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A B S T R A C T

Space surveillance by radar is especially used for the low Earth orbit to maintain a database, also called
catalogue, of objects on orbit. Among others, surveillance radars which are constantly scanning a region of
interest in the sky are used for this purpose. The detections from such a radar which cannot be assigned to
an already known catalogue object might not contain enough information to obtain a reliable initial orbit
for a new catalogue entry from a single measured pass, also called tracklet. Instead, two tracklets can be
combined to improve the quality of the initial orbit which leads to the correlation problem. This means that
it has to be tested whether two tracklets belong to the same object and an initial orbit has to be derived
by combining the tracklets. A common approach to condense the information in the tracklet is fitting them
with so-called attributables. Because radar observations include different types of observables, the fitting of
these attributables has to be considered as an important part of the entire correlation process. This paper
analyses the effect of the attributable fitting considering the achieved accuracy and influence on the tracklet
correlation. A new singularity-free coordinate system is introduced, which improves the results of the fitting
and correlation. Finally, a test on a simulated survey scenario introduces two additional filters to remove false
positive correlations. It is shown that the attributable-based approach can be applied successfully to tracklets
of up to three minutes length with different detection frequencies.
1. Introduction

The ongoing growth of the space debris population is an increasing
risk for operational satellites and the long-term sustainability of the
near-Earth environment [1]. Thus, the importance of space surveillance
is growing as it becomes necessary to maintain the orbits of space
objects in a database, commonly referred to as catalogue. For the
processing of observations, this creates two different tasks. The first one
is the association of a sequence of measurements from a single pass,
called a tracklet, with an object in the catalogue and its routine orbit
improvement which is not considered here. The second association
problem concerns the processing of the measurements which could not
be associated with the catalogue, sometimes called uncorrelated tracks
(UCT) [2]. In these cases, an initial orbit determination from a single
tracklet may not be sufficient to create a new catalogue object with a
reliable orbit which leads to the topic of this work: the association of
two tracklets in measurement space, called correlation in the following.
Correlation methods using an orbit determination with a single tracklet
can be found in e.g. [2,3], whereas the focus of the present work is
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the correlation based on an orbit determination using both tracklets
combined as attributables.

Attributables [4], which are obtained by fitting a function over time
to the raw measurements, have been introduced for optical observa-
tions and have been used successfully with different methods, e.g. [5,6].
Also in case of radar measurements, attributables have already been
used for initial orbit determination and correlation, e.g. [7–9]. The
authors of this paper also proposed a method based on the Lambert
problem with a solution in the orbit space [10]. This method is used
throughout the paper to derive the initial orbit and to perform the
correlation. It uses two inertial positions which are derived from the
radar measurements. From these two positions an initial orbit is de-
rived under consideration of the secular J2-perturbation. Depending on
the time between the two positions, there might be several possible
solutions with different numbers of revolutions between them. For each
solution, the Mahalanobis distance 𝑀d [11] is calculated from the
difference between the measured range-rates in the attributable and
the calculated range-rate from the computed orbit which is scaled by
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the total uncertainty of the range-rates. This uncertainty is the sum
of the measurement uncertainty and orbit uncertainty, obtained by
a linear mapping of the observables which were used for the orbit
determination onto the range-rate. The solution with the smallest 𝑀d
is chosen as the most probable result and if it is smaller than a
given threshold value 𝑀d, thresh the correlation is accepted. The value
𝑀d, thresh can be used for statistical gating, because it is 𝜒-distributed
under the assumption of normally distributed errors.

Concerning the fitting of the attributables, [12] described the least
squares fitting of second order polynomials and their uncertainties for
optical measurements, but so far there is no analysis on the realism of
these fitted attributables, which is a prerequisite if they are used as an
input for further processing, e.g. the described method. Thus this paper
explores the accuracy of attributables for radar tracklets with regard
to the estimated measurement value and its estimated uncertainty.
Especially for the radar case there are up to four observables with
three different physical interpretations, namely distance, velocity and
direction angles.

Radars are predominantly used for space surveillance of the Low
Earth Orbit (LEO). A surveillance radar uses the approach of regularly
scanning a region of interest, called Field of Regard (FoR), using
electric beamforming by phased-array radars [13–15]. Another possible
operation mode is the creation of an additional beam to track a newly
detected object [16,17], often referred to as stare-and-chase. Concern-
ing surveillance radars, the size of the FoR and the time between two
measurements of the same object during a pass can vary and thus also
the input to the attributable fitting is not homogeneous. Previous work
by [18] also showed that surveillance radars are mainly useful for the
regular observation of the space object population, whereas tracking
radars are necessary to achieve high-fidelity orbits. The surveillance
radars considered in this work are thus mainly aimed at providing
regular observations.

In the following, the fitting of attributables is shortly reviewed
in Section 2 considering radar observables, and different coordinate
systems are discussed in Section 3. In Section 4 the observation model
for the simulations is introduced. This is used in Sections 5 and 6 to
analyse the fitting of the attributables under various conditions and its
effect on the correlation performance, before a complete processing of
a simulated surveillance campaign is performed in Section 7.

2. Fitting process

The measurements are processed to form attributables at a reference
epoch 𝑡 [4]. The idea of the attributable is to average out noise and
obtain a single, virtual measurement, which contains the condensed
information of the entire tracklet. The attributable is obtained by
fitting the raw measurements of each observable independently with
a function over time and by picking the function values at a common
epoch as the virtual measurements.

For this work, it is assumed that the radar provides four observables,
namely the range 𝜌, the range-rate �̇�, the azimuth 𝑎𝑧 and the elevation
𝑒𝑙. Together with the reference epoch 𝑡 the attributable in this work is
defined as:

𝒜AE = {𝑡, 𝜌, �̇�, 𝑎𝑧, 𝑒𝑙} , (1)

which practically could also be extended to include additional informa-
tion, e.g. the location of the observing station, but this is left out here
for simplicity.

The fit to a specific observable’s measurement vector �⃗� containing
successive detections is calculated with an unweighted linear least

quares approach for a polynomial of degree 𝑛 based on a Taylor series:

(𝑡) = 𝑝0 + 𝑝1 ⋅ 𝛥𝑡 +⋯ +
𝑝𝑛
𝑛!

⋅ 𝛥𝑡𝑛 , (2)

ith the parameter vector 𝑝 =
[

𝑝0, 𝑝1,… , 𝑝𝑛
]

. For the fitting process, all
easurement epochs are used as the relative offset from the reference
400
poch which is set, for convenience, at the centre of the measurement
nterval with 𝛥𝑡 = 0 s. The virtual measurements for the attributable are
lso set at the reference epoch, which has the advantage that the fitted
arameter vector is equivalent to the values in the attributable vector
ithout further processing, including the uncertainties and derivatives
ith the 𝑛th derivative at 𝛥𝑡 = 0 being equal to 𝑝𝑛. For example, if

he radar does not provide the range-rate as a separate measurement,
t can be obtained from the first derivative of the range fit. This would
lso lead to a correlation of the estimated values and uncertainties for
he range and range-rate, which may affect the tracklet correlation as
ell. The behaviour in such a case of correlated errors is analysed in
ection 6.5.

