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Abstract Intramolecular methyl–methyl coupling on Au (111) is
explored as a new on-surface protocol for edge extension in graphene
nanoribbons (GNRs). Characterized by high-resolution scanning tunnel-
ing microscopy, noncontact atomic force microscopy, and Raman
spectroscopy, the methyl–methyl coupling is proven to indeed proceed
at the armchair edges of the GNRs, forming six-membered rings with
sp3- or sp2-hybridized carbons.

Keywords graphene nanoribbons, surface chemistry, edge extension,
methyl–methyl coupling

Introduction

On-surface synthesis is an emerging approach to fabricate
one-dimensional polymers and two-dimensional graphenic
nanostructureswith atomic precision.1–4With the assistance
of high-resolution surface-sensitive techniques and theoreti-
cal simulations, several classical organic reactions have been
successfully realizedvia on-surface synthesis under ultrahigh

vacuum (UHV) conditions.5–7 Among these are coupling
protocols yielding products similar to Ullmann,8,9 Glaser,10,11

and Sonogashira reactions,12,13 as well as intramolecular
processes likeBergmancyclization.14,15Moreover, on-surface
synthesis enables the construction of molecules that are
challenging or not accessible via conventional solution
chemistry.16–19 Therefore, the exploration of new on-surface
chemistry is highly desirable to complement the limited tool
kits and realize increasingly complex architectures.

Surface-assisted electrocyclic ring closure followedby loss
of hydrogens is the final and critical step to construct fully
conjugated carbon materials, such as nanographenes (NGs)
andgraphenenanoribbons(GNRs).20,21Althoughthecommon
aryl–aryl coupling alone does not allow the formation of
zigzag edges, the simultaneous use of an on-surface methyl–
aryl coupling enabled the formation of a zigzagGNR (6-ZGNR)
in 2016.19 After polymerizing a U-shapedmonomer 1 on a Au
(111) surface, the obtained polymer was further annealed to
352°Cto initiate thedesiredplanarizationprocess.Besides the
cyclodehydrogenation between benzene rings, the methyl
groups were also involved to achieve fully conjugated zigzag
edges (Scheme1A). Thereafter, themethyl–aryl oxidative ring
closure has also been applied to produce an armchair GNR
(7-AGNR) with extended edges (Scheme 1B).22–24 Besides
hexagonal structures, methyl groups could be fused with the
adjacent benzenes to also formfive-25–28 or seven-membered
rings29 through different precursor designs.

On the other hand, methyl–methyl coupling has been
investigated on surfaces and furnished success in the
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intermolecular coupling between alkane chains or preacti-
vated bromomethyl groups.30–32 Recently, intramolecular
methyl–methyl coupling has been achieved to construct
circumcoronene, a hexagonal NG with six zigzag edges.33

However, the intramolecular coupling between two benzyl-
ic methyl groups has never been explored in GNRs, although
it could potentially be developed as a powerful edge
functionalization approach for structure engineering.

Therefore, in this work, we explored the on-surface
methyl–methyl coupling using dimethyl substituted
o-terphenyl 3 as the monomer towards the synthesis of
edge-extended 9-AGNR (9-eGNR) (Scheme 1C). We
expected that this approach would potentially
provide fully conjugated 9-eGNR that is predicted to have
electronic bands of topological origin.22 We found that the
methyl–methyl coupling was indeed achieved along the
ribbon at 350 °C, furnishing the edge structures as
characterized by high-resolution scanning tunnelingmicros-
copy (STM) and noncontact atomic force microscopy (nc-
AFM). However, not all of the ethanediyl bridges (CH2–CH2)
could undergo complete dehydrogenation towards conjugat-
ed alkenes even under further annealing at 440 °C. The loss of
aryl units was also observed, similar to the previously
reported synthesis of pristine 9-AGNRs.34,35 These results
shed light on the scope and limitation of intramolecular
methyl–methyl coupling for future GNR synthesis.

