comes from STS 198 
measurements on cTSCs. Figure 4a,b shows high-resolution STM images of N = 6 and 13 cTSCs. 199 
dI/dV spectroscopy on these cTSCs (Fig. 4c–e) reveals spin excitations that are in agreement with 200 
the prediction of the BLBQ model using the same parameters as for the oTSCs. Expectedly, no 201 
Kondo resonances are observed in cTSCs given the absence of terminal units. Moreover, the spin 202 
excitation spectra for all units of a cTSC are roughly identical, reflecting the equivalence of units in 203 
a cyclic structure. 204 
 205 
Outlook 206 

The ground state of the BLBQ model in the AKLT limit, as well as its generalization in 207 
two dimensions, are known to be a resource for universal measurement-based quantum 208 
computation13. Our results should therefore motivate future work addressing the possibility to tune 209 
β, so that these non-trivial quantum states naturally occur as the ground state of coupled magnetic 210 
nanographenes. On a general note, our on-surface synthetic protocol demonstrated here for TSCs 211 
can be extended to afford scalable fabrication of purely organic quantum spin chains, two-212 
dimensional lattices and networks – thus opening exciting opportunities in the realization of non-213 
trivial spin liquid phases40, quantum simulators41 and nanoscale spintronic devices. 214 
 215 
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Fig. 1 │ On-surface synthesis of triangulene spin chains and observation of zero-energy 319 
edge excitations. a, Chemical structure of triangulene. b, On-surface synthesis of TSCs using 320 
precursor mixture 1+2. c, Overview STM image after annealing the precursor mixture (x = 0.2) on 321 
Au(111) at 300 °C (Tunneling parameters: V = –0.7 V, I = 70 pA). The image is acquired with a 322 
carbon monoxide (CO) functionalized tip. oTSCs with N = 2–7 are highlighted. d,e, Bond-resolved 323 
STM images of TSCs with cis (d) and trans (e) intertriangulene bonding configurations (open 324 
feedback parameters: V = –5 mV, I = 50 pA; Δh = –0.7 Å). Δh denotes the offset applied to the 325 
tip-sample distance with respect to the STM setpoint above the TSCs. f,g, High-resolution STM 326 
images of N = 16 oTSC (V = –0.6 V, I = 200 pA, f) and cTSC (V = –0.7 V, I = 500 pA, g). Δz 327 
denotes the apparent height. h,i, dI/dV spectra acquired on every unit of the N = 16 oTSC (h) and 328 
cTSC (i), revealing zero-energy excitations exclusively at the terminal units of the oTSC (green 329 
curves). Numerals near the curves indicate the unit number, marked in the high-resolution STM 330 
images, on which the corresponding spectrum was acquired. The dI/dV spectra in the panels are 331 
offset vertically for visual clarity. Open feedback parameters for the dI/dV spectra: V = –100 mV, 332 
I = 1.4 nA; root mean squared modulation voltage Vrms = 1 mV. 333 
 334 
Fig. 2 │ The valence bond solid picture and theoretical calculations of spin excitations in 335 
open-ended triangulene spin chains. a, Representation of triangulene as two virtual S = 1/2 336 
spins (smaller filled circles) projected over the S = 1 triplet state (larger circle). Also shown is the 337 
valence bond solid spin state for N = 6 oTSC and cTSC, accounting for S = 1/2 edge states in the 338 
oTSC and their absence in the cTSC. Wavy lines denote valence bonds, which couple S = 1/2 spins 339 
from neighboring triangulene units into an S = 0 singlet state. Blue and red filled circles denote spin 340 
up and spin down electrons, respectively. b, Spin excitation energies calculated by ED of the BLBQ 341 
model (18 = ܬ meV and 0.09 = ߚ) for oTSCs with N = 2–16. Size of the circles represents the spin 342 
spectral weight. Orange circles correspond to edge excitations, while gray circles represent all other 343 
excitations predicted by the BLBQ model up to 50 meV, which constitute more than 96% of the 344 
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spin spectral weight for each N. The solid line is an exponential fit to the edge excitation energies, 345 
Ae–N/ζ, with the prefactor A = 19 meV and spin correlation length ζ = 4. c,d, Average 346 
magnetization (c) and spin spectral weight (d) of the edge state of an N = 16 oTSC with |ܵ, ܵ௭ۧ =347 |1, +1ۧ, obtained with the BLBQ model. 348 
 349 
Fig. 3 │ Magnetic excitations in selected open-ended triangulene spin chains and 350 
comparison with the bilinear-biquadratic model. a–f, dI/dV spectroscopy on oTSCs with N = 351 
2–6 and 9 (black curves). Representative bond-resolved STM images of oTSCs with N = 2–6 are 352 