The solution of the fit is obtained by the classical least squares
lgorithm:

𝑝 =
(

𝐴𝑇 ⋅ 𝐴
)−1

⋅
(

𝐴𝑇 ⋅ �⃗�
)

, (3)

=

⎡

⎢

⎢

⎢

⎢

⎣

1 𝛥𝑡1 ⋯
𝛥𝑡𝑛1
𝑛!

⋮ ⋮ ⋱ ⋮

1 𝛥𝑡𝑀 ⋯
𝛥𝑡𝑛𝑀
𝑛!

⎤

⎥

⎥

⎥

⎥

⎦

. (4)

The uncertainty 𝜎𝑝𝑠 of the desired parameter 𝑝𝑠, 𝑠 ∈ [0, 𝑛] is derived
rom the covariance matrix 𝐶 =

(

𝐴𝑇 ⋅ 𝐴
)−1 [19]:

2
𝑝𝑠

= 𝜎2𝑚 ⋅ 𝐶𝑠,𝑠 , (5)

with 𝜎𝑚 as the standard deviation of the measurements and 𝐶𝑠,𝑠 the sth
value on the main diagonal of the covariance matrix. If 𝜎𝑚 is unknown
or shall be taken from the fit, which will be done throughout this paper,
the residuals 𝑟 of the fit can be used to obtain an unbiased estimate of
the measurement noise with [19]:

𝜎2𝑚 = 𝑟 ⋅ 𝑟
(𝑀 − 𝑘)

, (6)

where 𝑘 = 𝑛 + 1 is the number of fitted parameters in the polynomial
of degree 𝑛.

An extended fitting approach can be applied if the uncertainties of
the observables are given by the sensor and they might even be corre-
lated due to the measurement technique, making the use of Eq. (6) un-
necessary. In this case, the error covariance matrix of the measurements
𝛴𝑀 can be used for the generalised least squares:

𝑝 =
(

𝐴𝑇 ⋅ 𝛴−1
𝑀 ⋅ 𝐴

)−1
⋅
(

𝐴𝑇 ⋅ 𝛴−1
𝑀 ⋅ �⃗�

)

. (7)

If the measurement errors are uncorrelated, i.e. 𝛴𝑀 has only elements
n the main diagonal, this expression is equivalent to the weighted least
quares. The covariance of the parameters is taken directly from the
ovariance matrix

(

𝐴𝑇 ⋅ 𝛴−1
𝑀 ⋅ 𝐴

)−1 without further scaling using the
residuals. This approach has two main possible sources of error. The
first is that it requires a realistic input uncertainty of the measurements,
otherwise the fit and the parameters’ covariance will not be realistic.
Additionally if different observables with correlated errors are fitted
together, the correlations between the errors can become overly dom-
inant and lead to unreasonable results especially for tracklets with a
small number of data points. Throughout this paper, it is assumed that
the measurement errors are unknown and thus Eq. (3) is used.

3. Applied coordinate systems

When attempting to fit a function to the measurements, the typical
graph of the observables’ function over the duration of a single pass has
to be considered. Firstly, the four directly measurable radar observables
as presented in the previous section are considered. Fig. 1 depicts an
example of the observables’ development for a LEO object (semi-major
axis 𝑎 ≈ 7163 km, eccentricity 𝑒 ≈ 0.008, inclination 𝑖 ≈ 99◦) over a
nearly 10 min long radar pass. These graphs result from the orbital
motion being projected into the observer’s topocentric coordinate sys-

tem. Although the specific numbers of the maximum and minimum
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Fig. 1. Example graphs of radar observables over a full pass of an object in LEO. The vertical line indicates the time of closest approach.
Fig. 2. Example graphs of geocentric inertial positions X, Y, Z over a full pass of an object in LEO. The vertical line indicates the time of closest approach.
values are depending on the geometry of each track, the general shape
is similar for all passes. The vertical line in the plots marks the time of
closest approach (TCA).

The graph of the range has a parabola-like minimum at TCA, which
is encompassed by two monotonic arcs towards larger values. Range-
rate and azimuth are both close to the shape of the inverse tangent.
For the range-rate the absolute values for minimum and maximum are
nearly the same and it always switches from negative (approaching)
to positive (departing). The extreme values of the azimuth are up to
180◦ apart depending on the maximum elevation of the pass, which
also influences the slope at TCA. The higher this elevation, the more
pronounced is the slope. For example if the object passes right above
the observer, the azimuth would jump instantaneously by 180◦. The
shape of the elevation is comparable to two exponential branches
connected by a small parabola. From these plots, it can be concluded
that it is presumably very difficult to fit even a higher order polynomial
401
over longer time spans. Especially close to TCA, fitting the attributables
may become problematic.

To overcome this issue, three options for deriving new observables
from the given range-azimuth-elevation are introduced in the following
with the goal to increase the robustness of the fitting process. All
examples in the following show the same pass as in Fig. 1 with the
same measurement noise as specified in Table 1. The range-rate cannot
be transformed from the topocentric coordinate system, because this
would require further information which is not available at the time
of measurement. Thus, it is used without changes in combination with
all of the following systems. For all of the following experiments, the
range-rate is assumed to be a separate and independent measurement
except where it is explicitly stated that it is derived from the series of
range values.

The first option is to transform each individual measurement to a
position in a geocentric, inertial frame. This is possible by combining
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Fig. 3. Example graphs of topocentric AOS angles over a full pass of an object in LEO. The vertical line indicates the time of closest approach.
Fig. 4. Example graphs of geocentric AOS observables over a full pass of an object in LEO. The vertical line indicates the time of closest approach.
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able 1
adar sensor characteristics: field of regard and noise.
Radar, Latitude/Longitude 25◦N/10◦E

FoR, Azimuth 150◦ – 210◦

FoR, Elevation 50◦ – 70◦

Interval between detections 1 s, 3 s, 5 s
Duration 24 h
Reference range for noise, 𝜌ref 750 km
Angles, 𝜎 0.17◦

Range, 𝜎 20 m
Rate, 𝜎 20 m

s

the ranges and angles of the radar measurement with the known
location of the measurement station. The fit is then performed using
the geocentric inertial positions, which can also be used as a direct
input into the correlation method. This leads to the definition of an
alternative attributable:

𝒜XYZ = {𝑡, �̇�, 𝑋, 𝑌 ,𝑍} . (8)

he two versions of the attributable are equivalent and can be inter-
hanged by an appropriate non-linear transformation, but performing
he fit might be easier in one of the systems especially with regard
o the uncertainties. The example plot using the geocentric inertial
ositions is shown in Fig. 2. In general, it can be seen that the three
oordinates have a slightly curved but simple shape. The disadvantage
f this system is that the behaviour of the individual components is
402

w

eavily correlated with the orbit of the observed object and the location
t which it is observed on the orbit. For example, observing a mid-
nclination object at its most northern or southern point would lead
o a parabola-like shape of the Z-coordinate, whereas the Z-coordinate
ould be a nearly straight line for a polar orbit. This reduces the

onsistency of observables over a population of many different objects.
he uncertainties for each coordinate can be directly extracted from
he fit neglecting the correlation of the errors after the transformation
o the inertial coordinate system which will be discussed further at the
nd of this section.

