
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
6
5
1
4
2
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
0
.
4
.
2
0
2
4

Phish What You Wish
Pascal Gadient, Pascal Gerig, Oscar Nierstrasz
Software Composition Group, University of Bern

Bern, Switzerland
� scg.unibe.ch/staff

Mohammad Ghafari
School of Computer Science, University of Auckland

Auckland, New Zealand
R m.ghafari@auckland.ac.nz

Abstract—IT professionals have no simple tool to create phish-
ing websites and raise the awareness of users. We developed
a prototype that can dynamically mimic websites by using
enriched screenshots, which requires no additional programming
experience and is simple to set up. The generated websites
are functional and remain up-to-date. We found that 98% of
the hyperlinks in mimicked websites are functional with our
tool, compared to 43% with the best competitor, and only two
participants suspected phishing attempts at the time they were
performing tasks with our prototype. This work intends to raise
awareness for phishing attempts especially with local websites by
providing an easy to use prototype to set up such phishing sites.

Index Terms—Phishing, web security, man-in-the-middle at-
tack

I. INTRODUCTION

Phishing is a social-engineering technique to collect sen-
sitive information from people without their knowledge and
consent. The people who perform phishing, i.e., the phishers
are increasingly interested in lucrative high-profile targets
aiming to steal intellectual property, corporate secrets, and
sensitive information concerning national security [1]. They
often deceive a victim to land on a fake website (i.e., phishing
website) through which they attempt to collect sensitive data.
There are numerous countermeasures to circumvent exposure
to phishing, e.g., browser extensions or DNS black-lists.
Nonetheless, it is one of the most common cybercrimes across
the globe. For example, 65% of businesses in the U.S. suffered
from at least one successful phishing attack in 2019 [2].

In order to raise user awareness for these threats, several
tools for instructors exist that can automatically create a replica
of an original website. For example, phishing kits are usually
available online for well-known websites from shady sources,
i.e., a set of files including a template that mimics the design
of the website being faked, server-side code to capture and
send submitted data to the instructor, and optionally code to
filter out unwanted traffic [3]. Moreover, rule-based phishing
frameworks exist that patch the original HTML and JavaScript
code on the fly according to predefined rules. However, tools
that modify original HTTP content must obey complex rules
and thus work around existing security features found in web
browsers, e.g., they have to adjust or remove the provided
Content-Security-Policy (CSP) information. Therefore, they
are very sensitive to changes in the original site and usually
require updates when the original site or its infrastructure
undergo some changes. As a result, unique manual effort is

still required for the majority of dynamic websites, because
otherwise the phishing websites remain static, get out of date,
or lack server-side features, which increases the likelihood that
victims will identify their exposure to phishing.

In this work, we introduce a new technique inspired by
browser isolation technology1 to automatically develop phish-
ing websites that are, to a great extent, identical to their
genuine counterparts. For this technique, the phishing server
acts as a proxy between a client browser and a server, but does
not need any complex configuration. The client component
that is executed in a victim’s web browser forwards every
user interaction to the server, waits for the response, and
then displays the received data of what we call an “enriched
image.” An enriched image is a screenshot with overlaid
interactive User Interface (UI) elements to provide a genuine
web experience. Considering this technique, we investigate the
following two research questions:

RQ1: Can we automatically create functional replicas of
dynamic websites? We implemented a proof-of-concept pro-
totype and evaluated it on the top ten most used websites
according to Amazon Alexa. We found that 98% of the
hyperlinks in the mimicked websites are functional, compared
to 43% of the best competitor. Moreover, to our knowledge,
it is the first phishing framework supporting out of the box
features that need interaction with the original server, ranging
from a “simple query recommendation while typing into a
search box” to a “two-factor authentication (2FA) measure.”
For instance, we could log in to a major Swiss e-banking
website that uses 2FA.

RQ2: Do such replicas provide an authentic web experi-
ence? We asked 14 participants to perform five predefined
tasks disguised as website usability studies. The obtained
results are encouraging. From 42 page visits that involved
phished websites generated by our prototype, only six (i.e.,
29%) were considered suspicious, and a mere two participants
suspected phishing attempts at the time they were using
them. Interestingly, most participants did not expect phishing
attempts in the spoofed local site, instead they rather assumed
an attack at the Facebook website, which was genuine.

In conclusion, we found that our prototype is much easier
to work with and provides features unavailable in existing
solutions: i) it is portable and requires no setup time, ii) users
can optionally specify the domain name they would like to

1https://www.secjuice.com/remote-browser-isolation-vendors/

http://scg.unibe.ch/staff/
mailto:m.ghafari@auckland.ac.nz
https://www.secjuice.com/remote-browser-isolation-vendors/


phish without requiring any additional parameters or tem-
plates, iii) thanks to its proxy architecture, it captures every
user interaction and can trace a victim throughout an entire
browsing session, and store all sensitive inputs, iv) the content
of a phished website is always in sync with the original
website, v) it supports various features to create a genuine
browsing experience, e.g., the browsing history, adapted URL
paths, and favicons, vi) our implementation can circumvent
CSP protective measures, and finally, vii) our implementation
offers support for common captchas and 2FA mechanisms. As
a result, we see much potential for our approach to be used for
anti-phishing trainings, and obviously, an increased need for
using a variety of anti-phishing techniques in order to mitigate
such threats.

The remainder of this paper is structured as follows. We
discuss phishing attacks in section II and present the concept
behind our prototype in section III, where we also compare
existing phishing frameworks. We present our evaluation re-
garding the functionality and the authenticity of the website
replicas in section IV. Next, we elaborate on the limitations
and mitigations in section V. Finally, we report the threats to
validity in section VI and conclude in section VII.

II. PHISHING ATTACKS

In subsection II-A we present works, which provide a state-
of-the-art overview of existing techniques used by phishers,
and in subsection II-B we discuss corresponding anti-phishing
measures.

A. Modus Operandi

Simple static phishing kits for the masses are still very
prevalent and originate from only a few sources.2 Such
phishing kits are deployed to servers under direct control of
phishers, to free hosting services [4], to hijacked servers that
host one or more legitimate website [5], to public clouds [6],
and even to botnets [7]. As a covert measure, 95% of the
deployed phishing kits are enforcing htaccess rules that
block “unwanted” visitors as Oest et al. discovered when they
examined 1 794 live phishing kits from 2016 through mid-
2017 [3]. Hosting providers are particularly at risk, because
more than 95% of them do not even run an anti-virus scan with
up-to-date signatures once a month [8]. Such a lax behavior
encourages criminals to run privileged escalation attacks that
might yield access to other websites published on the same
server that could be modified and misused for phishing as well.
When a phishing kit that targets a specific website is deployed,
the manually applied modifications are rather minor as Cui et
al. found when they compared the DOMs (Document Object
Models) of different phishing sites [9], e.g., adversaries add
an input form, or replace a few images or some text.