Results and Discussion

The synthesis of the new monomer 3 was carried out as
displayed in Scheme 2, adopting the procedure in previous
reports.36,37 Starting from commercially available 1,2-dibro-
mobenzene (4), lithiation/silylation gave 1,4-disilyl interme-
diate 5 (Scheme 2). Subsequent Suzuki–Miyaura coupling of5
with p-tolylboronic acid followed by brominationwith Br2 at
roomtemperature (RT)affordedmonomer3. Toguarantee the
high purity required by the on-surface polymerization,

Scheme 1 Synthetic routes to (A) 6-ZGNR and (B) edge-extended 7-AGNR via on-surface methyl–aryl couplings. (C) The on-surface synthesis involving
methyl–methyl coupling in this work toward edge-extended 9-AGNR (9-eGNR) with both sp3- and sp2-hybridized carbons on the edge. The methyl
groups and the bonds formed through oxidative ring closure of methyl groups are highlighted in red.

Scheme 2 Synthetic route to monomer 3. LDA ¼ lithium diisopropy-
lamide. TMSCl ¼ trimethylsilyl chloride. dppf ¼ 1,1’-bis(diphenyl-
phosphino)ferrocene.
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monomer3wasrecrystallizedseveral times frommethanol to
completely remove the mono-brominated side-product,
which could terminate the on-surface polymerization and
limit the lengths of obtained GNRs. The contents of C and H
atoms in elementary analysis weremeasured to be 57.8% and
3.8%, respectively, which well matched with the calculated
values for C20H16Br2 (C: 57.72%, H: 3.88%). Matrix-assisted
laser desorption/ionization-time of flight (MALDI-TOF) mass
spectrometry (MS)analysisof3wasdoneusing trans-2-[3-(4-
tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile
as thematrix andsilver trifluoroacetate as thecationizing salt,
thus leading to pseudomolecular ionswhere one silver cation
was noncovalently attached to eachmolecule of 3. An intense
signal at m/z ¼ 520.8669 was observed with isotopic distri-
bution patterns well-matched by the calculated spectrum
(Figure S5, calculated value for C20H16Br2Agþ: 520.8664).

For investigating the on-surface synthesis, monomer 3
was first sublimed onto the Au (111) surface at RT under
UHVconditions. Densely packedmolecular islands of 3were
imaged by STM as displayed in Figure 1A. Due to the

nonplanar geometry of 3, it is nontrivial to identify the
individual molecules even from the high-resolution STM
images. By gradually increasing the temperature to 200 °C,
as proposed in our earlier work,1 thermally activated
debromination furnished biradical intermediates, which
further polymerized to yield linear polyphenylene chains.
At this stage, a different phase of the sample could be clearly
observed in the STM image (Figure 1B). Because of the
significant steric hindrance within the polymer, the central
polyphenylenebackbone tends to beflat and lie closer to the
substrate than the branched methyl–phenyl groups. The
brighter spotswith the apparent height of�5 Å occasionally
appearing in the STM image can be assigned to the tilting of
some methyl groups out of plane, or the bromine atoms
adsorbing on top of the molecule.

By further increasing the temperature to 350 °C, the
cyclodehydrogenation was triggered, fusing the benzene
rings as well as inducing the coupling between the
peripheral methyl groups (Figure 1C). A closer investigation
using the bond-resolved nc-AFM imaging technique with a
CO-functionalized tip38 was performed to reveal the fine
structures at the atomic level. As clearly resolved
in Figure 2C, three distinguishable edge structures, indicat-
ed by the coloured arrows, were formed after the reaction.
The edge structures with bright features in the nc-AFM

image marked by the red arrows are attributed to the
ethanediyl bridges with doubly hydrogenated sp3-hybrid-
ized carbons (–CH2–CH2–).

39 On the other hand, the
formation of conjugated six-membered rings was also
observed, leading to the π-extension of the armchair
edge, as highlighted by the blue arrows. This result indicates

Figure 1 Large-scale (left) and zoom-in (right) STM images, as well as
chemical structures of (A)monomer 3 sublimed on the Au (111) surface
at RT, (B) the polyphenylene chain after annealing at 200 °C, and (C) the
fully cyclodehydrogenated GNR after annealing at 350 °C. Scanning
parameters: (A) left: Vs ¼ �1 V, It ¼ 100 pA; right: Vs ¼ �1 V, It ¼ 100
pA; (B) left: Vs ¼ �1 V, It ¼ 10 pA; right: Vs ¼ �1 V, It ¼ 10 pA; (C) left:
Vs ¼ �0.5 V, It ¼ 30 pA; right: Vs ¼ �0.5 V, It ¼ 30 pA.

