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a b s t r a c t

Most software maintenance and evolution tasks require developers to understand the source code of
their software systems. Software developers usually inspect class comments to gain knowledge about
program behavior, regardless of the programming language they are using. Unfortunately, (i) different
programming languages present language-specific code commenting notations and guidelines; and (ii)
the source code of software projects often lacks comments that adequately describe the class behavior,
which complicates program comprehension and evolution activities.

To handle these challenges, this paper investigates the different language-specific class commenting
practices of three programming languages: Python, Java, and Smalltalk. In particular, we systematically
analyze the similarities and differences of the information types found in class comments of projects
developed in these languages. We propose an approach that leverages two techniques – namely
Natural Language Processing and Text Analysis – to automatically identify class comment types, i.e.,
the specific types of semantic information found in class comments. To the best of our knowledge,
no previous work has provided a comprehensive taxonomy of class comment types for these three
programming languages with the help of a common automated approach.

Our results confirm that our approach can classify frequent class comment information types with
high accuracy for the Python, Java, and Smalltalk programming languages. We believe this work can
help in monitoring and assessing the quality and evolution of code comments in different programming
languages, and thus support maintenance and evolution tasks.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Software maintenance and evolution tasks require develop-
rs to perform program comprehension activities (Fjeldstad and
amlen, 1983; Haiduc et al., 2010). To understand a software
ystem, developers usually refer to the software documenta-
ion of the system (Bavota et al., 2013; de Souza et al., 2005).
revious studies have demonstrated that developers trust code
omments more than other forms of documentation when they
ry to answer program comprehension questions (Maalej et al.,
014; Woodfield et al., 1981; de Souza et al., 2005). In addition,
ecent work has also demonstrated that ‘‘code documentation’’ is
the most used source of information for bug fixing, implementing
features, communication, and even code review (Müller and Fritz,
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2013). In particular, well-documented code simplifies software
maintenance activities, but many programmers often overlook or
delay code commenting tasks (Curiel and Collet, 2013).

Class comments play an important role in obtaining a high-
level overview of the classes in object-oriented languages (Cline,
2015). In particular, when applying code changes, developers
using object-oriented programming languages can inspect class
comments to achieve most or the majority of the high-level
insights about the software system design, which is critical for
program comprehension activities (Khamis et al., 2010; Nurvi-
tadhi et al., 2003; Steidl et al., 2013). Class comments contain
various types of information related to the usage of a class or
its implementation (Haouari et al., 2011), which can be useful for
other developers performing program comprehension (Woodfield
et al., 1981) and software maintenance tasks (de Souza et al.,
2005). Unfortunately, (i) different object-oriented programming
languages adopt language-specific code commenting notations
and guidelines (Farooq et al., 2015), (ii) they embed different

kinds of information in the comments (Scowen and Wichmann,
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974; Ying et al., 2005); and (iii) software projects commonly
ack comments to adequately describe the behavior of classes,
hich complicates program comprehension and evolution ac-
ivities (Moreno et al., 2013; Panichella et al., 2016, 2012). The
bjective of our work is to examine developer class comment-
ng practices (e.g., comment content and style) across multiple
anguages, investigating the way in which developers write infor-
ation in comments, and to establish an approach to identify that

nformation in a language-independent manner. To achieve this
bjective, we select three representative programming languages
ased on (i) whether the language is statically- or dynamically-
yped, (ii) the level of detail embedded in its class comments, (iii)
hether it supports live programming, and (iv) the availability
f a code comment taxonomy for the language (investigated in
revious work). The motivation behind each criterion is explained
n the following paragraphs.

As mentioned, programming languages adopt different con-
entions to embed various types of information in class com-
ents. For example, in Java (a statically-typed language), a class
omment provides a high-level outline of a class, e.g., a summary
f the class, what the class actually does, and other classes it co-
perates with (Nurvitadhi et al., 2003). In Python (a dynamically-
yped language), the class comment guidelines suggest adding
ow-level details about public methods, instance variables, and
ubclasses, in addition to the high-level summary of the class
Python Documentation Guidelines, 2020).1 In Smalltalk (an-
ther dynamically-typed language), class comments are a primary
ource of code documentation, and thus they contain high-level
esign details as well as low-level implementation details of
he class, e.g., rationale behind the class, its instance variables,
and important implementation points of its public methods. By
analyzing multiple languages that vary in the details of their
class comments, we can provide a more general overview of class
commenting practices than by focusing on a single language.

Programming languages offer various conventions and tools
o express these different information types in class comments.
or example, Java supports Javadoc documentation comments
n which developers use specific annotations, such as @param
nd @author to denote a given information type. In Python, de-
elopers write class comments as docstrings containing similar
nnotations, such as param: and args: to denote various informa-
ion types, and they use tools such as Pydoc and Sphinx to process
hese docstrings. In contrast to Java and Python, class comments
n Smalltalk neither use annotations nor the writing style of
avadoc or Pydoc, thus presenting a rather different perspective
n commenting practices, and particular challenges for existing
nformation identification approaches. Additionally, Smalltalk is
onsidered to be a pure object-oriented programming language
nd supports live programming since its inception, therefore, it
an present interesting insights into code documentation in live
rogramming environments.
We argue that the extent to which class commenting prac-

ices vary across different languages is an aspect only partially
nvestigated in previous work. Given the multi-language nature
f contemporary software systems, this investigation is critical to
onitor and assess the quality and evolution of code comments

n different programming languages, which is relevant to support
aintenance and evolution tasks. Therefore, we formulate the

ollowing research question:

RQ1 ‘‘What types of information are present in class
comments? To what extent do information types vary
across programming languages?’’