Rule-based phishing frameworks provide more genuine ex-
periences, but they still require time demanding manual work
before they can operate. Such tools usually modify website
traffic with the help of regular expressions that match relevant

2https://www.imperva.com/blog/our-analysis-of-1019-phishing-kits/

code. Typical modifications are the replacement of hard-coded
URLs and the removal of security-related HTTP headers.
Modlishka, for example, is a powerful open-source HTTP
proxy that is able to apply website code changes on the fly.3

The required code changes for a certain URL are specified
in the corresponding website template. Currently, there exists
one for Microsoft Office 365 and one for Google GSuite.
Furthermore, there exists a very popular proxy implementation
called evilginx2, which includes templates for fourteen other
major websites.4

Adopting a ready-to-deploy phishing kit also raises threats
to its users. Cova et al. observed that criminals started to
introduce in their kits hidden backdoors that transmit the
collected data not only to its users, but also to third parties,
e.g., its originator [10]. McCalley et al. show that such hidden
backdoors have evolved using different email address encoding
techniques, e.g., hexadecimal string representations or custom
array-related code [11]. Moore et al. investigated the re-
compromising of internet hosts and found that by performing
Google searches using versioning information of phishing kits,
attackers discover hijacked and still vulnerable phishing hosts
ready to take additional phishing kits [12]. Finally, Birk et al.
reveal that organized cyber-crime grants custom requests for
phishing kits [13], however it is not clear if such individual
solutions contain backdoors.

B. Anti-phishing Measures

A large body of research has focused on connection-based
anti-phishing strategies. Hong et al. use several lexical features
of existing phishing URLs, curated in PhishTank,5 such as
an URL’s length or the number of special symbols to build
a classifier that detects potential phishing URLs [14]. They
benchmark different machine learning classification algorithms
on their results, e.g., variants of SVM and random forest.
There exist similar works that use other features such as
the age of the domain in combination with the WHOIS
record [15] or the presence of HTTPS [16]. There also exist
similar works that use other classification algorithms, e.g.,
deep neural networks [17], or a combination of them [18].
Joshi et al. describe a browser plug-in that uses the received
HTTPS certificate to hash the entered password before it is
submitted [19]. When used with forged URLs, the adversary
consequently only captures garbage data due to a certificate
mismatch. Fortunately, many of these techniques are available
in practice, e.g., by using the “Google Safe Browsing API”6

or the “Kaspersky Protection Plugin.”
Researchers have also proposed techniques that detect

phishing websites from the content (text, code, rendered im-
ages) of websites. For instance, Zhang et al. implemented a
text-based classifier that extracts, among other data, a website’s
five most frequent words and sends them to Google to verify
if the returned results match the domain in question [20].

3https://github.com/drk1wi/Modlishka
4https://github.com/kgretzky/evilginx2
5https://www.phishtank.com/
6https://safebrowsing.google.com

https://www.imperva.com/blog/our-analysis-of-1019-phishing-kits/
https://github.com/drk1wi/Modlishka
https://github.com/kgretzky/evilginx2
https://www.phishtank.com/
https://safebrowsing.google.com


Liu et al. use the HTML source code to extract the layout
of a website to which they apply an image segmentation
algorithm [21]. They compare, among other data, the result-
ing image segments between benign and malignant websites
and received high similarity scores for corresponding pages,
e.g., for eBay’s official website and its phished counterpart.
Chiew et al. extract company logo images from a website
under test and process them with Google’s image search to
conclude whether a page is phished [22]. They assume that an
image and the corresponding website are legitimate when its
URL matches one of the top rated URLs returned by Google.
Hara et al. compare the screenshot of a suspicious website with
genuine screenshots that they already have in a database [23].

Finally, industry has tried to overcome phishing with exter-
nal authentication hardware and software. The W3C WebAu-
thn web standard specifies an interface for web applications
that offers public-key cryptography.7 Compliant websites can
request authorization that lets the browser ask for a second
authentication factor, e.g., a USB or NFC token. There exist
other similar concepts like Mobile-ID, which leverages SMS
messages to establish a secure context [24]. External authen-
ticators can also be used to measure timing differences as
Ulqinaku et al. describe with 2FA-PP, a system that evaluates
the network’s round-trip time to the server to detect phishing
attempts [25]. If implemented properly, such mechanisms
effectively protect users from phishing threats.

III. SCREENSHOT-BASED PHISHING

We present a prototype to create phishing websites that
behave, to a great extent, identically to their genuine coun-
terparts. The prototype can collect sensitive data or trace an
entire browsing session, and working with it is very easy:
a phishing website can be deployed within seconds. In the
following we explain the concept, we discuss key features,
and we share technical details of a prototype that we have
created. The source code and a one-click executable for all
major platforms is publicly available on GitHub.8

A. Process

The responsibilities of the client and the server are revealed
in Figure 1. The grey rectangles show the involved devices,
i.e., the victim’s client computer on the left and the adversary’s
server on the right. The blue rectangles illustrate the executed
applications, i.e., the web browser started by the victim, and
the Java server daemon as well as the headless web browser
started by the adversary. The arrows indicate the different
steps. The steps that describe an action are labeled by numbers,
whereas transmitted data are labeled by letters.

We discuss each step in detail. 1 A victim must be tricked
into opening a website operated by our prototype. This step
is identical to existing techniques where attackers convince
victims to open a certain URL, for example, by email, instant
messaging, or phone. If the victim’s browser requests such
a URL, the server component quickly spawns a headless

7https://www.w3.org/TR/webauthn/
8https://github.com/pgadient/PhishWhatYouWish

browser instance with the pre-configured website, takes a
screenshot and sends it back to the client attached to the web
browser component, which now becomes active on the client.
2 The delivered JavaScript code tracks the victim’s mouse

and keyboard actions and sends them through the internet
to the Java-based server daemon. a The transmitted actions
include mouse click coordinates, keyboard hits, changes in
text boxes, and page navigation events. 3 The server daemon
decodes the received actions and generates replay commands
for the headless web browser following the same order. The
commands are sent by using Inter-Process Communication
(IPC). b The forwarded replay commands might look like
“execute click at point (52/142)”, or “press the keys J, o, h,
n.” 4 The headless web browser maintained by Selenium,9

executes the collected replay actions in the same order they
are received. 5 The web browser starts to re-render the
website based on the provided actions. The rendering itself
can be performed off-screen, i.e., hidden in memory without
the use of any visible UI elements to enable support for
arbitrarily large screen resolutions at clients. 6 When the
configured time-out expires, the headless browser takes a
screenshot of the rendered website and sends it back to the
server daemon by IPC. c The screenshot is encoded in an
image format understood by modern browsers. 7 The server
daemon processes the screenshot, and traverses the headless
browser’s DOM of the previously rendered website to find
and extract embedded UI elements. The resulting view is then
transmitted over the internet back to the client. d The view
consists of the screenshot, the location and content of text
boxes or buttons as well as hyperlinks. 8 The JavaScript code
executed on the client receives the view, decodes the data,
and renders it within the client’s browser ensuring a seamless
update between each cycle.

B. Advantages

Our implementation provides several features unseen in
existing implementations. We discuss each feature and explain
how traditional template-based methods and our prototype
support them. We rely for information about static template-
based methods on the two comprehensive open-source projects
Gophish10 and Phishing Frenzy,11 for information about rule-
based methods on the two open-source projects evilginx2 and
Modlishka, and for information about handcrafted methods on
our own expertise. Please note that the opportunities offered by
handcrafted websites can be partially transferred to template-
based methods due to their support for manual code interven-
tions. We expect that traditional phishing pages are created
by using these techniques, based on the findings of Cova et
al. who performed a comprehensive study of more than 500
phishing frameworks found in the wild [10]. They mention that
phishing kits usually comprise two types of files: the files to
display a copy of the targeted website, and the scripts used to
save the phished information, and send it to criminals. For each

9a comprehensive browser automation toolkit, https://selenium.dev/
10https://getgophish.com
11https://www.phishingfrenzy.com

https://www.w3.org/TR/webauthn/
https://github.com/pgadient/PhishWhatYouWish
https://selenium.dev/
https://getgophish.com
https://www.phishingfrenzy.com


victim reaches website1 actions are tracked2 a actions actions are processed3

replay commands are applied4

webpage is rendered5

screenshot is created6

client server

Phishing in Easy Mode
(web browser component)

Phishing in Easy Mode
(server component)

Selenium
(headless web browser)

screenshot is processed & 
metadata are generated7view is rendered8

ne
tw

or
k

co
m

m
u

ni
ca

ti
on

IP
C

co
m

m
u

ni
ca

ti
on

b replay commands

c screenshotd view

Fig. 1. Responsibilities of the client and the server

aspect, we argue that a handcrafted solution would require
more time due to its inherent complexity, however more
flexibility is generally achieved. An experienced developer
might be necessary depending on the desired quality of the
implementation.