shown (open feedback parameters: V = –5 mV, I = 50 pA; Δh = –0.6 or –0.7 Å). Also shown are 353 
the unit-resolved fits to the dI/dV spectra between ±50 mV, obtained with the BLBQ model 354 
(orange curves; 18 = ܬ meV, 0.09 = ߚ and effective temperature Teff = 5 K). Since the BLBQ 355 
model does not account for the underlying surface, it does not capture the Kondo exchange 356 
phenomena. Therefore, for the terminal units of N = 3 and 9 oTSCs, no fits are performed near 357 
the Kondo resonances. Colored filled circles indicate the unique spin excitations experimentally 358 
observed for each N (N = 2: 14 mV; N = 3: 0, 11 and 35 mV; N = 4: 6 and 37 mV; N = 5: 5, 25, 359 
30 and 40 mV; N = 6: 3, 27 and 40 mV; N = 9: 0, 18, 28, 30, 36 and 40 mV). Open feedback 360 
parameters for the dI/dV spectra: V = –100 mV, I = 600 pA (a) and I = 1.4 nA (b–f); Vrms = 1 361 
mV. 362 
 363 
Fig. 4 │ Magnetic excitations in N = 6 and 13 cyclic triangulene spin chains and 364 
comparison with the bilinear-biquadratic model. a–d, High-resolution STM images (a, b), and 365 
dI/dV spectroscopy (black curves) on every unit of N = 6 (c) and 13 (d) cTSCs. The curves 366 
marked with an asterisk in c and d denote the corresponding averaged dI/dV spectrum of all six 367 
and thirteen units, respectively. Also shown are the fits to the averaged dI/dV spectra between ±50 368 
mV, obtained with the BLBQ model (orange curves; 18 = ܬ meV, 0.09 = ߚ and Teff = 5 K). e, 369 
High-resolution dI/dV spectrum (black curve) for the curve indicated by an arrow in d, and the 370 
corresponding d2I/dV2 spectrum (blue curve) obtained from numerical differentiation. Colored 371 
filled circles indicate the unique spin excitations experimentally observed for each chain length (N 372 
= 6: 15 and 42 mV; N = 13: 15, 30, 43 and 48 mV). Scanning parameters for the STM images: V = 373 
–0.4 V, I = 350 pA (a) and V = –0.7 V, I = 210 pA (b). Open feedback parameters for the dI/dV 374 
spectra: V = –100 mV, I = 1.3 nA (c) and I = 1.4 nA (d); V = –60 mV, I = 1.4 nA (e); Vrms = 1 375 
mV (c, d) and 400 μV (e). 376 
 377 
Methods 378 
Sample preparation and STM/STS measurements. STM measurements were performed with a 379 
low-temperature STM from Scienta Omicron operating at a temperature of 4.5 K and base pressure 380 
below 5×10-11 mbar. Au(111) single-crystal surfaces were prepared through cycles of Ar+ sputtering 381 
and subsequent annealing at 723 K. Powder samples of precursors 1 and 2 were contained in quartz 382 
crucibles and sublimed from a home-built evaporator at 323 K and 343 K, respectively, onto 383 
Au(111) surface held at room temperature. STM images and dI/dV maps were recorded either in 384 
constant-current or constant-height modes, while dI/dV spectra were recorded in constant-height 385 
mode. For constant-height STM imaging and dI/dV mapping, feedback was opened above the 386 
TSC. Bias voltages are provided with respect to the sample. All dI/dV measurements were obtained 387 
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using a lock-in amplifier (SR830, Stanford Research Systems) operating at a frequency of 860 Hz. 388 
Modulation voltages for each measurement are reported as root mean squared amplitude (Vrms). 389 
d2I/dV2 spectra were obtained by numerical differentiation of the corresponding dI/dV curves, 390 
with a binomial smoothing (1–5 iterations) applied to the dI/dV curves. Unless otherwise noted, 391 
STM and STS measurements were performed with gold-coated tungsten tips. Bond-resolved STM 392 
images were acquired by scanning the TSCs with CO functionalized tips in constant-height mode. 393 
CO molecules were deposited onto a cold sample (with a maximum sample temperature of 13 K) 394 
containing the reaction products. Analysis of Kondo resonances was performed following the 395 
procedure in ref.35 The data reported in this study were processed with WaveMetrics Igor Pro 396 
software. 397 
 398 
DFT and GW calculations. DFT band structure calculations of TSCs were performed with the 399 
Quantum Espresso42 software package using the PBE exchange-correlation functional.43 A plane 400 
wave basis with an energy cut-off of 400 Ry for the charge density was used together with PAW 401 
pseudopotentials (SSSP44). Monkhorst k-meshes of 12 × 1 × 1 and 10 × 1 × 1 were used for TSCs 402 
with two (trans TSC) and four (cis TSC) triangulene units in the periodic cell, respectively. The cell 403 
and atomic geometries were relaxed until forces were smaller than 0.001 a.u. 404 