1 https://www.python.org/dev/peps/pep-0257/.
2

We focus on addressing this question, as extracting class com-
ment information types (or simply class comment types) can help
in providing custom details to both novice and expert devel-
opers, and can assist developers at different stages of devel-
opment. Hence, we report the first empirical study investigat-
ing the different language-specific class commenting practices of
three different languages: Python, Java, and Smalltalk. Specifi-
cally, we quantitatively and qualitatively analyze the class com-
ments that characterize the information types typically found in
class comments of these languages. Thus, we present a taxonomy
of class comment types based on the mapping of existing com-
ment taxonomies, relevant for program comprehension activities
in each of these three languages, called CCTM (Class Comment
ype Model), mined from the actual commenting practices of

developers. Four authors analyzed the content of comments using
card sorting and pair sorting (Guzzi et al., 2013) to build and
validate the comment taxonomy.

In the cases a code comment taxonomy was already available
from previous works (Pascarella and Bacchelli, 2017; Zhang et al.,
2018; Rani et al., 2021), we used that taxonomy and refined it
according to our research goals.

Our work provides important insights into the types of in-
formation found in the class comments of the investigated lan-
guages, highlighting their differences and commonalities. In this
context, we conjecture that these identified information types
can be used to explore automated methods capable of classifying
comments according to CCTM, which is a relevant step towards
the automated assessment of code comments quality in different
languages. Thus, based on this consideration, we formulate a
second research question:

RQ2 ‘‘Can machine learning be used to automatically
identify class comment types according to CCTM?’’

To answer this research question, we propose an approach
that leverages two techniques –namely Natural Language Pro-
cessing (NLP) and Text Analysis (TA) – to automatically classify
class comment types according to CCTM. Specifically, by ana-
lyzing comments of different types using NLP and TA we infer
relevant features characterizing the class comment types. These
features are then used to train machine learning models enabling
the automated classification of the comment types composing
CCTM.

Our results confirm that the use of these techniques allows
class comments to be classified with high accuracy, for all investi-
gated languages. As our solution enables the presence or absence
of different types of comment information needed for program
comprehension to be determined automatically, we believe it can
serve as a crucial component for tools to assess the quality and
evolution of code comments in different programming languages.
Indeed, this information is needed to improve code comment
quality and to facilitate subsequent maintenance and evolution
tasks.

In summary, this paper makes the following contributions:

1. an empirically validated taxonomy, called CCTM, charac-
terizing the information types found in class comments
written by developers in three different programming lan-
guages,

2. an automated approach (available for research purposes)
able to classify class comments with high accuracy accord-
ing to CCTM, and

3. a publicly available dataset of manually dissected and cat-
egorized class comments in the replication package.2

2 https://github.com/poojaruhal/RP-class-comment-classification.

https://www.python.org/dev/peps/pep-0257/
https://github.com/poojaruhal/RP-class-comment-classification
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Fig. 1. A class comment in Java.

Fig. 2. A class comment in Python.

2. Background

Code commenting practices vary across programming lan-
guages, depending on the language paradigm, the communities
involved, the purpose of the language, and its usage in different
domains etc

While Java is a general-purpose, statically-typed object-
riented programming language with wide adoption in industry,
ython, on the other hand, is dynamically-typed and supports
bject-oriented, functional, and procedural programming. We can
bserve differences in the notations used by Java and Python
evelopers for commenting source code elements. For instance, in
ava, a class comment, as shown in Fig. 1, is usually written above
he class declaration using annotations (e.g., @param, @version,
tc), whereas a class comment in Python, as seen in Fig. 2, is
ypically written below the class declaration as ‘‘docstrings’’.3
n Java, developers use dedicated Javadoc annotations, such as
author and @see, to denote a given information type. Similarly,
n Python, developers use similar annotations in docstrings, such
s See also:, Example: and Args:, and they use tools such as Pydoc
nd Sphinx to process them.
Smalltalk is a pure, object-oriented, dynamically-typed, reflec-

ive programming language. Pharo is an open-source and live

3 https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.
tml.
3

Fig. 3. A class comment in Smalltalk.

development environment incorporating a Smalltalk dialect. The
Pharo ecosystem includes a significant number of projects used
in research and industry (Pharo Consortium, 2020). A typical
class comment in Smalltalk environment (Pharo) is a source of
high-level design information about the class as well as low-
level implementation details. For example, the class comment
of the class MorphicAlarm in Fig. 3 documents (i) the intent
of the class (mentioned in the first line), (ii) a code example
to instantiate the class, (iii) a note explaining the correspond-
ing comparison, and (iv) the features of the alarm system (in
the last paragraph). The class comment in Pharo appears in a
separate pane instead of being woven into the source code of
the class. The pane contains a default class comment template,
which follows a CRC (Class-Responsibility-Collaboration) model,
but no other standard guidelines are offered for the structure
and style of the comments. The comments follow a different,
and informal writing style compared to Java, Python, and C/C++.
For instance, a class comment uses complete sentences, often
written in the first-person form, and does not use any kind of
annotations, such as @param or @see to mark the information
type, as opposed to class comments in other languages (Nurvi-
tadhi et al., 2003; Padioleau et al., 2009; Zhang et al., 2018).
As a descendant of Smalltalk-80, Smalltalk has a long history
of class comments being isolated from the source code (Gold-
berg and Robson, 1983). Class comments are the main source
of documentation in Smalltalk. Additionally, Smalltalk supports
live programming for more than three decades, and therefore
can present interesting insights into code documentation in a live
programming environment.

Given the different commenting styles and the different types
of information found in class comments from heterogeneous pro-
gramming languages, the current study has the aim of (i) system-
atically examining the class commenting practices of different en-
vironments in details, and (ii) proposing an automated approach
to identify the information contained in class comments.