1) Accuracy: Accuracy refers to the visual similarity of
a phished page compared to the original. If the replica is
accurate, no differences can be observed by a potential vic-
tim. Template-based solutions barely support websites that
use dynamic content, e.g., overlays created with JavaScript,
because templates cannot automatically adapt to such variable
content. Our prototype, instead, presents screenshots of web
pages which are by definition an accurate representation of
what users of the websites would see in their browsers.

2) Back-end Logic: Back-end logic is an umbrella term for
code executed on a server that is protected from public access,
i.e., it cannot be downloaded or repurposed. Typical use cases
that require back-end logic are search results, user profiles, and
authorization, e.g., with 2FA. Template-based solutions cannot
replicate back-end logic without complex manual intervention.
Our prototype, on the contrary, does not require any back-
end logic treatment or circumvention, because it interacts like
every web browser does.

3) Browser Plug-in Support: Browser plug-ins serve nu-
merous purposes, e.g., they can provide ad blocking, export
videos, keep notes, remember credentials, etc. Plug-ins can
interact with pages, and therefore manipulate a site’s content
transparently to the potential victim. This provides new op-
portunities to circumvent image detection approaches, e.g., by
blocking ads, or by injecting on the fly some fake banner
overlays. Template-based solutions do support fundamental
changes on original pages, however they must be implemented
manually instead of using existing browser plug-ins. Our pro-
totype has full control over the rendered HTML and JavaScript
code, and it supports Mozilla Firefox plug-ins out of the box.
For that reason, our system facilitates arbitrary changes on web
pages by directly injecting code into the website, by applying
browser plug-ins, e.g., ad blockers and dark themes, or by
manipulating the screenshot pixel-wise.

4) Completeness: Completeness refers to the provided
functionality compared to the original page. If a website is in-
complete, victims might become suspicious. Relative resource

paths are particularly problematic for completeness, since their
path only remains valid on the original server, but not on the
phishing server. Therefore, either the paths must be adjusted to
the resources on the original server, if possible, or all resources
must be tracked and copied to the phishing server. Template-
based solutions try to find and fix problematic resource paths
automatically, but they might fail when assembled at run time
or obfuscated in code. A developer can define exceptions for
problematic code. Our prototype does not require any changes
because the website’s origin is not altered in any way.

5) Collected Data: Phishing purposefully requires sensitive
data to be collected, e.g., user names, passwords, tokens,
etc. The more data that can be exfiltrated, the better the
chances are for an adversary to successfully exploit people.
Template-based solutions induce constraints on the possible
collection of data, i.e., one is supposed to use predefined
methods for gathering data. Our prototype does not require
any operations for gathering data as the exfiltration process
remains transparent to the victim. All key presses, mouse click
coordinates, and optionally all created website screenshots are
captured.

6) Continuous Tracking: Continuous tracking enables ob-
servation of users throughout their entire surf sessions. The
continuous data stream that web surfers generate is very valu-
able. For instance, someone could record personal browsing
preferences and use them for blackmailing, or collect multiple
logins to gather access to different services. Nevertheless,
many existing phishing sites hand over control to the real
site after the phished data has been gathered. Template-based
solutions allow multiple phishing pages to be spawned on
the same domain, but they cannot serve arbitrary pages on
demand. They would require prior setup of every page a user
could visit, which is unfeasible. Our prototype does not require
any website preparation, hence it supports the logging of entire
surf sessions beyond domain boundaries. For example, if a
search engine is set as the landing page, the user can be tracked
while entering a search term and choosing an entry from the
results, and even while navigating through the desired web
pages.

7) Recency: Recency refers to actuality of phished sites,
i.e., whether a phished site reflects arbitrary changes of the
original, and how long it takes to reflect them. The more



recent a replica is, the more convincing it generally can be
for a potential victim. Template-based solutions are incapable
of automatically integrating arbitrary changes into phished
sites that are already live. For that reason, the process has
to be repeated every time the original website is modified.
Our prototype always provides the latest version of a website
to the potential victim.

8) Required Knowledge: Some IT knowledge is required
in order to run a phishing campaign. The less knowledge is
required, the more people can perform phishing. Template-
based solutions, such as phishing kits, only require basic web
development knowledge, e.g., the ability to install software
and to import an existing website into a web framework. The
import process can be either performed manually by copy-
pasting code into the framework or by importing relevant
pages through an assistant that will guide the user through
required changes. There exists some pre-baked code that
performs the extraction of credentials,12 however various man-
ual adjustments can still be required. Proxy-based solutions
assume a deep understanding of web development to create
the mandatory configuration templates. Our prototype requires
only basic IT knowledge, but no web development skills: the
only required configuration data is the URL to phish.

9) Required Set-up Time: The required set-up time indi-
cates the time it takes to set up a phishing instance. The
efficiency increases by providing a shorter setup, i.e., more
time remains available for other tasks. Template-based so-
lutions require the installation of one or more frameworks,
but in general, they try to reduce user interventions wherever
possible. They achieve that goal by providing predefined
capture schemes that can be applied to original pages, or
by providing predefined templates from which a user can
choose. Nevertheless, a user must read the documentation to
understand all the features required to successfully set up a
phishing page. Our prototype requires only very little time,
i.e., a few seconds to adjust the URLs of the website that
should become replicated and to start the application.

We believe that screenshots are superior to existing video
stream based solutions,13,14 because very often i) the inter-
action response time of locally rendered screenshots is much
lower than of videos from remote machines, e.g., the scrolling
experience is much smoother, ii) the clarity is much higher,
because the views can use little to no compression, which is
not suitable for video streams. Therefore, users cannot see any
additional compression artifacts even when they quickly scroll
through content.

Furthermore, we expect that our prototype can be useful in
practice for different stakeholders: End users might use this
tool to safely browse the internet from a remote machine.
Software developers might use this tool to easily capture
screenshots from a website for their documentation. IT security
staff might use this tool to educate people about the threats

12https://github.com/mgeeky/PhishingPost
13https://www.browserling.com/
14https://github.com/i5ik/ViewFinder

of phishing and to assess them when a more genuine phishing
experience is required compared to a virtual machine running
a remote desktop session host. Our prototype does not require
manual work to set up phishing sites for these use cases, unlike
existing tools.

C. Implementation

We implemented a prototype that leverages a client/server
architecture: a single portable Java-based application contains
all the required code to run the server. We did not rely on
existing web rendering proxy frameworks, because they could
not offer all the basic features we required, e.g., access to the
website’s DOM.