The adsorption geometry of an N = 6 oTSC on Au(111) was calculated with the CP2K45 405 
software package using the PBE exchange-correlation functional together with the DFT-D3 van 406 
der Waals scheme proposed by Grimme et al.46 and norm-conserving GTH pseudopotentials.47 A 407 
TZV2P MOLOPT basis set48 was used for C and H species, and a DZVP MOLOPT basis set for 408 
the Au species, together with a cut-off of 600 Ry for the plane wave basis set. An unrestricted 409 
Kohn-Sham approach was used for the TSCs together with an antiferromagnetic spin guess to 410 
model the magnetic ground state. The surface/adsorbate system was modeled within the repeated 411 
slab scheme, with a simulation cell containing 4 atomic layers of Au along the [111] direction and a 412 
layer of hydrogen atoms to suppress one of the two Au(111) surface states. 40 Å of vacuum was 413 
included in the simulation cell to decouple the system from its periodic replicas in the direction 414 
perpendicular to the surface. The gold surface was modeled by a supercell of 67.80 × 35.74 Å2 415 
corresponding to 322 surface units. The adsorption geometry was optimized by keeping the 416 
positions of the two bottom layers of the slab fixed to the ideal bulk coordinates, while all the other 417 
atoms were relaxed until forces were lower than 0.005 eV/Å. 418 

The eigenvalue self-consistent GW calculations49 were performed on an N = 6 oTSC with 419 
the CP2K code on the isolated geometry corresponding to the adsorption conformation. The 420 
calculations were performed based on the unrestricted DFT PBE wave functions using the GTH 421 
pseudopotentials and analytic continuation with a two-pole model. The aug-DZVP basis set from 422 
Wilhelm et al.49 was used. To account for screening by the Au(111) surface, we applied the image 423 
charge model by Neaton et al.50, and to determine the image plane position with respect to the 424 
molecular geometry, we used a distance of 1.42 Å between the image plane and the first surface 425 
layer, as reported by Kharche et al.51 426 