Figure 2 (A) High-resolution STM (Vs ¼ 0.01 V, It ¼ 10 pA) and (B)
constant-height STM current image and the simultaneously acquired
(C) nc-AFM image of the formed GNR (Vs ¼ 10 mV). (D) Proposed
chemical structure of the defective 9-eGNR. Blue arrows: sp2 hybridized
carbon; red arrows: sp3 hybridized carbon; gray arrows: defects caused
by the loss of aryl units.
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that the methyl–methyl coupling can indeed be achieved on
Au(111) surfaces under UHV conditions to afford the
ethanediyl bridges, but the further dehydrogenation to-
wards the fully conjugated structure is not efficient enough
for the clean conversion. An approximate statistical analysis
of the occurrence of the –CH ¼ CH– and –CH2–CH2–motifs
yields a ratio of 1:4 (another example of a typical 9-eGNR
formed in our experiments is shown in Figure S6). Further
annealing at 440 °C did not lead to the dehydrogenation of
the ethanediyl bridges, suggesting a higher kinetic energy
barrier and that different reaction mechanisms could be
involved in the simultaneous formation of saturated and
unsaturated C2 units.

Besides the coupling of methyl groups, the loss of aryl
units was also observed during the cyclodehydrogenation
process, which appeared as the “bite defects” (marked with
gray arrows in Figure 2C). We note that these defects are not
due to possible impurities in the precursor compound, but
occur intrinsically during the on-surface cyclodehydration
of polyphenylene. Similar defects were also observed during
the previous synthesis of pristine 9-AGNRs using methyl-
free o-terphenyl-based monomers.34,35

Raman spectroscopy was applied for further characteri-
zation of the obtained 9-eGNR on Au(111). The radial-
breathing-like mode (RBLM, �300 cm�1) displays very low
intensity embedded in the background noise (Figure 3,
marked by a dashed line),34 indicating that the width of the
ribbons is not uniform. The CH/D region of the Raman
spectrum is a signature of the GNR’s edge structure. The
Raman spectrum of pristine 9-AGNRs exhibits two distinct
narrow peaks at 1232 cm�1 (C–H bending mode) and
1332 cm�1 (D mode, peak width �15 cm�1), as displayed
in Figure 3.40 However, a single broad peak at 1327 cm�1

was observed in the current 9-eGNR (peak width

�100 cm�1), which is a clear indication of structural
diversity. In addition, the appearance of a small peak
around 1657 cm�1 (marked with *) seems similar to the D’
mode associated with defects on GNR edges made by top-
down approaches, as well as on graphenes and carbon
nanotubes.41–43 More detailed investigations, for example
by using tip-enhanced Raman spectroscopymethods,44may
thus provide further insights into the detailed chemical
structures in the defective graphene materials.

Conclusions

In summary, methyl–methyl coupling was explored on a
Au(111) surface under UHV conditions as a new synthetic
approach for edge extension of AGNRs. As visualized by STM
and nc-AFM, the coupling ofmethyl groups proceededwhen
heated to 350 °C, mainly forming the ethanediyl bridges
alongside fully conjugated six-membered rings. Considering
the success of intramolecular methyl–methyl coupling in
circumcoronene synthesis from dodecamethyl hexa-peri-
hexabenzocoronene,33 we envision that the preplanariza-
tion might allow more efficient aromatization. Besides, a
more reactive surface like Cu(111) is expected to achieve
more sp2-hybridized carbons from the intramolecular
methyl–methyl coupling. New monomer designs and
further optimizations of dehydrogenation conditions will
be conducted in the future to employ the methyl–methyl
coupling for GNRs with complex architectures.
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