If started by double-clicking the executable file, the appli-
cation will spawn two web servers and one headless browser
component. One web server is responsible for the delivery of
static resources to the client, i.e., the HTML and JavaScript
code that establishes the initial connection to the server. The
other web server opens two WebSocket connections that begin
to listen for clients; one WebSocket connection is used for
the transmission of screenshots, the other for the bidirec-
tional transmission of commands, e.g., instructing the client
to forward to a given page, or notifying the server about a
key press event from the user. After these servers are online,
the application spawns a Selenium instance that itself starts a
remote-controlled headless Firefox browser. The application is
ready when the instrumented browser is awaiting any inputs.

The website on the client tracks the victim’s actions, submits
them to the server, and renders screenshots with the help
of metadata received from the server. In more detail, the
victim’s keystrokes, mouse click coordinates, and changes
in text boxes are tracked and submitted to the server with
custom JavaScript code. Similarly, right mouse click events
can be transmitted to the server, however additional client side
code would be required to render a genuine context menu
depending on the operating system and regional settings. The
use of the HTML canvas element instead of the image tag
for displaying screenshots ensures smooth image transitions
for the client without any artifacts or other visual glitches,
e.g., flickering. The metadata received from the server is
processed as follows: the client separates coordinates and
embedded text of text boxes, the locations of buttons, and
clickable areas of hyperlinks. Next, text boxes and buttons
that contain the original text, as well as clickable hyperlinks,
are rendered locally on top of the screenshot. The reason for
this sophisticated implementation is the authentic look and
feel that locally rendered GUI elements provide: they enable
user interactions without any delays, provide a consistent user
experience across other non-phished websites, and they enable
support for mobile devices with on-screen keyboards. Even
more, built-in password managers detect the text boxes and
can propose credentials.

The server replays the victim’s keystrokes and mouse clicks
on the original page by using a scriptable headless web
browser that provides an API for instrumentation. Due to the
superior documentation and better feature support, we chose

https://github.com/mgeeky/PhishingPost
https://www.browserling.com/
https://github.com/i5ik/ViewFinder


the Mozilla Firefox web browser over Google Chrome. After
each replayed user action, a new screenshot of the resulting
page is sent back to the client.

Several additional features have been implemented on both
ends to facilitate a more realistic surfing experience for the
victim: i) the title of the original page is mimicked by using the
data within the HTML <title> tag, ii) the original website
icon, also known as “favicon,” is copied from the original
location to the server where it is provided to the client, iii) the
URL’s path is replicated according to the original structure,
e.g., https://accounts.google.com/login results
in http://phishingsite.com/login, iv) copy-paste
events into text boxes with keyboard short-cuts are captured,
v) browser history with favicons is supported and enables
the forward and backward navigation, vi) Google Captchas
are supported although they occasionally take more time to
complete than usual, vii) drag support for sliders is provided
to bypass most slider protections, and finally, viii) optional
ad blocking is supported, since ad-loaded pages can take
considerably longer to load, and thus would negatively impact
the victim’s experience.

IV. EVALUATION OF THE WEBSITE REPLICAS

For the evaluation of the website replicas generated by
our tool we were particularly interested in their functionality,
i.e., are the replicas usable, and in their authenticity, i.e., are
the replicas convincing to people. We try to answer the two
research questions in the remainder of this section.

A. Functionality

In this subsection we aim to answer RQ1: Can we automati-
cally create functional replicas of dynamic websites? There ex-
ist numerous rule-based open-source phishing tools that claim
they can successfully phish popular websites.15 Modlishka,
for example, even claims that it works on most websites
without any templates. To validate such claims, we tested
two typical and very popular representatives, i.e., evilginx216

and Modlishka,17 against the top ten most visited websites
reported by Amazon Alexa, a well-known website traffic
statistic aggregator. All of these websites contain dynamic
elements and change frequently, e.g., to announce discounts.
Because most of those sites do not maintain the login page
on the same URL, we also included their corresponding login
sites in our URL test set since every top ten site has at least
one. Finally, we apply our prototype to the same URLs and
compare the results.

We closely followed the referenced guides on project pages
to set up the server-side applications. We used for evilginx2
the Facebook template and for Modlishka always the Google
template to improve its performance even when working with
different URLs, because those two templates were the only
ones that matched an entry in our top ten list. Specifying no
template at all would decrease the quality of phishing, because

15https://github.com/search?q=phishing+proxy&type=Repositories
16commit: fe4e3431430df7d9c283493fd1a58196026acfb2
17commit: 9d57cfb5c01a84554eb06497b304444ff28226d7

only basic replacement rules could be applied to web traffic,
e.g., replacing the originating URL with the phishing domain.
We used default settings except for our prototype where we
disabled the ad block plug-in to obtain more comparable
results. For evilginx2 we created an HTTPS certificate from
the Mozilla Let’s Encrypt initiative, and for Modlishka we used
the generated self-signed certificate which we manually added
to our browser’s trusted certificate store. No certificate was
required by our prototype, because it currently only supports
plain text HTTP traffic between the victim and the phishing
server. On the client-side, we used Mozilla Firefox 76.0.1 64-
bits, a display with a resolution of 1920 by 1200 pixels, and
we maximized the browser windows.

For each website listed in the Amazon Alexa top 10 ranking,
we opened the phished versions of the website and investigated
each clickable element, i.e., a button, hyperlink, or scripted
content sensitive to a mouse click. For each clickable element,
we assessed the element itself (link visibility and function)
as well as its target (visual glitches). We only considered
clickable elements at the top level which are directly visible
without any further user interaction. We noted for each click-
able element whether it works correctly or it suffers from an
issue, i.e., we always assigned one of five states: ☆ denotes
a link that works as expected and leads to a site without
noticeable UI glitches. denotes a link with visual glitches
or that leads to a site that suffers from visual glitches but in
any case still works as expected. denotes a link that does
not work as expected, i.e., is invisible or without function, or
leads to a site that is broken, e.g., target site is not reachable or
blank. denotes a link to a site in which an HTTP Content-
Security-Policy (CSP) warning is triggered. denotes a link
that leads to a drop-out, i.e., a site off-limits to the phishing
proxy, usually a genuine HTTPS site. We further introduced

to denote the number of clickable elements on the site, to
denote the used phishing site template, and finally, with the
values “yes” or “no” to report whether the phishing attempt
was successful.

In the remainder of this subsection we discuss the results
with respect to our observations in Table I.

1) Templates: We can see that phishing templates are
unavailable for most of the top ten sites. In other words, tem-
plates for Chinese websites are completely missing. Therefore,
such websites break compatibility with existing tools and are
mostly unsupported. For example, evilginx2 is unable to spoof
anything without a template. Our prototype does not require
any template.