The second alternative coordinate system is referred to in the fol-
owing as topocentric Attributable Optimised Coordinate System (AOS).
his system uses the same topocentric origin at the observer location
nd thus also the same range measurement as before. The only change
s the definition of the angular observables. The new coordinate system
s defined with the motivation to reduce the dependency of the angles
n the pass geometry. It is defined by a reference plane which is
erived from the two line-of-sight vectors from the observer to the
bject at the first detection of the pass and the last detection of the
ass. The origin of this topocentric system is at the observer’s location
nd thus unchanged over time. The influence of the motion of the
bserver’s location on the observables is thus neglected. The angular
osition of each detection can thus be expressed as the in-plane angle
1, which gives the direction angle from the station to the object
ithin the reference plane comparable to the azimuth, and the off-
lane angle 𝜃2, which gives the elevation over the reference plane, also
ith the station as the reference. The direction 𝜃 = 0◦ can be defined
1
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arbitrarily within the plane, but here it is chosen to be consistent with
the inertial direction of the vernal equinox projected onto the plane.
The behaviour of these two angles can be seen in Fig. 3 and they have
a far lower variability among different passes compared to azimuth-
elevation. These coordinates also do not have the singularity at 𝑒𝑙 = 90◦.

he main influence is the length of the pass. For a short pass, the off-
lane angle would be close to zero all the time and only long passes
s in the example shown here lead to a distinct peak. To increase
he comparability with the original topocentric frame and to use the
easurements as an input for the correlation, the fitted AOS angles

re transformed back to azimuth-elevation. The uncertainties which are
stimated from the AOS fits have to be transformed as well and it has
o be considered that this leads to a correlation of azimuth-elevation
ncertainties which requires the use of a 2 × 2 covariance matrix with
on-zero off-diagonal elements. The resulting attributable is the same
s 𝒜AE. It should be noted that this coordinate system could also be
sed for optical observations by using unit vectors, because the ranges
o not affect the definition of the plane.

The last alternative is the geocentric AOS. The angles are the same
s explained previously, but the observer’s location is replaced as a
eference point by the geocentric coordinate origin in the Earth centre.
his shall reduce the variation in the off-plane angle further, which
an be seen in Fig. 4. The newly defined plane is very close to the
rbital plane. Thus the in-plane motion is approximately linear for
early-circular LEO orbits and the off-plane angle should remain close
o zero. In the example, due to the larger noise at larger ranges and the
efinition of the AOS plane at the edges of the tracklet, the off-plane
ngle 𝜃2 is tilted against the expected 0◦-line, but with a clear linear
rend which would be equivalent to the orbital plane. Additionally, the
opocentric range is replaced by the geocentric range for consistency
nd to facilitate the transformation into an inertial position, which is
sed as an input to the correlation routine. Again, this transformation
eads to a statistical correlation of the errors in the inertial positions
equiring a 3 × 3 covariance matrix in XYZ. The resulting attributable
s the same as 𝒜XYZ. This geocentric AOS cannot be used with optical
easurements because it requires the topocentric range information for

he conversion to geocentric angles and range.
As mentioned in Section 2 all observables are fitted independently

f each other because the amount of data is usually not sufficient for a
ully correlated fit as presented in Eq. (7) and it is assumed that no
nitial information on the measurement accuracy is provided, which
ould be necessary for the error transformation into the new system.
his refers to both versions of the AOS and the inertial system, where
he errors of the transformed observables would be coupled due to
he transformation from the azimuth-elevation system. The following
esults show that this approximation is sufficiently good for the purpose
f correlation.

Finally, it should be remarked that if the errors in azimuth-elevation
ere very large (several degrees), the transformation to a geocentric

ystem would lead to a breakdown of the errors’ normal distribu-
ion due the curvature in the topocentric spherical coordinate system.
owever, it can be assumed that a radar sensor’s angular uncertainty,

.e. the measurement errors in the next section, is small enough that
his effect is not present.

. Simulation scenarios

In order to make a realistic analysis of the fitting process, the lengths
f the tracklets generated by a surveillance radar have to be estimated.
or this, radar observations of the objects in the LEO population (𝑎 <
400 km, 𝑒 < 0.1, more than 10 000 objects in total), taken from Space-
rack [20], have been simulated with a surveillance radar scanning an
rea of 60◦ × 20◦, see Table 1. The TLE are used to get a representative
ample of space object orbits, while the actual propagation is performed
sing numerical propagation with [21]. The dynamics are modelled
ith a 16 × 16 geopotential model, atmospheric drag (DTM2000
403
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Fig. 5. Dwell times in the field of regard for the simulated observation campaign.

atmosphere, cannonball model), solar radiation pressure and lunisolar
perturbations. The location of the radar is chosen at a low latitude
to increase the coverage of orbital inclinations without simulating a
specific real station, but this mainly influences the coverage of the ob-
served satellites and should be of minor importance for the attributable
fitting. The noise values given in the table increase with an increasing
range due to the decrease of the signal-to-noise ratio SNR [22]. The
range dependent SNR in dB can be simplified as 𝑆𝑁𝑅(𝜌) = 𝑆𝑁𝑅0−40 ⋅
log10

(

𝜌
𝜌ref

)

due to the 𝜌4-dependency in the radar equation. The new
noise values are then calculated as 𝜎(𝜌) = 𝜎ref ⋅

𝐶𝑛
√

𝑆𝑁𝑅(𝜌)
. The constants

𝑆𝑁𝑅0 and 𝐶𝑛 can be chosen to tune the behaviour of the noise. In this
aper, the constants are selected such that the noise values increase by
0% at a range of 2000 km. For all ranges smaller than the reference
ange at 750 km, the noise values stay constant at the ones given in the
able.

Additionally, the simulations can have three different intervals be-
ween the detections within a tracklet, denoted by 1f, 3f and 5f in
he following corresponding to 1 s, 3 s, and 5 s between detections
espectively. This is mostly dependent on the size of the FoR and the
canning strategy. A smaller FoR could be sampled at a higher rate but
ould produce shorter tracklets. This is a radar design trade-off.

The distribution of the overall dwell times in the FoR, and thus the
ffective tracklet lengths 𝑡𝑇 , are shown in Fig. 5. It can be seen that
he distribution peaks at approx. 50 s which is due to objects in sun-
ynchronous polar orbits (𝑎 ≈ 7200 km) crossing the FoR in meridional
irection. Another smaller peak occurs at approx. 100 s which is caused
y objects in higher LEO regions (𝑎 ≈ 7800 km). Depending on the
ocation of the station, it may happen for a south-oriented FoR that
n object with an inclination slightly smaller than the station’s latitude
asses exactly along the east–west direction through the FoR which can
ead to a tracklet of several minutes. The following experiments will
onsider tracklet lengths up to three minutes (180 s) to cover at least
part of these outliers.

. Results: Attributables

.1. Evaluation method

In the following, the evaluation process for the attributable fitting
s explained. In this work we use only simulated radar measurements
n order to have a reliable and precise ground truth for the observables.
his is necessary to compare the fitting results and derive the statistical
roperties as described in the following.