3. Study design

The goal of our study is to understand the class commenting
practices of developers across different object-oriented program-
ming languages. With the obtained knowledge, we aim to build
a recommender system that can automatically identify the dif-
ferent types of information in class comments. Such a system can
provide custom details to both novice and expert developers, and
assist them at various stages of development. Fig. 4 illustrates the
research approach we followed to answer research questions RQ1
and RQ .
2
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Fig. 4. Overview research approach.
.1. Data collection

For our investigation, we selected (i) Java and Python, two
f the top programming languages according to Google Trend
opularity index4 and TIOBE index,5 and (ii) Smalltalk, as its class
ommenting practices emerged from Smalltalk-80 (Pharo Consor-
ium, 2020; Goldstein and Bobrow, 1980). Other criteria to select
hese languages are explained in the Introduction (Section 1) and
ackground section (Section 2). Smalltalk is still widely used and
t gained second place for most loved programming language in
he Stack Overflow survey of 2017.6 For each language, we chose
opular, open-source, and heterogeneous projects. Such projects
ary in terms of size, contributors, domains, ecosystems, and
oding style guidelines (or comment guidelines).
As not all classes contain a class comment, we identified the

lasses having class comments for each project. Afterward, we
xtracted a statistically significant sample of class comments to
onduct a manual analysis. This analysis aimed at identifying
he semantic information developers embed in class comments.
o determine the minimum size of the statistically significant
ample for each language dataset, we set the confidence level to
5% and the margin of error to 5% (Triola, 2006).
After determining the sample size, we selected the number of

omments to consider from each project based on the propor-
ion of the project’s class comments of all comments (from all
rojects). For instance, class comments from an Eclipse project
n Java contribute to 29% of total comments (comments from
ll Java projects) therefore we selected the same proportion of
ample comments, i.e., 29% of Java sample size from the Eclipse
roject (110 class comments), as shown in Table 1. To select
epresentative sample comments from each project, we applied
he stratified random sampling strategy and selected a propor-
ional number of comments from each stratum. The strata were
efined based on the length (in terms of lines) of comments.
n particular, for each project, we first computed the quintiles
ased on the distribution of comments’ length and treated the
uintiles as strata. For example, to choose 110 sample comments
or Eclipse as shown in Table 1, we explored the distribution of
omments lines and obtained quintiles as follows 1, 3, 4, 5, 7, and
473. Hence the five strata are 1–3, 4–4, 5–5, 6–7, and 8–1473.
hen from each stratum, we selected the proportional number of
omments.
Java: we selected six open-source projects analyzed in previ-

us work (Pascarella and Bacchelli, 2017) to ease the compari-
on of our work with previous achievements.7 Modern complex
rojects are commonly developed using multiple programming
anguages. For example, Apache Spark contains 72% Scala classes,
% Java classes, and 19% classes from other languages.8 In the

4 https://pypl.github.io/PYPL.html.
5 https://www.tiobe.com/tiobe-index/.
6 https://insights.stackoverflow.com/survey/2017/ verified on 4 Feb 2020.
7 Folder ‘‘RP/Dataset/RQ1/Java’’ in the Replication package.
8 https://github.com/apache/spark.
4

Table 1
Overview of Java projects.
Project % of Java

classes
#Java
classes

#Class
comments

% of
dataset

#Sample
comments

Eclipse 98% 9128 6253 29% 110
Spark 9.3% 1090 740 3.4% 13
Guava 100% 3119 2858 13% 50
Guice 99% 552 466 2.1% 10
Hadoop 92% 11855 8846 41% 155
Vaadin 55% 5867 2335 11% 41

context of our study, we considered the classes from the language
under investigation, and discarded the classes from other pro-
gramming languages. For each class, we parsed the Java code and
extracted the code comments preceding the class definition using
the AST (Abstract Syntax Tree) based parser. During extraction,
we found instances of block comments (comments starting with
/* symbol) in addition to Javadoc class comments (comments
starting with /** symbol) before the class definition. In such
cases, the AST-based parser detects the immediately preceding
comment (being it is a block comment or Javadoc comment) as
a class comment and treats the other comment above it as a
dangling comment. To not miss any kinds of class comment, we
adapted our parser to join both comments (the AST detected class
comment and the dangling comment) as a whole class comment.

We present the overview of the projects selected for Java in
Table 1 and raw files in the replication package.9 We established
376 class comments as the statistically significant sample size
based on the total number of classes with comments. For each
project, the sample of class comments (the column Sample com-
ments) is measured based on the proportion of class comments in
the total dataset of class comments (shown in the column ‘‘% of
dataset’’ of Table 1).

The number of lines in class comments varies from 1 to 4605
in Java projects. For each project, we established strata based
on the identified quintiles from the project’s distribution. From
each stratum, we picked an equal number of comments using the
random sampling approach without replacement. For example,
in the Eclipse project, we identified the five strata as 1-3, 4-
4, 5-5, 6-7, and 8-1473. We picked 25 comments from each
stratum summing to the required 110 sample comments. We
followed the same approach for Python and Smalltalk to select
the representative sample comments.

Python: We selected seven open-source projects, analyzed
also in the previous work (Zhang et al., 2018), to ease the com-
parison of our work with previous achievements. To extract class
comments from Python classes, we implemented a Python AST
based parser and extracted the comments preceding the class
definition.

9 Folder ‘‘RP/Dataset/RQ1/Java’’ in the Replication package.

https://pypl.github.io/PYPL.html
https://www.tiobe.com/tiobe-index/
https://insights.stackoverflow.com/survey/2017/
https://github.com/poojaruhal/RP-class-comment-classification
https://github.com/apache/spark
https://github.com/poojaruhal/RP-class-comment-classification
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able 2
verview of Python projects.
Project #Python

classes
#Class
comments

% of
dataset

#Sample
comments

Requests 79 43 1.1% 4
Pandas 1753 377 9.9% 35
Mailpile 521 283 7.5% 26
IPython 509 240 6.3% 22
Djnago 8750 1164 30% 107
Pipenev 1866 1163 30% 107
Pytorch 2699 520 13% 48