The calculations were performed using the AiiDAlab platform.52 427 
 428 
Derivation of the BLBQ model. Our starting point to describe the TSCs is a tight-binding model 429 
where we only consider pz orbitals from carbon23,53, which we refer to as the complete tight-binding 430 
model. The resulting single-particle spectrum for a TSC with N triangulenes features 2N zero-431 
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energy states, each hosting one electron, which arise due to the inherent sublattice imbalance in 432 
triangulene. Strict zero-energy states occur within the nearest-neighbor tight-binding 433 
approximation, whereas the presence of third-nearest-neighbor hopping leads to hybridization of 434 
the zero-energy states. In order to describe the formation of local magnetic moments and their 435 
exchange interaction, we include electron-electron interactions in the Hubbard approximation, 436 
where only intra-atomic Coulomb repulsion (U > 0) is considered. Comparison of the Hubbard 437 
model with DFT calculations justifies this approximation23,53. Further, we employ the CAS 438 
approximation, where we consider a subset of many-body states: the occupation of the set of 439 
molecular orbitals that correspond to the 2N hybridized zero-energy states is allowed to vary, 440 
whereas the occupation of orbitals lower or higher in energy is frozen. The Hubbard model is 441 
represented in this restricted space and diagonalized numerically. The CAS approximation for a 442 
single triangulene and an N = 2 TSC predicts S = 1 and S = 0 ground states, respectively31,53. The 443 
CAS approximation allows us to obtain the spin excitation energies as a function of U for oTSCs 444 
with N ≤ 4 (t1 = –2.70 eV, t2 = 0 eV and t3 = –0.35 eV; where t1, t2 and t3 denote the first-, second- 445 
and third-nearest-neighbor hopping parameters, respectively54). By comparing the calculated spin 446 
excitation energies with the corresponding experimental values (Extended Data Fig. 3), we infer U 447 
≅ 2|t1|. 448 

To address oTSCs with N > 4, which are beyond our current computational capabilities 449 
using the CAS approximation, we instead use a simpler tight-binding toy model that captures the 450 
salient features of triangulene, that is (1) C3 symmetry and (2) a sublattice imbalance of two, 451 
resulting in two zero-energy states53. We refer to this model as the four-site model. This model has 452 
two parameters t and t´ that describe intratriangulene and intertriangulene hopping, respectively, 453 
along a TSC (Extended Data Fig. 3). We choose t = –1.11 eV and t´ = –0.20 eV, such that the low-454 
energy single-particle spectra of both the complete and the four-site tight-binding models are the 455 
same for arbitrary chain lengths. Importantly, comparison of the low-energy many-body spectra of 456 
an N = 3 oTSC for both the complete and the four-site Hubbard models, as a function of U, 457 
validates this approach (Extended Data Fig. 3). 458 

We can model oTSCs with N ≤ 6, described with the four-site model, using DMRG as 459 
implemented in the ITensor55 library. For a fixed U = 1.45|t|, DMRG calculations are in 460 
agreement with both the CAS approximation and experiments (Extended Data Fig. 3). Importantly, 461 
for oTSCs with N = 2–6, the DMRG calculations match not only the experimental spin excitation 462 
energies, but also the unit-to-unit modulation of the spin excitation amplitudes (Extended Data Fig. 463 
4). 464 

Given the large ferromagnetic exchange coupling within each triangulene unit, together 465 
with the report of an antiferromagnetic exchange coupling between neighboring triangulene units31 466 
and the expectation of an extremely weak magnetic anisotropy32, it would be natural to expect that 467 
TSCs may be described by the 1D antiferromagnetic S = 1 Heisenberg model. However, despite 468 
capturing the modulation of the spin excitation amplitudes, the Heisenberg model fails to provide a 469 
quantitative agreement of the spin excitation energies with both the experiments and Hubbard 470 
model calculations (Extended Data Fig. 3), which implies that some correction must be lacking. 471 
The inclusion of exchange terms beyond nearest-neighbor exchange was disregarded due to two 472 
reasons. First, in the case of an N = 2 TSC, where such corrections are obviously zero (since an N 473 
= 2 TSC consists of nearest-neighbor triangulene units only), we already find considerable 474 
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disagreement of the Heisenberg model with Hubbard model calculations (Extended Data Fig. 3). 475 
Second, for an N = 3 oTSC, we have verified that adding a second-nearest-neighbor exchange term 476 
does not lead to an overall better agreement (Supplementary Note 2 and Supplementary Fig. 24). 477 
As a consequence, we have considered corrections in the form of a nearest-neighbor biquadratic 478 
exchange term, which is the simplest term compatible with all the previous arguments. The 479 
resulting Hamiltonian is the so-called BLBQ model. 480 