Different experiments concerning the fitting of the attributables are
overed in this paper. For these tests, a subpopulation of the previously
ntroduced LEO population is used consisting of 1500 objects. As the
ocation of the FoR is not important for the following tests, the re-
trictions on the visibility considering the FoR are reduced to 𝑒𝑙 > 5◦

nd 𝜌 < 2500 km to maximise the number of obtained tracklets which

sually results in 5000–6000 tracklets per experiment. For this analysis,
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Fig. 7. Range-rate errors for different tracklet lengths using 3f-data.
Fig. 8. Topocentric range errors for different tracklet lengths using 3f-data.
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he concept of absolute and relative errors is introduced regarding the
bservables. The absolute error 𝛥𝐴𝑥 of observable 𝑥 is derived by taking
he difference between the value obtained via the attributable fitting
nd the true, noiseless value of the observable at the same epoch. It
s important that the mean of the absolute error 𝜇𝐴,𝑥 over the entire
opulation is close to zero, otherwise the estimation of the parameter
s biased. If the absolute error is related to the estimated uncertainty 𝜎𝑥,
he relative error for a single value is calculated as 𝛥𝑅𝑥 = 𝛥𝐴𝑥

𝜎𝑥
which

transforms the error to the z-scale, a normalised Gaussian distribution
with the idealised properties of the mean 𝜇 = 0 and the standard
deviation 𝜎 = 1, to make the different individual errors comparable.
Actually, the resulting distribution would be a Student’s t-distribution,
but for a sufficient number of data points, this distribution converges to
a standard normal distribution which will be assumed for all following
experiments. Thus the overall standard deviation 𝜎𝑅 of the relative
error over the entire population of attributables should be close to one
to confirm a realistic estimation of the error. This value is calculated
in two steps. After getting the initial standard deviation 𝜎𝑅,0, all values
with 𝛥𝑅𝑥 > 3⋅𝜎𝑅,0 are removed to avoid a biased statistic due to extreme
outliers and the final result 𝜎𝑅 is obtained from the new data set. The
same approach is also applied to the absolute errors. The absolute and
relative errors of a population are shown in Fig. 6 with the azimuth
404
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angle as an example. The plots in the following sections will condense
this information to an errorbar showing 𝜇±𝜎 for both the absolute and
relative error.

For the two AOS, it has been mentioned in Section 3 that the errors
between the observables are correlated in the attributable after the
transformation back to azimuth-elevation or inertial coordinates, re-
spectively. To check whether these correlations are also well-captured,
the squared Mahalanobis distance between the fitted attributable and
the noiseless reference measurement is calculated [11]:

𝑀2
𝑑 = ⃗𝑑𝑀

𝑇
⋅ 𝐶−1

meas ⋅ ⃗𝑑𝑀 , (9)

here ⃗𝑑𝑀 is the vector containing the differences between the fitted
alue and the ground truth. 𝐶meas is the estimated covariance matrix.
heoretically 𝑀2

𝑑 should be distributed according to a 𝜒2
𝜈 -distribution

ith 𝜈 degrees of freedom. This distribution has a mean of 𝜇 = 𝜈 and
variance of 𝜎2 = 2𝜈 [23], which can be checked against the values

rom the fitted population. For the cases here, the transformation from
opocentric AOS to azimuth-elevation leads to a 2 × 2 covariance matrix
or the angles and thus 𝜈 = 2 and from geocentric AOS to inertial
osition gives 𝜈 = 3. The other fits are independent and thus not
hecked together with the correlated errors.
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Fig. 9. Azimuth errors for different tracklet lengths using 1f-data.
Fig. 10. Elevation errors for different tracklet lengths using 5f-data.
Fig. 11. Position errors (X) for different tracklet lengths using 1f-data.
5.2. Length of tracklet

The first experiment is performed to analyse the influence of the
tracklet length on the accuracy of the fitting process for the observables.
This has been performed with all introduced measurement frequencies
but it was found that, although it causes slight differences, this does not
change the overall trend of the accuracies and thus only one selected
frequency value per observable is shown as an example. The following
plots compare different polynomials, up to the fourth order. Higher
orders will be investigated in Section 5.3.

5.2.1. Topocentric range and range-rate
The range-rate has to be fitted for all coordinate systems and is used

for the correlation decision [10]. An example of the fit results for the
first four orders is shown in Fig. 7. It can be seen that the point at
which the quadratic fit becomes better than the linear one considering
the absolute error is at approx. 30 s and after approx. 130 s the fourth
order fit becomes the best. Also for the relative errors, the given orders
of the polynomial are close to one within their respective intervals,
405

which indicates a well-approximated uncertainty.
Fig. 8 depicts the errors of the topocentric range, which is required
for the two topocentric coordinate systems. Even for relatively short
tracklets, the linear fit introduces a negative bias due to the curvature
of the range measurements and is not even in the plotted range any
longer. Independent from the measurement frequency, this bias reaches
approximately −1 km at 30 s and grows exponentially to −10 km at
100 s. Thus only the quadratic fit is a reasonable choice for the range
attributable from the beginning, but its absolute error is growing for
tracklets longer than 60 s. Afterwards a fourth order fit is the better
choice, which has increased errors from approx. 140 s onwards. The
relative error for the quadratic fit is close to one for lengths smaller
than 40 s. The fourth order fit shows some inconsistencies regarding the
relative error, but it is a much better approximation than the quadratic
one after approx. 50 s.

5.2.2. Azimuth-elevation
The result of the azimuth fitting is shown in Fig. 9. At approximately

25 s, the absolute error of the quadratic fit becomes lower than the
linear one’s which increases rapidly after this time. Regarding the
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Fig. 12. Position errors (Y) for different tracklet lengths using 1f-data.
Fig. 13. Position errors (Z) for different tracklet lengths using 1f-data.
Fig. 14. Azimuth errors (derived from topocentric AOS) for different tracklet lengths using 3f-data.
relative error, both fits are comparable until the same 25 s mark
and afterwards the linear fit has larger deviations than one which
implies an underestimation of the uncertainty in the fitting process. The
quadratic fit shows a good representation of the error up to approx. 80
s. Afterwards the fourth order fit has the smaller absolute error and the
better error distribution.

Concerning the elevation, shown in Fig. 10, the linear fit has the
lowest and nearly constant absolute error for short tracklets. The
quadratic fit reaches the level of the linear fit at approx. 40 s and
afterwards maintains its accuracy whereas the linear one’s is degrading
rapidly. The relative error is reasonable for both fits up to approx. 40
s and thereafter only the quadratic fit maintains a consistent relative
error. The fourth order fit becomes better for tracklets longer than
approx. 120 s.

5.2.3. Geocentric inertial positions
For the three geocentric inertial coordinate axes, the results are

given in Figs. 11–13. The X- and Y- coordinates are similar to each
other and have a low error for the linear fit in the beginning, which
406
increases with time after approx. 50 s. From there on the quadratic fit
has the lowest error. Concerning the relative error, the one of the linear
fit is increasing after 30 s while the quadratic one remains close to one
within the checked range.

For the Z-position, the linear fit is also acceptable for short tracklets
but it starts to build up a bias for longer tracklets. The linear fit
cannot model the slight curvature of the coordinate over time, which
leads to a consistent positive error in the Z-component due to the
station location in the northern hemisphere, whereas for the X- and Y-
coordinates there are both positive and negative errors which cancel
out for the population mean. The quadratic fit is the best option for
longer tracklets. As mentioned in Section 3, the main problem for this
frame is the dependence on the orbit of the observed object, which
makes it more difficult to have a consistent fitting approach.