2) Clickables: Using a template, evilginx2 can successfully
spoof websites, but some clickables might not work as it seems
that dynamic functionality is reduced from the original website
to ease development of the template. Nevertheless, most intra-
domain links worked as intended (56%) or suffered only from
minor visual issues (41%). Modlishka, on the other hand, can
work without specific templates and successfully spoof many
pages. Surprisingly, the Google template did not fully work:
Modlishka could successfully spoof the login screen, but the
“Next” button did not act properly which made the phish

https://github.com/search?q=phishing+proxy&type=Repositories


TABLE I
PHISHING RESULTS FOR THE GLOBAL TOP TEN WEBSITES

Rank Website Legend evilginx2 Modlishka Our prototype

1 google.com 17 ☆ / /
/

n/a
-/-/-
-/-

Google
15/0/0

1/1

-
14/3/0

0/0

2 youtube.com 37 ☆ / /
/

n/a
-/-/-
-/-

Google
1/28/8

0/0

-
36/1/0

0/0

n/a accounts.google.com 8 ☆ / /
/ /

n/a
-/-/-

-/-/no

Google
4/0/3

1/0/no

-
8/0/0

0/0/no

3 tmall.com 64 ☆ / /
/

n/a
-/-/-
-/-

Google
0/0/0
0/64

-
40/23/1

0/0

8 login.tmall.com 43 ☆ / /
/ /

n/a
-/-/-

-/-/no

Google
4/0/0

0/39/no

-
16/23/4
0/0/no

4 facebook.com
54

(47) ☆ / /
/ /

Facebook
18/13/1
0/15/yes

Google
39/1/2

0/12/no

-
39/15/0
0/0/yes

5 qq.com 110 ☆ / /
/

n/a
-/-/-
-/-

Google
73/0/37

0/0

-
61/49/0

0/0

n/a mail.qq.com 13 ☆ / /
/ /

n/a
-/-/-

-/-/no

Google
8/0/5

0/0/no

-
10/2/1
0/0/yes

6 baidu.com 30 ☆ / /
/ /

n/a
-/-/-

-/-/no

Google
9/0/9

0/12/no

-
24/6/0
0/0/yes

7 sohu.com 95 ☆ / /
/ /

n/a
-/-/-

-/-/no

Google
39/7/20
0/29/no

-
59/36/0
0/0/yes

n/a mail.sohu.com 8 ☆ / /
/ /

n/a
-/-/-

-/-/no

Google
4/0/1

0/3/no

-
8/0/0

0/0/yes

9 taobao.com 53 ☆ / /
/

n/a
-/-/-
-/-

Google
2/0/5
0/46

-
47/6/0

0/0

n/a login.taobao.com 52 ☆ / /
/ /

n/a
-/-/-

-/-/no

Google
14/0/37
0/1/no

-
24/27/1
0/0/yes

10 360.cn 36 ☆ / /
/

n/a
-/-/-
-/-

Google
18/0/12

0/6

-
17/14/5

0/0

n/a i.360.cn/login 15 ☆ / /
/ /

n/a
-/-/-

-/-/no

Google
4/2/4

0/5/no

-
13/1/1
0/0/yes

Summary (absolute) 635 ☆ / /
/ /

18/13/1
0/15/1

234/38/143
2/218/0

416/206/13
0/0/7

Summary (relative) 100% ☆ / /
/ /

3%/2%/0%
0%/2%/11%

37%/6%/23%
0%/34%/0%

66%/32%/2%
0%/0%/78%



impossible. We conjecture that the current website underwent
changes which are incompatible with the template. In general,
intra-domain links either worked successfully (56%) or not at
all (34%), i.e., the browser reported for many clickables the
“no connection could be established” error. Only a minority
suffered from visual glitches (9%). In contrast, the spoofing
attempts by our tool are mostly successful (66%) or suffer
from minor glitches (32%). Only a minority failed (2%) mostly
due to missing support for captchas that require drag-and-
drop mouse support (not yet implemented at the time of the
evaluation) or detection mechanisms for instrumented browser
instances, i.e., Google stated “we detected an unsupported
browser.”

3) Content-Security-Policy (CSP): CSP is an HTTP header
feature to restrict origins for web resource requests. If a web-
site implements CSP properly, requests to protected resources
from foreign (phishing) domains are blocked. We encountered
such CSP warning messages in websites from Google when we
used Modlishka. Our prototype cannot suffer from such issues,
because the code is always rendered in its original domain
context.

4) Tracking: Every victim that follows a genuine HTTPS
link outside the adversary’s domain is lost and cannot be
controlled anymore. Consequently, we can say that the fewer
times a drop-out occurs, the more likely it is to gather sensitive
data from a victim. In general, many links to external sites
remain unchanged, i.e., 32% (evilginx2 on Facebook) or 34%
(Modlishka) of all clickables lead to a loss of control over the
victim. We can observe that more drop-outs occur when no
matching template is available. With existing tools, drop-outs
can even be desired to avoid detection when template support
for the requested site is incomplete. In contrast, our prototype
tracks a user effortlessly throughout different sites. As a result,
no drop-outs can occur.

5) Data Collection: After a successful spoof the proxy
must collect the relevant sensitive data to achieve a successful
phish. For existing proxies, templates are a major contributing
factor for a successful phish, because templates specify which
pieces of a website contain the sensitive information and
need special treatment. evilginx2 can successfully capture
entered data, but only for Facebook which results in an 11%
success rate for our list of login sites. According to our
experiments, Modlishka does not know what to capture from
the HTML traffic when no matching template is available.
Hence, it cannot capture desired data in any of the tested
pages, i.e., it achieves a success rate of 0%. This is completely
different with our prototype. Since it captures all user input and
views, a seamless reconstruction or takeover of entire browsing
sessions becomes feasible. Therefore, it achieves a success rate
of 78%, i.e., seven times more than the second best tool we
tested.

As we found, contrary to the claims of existing tools, it
is possible to automatically spoof some sites, but phishing
still remains a complex task, which requires manual effort. In
particular, existing tools have problems with complex scripts,
frequent website code changes, captchas, or security and QR

64%

36%

Gender

male female

7%

50%

43%

Level of education

regular school apprenticeship university

29%

57%

7%

7%

Profession

Student Employee Self-employed Retired

Fig. 2. Demography of the participants

codes from external services that break their functionality.
Although our prototype lacks some basic functionality, e.g.,
listeners for function keys, it works far better than any other
tested approach. If we would add the clickables with visual
glitches, which are still usable, to the successfully phished
clickables (66% + 32%), a success rate of almost 98% could
be achieved which is more than twice as high compared to
the results from the second best tool, i.e., Modlishka with
43% (37% + 6%). Based on our experiences from the user
study, we expect that a broken design usually does not alarm
people since such glitches can also occur on regular websites
when certain elements do not load properly, however broken
functionality raises suspicion, because such behavior is rather
uncommon when no error message is visible. Moreover, our
prototype is resilient against CSP protections and drop-outs,
and it does not require any templating.

B. Authenticity

In this subsection we aim to answer RQ2: Do such replicas
provide an authentic web experience? For that purpose, we
performed an empirical phishing study that we disguised as
a website usability study to not raise any suspicions amongst
the participants.

1) Demography: The study involves 14 participants with
diverse backgrounds and from different age groups, i.e., from
computer science students to retired business owners. The
participants were conveniently acquired from the university,
family, friends, and workplace. As shown in Figure 2, five
participants were female and nine male, the level of education
was for one participant regular school, for seven apprentice-
ship, and for six a university, and the current profession was for
four being a student, while eight were employed by a company,
one was self-employed, and finally, one was already retired.
On average, the participants had 14 years of web experience,
and two of them had some web development experience,
i.e., one nine years and another six months. Two participants
already suffered from a phishing attack, one when he was
selling collectible cards online, and another one installed a
virus through a phished page. Luckily, none of them suffered
from any financial losses caused by phishing so far.

2) Questionnaire: The questionnaire we used comprises
three sections and can be found in the public Github repository,
which is referenced in section III. In the first section, we
gathered personal information, e.g., level of education, pro-
fession, or experience using the web. In the second section,
we let the participants interact with different websites and



after each interaction session we questioned them about their
experience, the usability, and other observations they drew.
In the last section, we gathered more information regarding
the familiarity with the previously visited sites, and at last,
to not draw any attention during the study, their knowledge
of phishing. If they lacked some experience with phishing,
we explained what it is, and finally, we questioned them in
retrospect for each task the perceived likelihood the relevant
site was phished.