The excitation energies computed with the Hubbard model, both for the four-site and 481 
complete versions, can be compared with those of the BLBQ model to derive the parameters ܬ and 482 ߚ. Specifically, using the four-site Hubbard model results for the N = 2 TSC, we determine 483 18 = ܬ 
meV and 0.09 = ߚ (Extended Data Fig. 3). We then extend the comparison of the four-site 484 
Hubbard and BLBQ models for oTSCs with N = 3–6, while using the aforementioned values of 485 ܬ 
and β. We find that the calculated spin excitation energies exhibit an excellent match, with 486 
differences smaller than 3 meV. Additionally, we obtain the same pattern of spin degeneracies and 487 
identical spin spectral weights (Extended Data Fig. 4) using both models. 488 

Finally, using ED of the BLBQ model, with the help of the QuSpin package56,57, we could 489 
extend our calculations for both oTSCs and cTSCs with N ≤ 16. Comparison with the 490 
experimental data (Figs. 3 and 4) provides the final evidence that the BLBQ model describes the 491 
TSCs. 492 
 493 
Modeling of low-bias experimental dI/dV spectra. The calculated dI/dV spectra in the main 494 
text are obtained using the following expression, which treats coupling to the substrate to the 495 
lowest order58 496 																								 ฬ௡ܸ݀ܫ݀ = ݃଴෍ ெܲெ ෍ ଶ|ۧ′ܯ|(݊)௔ܵ|ܯۦ| ெெᇱ(ܸ݁)ெᇲ,௔ୀ௫,௬,௭߆  (2) 

where ݊ denotes the triangulene unit on which the dI/dV spectrum is recorded, ܯ and ܯ′ denote 497 
the many-body states of triangulene, ݃଴ is a constant prefactor, ெܲ denotes the equilibrium 498 
occupation of ܯ, Θெெᇱ(eV) is a thermally broadened step function centered around eV ± (ܧெᇱ ெᇱܧ ெ) (e is the elementary charge), whereܧ 499− −  ெ is the excitation energy for a transition from 500ܧ
state ܯ to ܯ′, and ܵ௔(݊) are the S = 1 spin operators acting on the ݊th triangulene unit. The 501 
expression for dI/dV contains the spin spectral weight, defined for the state ܯ′ and the ݊th 502 
triangulene unit as 503 				 															࣭ெᇲ(݊) ≡෍ ெܲெ ෍ ଶ௔ୀ௫,௬,௭|ۧ′ܯ|(݊)௔ܵ|ܯۦ|  (3) 

Equation (2) relates the dI/dV spectra to the many-body wave functions and excitation energies. 504 
Specifically, it yields stepwise dI/dV curves, with steps at eV =	±(ܧெᇱ −  ெ) and relative heights 505ܧ
determined by the spin spectral weights. Importantly, for a given pair of states ܯ and ܯ′, the 506 
height of the inelastic step can change for different triangulene units ݊. Thus, the theory predicts 507 
both the energies of the inelastic dI/dV steps and the modulation of their heights across a TSC. 508 

The matrix elements in ࣭ெᇲ(݊) are only non-zero for states ܯ and ܯ′ whose total spin 509 
quantum number S differ by zero or one, reflecting the conservation of the total spin of the system 510 
formed by the tunneling electron and triangulene. In addition, Eq. (2) contains the following sum 511 
rule for spin-1 models: for very large eV, the unit-resolved dI/dV saturates to S(S+1)	× ݃଴ = 2݃଴. 512 
We have verified that by considering transition energies up to 50 meV, we have, for all TSCs 513 
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described by the BLBQ model, more than 92% of the spin spectral weight in each unit, and more 514 
than 96% of the total spin spectral weight (that is, the spin spectral weight summed over all units). 515 