5.2.4. Topocentric AOS
As described in Section 3, the fitting of the attributable is done in the

topocentric AOS but the angles are then transformed back to azimuth-

elevation, which are used for the correlation and thus also used as a
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Fig. 15. Elevation errors (derived from topocentric AOS) for different tracklet lengths using 3f-data.
Fig. 16. Mean and variance of Mahalanobis distances (derived from the topocentric AOS) of azimuth-elevation errors for different tracklet lengths using 3f-data. Theoretically
expected values indicated by a bold line.
Fig. 17. Position errors (X, derived from geocentric AOS) for different tracklet lengths using 3f-data.
comparison to the ground truth in this section. The results are shown
in Figs. 14 and 15. For both observables, the linear fit is the best choice
until approx. 30 s and afterwards the quadratic fit becomes better in
terms of both absolute and relative error. For very long tracklets (> 130
s), the fitting should be extended to use a fourth order polynomial.
Regarding the absolute error, it should be noted that especially for long
tracklets an improvement compared to the direct azimuth fitting of at
least a factor of five can be observed.

Additionally, the back-transformation from AOS introduces a sta-
tistical correlation between the angular errors, which is checked via
the Mahalanobis distance, see Section 5.1. The results for mean and
variance are shown in Fig. 16. It can be seen that for the quadratic and
fourth order fits using tracklets longer than 30 s, the values of the fitted
population are close to the expected values indicated by the bold line,
whereas for shorter tracklets and the linear fit this is not the case. The
linear fit should still be used for short tracklets because it is most robust
against a small number of data points.
407
5.2.5. Geocentric AOS
The geocentric AOS is transformed to geocentric inertial positions

after the fit. Because the results for the three axes are similar, only
the X-axes is shown in Fig. 17. It is visible that the linear fit is the
best choice for all tracklet lengths. This suggests that the coordinates
of this system are very stable over the pass. Although the absolute
error is comparable to the direct fitting in XYZ, the higher consistency
over the entire population is an improvement. Also here, the errors
of the three positions become correlated which allows to test the
distribution of the Mahalanobis distances, see Fig. 18. While the mean
is well-approximated for the linear fit, the variance is approaching the
theoretical value for longer tracklets but does not reach it. This could
be due to the assumption of independent observables in the AOS during
the fit. The effect of this will be investigated further in the Section 6.

5.3. Order of the fit

This subsection covers the potential use of even higher order poly-

nomials for very long tracklets. The first example is the topocentric
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values indicated by bold line.
Fig. 19. Range errors for different orders of the fitted polynomial using 3f-data (150 s).
Fig. 20. Azimuth errors (derived from topocentric AOS) for different orders of the fitted polynomial using 3f-data (150 s).
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ange, see Fig. 19, for a 150 s long tracklet. It can be seen that there
s another step-like improvement of the absolute error if the order
s increased to six. Additionally, it is visible that there is no steady
mprovement with the order of the fit, but the improvements are mainly
ominated by adding even-numbered polynomial terms, which suggests
hat the measurements are line symmetrical around 𝛥𝑡 = 0 s.

To contrast the previous example, Fig. 20 depicts the azimuth error
or the topocentric AOS fit for the same tracklet length. There it is
isible that going beyond the fourth order polynomial does not give
n additional benefit. The analysis concerning different orders of the
itting has been performed for all observables. Higher orders have been
dded for the shown topocentric range and the directly-fitted azimuth
ngle.

.4. Noise level

An integral part of the attributable fitting is the estimation of the
ncertainties which relies on estimating the observable’s measurement
oise level from the fit’s residuals. To show that this works for different
evels of sensor noise, Fig. 21 compares the fitting results using a second
408

i

rder polynomial of the inertial X-coordinate for different noise levels
y multiplying the values given in Table 1 with the factor on the
bscissa. As one would expect, the absolute error is increasing with the
oise level, whereas the relative error remains close to one suggesting
hat the estimation of the uncertainties is still correct.

.5. Range-rate via range

Another possibility is the assumption that the radar itself does not
easure the range-rate via the Doppler shift, but it has to be calculated

ia the sequence of range measurements by using the first derivative in
he parameter vector. The accuracy of the estimated range-rate using
his approach is analysed for a linear, quadratic and fourth order fit. In
ig. 22, one can see that the accuracy concerning the absolute error is
omparable between the quadratic and linear fit, whereas that of the
ourth order is much better and improving with more data. The order of
agnitude of the error is smaller than for the pure range-rate fit previ-

usly shown in Fig. 7 which is due to a pessimistic assumption about the
ccuracy of the range-rate measurement. Concerning the relative error,
t is obvious that the linear fit overestimates the uncertainty, whereas
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Fig. 21. X-position errors for different noise levels using 3f-data (150 s) and a second order polynomial.
Fig. 22. Range-rate errors estimated via the range derivative for different tracklet lengths using 1f data.
Fig. 23. Comparison of percentages of true and false positives for different coordinate
systems and test cases.

the quadratic fit underestimates the uncertainty, thus they have a
relative error much lower and much larger than one, respectively. The
fourth order polynomial leads to an acceptable relative error and could
be used for the correlation. This would also mean that more data is
necessary to perform the fourth order fit and get a good estimate of the
range-rate, which may not be possible for very short tracklets. Because
the range-rate is only used for the correlation decision and not in the
orbit determination, the unrealistic error estimate may not degrade
the correlation performance and only shifts the resulting Mahalanobis
distances for all correlations, true and false positives, in a similar way.
This means that even with an unrealistic error of the range-rate, the
correlation should still work although a different correlation threshold
should be applied which may also affect the number of false positives.

The decision whether it is favourable to use the first derivative of
the range also in case of a measured range-rate cannot be generalised. It
depends on the noise levels and the used radar system, which requires
409
Table 2
Rules of fitting depending on the tracklet length.

Range- ≤ 30 s 30 s – 130 s ≥ 130 s
Rate 1st order 2nd order 4th order

Range ≤ 60 s 60 s – 150 s ≥ 150 s
(topocentric) 2nd order 4th order 6th order

Azimuth ≤ 25 s 25 s – 80 s 80 s – 150 s ≥ 150 s
1st order 2nd order 4th order 6th order

Elevation ≤ 40 s 40 s – 120 s ≥ 120 s
1st order 2nd order 4th order

Inertial geocentric ≤ 30 s > 30 s
Positions (X, Y, Z) 1st order 2nd order

Angles ≤ 30 s 30 s – 130 s ≥ 130 s
AOS topocentric 1st order 2nd order 4th order

All observables All lengths
AOS geocentric 1st order

a careful analysis of the entire processing chain. However, from the
perspective of the correlation, both can be acceptable choices.

5.6. Conclusion

It was shown that the observables behave differently over the
tracklet length and also compared to each other. The result of this
analysis is a set of fitting rules for a group of tracklets with different
lengths 𝑡𝑇 . These rules are derived from the presented examples and
are intended to keep the order of the polynomial as small as possible
because especially for long tracklets with very sparse data, it may
happen that there are not enough data points to use a high order
polynomial. The resulting rules are presented in Table 2. From this
summary, the geocentric AOS and the XYZ-positions seem to contain
the most stable observables as they require the least different orders of

the fit.
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Fig. 24. Orbit errors of true positives for different coordinate systems and test cases (respective units are given on the abscissa).
Fig. 25. Percentages of true and false positives using 3f-data for different coordinate
systems over a varying tracklet length. Data points are in 15 s intervals from 15 s to
120 s and the different systems are horizontally separated to improve readability.