Table 3
Overview of Smalltalk projects.
Projects Total

classes
#Classes
comments

% of
dataset

#Sample
comments

GToolkit 4191 1315 43% 148
Seaside 841 411 14% 46
Roassal 830 493 16% 56
Moose 1283 316 10% 36
PolyMath 300 155 5% 17
PetitParser 191 99 3% 11
Pillar 420 237 8% 27

The metadata related to the selected projects for Python are
eported in Table 2, while the class comments are found in our
eplication package.10 We measured 349 sample comments to be
he statistically significant sample size based on total classes with
omments.
Smalltalk: We selected seven open-source projects. As with

ava and Python, we selected the same projects investigated in
revious research (Rani et al., 2021). Table 3 shows the details
f each project with the total numbers of classes, as well as
lasses with comments,11 their proportion in the total comments,
nd the numbers of sample comments selected for our manual
nalysis. We extracted the stable version of each project compat-
ble with Pharo version 7 except for GToolkit, due to the lack of
ackward compatibility. We, therefore, used Pharo 8 for GToolkit.

.2. Analysis method

RQ1: What types of information are present in class comments?
o what extent do information types vary across programming lan-
uages?
The purpose of RQ1 is to quantitatively and qualitatively in-

estigate the language-specific class commenting practices char-
cterizing programs written in Python, Java, and Smalltalk.
Fig. 5 depicts the research approach followed to answer RQ1.

he outcome of this research, as explained later, consists of a
apping taxonomy and a comprehensive taxonomy of class com-
ent types, called CCTM (Class Comment TypeModel), mined from

he actual commenting practices of developers (see Fig. 5).
Mapping categories: Before preparing the CCTM, we analyzed

arious earlier comment taxonomies, such as the code com-
ent taxonomy for Java (Pascarella and Bacchelli, 2017) and
ython (Zhang et al., 2018), and the class comment taxonomy for
malltalk (Rani et al., 2021), to analyze their reported categories.
e mapped the categories from each existing taxonomy, since

hey were formulated using different approaches and based on
ifferent comment scope and categories. For instance, the Python
ode comment taxonomy by Zhang et al. (2018) is inspired by the
ava code comment taxonomy (Pascarella and Bacchelli, 2017),
hereas the Smalltalk class comment taxonomy is formulated

10 Folder ‘‘RP/Dataset/RQ1/Python’’ in the Replication package.
11 Folder ‘‘RP/Dataset/RQ1/Pharo’’ in the Replication package.
5

Fig. 5. Taxonomy study (RQ1).

using an open-card sorting technique (Rani et al., 2021). Given
the importance of mapping categories from heterogeneous envi-
ronments (Choi et al., 2006), we established semantic interoper-
ability (Euzenat, 2001) of the categories from each taxonomy in
this step. One evaluator mapped the categories from Smalltalk to
Java and Python categories. Two other evaluators validated the
mapping by reviewing each mapping and proposing the changes.
The original evaluator accepted or rejected the changes. All the
disagreement cases were reviewed by the fourth evaluator and
discussed among all to reach the consensus.

The categories that did not map to other taxonomy, we added
them as new categories in that taxonomy. For example, the Pre-
condition category from Smalltalk did not map to Java and Python,
and thus we added it as a new category in Java and Python. Thus,
we proposed the CCTM taxonomy highlighting the existing and
new categories for class comments in the next step Preparing
CCTM.

Preparing CCTM: In this step, we analyzed various ecosystems
rom each language. We built our dataset12 by mining data from
0 GitHub projects (see Section 3.1 for further details). In the
ata Selection step, we extracted the classes and their com-
ents, collecting a total of 37446 class comments. We selected
statistically significant sample set for each language summing
066 total class comments. We then qualitatively classified the
elected class comments (see the following Classification step) and
alidated them (see following Validation step) by reviewing and
efining the categorization.

Classification: Four evaluators (two Ph.D. candidates, and two
aculty members, all authors of this paper) each having at least
our years of programming experience, participated in the study.
e partitioned Java, Python, and Smalltalk comments equally

mong all evaluators based on the distribution of the language’s
ataset to ensure the inclusion of comments from all projects and
iversified lengths. Each evaluator classified the assigned class

12 Folder ‘‘RP/Dataset’’ in the Replication package.

https://github.com/poojaruhal/RP-class-comment-classification
https://github.com/poojaruhal/RP-class-comment-classification
https://github.com/poojaruhal/RP-class-comment-classification
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Fig. 6. Class comment of Python (Fig. 2) classified in various categories.

comments according to the CCTM taxonomy of Java, Python and
Smalltalk (Pascarella and Bacchelli, 2017; Zhang et al., 2018; Rani
et al., 2021).

For example, the Python class comment in Fig. 2 is classified
in the categories such as Summary, Warnings, and Parameters etc ,
s shown in Fig. 6. Validation: After completing their individual

evaluations, the evaluators continued with the validation step.
Thus, the evaluators adopted a three-step method to validate the
correctness of the performed class comments classification. In the
first iteration, called ‘‘Review others’ classification’’ in Fig. 5, every
valuator was tasked to review 50% of the comments (randomly
ssigned and) classified by other evaluators. This step allowed us
o confirm that each evaluator’s classification is checked by at
east one of the other evaluators. In reviewing the classifications,
he reviewers indicated their judgment by labeling each comment
ith agree or disagree labels.
In the second iteration (called ‘‘Evaluator accept or reject re-

iews’’ in Fig. 5), the original evaluator examined the disagree-
ents and the proposed changes. They indicated their opinion

or the changes by accepting the change or rejecting it, stating
he reason. In case the reviewer’s changes were accepted, the
lassification was directly fixed, otherwise the disagreements
ere carried to the next iteration. The third iteration assigned
ll identified disagreements for review to a new evaluator, who
ad not yet looked at the classification. Based on a majority vot-
ng mechanism, a decision was made and the classification was
ixed according to agreed changes. The levels of agreement and
isagreement among the evaluators for each project and language
re available in the replication package.13
After arriving at a decision on all comment classifications, we

erged overlapping categories or renamed the classes by apply-
ng the majority voting mechanism, thus converging on a final
ersion of the taxonomy, i.e., CCTM. This way, all the categories

were discussed by all the evaluators to select the best naming
convention, and whenever required, unnecessary categories were
removed and duplicates were merged.