In order to compare the experimental dI/dV spectra, which is in arbitrary units, to the 516 
theoretical predictions given by Eq. (2), we make a fit to set the constant of proportionality ݃଴ (we 517 
also allow for a vertical shift that has no physical relevance). For cTSCs, where all the triangulene 518 
units are equivalent, we average the experimental dI/dV spectra of all the units, and we perform a 519 
single fit. In the case of oTSCs, variations of the heights of the spin excitation steps are expected 520 
across different units21,59, so that we perform one fit for each experimental curve, using the 521 
expression m(n)	× dI/dV(n) + b(n), where m and b are fitting parameters. This fit assumes that the 522 
constant of proportionality may change when the tip is moved laterally to scan across the 523 
nanostructure, which can occur due to surface variations or minor vertical tip deviations. It must be 524 
noted that these fitting parameters do not change the relative height of the steps in dI/dV. Thus, 525 
only the spin spectral weight matrix elements control the relative heights in a given unit. 526 

For the N = 3 oTSC, we have also calculated the dI/dV spectra, including the coupling to 527 
the surface, non-perturbatively for a MOAM formed by the zero-energy states of triangulene. The 528 
dI/dV spectra are calculated as the spectral function of the zero-energy states in the non-crossing 529 
approximation (NCA), which is capable of modeling Kondo resonances. However, the 530 
computational cost of these calculations is too high for N > 3. 531 

The starting point for the MOAM-NCA calculations is the complete Hubbard model, with 532 
twenty-two states per triangulene, for an N = 3 oTSC, taking into account nearest-neighbor and 533 
third-nearest-neighbor hopping (t1 = –2.70 eV, t2 = 0 eV, t3 = –0.35 eV) and U = 1.90|t1|. The 534 
occupation of the carbon sites is controlled by the on-site energy ε. An on-site energy of ε* = –0.47 535 
eV ensures both charge neutrality and particle-hole symmetry. Deviation from the particle-hole 536 
symmetry point is measured by δε = ε − ε*. With t3 = 0, the single-particle spectrum would have six 537 
zero-energy states. t3 partially lifts this degeneracy, leaving two zero-energy states and four low-538 
energy states, all well separated from the other molecular levels. These six single-particle states, 539 
which we label with index k, form the localized states of the MOAM. We assume the single-particle 540 
broadening (hybridization) Γ to the bath to be equal for all local levels and energy independent. In 541 
addition, finite values of δε allow charge fluctuations and lift particle-hole symmetry (Extended 542 
Data Fig. 7). 543 