6. Results: Correlation

6.1. Overview

In the following, the influence of the attributables on the correlation
performance is analysed which is the overall purpose of the fitting
process. In these experiments we used a subset of 1000 tracklets to
reduce the workload of the correlation. Two quantities are used to
assess the quality of the correlation. One plot compares the correlation
performance in terms of the percentage of detected true positives (TP),
calculated as the number of identified true correlations divided by
the total number of true correlations in the sample, together with
the percentage of false positives (FP), obtained by dividing the num-
ber of identified false correlations by the total number of identified
correlations. The second plot depicts the standard deviation 𝜎 of the
orbital elements semi-major axis, eccentricity, inclination and Right
Ascension of the Ascending Node (RAAN) 𝛺, derived by analysing the
410
differences between the estimated value and the true value given by
the orbit which was used to simulate the noisy measurements. These
standard deviations are cleared from 3-𝜎 outliers as it was already
explained for the attributables. It is important to note that these orbits
are now the result of the combination of two attributables and thus
the lengths of the tracklets are only contributing indirectly. The initial
orbit determination and correlation is performed according to the
method in [10]. This method consists of a J2-perturbed initial orbit
determination from two geocentric inertial positions which are derived
from the attributables. The range-rate which would be observed for this
initial orbit is compared to the measured one from the attributable to
calculate the Mahalanobis distance 𝑀d. The following tests assume a
correlation threshold of 𝑀d = 3, which would theoretically include
approx. 99% of true positives according to the 𝜒-distribution.

6.2. General comparison

The first comparison uses five different combinations of tracklet
length and detection frequency to give a first impression of the perfor-
mance of the different coordinate systems. The results comparing the
percentages of true and false positives are shown in Fig. 23. Starting
from a short and dense tracklet, one can see that the differences
between the systems are increasing with the length of the tracklets.
Concerning the true positives, the results are similar for the first three
cases and start to diverge after that. The geocentric AOS has the lowest
percentage of true positives for the last two cases, but also the lowest
values for the false positives. This might be due to a shift of the
distribution of Mahalanobis distances towards higher values, which
could be explained by the larger than expected variance of the fitted
position errors’ Mahalanobis distance shown previously in Fig. 18.

The orbital accuracies for four of the previous examples are com-
pared in Fig. 24. The largest differences between the coordinate systems
is in the estimation of the orbital plane, namely the inclination and
RAAN. For these elements, the geocentric AOS is clearly the best sys-
tem, while the azimuth-elevation system is the worst. The differences
between them increase with the tracklet length.
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Fig. 26. Orbit errors of true positive for different coordinate systems over the tracklet length.
Fig. 27. Percentages of true and false positives using 45 s tracklets for different
coordinate systems and detection frequencies (1, 3, 5).

6.3. Influence of tracklet length

After the results in the previous section already indicated a depen-
dence on the tracklet length, this effect is investigated in the following,
see Fig. 25. Using the data with 3 s between detections, tracklet
lengths of up to two minutes are compared. For tracklets longer than
45 s, the percentage of true positives is around 95% with a slight
trend towards lower values, most strikingly for the geocentric AOS.
Again, this is probably due to the approximated statistical correlation
coefficient in the covariance matrix and this effect becomes larger when
the estimated uncertainties are decreasing due to the increased tracklet
length. Another possible explanation is discussed in Section 7.3.2. The
geocentric AOS also has the lowest percentage of false positives, which
is around 5% for all systems. The azimuth-elevation system has most
false positives.

The orbital accuracy also depends on the tracklet length as shown
in Fig. 26. It should be noted first that all elements and systems have
411

a general trend towards decreased errors, which indicates that the
Fig. 28. Orbit errors of true positives using 45 s tracklets in the geocentric AOS over
different detection frequencies.

increased amount of information in a longer tracklet is transported via
the attributable until the orbit level. Comparing the different systems,
the geocentric AOS has the highest level of accuracy again. Especially
for long tracklets, the azimuth-elevation system is much worse than
the rest. Also here it is visible that the differences increase with the
tracklet length. For very short tracklets (15 s), there are no significant
differences between the systems. Thus it can be concluded that the use
of derived observables in different coordinates is mainly beneficial for
tracklets of at least 20 s.

6.4. Influence of detection frequency

Another possible variation of the input data is the frequency of
detections, which is mainly dependent on the size of the FoR and
the scanning strategy. The effect of this parameter is assessed based
on a specific tracklet length with different frequencies and thus dif-
ferent numbers of detections. Fig. 27 compares the three detection
frequencies for a tracklet length of 45 s. From the attributable fitting,

it was concluded that less data points lead to an increase of the
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Fig. 29. Percentages of false positives and orbit errors for different noise levels in the geocentric AOS (30 s, 5f).
observables’ uncertainty. This increased uncertainty leads to more false
positive correlations. The same effect also leads to a slight increase of
true positives, when decreasing the detection frequency compared to
the 1f-data. For even lower detection frequencies, the true positives
stay roughly constant as it would be expected if the accuracy of the
estimated uncertainties remains at a similar level.

In Fig. 28, the orbit errors are compared only for the geocentric
AOS, as the other results are similar. As expected, the increased uncer-
tainty due to less data leads to larger errors in the orbital elements.

6.5. Noise levels

In order to show the effect of the increased noise, which was already
considered for the attributables in Section 5.4, only the example of
the geocentric AOS is shown in Fig. 29 using a sparse 30 s tracklet
with 5f-data. The results for the other systems are similar. The results
include the percentage of false positives, which shows a nearly linear
trend over the increased noise, and the errors of the orbit determination
which are also increasing with the noise level. The true positives are not
plotted but they remain roughly constant at 90%–93% without a trend
corresponding to the changing noise level. These effects are consistent
with intuitive expectations.

6.6. Range-rate via range

Although not specifically shown here, the correlation experiments
were also performed for examples with a range-rate via the range
derivative as discussed in Section 5.5. Using the fourth order range
fit for tracklets with a length of 45 s (3f-data), the results are similar
to those presented in Fig. 25. The main difference is the lower value
for the percentage of false positives due to the smaller uncertainty of
the range-rate. Thus, the correlation is also possible if the range-rate is
estimated via the range. For the remaining experiments, the range-rate
is assumed to be measured again.

7. Survey campaign

7.1. Simulation parameters

For the final experiments of this paper, the correlation results for the
complete surveillance scenario introduced in Section 4 are evaluated.
The parameters were given in Table 1 with the resulting distribution
of tracklet lengths given in Fig. 5 combined with a cut-off at 180 s to
avoid very long tracklets as outliers. Considering the previous results in
this paper, it is decided that the geocentric AOS is the best coordinate
system for the correlation and thus the survey results mainly use these
coordinates. In addition to the already used measurement frequencies
of one (1f), three (3f) and five (5f) seconds between the detections,
there is one additional test with 8 s between detections to further
test the robustness of the correlation. This yields the total numbers of
412

pairs and true correlations given in Table 3. Tracklets which do not
Fig. 30. Example of the residuals in azimuth and elevation after the initial orbit
determination based on attributables for a single tracklet.

Table 3
Total combinations and true correlations for the geocentric AOS using different
detection frequencies.