3) Performing the tasks: Every participant had to solve
five tasks, where each task focuses on one particular kind
of website, i.e., originals without any modifications, originals
replicated by our prototype, or traditional phishing websites.18

Hence, the tasks differ in the use of tools, i.e., one task did
not involve any tool, one involved a traditional phishing tool,
and three involved our prototype. In terms of complexity, one
task was only about visual inspection, one about navigation
through websites, and three about entering credentials into
login pages. Except for the first introductory visual inspection
task, the order of the tasks has been randomized to mitigate
any potential bias in the results. We only enforced a time limit
for the first Google task and the task with the local website to
avoid unnecessarily long survey sessions, because there was no
specific goal to achieve for the participants. After a participant
reached the maximum allowed time, we took control of their
browser and continued with the evaluation. In order to let
the participants mainly focus on the website itself, all tasks
were performed in full screen mode so that the address bar
is invisible. While the supervisor was preparing a task, the
participants were not allowed to watch the computer screen.
In this work we closely follow ethical principles. In all our
experiments we used credentials that we solely created for the
sake of phishing. No participant had to provide personal data.

The individual tasks were as follows. 1) Visual inspection
of a static website with our prototype: each participant should
look at Google Search for a maximum of ten seconds. Our in-
tention was to see whether the participants notice a difference
in the generated screenshot compared to the original website.
2) Static website with our prototype: on Google Search, each
participant had to search for “SRF (Swiss Radio and Tele-
vision),” to navigate to that page, and they were encouraged
to continue exploring that website for up to 30 seconds. Our
intention was to see whether our tool can cope with complex
dynamic websites, and how participants perceive phishing
on local sites. 3) Login website with our prototype: each
participant was tasked to search for “Amazon”, to navigate to
that page, and finally, to log in with the given credentials. Our
intention was to see whether our tool can cope with complex
dynamic websites, and how participants perceive phishing on
international sites. 4) Login site without any modifications:
each participant was told to search for “Facebook”, to navigate
to that page, and finally, to log in with the given credentials.
Our intention was to see how participants perceive phishing
on international genuine sites that are well-known as phishing

18https://github.com/ashanahw/Gmail Phishing

targets. 5) Login site with a traditional phishing tool: each
participant had to log in through the presented Google GMail
login website by using the provided credentials. Our intention
was to see whether the participants notice the phishing attempt
with an existing off-the-shelf phishing kit that targets an
international company. This is the only task that involves a
functional phishing kit, because the acquisition of such kits is
not trivial. Unfortunately, we could not replicate this task with
our tool since Google disallows access to their log-in site for
headless browsers.

Immediately after completion of each task, we asked every
participant the following five questions: i) Do you have any
experience with the visited website, and if so, what kind of
experience? ii) What was the website’s level of usability on a
scale from one to five, where one refers to very low and five
refers to very high? iii) Was there something you really liked
concerning the usability? iv) Was there something you really
disliked concerning the usability? v) Is there something that
could be considered to improve usability?

4) Findings: We discuss the feedback from the participants,
where we specifically focus on their perception of phished
websites. The received feedback matches the three categories,
usability, authenticity, and further observations.

Usability. We asked all participants after every task to rate
the perceived usability level on a Likert-scale between one
(very low) and five (very high). The participants rated the
usability on average with a score of 3.9 (i.e., high) for the
original web page and 3.6 (i.e., medium to high) for the web
page from a traditional phishing tool. When we average the
usability scores of the other three tasks that used our prototype,
we see a score of 3.6 (i.e., medium to high) and the most
prevalent score was 4 (high), which has been reported in 17
cases.

In the traditional phishing website, some embedded hyper-
links and the focus order are broken. Moreover, after stealing
the credentials, the website tries to redirect the user to the
original website, which requires the participants to log in a
second time. One participant noticed the focus order bug, and
another one noticed that this website was quicker than our
prototype. Surprisingly, only four participants were irritated
that the credentials had to be entered twice, and two of them
were not even expecting a phishing attempt. However, these
problems only slightly reduced the perceived usability for most
participants.

Based on the participants’ responses for our prototype, the
lower usability score has two main reasons: First, sometimes
our tool produced unexpected results, and second, our tool
introduced a page load delay depending on the complexity of
the requested website. Although our tool works with most of
the existing websites, it still suffers from occasional glitches,
e.g., suddenly appearing or misplaced text boxes, and problems
with the infinite scrolling feature used by websites that quickly
increases the size of the screenshots and, consequently, also the
website response time. The additional delay before a website is
displayed has also been reported: three participants criticized
the longer than usual loading time once they clicked on a

https://www.google.com/
https://www.srf.ch/
https://www.srf.ch/
https://www.amazon.com/
https://www.facebook.com/
https://github.com/ashanahw/Gmail_Phishing


hyperlink to another website, whereas one participant preferred
that the results of his Google Search were displayed all at
once, i.e., no changes to the page layout occurred during the
rendering process. This is a result of the simplified rendering
on the client that only needs to show one static image instead
of thousands of characters and HTML elements manipulated
by JavaScript code at run time.

We conclude that the loading time of a web page has a
significant impact on how people rate a page’s usability, but
differences in usability levels do not make people suspect
any malicious activity, except when people have to enter their
credentials more than once.

Authenticity. After the completing experiment the partici-
pants were asked to judge the likelihood of the seen websites
being phished replicas, again by using a Likert-scale from one
(very unlikely to be a phishing site) to five (very likely to
be a phishing site). We received for sites from our prototype
an average score of 2, whereas the original Facebook page
received 2.3 and the traditional phishing page achieved 2.4.
Interestingly, the average scores for the Amazon and Facebook
website were up to 0.8 points higher compared to the local site
and Google. We expect that to be a result of the reputable pro-
tection offered by Google, and the lack of phishing awareness
for regional sites. The most prevalent score for replicas from
our prototype was 1 (very unlikely), which has been reported
in 16 cases (41%). If we consider that a failed phishing attempt
has a score of 3 (likely a phishing page) or higher, from
42 phishing attempts that involved websites generated by our
prototype, only 12 (i.e., 29%) attempts were failing.

The majority of our screenshots were the most authentic
to participants, and our replicas were barely distinguishable
from the originals. To our surprise, the original Facebook was
rated more likely to be phished than pages that were indeed
phished. We can only explain this by the many phishing scams
that became public in the news, thus drawing attention to this
specific website. Furthermore, the traditional Google Gmail
phishing site used in our experiment did not receive the highest
Likert-score, instead the Amazon replica of our tool did.

Many of the participants were rather experienced in using
Google and Facebook, i.e., 11 participants use Google multiple
times a day, whereas 3 participants use Facebook daily and 6 at
least once a week. The design of the traditional Google Gmail
phishing site we used in our experiment dates back to March
2017, therefore the style clearly differs from recent iterations.
No participant, not even the one who uses this service on a
daily basis noticed that, even when entering the credentials
for the second time on a page with a different design. On the
contrary, one participant considered a task spoofed, because
URLs on Google Search’s result page were not green like
on his own computer. However, this assumption is incorrect,
because Google Search recently updated their design.

In conclusion, the participants did not pay much attention to
the design of websites they use. Moreover, based on our results
they seem to associate the term “phishing” with particular
websites of large companies that are well-known for their
involuntary involvement in phishing scams, rather than with

sites of small- to medium-sized businesses. Hence, they more
likely report phishing activity on those websites, even when
no attacks are performed. Most participants genuinely did not
know how to decide if a site is phished or not.