In order to solve the MOAM, NCA expands the eigenstates of the isolated impurity in the 544 
coupling (Γ) to the bath60. The first step is thus an exact diagonalization of the impurity 545 
Hamiltonian. The eigenstates are simultaneously eigenstates of the total number of electrons Ne 546 
and the total spin. At half-filling (Ne = 6), the ground state is an S = 1 spin triplet, and the first and 547 
second excited states are S = 0 and S = 2, respectively. Coupling to the surface leads to fluctuations 548 
of electrons in the impurity, and thus requires the charged sectors with Ne±1 electrons. The 549 
solution yields the orbital-resolved spectral function Ak(ω) from which the atom-resolved spectral 550 
function Aloc(ω) can be calculated, which is proportional to dI/dV61,62. More details on the 551 
application of the NCA to nanoscale quantum magnets can be found in ref.63 552 
 553 
Synthesis of molecular precursors. The synthesis of molecular precursors 1 and 2, and associated 554 
characterization data, are reported in Supplementary Figs. 25–49. 555 
 556 
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 620 
Extended Data Fig. 1 │ Scanning tunneling spectroscopy measurements of the frontier 621 
bands of triangulene spin chains. a,b, dI/dV spectroscopy on TSCs with cis (a) and trans (b) 622 
intertriangulene bonding configurations (open feedback parameters: V = –1.5 V, I = 250 pA; Vrms 623 
= 16 mV). Acquisition positions are marked with filled circles in c and d. Irrespective of the 624 
bonding configuration, TSCs exhibit an electronic band gap of 1.6 eV. c,d, High-resolution STM 625 
images (top panels), and constant-current dI/dV maps of the valence (middle panels) and 626 
conduction (bottom panels) bands of cis (c) and trans (d) TSCs. Scanning parameters: V = –0.4 V, I 627 
= 250 pA (top and middle panels, c and d) and V = 1.1 V, I = 280 pA (bottom panels, c and d); 628 
Vrms = 30 mV. All measurements were performed with a CO functionalized tip. 629 
 630 
Extended Data Fig. 2 │ Density functional theory calculations on triangulene spin chains. 631 
a,e, DFT band structure and density of states (DOS) plots of TSCs with cis (a) and trans (e) 632 
intertriangulene bonding configurations in their antiferromagnetic ground state. Energies E are 633 
given with respect to the vacuum level. A Gaussian broadening of 100 meV has been applied to the 634 
DOS plots. Note that spin up and spin down bands are energetically degenerate. b,f, 635 
Corresponding band structure plots around the frontier bands. k denotes the reciprocal lattice 636 
vector. The unit cells for the band structure calculations contain four and two triangulene units for 637 
cis and trans TSCs, respectively, with the lattice periodicities a = 30.0 Å (cis TSC) and 17.4 Å (trans 638 
TSC). The dashed lines indicate the middle of the band gap. The calculations reveal nearly 639 
dispersionless frontier bands due to a weak intertriangulene electronic hybridization. In addition, 640 
TSCs exhibit a band gap of 0.68 eV irrespective of the intertriangulene bonding configurations. c,g, 641 
Ground state spin density distributions for cis (c) and trans (g) TSCs. Spin up and spin down 642 
densities are denoted in blue and red, respectively. d,h, Local DOS maps of the valence (VB) and 643 
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conduction (CB) bands of cis (d) and trans (h) TSCs. Spin density distributions and local DOS maps 644 
were calculated at a height of 3 Å above the TSCs. 645 
 646 
Extended Data Fig. 3 │Derivation of the bilinear-biquadratic model. a,b, Schematic energy 647 
level diagram of N = 2 (a) and 3 (b) oTSCs for the Heisenberg, Hubbard and BLBQ models. 648 
Analytical expressions for the spin models are provided in the Supplementary Information 649 
(Supplementary Note 2). The Hubbard model is defined such that each triangulene unit is 650 
represented by a four-site lattice (c) and the many-body energy levels are computed with DMRG, 651 
taking t = –1.11 eV, t´ = –0.20 eV and U = 1.45|t|. The parameters of the BLBQ model (652 18 = ܬ 
meV and 0.09 = ߚ) are obtained by matching its excitation energies to those of the Hubbard model 653 
for the N = 2 TSC. c, Description of the four-site toy model with the intra- and intertriangulene 654 
hopping, t and t´, respectively, indicated. The colored filled circles denote the two sublattices. d,e, 655 
Comparison of the excitation energies for an N = 3 oTSC computed with CAS(6,6) for the 656 
complete Hubbard model with t1 = –2.70 eV, t2 = 0 eV and t3 = –0.35 eV (d), and with DMRG for 657 