RQ2: Automated Classification of Class Comment Types in Differ-
ent Programming Languages

Motivation. Previous work has focused on identifying infor-
mation types from code comments scattered throughout the
source code, from high-level class overviews to low-level method
details (Steidl et al., 2013; Pascarella and Bacchelli, 2017; Zhang
et al., 2018; Geist et al., 2020). These works have focused individ-
ually on code comments in Java, Python, C++, and COBOL. Differ-
ently from our study, none of these works attempted to identify

13 Folder ‘‘RP/Result/RQ1/Manually-classified-comments’’ in the Replication
ackage.
6

information types in class comments automatically across mul-
tiple languages. In our work, we are interested in exploring
strategies that are able to achieve this goal in multiple languages
such as Python, Java and Smalltalk. Hence, for this research
question, we explore to what extent term-based strategies and
techniques based on NLP patterns (Di Sorbo et al., 2019, 2016;
Panichella et al., 2015) help to automatically identify the different
information types composing CCTM.

Automated classification of class comment types. After the
definition of CCTM, we propose an approach, called TESSER-
ACT (auTomated multi-languageE claSSifiER of clAss CommenTs),
which automatically classifies class comment according to CCTM.
To achieve this goal, we considered all the comments manually
validated in answering RQ1. Specifically, our approach leverages
machine learning (ML) techniques and consists of four main
steps:

1. Preprocessing: All the manually-labeled class comments
from RQ1 in our dataset are used as ground truth to classify
the unseen class comments.14 It is important to mention
that, since the classification is sentence-based, we split
the comments into sentences. As a common preprocessing
step, we change the sentences to lower case and remove
all special characters.15 We apply typical preprocessing
steps on sentences (Baeza-Yates and Ribeiro-Neto, 1999)
(e.g., stop-word removal) for TEXT features but not for NLP
features to preserve the word order to capture the impor-
tant n-gram patterns observed in the class comments (Rani
et al., 2021).

2. NLP Feature Extraction: In this phase we focus on extract-
ing NLP features to add to an initial term-by-document
matrix M shown in Fig. 7 where each row represents a
comment sentence (i.e., a sentence belongs to our language
dataset composing CCTM) and each column represents
the extracted feature. To extract the NLP features, we use
NEON, a tool proposed in previous work (Di Sorbo et al.,
2019), which is able to automatically detect NLP patterns
(i.e., predicate–argument structures recurrently used for
specific intents Di Sorbo et al., 2015) present in natural
language descriptions composing various types of software
artifacts (e.g., mobile user reviews, emails etc) (Di Sorbo
et al., 2019). In our study, we use NEON to infer all NLP
patterns characterizing the comment sentences modeled
in the matrix M. Then, we add the identified NLP patterns
as feature columns in M, where each of them models
the presence or absence (using binomial features) of an
NLP pattern in the comment sentences. More formally,
the boolean presence or absence of a jth NLP pattern (or
feature) in a generic ith sentence in M is modeled by 0
(absence) and 1 (presence) values, respectively. The output
of this phase consists of the matrix M where each ith row
represents a comment sentence and jth represents an NLP
feature.

3. TEXT Features: In this phase, we add additional features
(TEXT features) to the matrix M. To get the TEXT fea-
tures, we preprocess the comment sentences by applying
stop-word removal16 and stemming (Lovins, 1968).17 The
output of this phase corresponds to the matrix M where
each row represents a comment sentence (i.e., a sentence be-
longing to our language dataset composing CCTM) and each

14 File ‘‘RP/Dataset/RQ2/Java/raw.csv’’ in the Replication package.
15 File ‘‘RP/Results/RQ2/All-steps-result.sqlite’’ in the Replication package.
16 http://www.cs.cmu.edu/~mccallum/bow/rainbow/.
17 https://weka.sourceforge.io/doc.stable/weka/core/stemmers/
IteratedLovinsStemmer.html.

https://github.com/poojaruhal/RP-class-comment-classification
https://github.com/poojaruhal/RP-class-comment-classification
https://github.com/poojaruhal/RP-class-comment-classification
http://www.cs.cmu.edu/~mccallum/bow/rainbow/
https://weka.sourceforge.io/doc.stable/weka/core/stemmers/IteratedLovinsStemmer.html
https://weka.sourceforge.io/doc.stable/weka/core/stemmers/IteratedLovinsStemmer.html
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Fig. 7. Matrix representation for a classifier.

column represents a term contained in it. More formally,
each entry M[i,j] of the matrix represents the weight (or
importance) of the jth term contained in the ith comment
sentence.
For the TEXT features, terms in M are weighted using the
TF–IDF score (Baeza-Yates and Ribeiro-Neto, 1999), which
identifies the most important terms in the sentences in
matrix M. In particular, we use TF–IDF as it downscales the
weights of frequent terms that appear in many sentences.
Such a weighting scheme has been successfully adopted
in recent work (Misra et al., 2020) for performing code
comment classification. The output of this phase consists
of the weighted matrix M where each row represents a
comment sentence and a column represents the weighted
term contained in it.
It is important to note that a generic ith comment sen-
tence can be classified into multiple categories according
to CCTM. To model this, we prepare the matrix M for each
category of each language. The generic (last) column M[jn]
of the matrix M (where n−1 is the total number of features
extracted from all sentences) represents the category C[x]
of a language L[y] as shown in Fig. 7. More formally, each
entry M[i,jn] of the matrix represents the boolean value if
the ith sentence belongs to the Cx (1) or not(0).