Further Observations. One participant felt responsible for
not completing a task even though the application did not cor-
rectly render the screenshots. Another participant mentioned
that the traditional phishing site started to look phishy when
“unexpected messages” appeared in the browser, e.g., a pass-
word save dialogue box should not appear on regularly visited
sites. Finally, one participant did not expect any phishing on
a site shown by our prototype, because there was no login
dialogue on the viewed page.

V. LIMITATIONS AND MITIGATIONS

In this section we discuss the prototype’s limitations and
potential mitigation strategies.

A. Limitations

The tool currently suffers from inherent limitations such as
delays or limited interactivity on dynamic content for websites
that heavily use scripting. Nevertheless, these problems can be
mitigated with additional engineering effort.

1) Computational Delays: For our implementation we use a
simple architecture that introduces only little processing over-
head while still enabling the rapid development of features.
Nevertheless, further improvements would include hardware
acceleration support, e.g., for image compression, and more
use of low-level programming languages, e.g., C or C++. Next,
on the proxy server, every website request must be at least
partially finished before a screenshot can be sent back to the
client, whereas a regular client can start displaying a website
right away as soon as data is received. For this problem, a
solution could be to use video streams instead of screenshots
similar to the implementation used in game streaming services.
By using such technology, the user would see every step of the
website rendering which is even more similar to the regular
browsing experience. Moreover, the server needs to fully
execute every incoming website request. Because complex
websites require much processing and RAM for display, e.g.,
up to several hundred megabytes for a single page, the server
hardware must be rather powerful. Load-balancing features
that would reduce the load on a single server instance have
not yet been implemented.

2) Domain Use: The evaluation, reasonable selection, and
registration of domain names is essential for successful phish-
ing campaigns. However, our prototype does not support
domain-related tasks.

3) Transmission Delays: Our prototype uses a man-in-the-
middle concept which reflects an image-based HTTP proxy for
the internet. Inherent to this architecture, the required network
traffic increases in most cases substantially, i.e., screenshots
of websites usually are in the range of megabytes of data
compared to text and code that remain rather in the kilobytes.
Generally, this increase in data that needs to be transmitted to
the client can increase the time required to display a website.



This problem can be reduced by using high-bandwidth net-
work interconnects for the server. Another approach would be
to use a better image compression algorithm than Portable
Network Graphics (PNG) that could massively reduce the
amount of transmitted data. However, this change might also
reduce the visual quality of the screenshots since PNG uses a
lossless algorithm.

4) Limited Interactivity: The screenshot update frequency
is limited by the CPU capabilities of the server and the network
interconnect. As a result, dynamic elements such as CSS ani-
mations and videos will be transformed into static images and
therefore might begin to stutter depending on the image size.
However, on average a single client connected to an off-the-
shelf computer that runs our prototype can achieve between
20 and 30 screenshots per second when the website scales to
the full HD resolution, e.g., www.google.com. Currently, we
have no solution for that particular problem, but dynamically
transmitting only fractions of the image, or accessing the
framebuffer of the graphics card bypassing Selenium APIs
might reduce the problem.

5) Phishing Campaigns: Professional phishing tools allow
one to create and send phishing emails to individuals or
address groups. They provide mail templates and provide
placeholders for personal formulations, e.g., the victim’s name,
which are then automatically replaced before sending the
message. In that regard, functionality to import large data
sets from Comma-Separated Value (CSV) files is present.
For instance, such CSV files can contain victims’ email and
postal addresses, phone numbers, and countries of residence.
Moreover, they collect statistics, e.g., the time a phishing
email has been dropped, when the email has been opened
by the victim, or if and when the contained hyperlink has
been accessed. To check if an email has been opened, the
tools usually embed a small invisible unique image, i.e.,
tracking pixel, that is requested from the phishing server at
the time the email is presented to the victim. Our prototype is
not intended to support phishing campaigns, i.e., we neither
support phishing emails, nor do we leverage any statistics
about a campaign’s success rate.

B. Mitigation Strategies

Anti-phishing measures aiming at the detection of text,
source code, or website images have no impact on our proto-
type, because these file-based resources are not used in their
original form. As a result, we see four options to mitigate this
phishing threat.

1) Data Flow Analysis: Our approach forwards all user
input to the network socket. This behavior could be leveraged
to decide whether the website has a malicious intent. Since the
browser has full control over user input, JavaScript execution,
and network communication, it could label data entered by a
user, and track the labels across the DOM and even through
the JavaScript execution engine.19 If the browser detects that
a website continuously sends labeled data over the network,

19a browser extension that provides taint analysis of string values in
JavaScript, https://github.com/ollseg/ttt-ext

it should display a warning message to the user. Revoking
the access to said site might be inappropriate, because some
benign websites can reveal such behavior, e.g., multiplayer
games.

2) Domain Analysis: Our implementation provides exact
visual replicas of websites, but their domain names might
still differ. This situation can be leveraged by a detection
tool. Suppose that a user already possesses credentials to
be vulnerable to a phishing attempt. Consequently, the user
already had to visit certain benign websites in order to create
a user account on them. During that process, the browser could
start to “know” what the original websites look like, e.g., by
building a ground-truth dataset based on screenshots. If later a
website screenshot looks similar to one from the ground-truth
dataset but uses a different domain name, the browser should
block access to the site and show a warning message.

3) WebAuthn: Authentication using external hardware is
currently not supported by our prototype, because the server
has no direct access to the client’s hardware interfaces.

4) Detection of Browser Instrumentation: The headless
browser instance uses plug-ins that enable remote control.
Such plug-ins can be detected by websites, for example, as
performed by Google’s authentication website, which prevents
successful phishing with our tool.

VI. THREATS TO VALIDITY

A major threat to validity is the selection and number
of the participants in this study, i.e., whether our selection
of participants is representative of the public. We strived to
include people with various backgrounds and internet knowl-
edge. Moreover, we gathered demographic information to see
if we can find any correlations.

As with any Likert-scale, we cannot guarantee the accuracy
and comparability of the participants’ responses. On principle,
these responses are subjective and can be influenced by their
feeling at that time. In addition, the experiment might have
induced stress in some people, which further impacts the
outcome.

Since our implementation is not bug-free, some bugs did
occur during a few experiments. Although we immediately
took countermeasures, this could still influence their response.

We did not perform the experiment with every web page
in the internet, but only five. However, we tried to select
websites with high impact that are supported by most tools
to receive reasonable results. The success rate of a phishing
campaign also depends on the quality of the used domain
name. However, the domain registration process is out of scope
for this work.

We might have misinterpreted or misunderstood responses
of the participants. We tried to mitigate that problem by
reviewing our notes after the experiment with every partic-
ipant. We did not yet implement and validate our proposed
optimizations, hence we can only hypothesize about their
benefits and compare the expected effects with other well-
researched implementations found in popular software.

www.google.com
https://github.com/ollseg/ttt-ext


There is a threat to construct validity through potential bias
in our expectancy.