the four-site Hubbard model (e), as the atomic Hubbard U is varied. Dashed lines indicate the 658 
experimental spin excitation energies of 14 meV for N = 2 TSC (a) and, 11 and 35 meV for N = 3 659 
oTSC (b, d and e). Note that the Heisenberg model fails to capture both the experimental spin 660 
excitation energies for the N = 3 oTSC (b), and the Hubbard model results for the N = 2 (a) and 661 
N = 3 (b) oTSCs. 662 
 663 
Extended Data Fig. 4 │Experimental and theoretical spectroscopic signatures of spin 664 
excitations in an N = 4 open-ended triangulene spin chain. Comparison between 665 
experimental and theoretical (using the four-site Hubbard and BLBQ models) d2I/dV2 spectra of 666 
an N = 4 oTSC shows a good agreement in both the energies and the modulation of the spin 667 
spectral weight across the different units in the TSC. Numerals along the abscissa denote the unit 668 
number of the TSC. BLBQ model calculations are performed with two different Teff values for the 669 
tunneling quasiparticle, which determine the linewidth of the d2I/dV2 profile. Model parameters are 670 
the same as in Extended Data Fig. 3. 671 
 672 
Extended Data Fig. 5 │ Average magnetization for the first three Sz = +1 states of an N = 673 
16 open-ended triangulene spin chain, obtained with the bilinear-biquadratic model. 674 
Calculations were performed with 18 = ܬ meV and 0.09 = ߚ. Orange filled circles denote the 675 
magnetization profile of the state with the lowest excitation energy E = 0.4 meV, much smaller 676 
than the theoretical Haldane gap (9 meV), and |ܵ, ܵ௭ۧ = |1, +1ۧ. The average magnetization is 677 
clearly the largest at the terminal units, and is strongly depleted at the central units, as expected for 678 
an edge state. Blue and green filled circles denote spin excitations with energies larger than the 679 
theoretical Haldane gap. Blue filled circles correspond to a state with E = 12.1 meV and |ܵ, ܵ௭ۧ =680 |1, +1ۧ, where the magnetization profile forms a nodeless standing wave with maximum average 681 
magnetization at the central units. This can be identified as a spin wave state, except for the minor 682 
upturn at the terminal units. Green filled circles are associated to a state with E = 11.6 meV and 683 |ܵ, ܵ௭ۧ = |2, +1ۧ, where the average magnetization shares similarities with both the edge and 684 
nodeless spin wave states. 685 
 686 
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Extended Data Fig. 6 │ Theoretical and experimental spin excitation spectrum of open-687 
ended and cyclic triangulene spin chains. a, Spin excitation energies calculated by ED of the 688 
BLBQ model (18 = ܬ meV and 0.09 = ߚ) for oTSCs with N = 2–16 (circles) and cTSCs with N = 689 
5, 6, 12, 13, 14, 15 and 16 (crosses) up to 50 meV. Size of the symbols accounts for the spin 690 
spectral weight of the corresponding spin excitation. The lowest energy bulk excitation, as indicated 691 
for the N = 16 cTSC, converges to the Haldane gap (9 meV) with increasing N. b, Experimental 692 
spin excitation energies up to 50 meV for seventeen oTSCs with N between 2 and 20, and eight 693 
cTSCs with N = 5, 6, 12, 13, 14, 15, 16 and 47. The lowest energy bulk excitation, indicated for the 694 
N = 47 cTSC, converges to the Haldane gap (14 meV) with increasing N. Experimentally, starting 695 
from both N = 16 oTSC and cTSC, convergence to the Haldane gap is observed. Note the odd-696 
even effect observed for the lowest energy excitation of cTSCs, seen both in theory and 697 
experiments. 698 
 699 
Extended Data Fig. 7 │ Non-crossing approximation results for the multi-orbital Anderson 700 
model of an N = 3 open-ended triangulene spin chain (t1 = –2.70 eV, t2 = 0 eV, t3 = –0.35 eV 701 
and U = 1.90|t1|) coupled to the surface (Γ/π = 13 meV). a, Total spectral function of 702 
CAS(6,6) at different temperatures T for the case of particle-hole symmetry. b, Orbital-resolved 703 
spectral function of CAS(6,6) for T = 4.64 K and for the particle-hole symmetric case. c, Detuning 704 
from particle-hole symmetry: total spectral function of CAS(6,6) for different values of δε and T = 705 
4.64 K. d, Local spectral functions at T = 4.64 K for carbon sites of one of the outer triangulene 706 
units and the central triangulene unit (δε = 200 meV). The inset shows a sketch of the N = 3 oTSC 707 
with the two carbon sites marked with the corresponding colored filled circles. The spectral 708 
functions in individual panels are offset vertically for visual clarity. 709 
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