4. Classification: We automatically classify class comments
by adopting various machine learning models and a 10-fold
cross-validation strategy. These machine learning models
are fed with the aforementioned matrix M. Specifically, to
increase the generalizability of our findings, we experiment
(relying on the Weka tool18) with several machine learn-
ing techniques, namely, the standard probabilistic Naive
Bayes classifier, the J48 tree model, and the Random Forest
model. It is important to note that the choice of these tech-
niques is not random but based on their successful usage
in recent work on code comment analysis (Steidl et al.,
2013; Pascarella and Bacchelli, 2017; Zhang et al., 2018;
Shinyama et al., 2018) and classification of unstructured
texts for software maintenance purposes (Panichella et al.,
2015; Di Sorbo et al., 2016).

Evaluation metrics & statistical tests. To evaluate the per-
formance of the tested ML techniques, we adopt well-known
information retrieval metrics, namely precision, recall, and F-
measure (Baeza-Yates and Ribeiro-Neto, 1999). During our empir-
ical investigation, we focus on investigating the best configuration
of features and machine learning models as well as alleviating
concerns related to overfitting and selection bias. Specifically, (i)
we investigate the classification results of the aforementioned
machine learning models with different combinations of features

18 http://waikato.github.io/weka/.
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Table 4
Top frequent categories with at least 50 comments.
Language Categories #Comments

Java Summary 336
Expand 108
Ownership 97
Pointer 88
Usage 87
Deprecation 84
Rationale 50

Python Summary 318
Usage 92
Expand 87
Development Notes 67
Parameters 57

Smalltalk Responsibility 240
Intent 190
Collaborator 91
Examples 81
Class reference 57
Key message 48
Key implementation point 46

(NLP, TEXT, and TEXT+NLP features), by adopting a 10-fold vali-
dation strategy on the term-by-document matrix M; (ii) to avoid
potential bias or overfitting problems, we train the model for
the categories having at least 40 manually validated instances
in our dataset. The average number of comments belonging to
a category varies from 43 comments to 46 comments across all
languages, therefore we selected the categories with a minimum
of 40 comment instances. The top categories selected from each
language with the number of comments are shown in Table 4. In
order to determine whether the differences between the differ-
ent input features and classifiers were statistically significant or
not we performed a Friedman test, followed by a post-hoc Ne-
menyi test, as recommended by Demšar (Demšar, 2006). Results
concerning RQ2 are reported in Section 4.

4. Results

This section discusses the results of our empirical study.

4.1. RQ1: Class comment categories in different programming lan-
guages

As a first step to formulating the CCTM taxonomy we system-
atically map the available taxonomies from previous works and
identify the unmapped categories as shown in Fig. 8. The mapping
taxonomy shows a number of cases in which Java and Python
taxonomies do not entirely fit the Smalltalk taxonomy, as shown
by pink and violet edges in Fig. 8. The figure shows the informa-
tion types particular to a language (highlighted with red edges
and unmapped nodes) such as Subclass Explanations, Observation,
Precondition, and Extension are found in the Smalltalk taxonomy
but not in Python and Java. However, our analysis shows that
these information types are present in the class comments of
Java and Python projects. We introduce such categories to the
existing taxonomies of Java and Python, and highlight them in
green in Fig. 9. On the other hand, the categories such as Com-
mented code, Exception, and Version are found in Java and Python
class comments but not in Smalltalk. One reason can be that the
commented code is generally found in inline comments instead of
documentation comments. However, information about Exception
and Version is found in class comments of Java and Python but not
in Smalltalk.

The mapping taxonomy also highlights the cases where cate-

gories from different taxonomies match partially. We define such

http://waikato.github.io/weka/
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Fig. 9. Categories found in class comments (CCTM) of various projects (shown
n the y-axis) of each programming language. The x-axis shows the categories
nspired from existing work (highlighted in black) and the new categories
highlighted in green)). (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
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categories as subset categories and highlight them with violet
edges. For example, the Deprecation category in Java and the
Version category in Python are found under the Warning category
n Smalltalk but their description given in the respective earlier
ork covers only a subset of that information type according to
ur investigation. Pascarella et al. define the Deprecation category
s ‘‘it contains explicit warnings used to inform the users about
eprecated interface artifacts. The tag comment such as @version,
deprecated, or @since is used’’ whereas Zhang et al. define the
ategory Version as ‘‘identifies the applicable version of some li-
raries’’ but do not mention the deprecation information in this
ategory or any other category in their taxonomy (Pascarella
nd Bacchelli, 2017; Zhang et al., 2018). Thus, we define the
ersion category as a subset or a partial match of the Depre-
ation category. On the other hand, the Warning category in
malltalk (‘‘Warn readers about various implementation details of
he class’’) covers a broader aspect of warnings than the Dep-
recation category but does not mention the Version information
type (Rani et al., 2021). We mark these categories as subset
categories, and highlight them with violet edges. Similarly, the
Collaborator category in Smalltalk matches partially Expand and
Links in Python. The categories such as Expand, Links, and De-
velopment Notes in Python combine several types of information
under them compared to Smalltalk. For example, Expand includes
collaborators of a class, key methods, instance variables, and
implementation-specific details. Such categories formulate chal-
lenges in identifying a particular type of information from the
comment.

Finding 1. The Python taxonomy focuses more on high-level
categories, combining various types of information into each
category whereas the Smalltalk taxonomy is more specific to the
information types.