VII. CONCLUSION

The creation of phishing websites often requires expensive
manual work even with the help of tools. Therefore, scam-
mers are primarily attracted by major international websites
with a large reach. In consequence, IT professionals do not
have access to an effective tool to raise the awareness of
phishing in their companies, and moreover, people seem to
underestimate the potential phishing threat from local sites. We
have explored a potential solution to these problems, i.e., we
developed a prototype that can dynamically mimic websites
by using enriched screenshots, which requires no additional
programming experience and is simple to set up. We found that
98% of the hyperlinks in mimicked websites are functional
with our tool, compared to 43% with the best competitor.
Moreover, only 29% of the page visits from 14 participants
were considered as suspicious, and only two participants
suspected phishing attempts at the time they were performing
their tasks. We believe that our open-sourced tool has value
for different stakeholders, and that this threat requires more
attention, especially when considering the emerging ultra-
broadband network technologies, i.e., fiber landline and 5G
cellular networks.

ACKNOWLEDGMENT

We thank Sebastiano Panichella for his feedback on the
survey design, and Yannick Hänni for the further improvement
of the tool and his assistance in the user study. We gratefully
acknowledge the financial support of the Swiss National Sci-
ence Foundation for the project “Agile Software Assistance”
(SNSF project No. 200020-181973, Feb. 1, 2019 - April 30,
2022).

REFERENCES

[1] J. Hong, “The state of phishing attacks,” Communications of the ACM,
vol. 55, no. 1, pp. 74–81, 2012.

[2] ProofPoint. (2020) State of the phish, annual report.
[Online]. Available: https://www.proofpoint.com/sites/default/files/
gtd-pfpt-us-tr-state-of-the-phish-2020.pdf

[3] A. Oest, Y. Safei, A. Doupé, G.-J. Ahn, B. Wardman, and G. Warner,
“Inside a phisher’s mind: Understanding the anti-phishing ecosystem
through phishing kit analysis,” in 2018 APWG Symposium on Electronic
Crime Research (eCrime). IEEE, 2018, pp. 1–12.

[4] T. Moore and R. Clayton, “Examining the impact of website take-down
on phishing,” in Proceedings of the anti-phishing working groups 2nd
annual eCrime researchers summit. ACM, 2007, pp. 1–13.

[5] X. Han, N. Kheir, and D. Balzarotti, “PhishEye: Live monitoring of
sandboxed phishing kits,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp.
1402–1413.

[6] ——, “The role of cloud services in malicious software: Trends and
insights,” in International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2015, pp. 187–204.

[7] D. K. McGrath and M. Gupta, “Behind phishing: An examination of
phisher modi operandi,” LEET, vol. 8, p. 4, 2008.

[8] D. Canali, D. Balzarotti, and A. Francillon, “The role of web hosting
providers in detecting compromised websites,” in Proceedings of the
22nd international conference on World Wide Web, 2013, pp. 177–188.

[9] Q. Cui, G.-V. Jourdan, G. V. Bochmann, I.-V. Onut, and J. Flood,
“Phishing attacks modifications and evolutions,” in European Symposium
on Research in Computer Security. Springer, 2018, pp. 243–262.

[10] M. Cova, C. Kruegel, and G. Vigna, “There is no free phish: An analysis
of “free” and live phishing kits.” WOOT, vol. 8, pp. 1–8, 2008.

[11] H. McCalley, B. Wardman, and G. Warner, “Analysis of back-doored
phishing kits,” in IFIP International Conference on Digital Forensics.
Springer, 2011, pp. 155–168.

[12] T. Moore and R. Clayton, “Evil searching: Compromise and recom-
promise of internet hosts for phishing,” in International Conference on
Financial Cryptography and Data Security. Springer, 2009, pp. 256–
272.

[13] D. Birk, S. Gajek, F. Grobert, and A.-R. Sadeghi, “Phishing phishers—
observing and tracing organized cybercrime,” in Second International
Conference on Internet Monitoring and Protection (ICIMP 2007).
IEEE, 2007, pp. 3–3.

[14] J. Hong, T. Kim, J. Liu, N. Park, and S.-W. Kim, “Phishing URL
detection with lexical features and blacklisted domains,” in Adaptive
Autonomous Secure Cyber Systems. Springer, 2020, pp. 253–267.

[15] A. K. Jain and B. Gupta, “PHISH-SAFE: URL features-based phishing
detection system using machine learning,” in Cyber Security. Springer,
2018, pp. 467–474.

[16] R. S. Rao, T. Vaishnavi, and A. R. Pais, “CatchPhish: detection of
phishing websites by inspecting URLs,” Journal of Ambient Intelligence
and Humanized Computing, vol. 11, no. 2, pp. 813–825, 2020.

[17] S. KP, M. Alazab et al., “Malicious URL detection using deep learning,”
TechRxiv, 2020.

[18] A. Zamir, H. U. Khan, T. Iqbal, N. Yousaf, F. Aslam, A. Anjum,
and M. Hamdani, “Phishing web site detection using diverse machine
learning algorithms,” The Electronic Library, 2020.

[19] Y. Joshi, D. Das, and S. Saha, “Mitigating man in the middle attack
over secure sockets layer,” in 2009 IEEE International Conference on
Internet Multimedia Services Architecture and Applications (IMSAA).
IEEE, 2009, pp. 1–5.

[20] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: a content-based
approach to detecting phishing web sites,” in Proceedings of the 16th
international conference on World Wide Web, 2007, pp. 639–648.

[21] W. Liu, X. Deng, G. Huang, and A. Y. Fu, “An antiphishing strat-
egy based on visual similarity assessment,” IEEE Internet Computing,
vol. 10, no. 2, pp. 58–65, 2006.

[22] K. L. Chiew, E. H. Chang, W. K. Tiong et al., “Utilisation of website
logo for phishing detection,” Computers & Security, vol. 54, pp. 16–26,
2015.

[23] M. Hara, A. Yamada, and Y. Miyake, “Visual similarity-based phishing
detection without victim site information,” in 2009 IEEE Symposium on
Computational Intelligence in Cyber Security. IEEE, 2009, pp. 30–36.

[24] K. Bicakci, D. Unal, N. Ascioglu, and O. Adalier, “Mobile authen-
tication secure against man-in-the-middle attacks,” in 2014 2nd IEEE
International Conference on Mobile Cloud Computing, Services, and
Engineering. IEEE, 2014, pp. 273–276.

[25] E. Ulqinaku, D. Lain, and S. Capkun, “2FA-PP: 2nd factor phishing
prevention,” in Proceedings of the 12th Conference on Security and
Privacy in Wireless and Mobile Networks, 2019, pp. 60–70.

https://www.proofpoint.com/sites/default/files/gtd-pfpt-us-tr-state-of-the-phish-2020.pdf
https://www.proofpoint.com/sites/default/files/gtd-pfpt-us-tr-state-of-the-phish-2020.pdf

	1
	Phishing Attacks
	Modus Operandi
	Anti-phishing Measures

	Screenshot-based Phishing
	Process
	Advantages
	Accuracy
	Back-end Logic
	Browser Plug-in Support
	Completeness
	Collected Data
	Continuous Tracking
	Recency
	Required Knowledge
	Required Set-up Time

	Implementation

	Evaluation of the Website Replicas
	Functionality
	Templates
	Clickables
	Content-Security-Policy (CSP)
	Tracking
	Data Collection

	Authenticity
	Demography
	Questionnaire
	Performing the tasks
	Findings


	Limitations and Mitigations
	Limitations
	Computational Delays
	Domain Use
	Transmission Delays
	Limited Interactivity
	Phishing Campaigns

	Mitigation Strategies
	Data Flow Analysis
	Domain Analysis
	WebAuthn
	Detection of Browser Instrumentation


	Threats to Validity
	Conclusion
	References