Scenario Tracklets Total combinations True correlations

1f 4772 11 383 606 717
3f 4598 10 568 503 683
5f 4384 9 607 536 636
8f 4055 8 219 485 568

have enough data points to fit the polynomial of the required order
are removed (for a linear fit a minimum of three detections), which
explains the reduced number of tracklets for longer intervals between
detections in a tracklet. As a comparison, the other three coordinate
systems are tested with the 3f-data only. In order to reduce the number
of false negative correlations, which describes the not identified true
correlations, the threshold for the following tests is set to 𝑀𝑑 = 5.
This is necessary due to the shift of Mahalanobis distances to larger
values, which is due to a specific characteristic of the J2-perturbed
orbit determination. This is discussed in Section 7.3.2. Also the already
mentioned bias due to the correlation of the errors before the fit, see
Fig. 18, is introducing an offset for the geocentric AOS.

7.2. Additional filters

As it was shown in Table 3, the number of true correlations over
24 h is very low compared to the total number of pairs which have
to be checked. This is the main difference to the previously presented
tests, when the share of true correlations was much higher. This low
number of correlations combined with many objects on similar orbits,
especially sun-synchronous polar orbits, leads to a very high number
of false positives after the standard attributable-based correlation step.
To remove these false positives, two additional filters are added after

the attributable correlation to reject false positives.
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Fig. 31. Range residuals of the initial orbit (number of measurement points reduced
or better readability).

Firstly, it has to be considered that the attributable given in Eq. (1),
oes not consider the direction of motion, i.e. the derivatives of the
ngles. This is not done, because the angular measurements have high
ncertainties and thus the estimation of their derivatives has a large un-
ertainty which may not be reflected properly in the fit. If two tracklets
re correlated via their attributables, the underlying full tracklets can
e used to calculate the residuals of the single observations based on
he resulting orbit of the correlation. An example is given in Fig. 30
howing the residuals of azimuth and elevation for a false positive
orrelation. The linear trend in the azimuth direction is clearly visible
hich indicates that the orbit and the tracklet are not matching. To

dentify these pairs reliably, a Student’s t-test [19] checks if there is
linear trend in the residuals. This approach was introduced in [6].

he tested hypothesis is that the slope of a straight line fitted to the
esiduals is equal to zero, meaning that there is no trend in the data.
his hypothesis is rejected if the resulting test statistic 𝑝𝑡 is smaller
han a given threshold, here 0.1. The value 𝑝𝑡 is the integral over the
𝜒2(𝜈)-function with the degrees of freedom 𝜈 depending on the number
of data points. The integration bounds are calculated based on the
estimated slope and its uncertainty, see [6] for more details. If this
hypothesis is rejected because 𝑝𝑡 < 0.1, a linear trend in the residuals is
assumed to be present and the correlation is rejected. While the t-test
works well for long tracklets, it may not be possible to identify linear
trends for shorter tracklets.

A comparable test is done using the range measurements. Fig. 31
depicts the range residuals of a tracklet against the orbit which was
calculated from the attributable correlation. In this case, it is a true
positive correlation but with a wrong estimation of the number of
revolutions between the detections which leads especially to a wrong
estimate for both the semi-major axis and the eccentricity. This causes
that the range residuals over the entire tracklet become biased, but the
zero residual at the reference time (𝛥𝑡 = 0 s) confirms that at least
the attributable is matching the orbit. Ideally for a true correlation
with a correct orbit, these residuals should be close to a random
normal distribution consistent with the sensor noise. In order to extract
this information and test if the residuals are biased, a second-order
polynomial is fitted to the range residuals:

𝛥𝜌 = 1
2
⋅ 𝑐2 ⋅ 𝛥𝑡

2 + 𝑐1 ⋅ 𝛥𝑡 + 𝑐0 . (10)

The absolute value of the curvature |𝑐2|, here defined as the second
derivative, is used as a further parameter for the correlation decision.
If this curvature is larger than the threshold value 𝑐2,thresh = 0.002 km

s2 ,
he correlation is discarded. The threshold value was derived from
mpirical analyses of correlations with a wrong number of revolutions.
his is mainly useful if there are several days between the tracklets and
he semi-major axes of adjacent solutions are close to each other. For
he 24-h survey analysed here, this is of minor importance but reported
or completeness.
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c

For correlations which pass both thresholds, for t-test and curvature,
hese information can even be combined to get an additional informa-
ion. The idea is that the result 𝑝𝑡 from the t-test should be as large
s possible while the absolute value of the curvature |𝑐2| should be as
mall as possible. This can be combined into a joint score 𝑆 for both

tracklets (T1 and T2), which becomes larger if the tracklets match the
orbit better:

𝑆 =
𝑝𝑡,T1 + 𝑝𝑡,T2

|𝑐2,T1| + |𝑐2,T2|
. (11)

The value of this score has no general objective meaning but it can be
used to choose between solutions with different numbers of revolutions
for the same pair of tracklets. Practically, this means that it is no
longer only the solution with the smallest Mahalanobis distance, which
is considered, but all solutions which are smaller than the threshold.
Then, the score 𝑆 is calculated for each possible solution from the
same pair of tracklets with different numbers of revolutions and the one
with the largest score is selected for this pair to increase the chance of
obtaining the correct number of revolutions.

A final stage of a least squares orbit determination using both track-
lets is performed. The correlation is excluded, if this orbit calculation
fails or the residuals of the measurements are too large. The mean and
standard deviation of the residuals is used as a threshold. It is set for the
angular observables at 𝜇𝑇 ,𝐿𝑆,𝐴 = 0.11◦ (0.17◦) and 𝜎𝑇 ,𝐿𝑆,𝐴 = 0.3◦ (0.4◦).

he values in parentheses are used for the experiments using 5f- and
f-data to consider the increased uncertainty due to less data in the
racklet. The thresholds for the ranges are set at 𝜇𝑇 ,𝐿𝑆,𝜌 = 10 m and
𝑇 ,𝐿𝑆,𝜌 = 40 m. These values are chosen slightly higher than the known
erformance of the radar, see Table 1, to account for the uncertainty
ue to the relatively small amount of information from two passes. Only
orrelations which pass all three steps are accepted.

.3. Results

.3.1. Overview
The processing of the experiments takes approx. 24–27 h per sim-

lation on a computer with four Intel Core i5-3470 CPU (3.20 GHz)
unning three processes in parallel. Because parallelisation of the pair-
ise correlation problem is simple, more parallel processes on a capable

omputer could be used to reduce the processing time further, which
hould be of no concern for an operational system. The results of the
urvey experiments are presented in Fig. 32. In the plot, true positive
TP) refers to the confirmed correlations after the least squares and
alse negative (FN) refers to the true correlations, known from the
imulation, which were found but did not lead to a converged least
quares with sufficiently small residuals. All results show a distinct peak
f true positives, which shifts towards lower Mahalanobis distances
ith a decreasing detection frequency (corresponding to an increasing

-value in the notation of the data sets). This will be explained in
he following subsection. All experiments also have a share of false
ositives and non-converged least squares, which also increases with
ore time between the detections.

Table 4 summarises all results for the different experiments. Two
ain effects are visible. The first is, that the share of detected true
ositives increases with a decreasing detection frequency, because the
ail of the distribution which is cut at the threshold becomes less due
o the mentioned shift of the Mahalanobis distances. For the 1f-data,
n increase in the 𝑀d-threshold would also lead to more TP, but at
higher computational cost because more FP would require a further

est with the least squares orbit determination. Opposed to that, the
hare of converged least squares orbit determinations decreases with
decreased detection frequency, because less data is available in the

racklets. To counteract this, the acceptance threshold of the least
quares has been increased for the 5f- and 8f-data, which also leads to a
ignificant increase in false positives. Without the increased threshold,
he FP-level for the 8f-data would also be around 2% but with only 50%

onverged TP.
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Fig. 32. Histograms of correlation results for the surveys with different detection intervals.
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Table 4
Results of the correlation of survey campaigns.