Using the categories from the mapping taxonomy, we ana-
lyzed class comments of various languages and formulated the
taxonomy for each language to answer the RQ1. Fig. 9 shows
the frequency of information types per language per project. The
categories shown in green are the newly-added categories in each
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axonomy. The categories in each heatmap are sorted according
o the frequency of their occurrence in total. For example, in
ava, Summary appeared in a total of 336 comments (88%) of
ix Java projects out of 378 comments. Pascarella (Pascarella and
acchelli, 2017) proposed a hierarchical taxonomy, grouping the
ower-level categories within the higher-level categories such as
rouping the categories Summary, Rationale, and Expand within
urpose. We show only lower-level categories that correspond
ith identified information types from other languages.
Fig. 9 shows that a few types of information, such as the

ummary of the class (Summary, Intent), the responsibility of the
lass (Responsibility, Summary), links to other classes or sources
Pointer, Collaborator, Links), developer notes (Todo, Development
otes), and warnings about the class (Warning) are found in class
omments of all languages. Summary being the most prevalent
ategory in all languages affirms the value of investing effort
n summarizing the classes automatically (Haiduc et al., 2010;
azar et al., 2016; Binkley et al., 2013; Moreno et al., 2013;
ragan et al., 2010). As a majority of summarization techniques
ocus on generating the intent and responsibilities of the class
or program comprehension tasks (Moreno et al., 2013), other
nformation types such as Warning, Recommendation, and Usage
re generally ignored even though coding style guidelines suggest
o write them in documentation comments. Our results indicate
hat developers mention them frequently, but whether they find
hese information types important to support specific develop-
ent tasks, or they write just to adhere to the coding guidelines,

equires more analysis. Such information types present an inter-
sting aspect to investigate in future work. For example, usage of
class (Usage), its key responsibilities (Responsibility), warnings
bout it (Warning), and its collaborators (Collaborator) are found
n significant numbers of comments in all languages. These infor-
ation types are often suggested by the coding guidelines as they
an support developers in various development and maintenance
asks. These information types can be included in the customized
ode summaries based on the development tasks a developer
s doing. For example, a developer seeking dependent classes
an quickly find such classes from the class comment without
eading the whole comment. Similarly, a developer expected to
efactor a legacy class can quickly go through the warnings, if
resent, to understand the specific conditions better and thus
an save time. We plan to investigate such information types
ith developers. Specifically, we are interested in exploring how
arious categories are useful to developers, and for which kinds
f tasks e.g., program comprehension tasks or maintenance tasks.

Finding 2. Developers embed various types of information in
class comments, varying from the high-level overview of the
class to the low-level implementation details of the class across
the investigated languages.

According to Nurvitadhi et al. (2003), a class comment in Java
hould describe the purpose of the class, its responsibilities, and
ts interactions with other classes. In our study, we observe that
lass comments in Java often contain the purpose and respon-
ibilities of the class (Summary and Expand), but its interactions
ith other classes (Pointer) less often. On the other hand in
malltalk, the information about interactions with other classes,
.e., Collaborator, is the third most frequent information type after
ntent and Responsibility compared to Java and Python. One of
he reasons can be that Smalltalk class comments are guided
y a CRC (Class, Responsibility, Collaborator) design template
nd developers follow the template in writing these information
ypes Rani et al. (2021). Class comments in Java also contain many
ther types of information. The most frequent type of informa-
ion present in class comments is Summary, which shows that
9

evelopers summarize the classes in the majority of the cases.
ascarella et al. found Usage to be the second most prevalent
ategory in code comments, while we find overall Expand to be
the second most prevalent category in class comments, and Usage
to be the fifth most prevalent type of information (Pascarella
and Bacchelli, 2017). However, the most prevalent categories
vary across projects of a language, and also across programming
languages. For example, Usage is mentioned more often than
Expand in Google projects (Guice and Guava) whereas in Apache
projects (Spark, Hadoop) it is not. In contrast to Java, Python
class comments contain Expand and Usage equally frequently
thus showing that Python targets both end-user developers and
internal developers. We notice that Python and Smalltalk class
comments contain more low-level implementation details about
the class compared to Java. For example, Python class comments
contain the details about the class attributes and the instance
variables of a class with a header ‘‘Attributes’’ or ‘‘Parameters’’,
its public methods with a header ‘‘Methods’’, and its constructor
arguments in the Parameters and Expand categories. Additionally,
ython class comments often contain explicit warnings about the
lass (with a header ‘‘warning:’’ or ‘‘note:’’ in the new line), making
he information easily noticeable whereas such behavior is rarely
bserved in Java. Whether such variations in the categories across
rojects and languages are due to different project comment style
uidelines or due to developer personal preferences is not known
et. We observe that developers use common natural language
atterns to write similar types of information. For example, a
malltalk developer described the collaborator class of the ‘‘PM-
ernoulliGeneratorTest’’ class in Listing 1 and a Java developer as
hown in Listing 2 thus showing a pattern ‘‘[This class] for [other
class]’’ to describe the collaborating classes. This information type
is captured in the categories Collaborator in Smalltalk and Pointer
in Java.

A BernoulliGeneratorTest is a test class for testing the
behavior of BernoulliGenerator

Listing 1: Collaborator mentioned in the
PMBernoulliGeneratorTest class in Smalltalk

An {@link RecordReader} for {@link SequenceFile}s.

Listing 2: Collaborator mentioned in the
SequenceFileRecordReader class in Java

Identifying such patterns can help in extracting the type of
information from the comment easily, and can support the de-
veloper by highlighting the required information necessary for a
particular task, e.g., to modify the dependent classes in a mainte-
nance task.

In contrast to earlier studies, we observe that developers men-
tion details of their subclasses in a parent class comment in all
languages. We group this information under the Subclass Expla-
nation category. In the Javadoc guidelines, this information is
generally indicated by a special @inherit tag in the method
comments, but we did not find such a guideline for Java class
comments. Similarly we found no such guideline to describe
subclasses for Smalltalk class comments or method comments. In
contrast, the standard Python style guideline (Python Documen-
tation Guidelines, 2020) suggests adding this information in the
class comment but other Python style guidelines such as those
from Google19 and Numpy20 do not mention this information
type. However, we find instances of class comments containing

19 https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.
html.
20 https://numpydoc.readthedocs.io/en/latest/format.html.