Coordinates Freq. After Attr. After LSQ

TP FP TP FP

geo. AOS 1f 73.9% 81.4% 67.8% 1.6%
geo. AOS 3f 95.5% 90.6% 76.7% 1.9%
geo. AOS 5f 97.0% 93.8% 85.2%a 7.2%a

geo. AOS 8f 96.0% 96.1% 76.9%a 7.6%a

top. AOS 3f 99.8% 97.9% 80.2% 1.7%
AzEl 3f 99.8% 98.0% 79.2% 1.8%
XYZ 3f 99.7% 97.8% 81.3% 1.8%

aIndicates a higher acceptance threshold for the least squares, see text.

As a comparison, Table 4 also shows the results for the other three
coordinate systems using the 3f-data. Compared to the geocentric AOS,
it is visible that the percentage of true positives is larger for the
other systems, especially directly after the attributable correlation. This
suggests that the shift in the Mahalanobis distances is only partially due
to the bias explained in the next section, but also caused by the missing
consideration of the error correlation as shown in Section 5. Increasing
the correlation threshold to 𝑀𝑑 = 7.5 would let the geocentric AOS also
reach the 99.8% of true positive correlations like the other systems at
a false positive rate of still only approx. 95% before the least squares.
The number of false negative correlations due to a non-converging least
squares is similar for all coordinate systems. Thus the main difference
between the coordinate systems is the efficiency with regard to the
minimisation of false positives to reduce the computational effort, but
the resulting number of confirmed correlations is similar for all the
systems. This may also be due to the definition of the FoR which has a
maximum elevation of 70◦. If a radar’s FoR includes 𝑒𝑙 = 90◦, thus the
ingularity in the azimuth-elevation system, tracklets passing close to
his singularity might lead to more differences between the results of
ifferent coordinate systems.

.3.2. Estimation bias
In the results shown, the distribution of the Mahalanobis distances

ppeared to be shifted compared to the expected distribution which is a
-distribution with two degrees of freedom due to the two-dimensional
414
discriminator vector under the assumption that the values of the dis-
criminators are normally distributed. In case of this south-staring sur-
vey campaign, the normality of the discriminators breaks down because
of the measurement geometry and short-periodic perturbations. Espe-
cially objects on polar orbits are detected once on their ascending and
once on their descending arc within 24 h, thus they do not exhibit an
approx. integer multiple of revolutions between detections. The applied
J2-correction of the mean motion does only correct the perturbed

otion for a full revolution, thus incomplete revolutions are estimated
ith a bias in the semi-major axis. This effect can be seen in Fig. 33,
hich relates the biases in the semi-major axis to the RAAN for polar
rbits. For one day of measurements from a single station, the RAAN is
elated to the direction of motion (ascending or descending arc at first
etection), which can be seen via the range-rate �̇�1 at the first pass.
or a south-staring FoR, a negative range-rate (approaching) is caused
y an object on the ascending part of a polar orbit. Depending on the
irection of motion, different short-periodic perturbations during the
ncomplete revolution lead to different biases in the semi-major axis.

Combining this bias, which influences especially the velocity, with
he measurement geometry of observing either near-maximum positive
r negative range-rates on the descending or ascending arc, respec-
ively, leads to an offset of the discriminator values to opposite, positive
nd negative, directions. Thus, there is no normal distribution any more
nd the errors are larger than expected from the measurement statistics.
f the discriminator 𝛥�̇� is split into one part for the measurement
ncertainty 𝛥�̇�𝑀 and one part due the bias of the semi-major axis
�̇�𝑎, the Mahalanobis distances become shifted towards larger values
ecause the estimated uncertainty 𝐶𝑀 only refers to the measurement:

𝑀2
𝑑 =

(

𝛥�̇�𝑀 + 𝛥�̇�𝑎
)𝑇

⋅ 𝐶−1
𝑀 ⋅

(

𝛥�̇�𝑀 + 𝛥�̇�𝑎
)

(12)

= 𝛥�̇�𝑇𝑀 ⋅ 𝐶−1
𝑀 ⋅ 𝛥�̇�𝑀 + 2 ⋅ 𝛥�̇�𝑇𝑎 ⋅ 𝐶−1

𝑀 ⋅ 𝛥�̇�𝑀 + 𝛥�̇�𝑇𝑎 ⋅ 𝐶−1
𝑀 ⋅ 𝛥�̇�𝑎 . (13)

n Eq. (13), only the first term is 𝜒2-distributed, while the remaining
erms including 𝛥�̇�𝑎 are introducing the observed bias, which is inde-
endent of the measurement uncertainty. The larger the uncertainty in
𝑀 , the smaller the effect of the bias terms because 𝛥�̇�𝑎 is independent
f the measurement noise. Because of that, the distribution shifts closer
o expected values for the experiments with larger detection intervals,
hich have higher absolute uncertainties.
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Fig. 33. Distribution of discriminators �̇�1 and 𝛥𝑎 for the 3f-survey over the RAAN
using objects on polar orbits with incomplete revolutions.

8. Conclusion

In this paper, we presented and analysed several new approaches
to use attributables for radar surveys. A new coordinate system with
two different realisations was introduced to improve the fitting process
of radar attributables. The comparison between four coordinate system
has been made concerning the accuracy of the fitting process, which
showed the improvement of the new coordinates compared to classical
systems. From this first set of experiments, it was possible to derive
rules for the fitting of the attributables concerning the order of the used
polynomial depending on the observable and the tracklet length. It was
shown that certain observables require up to sixth order polynomials
for tracklets of up to 3 min length.

As a second step, the influence of different parameters, e.g. the
length of the tracklet, the detection frequency, and the observations’
noise level, during the attributable fitting on the correlation results
was analysed. The results showed no cases with significant reductions
in correlation performance, which also verifies the robustness of the
applied methods. Also here, the new coordinate system, especially
in the geocentric realisation, showed the best results with regard to
correlation and orbit accuracy. It was also shown how longer track-
lets improve the correlation result, thus the fitting process is able to
transport the information gain via the attributable to the correlation
level.

Finally, a surveillance radar scenario using a scanned Field of
Regard was applied to test the entire process under more realistic
conditions using different detection frequencies. Two additional filters,
one checking the tracklet residuals and one with a least squares orbit
determination, were introduced to reduce the number of false positives,
which can be very high after the initial correlation step. Depending
on the acceptance thresholds, the process usually identified more than
75% of the true correlations, while having only approximately 2% of
false correlations and up to 8% false correlations for cases with a low
number of detections and a higher acceptance threshold during the
orbit determination. In this context, it was also shown how a bias
in the J2-perturbed initial orbit determination leads to a shift in the
distribution of Mahalanobis distances. The successful correlation for
all different measurement frequencies and coordinate systems shows
how the attributable approach can be applied to the processing of
surveillance radar data. Future work can include the treatment of the
residuals’ statistical correlation during the polynomial fit in the new
coordinate systems and the application to real radar data.
415
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