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://numpydoc.readthedocs.io/en/latest/format.html
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ubclass information in the IPython and Pytorch projects that
ollow the Numpy and Google style guidelines respectively. In-
estigating which information types each project style guidelines
uggest for the comments, and to what extent developers follow
hese style guidelines in writing class comments is future work.

Finding 3. Not all information types found in class comments
are suggested by corresponding project style guidelines.

Discussion: In the process of validating the taxonomies, re-
iewers (evaluator reviewing the classification) marked their dis-
greement for the classification, stating their reason, and propos-
ng the changes. A majority of disagreements in the first Smalltalk
teration were due to the long sentences containing different
ypes of information (Intent and Responsibility information types
ere commonly interweaved), and assignment of information
o categories Key Implementation Point and Collaborator. In Java
and Python, we observed that disagreements were due to the
broad and loosely defined categories such as Expand in Java and
Development Notes in Python. Several information types such as
Warning, Recommendation, Observation, and Development Notes
are not structured by special tags and thus pose a challenge for
automatic identification and extraction. On the other hand, a few
categories such as Example and Instance Variable in Smalltalk, and
Deprecation, Links, and Parameters in Java and Python are explic-
itly marked by the headers or the tags such as Usage, Instance
Variable, @since, @see, @params respectively. We observed that
developers use common keywords across languages to indicate
a particular information type. For example, notes are mentioned
in the comment with a keyword ‘‘note’’ as a header as shown in
Listing 3, Listing 4, and Listing 5.

Note that even though these
* methods use {@link URL} parameters, they are usually not

appropriate for HTTP or other
* non-classpath resources.

Listing 3: Explicit note mentioned in the Resources class in Java

.. note::

Depending of the size of your kernel, several (of the last)
columns of the input might be lost, because it is a valid `

cross-correlation`_,
and not a full `cross-correlation`_.
It is up to the user to add proper padding.

Listing 4: Explicit note mentioned in the Conv3d class in Python

Note: position may change even if an element has no parent

Listing 5: Explicit
note mentioned in the BlElementPositionChangedEvent class in
Smalltalk

Several information types are suggested by the project-specific
tyle guidelines but not the exact syntax whereas a large number
f information types are not mentioned by them. Due to the lack
f conventions for these information types, developers use their
wn conventions to write them in the comments.
Maalej et al. (2014) demonstrates that developers consult

omments in order to answer their questions regarding program
omprehension. However, different types of information are in-
erweaved in class comments and not all developers need to
now all types of information. Cioch et al. presented the doc-
mentation information needs of developers depending on the
tages of expertise (Cioch et al., 1996). They showed that experts
10
need design details and low-level details whereas novice devel-
opers require a high-level overview with examples. Therefore,
identifying and separating these information types is essential to
address the documentation needs. Rajlich presented a tool that
gathers important information such as a class’s responsibilities,
its dependencies, member functions, and authors’ comments to
facilitate the developer’s need to access the particular information
types (Rajlich, 2000). We advance the work by identifying and
extracting several other frequent information types from the class
comments automatically.

4.2. RQ2: Automated classification of class comment categories in
different programming languages

Haiduc et al. (2010) performed a study on automatically gen-
erating summaries for classes and methods and found that the
experimented summarization techniques work better on meth-
ods than classes. More specifically, they discovered that while de-
velopers generally agree on the important attributes that should
be considered in the method summaries, there were conflicts
concerning the types of information (i.e., class attributes and
method names) that should appear in the class summaries. In
our study, we found that while Smalltalk and Python developers
frequently embed class attributes or method names in class com-
ments, it rarely happens in Java. Automatically identifying various
kinds of information from comments can enable the generation
of customized summaries based on what information individual
developers consider relevant for the task at hand (e.g., mainte-
nance task). To this aim, as described in Section 3.2, we empiri-
cally experiment with a machine learning-based multi-language
approach to automatically recognize the types of information
available in class comments.

Table 5 provides an overview of the average precision, recall,
and F-Measure results considering the (top frequent) categories
for all languages shown in Table 4. The results are obtained using
multiple machine learning models and various combination of
features21: (i) TEXT features only, (ii) NLP features only, (iii) both
NLP and TEXT features.22 The results in Table 5 show that the
NLP+TEXT configuration achieves the best results with the Ran-
dom Forest algorithm with relatively high precision (ranging from
78% to 92% for the selected languages), recall (ranging from 86% to
92%), and F-Measure (ranging from 77% to 92%). Fig. 10 shows the
performance of the different algorithms with NLP+TEXT features
or the most frequent categories of each language.

Finding 4. Our results suggest that the Random Forest algorithm
fed by the combination of NLP+TEXT features achieves the
best classification performance over the different programming
languages.

According to Table 5, NLP features alone achieve the lowest
classification performance for both Java and Python, while we
observe that this type of feature works well when dealing with
Smalltalk class comments. On the one hand, class comments can
often contain mixtures of structured (e.g., code elements, such
as class and attribute names) and unstructured information (i.e.,
natural language). NEON (i) leverages models trained on general-
purpose natural language sentences to construct the parse tree
of the sentences, and (ii) relies on the generated parse trees to
identify common NLP patterns (Di Sorbo et al., 2019). Therefore,
the presence of code elements degrades NEON’s capability to
generate accurate parse trees, and consequently complicates its

21 File ‘‘RP/Result/RQ2/CV-10-results.xlsx’’ in the Replication package.
22 File ‘‘RP/Result/RQ2/All-steps-results.sqlite’’ in the Replication package.

https://github.com/poojaruhal/RP-class-comment-classification
https://github.com/poojaruhal/RP-class-comment-classification
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able 5
esults for Java, Python, and Smalltalk obtained through different machine learning models and features.
Language ML models TEXT NLP NLP + TEXT

Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Java
J48 0.91 0.92 0.91 0.84 0.81 0.81 0.89 0.90 0.88
Naive Bayes 0.86 0.83 0.83 0.84 0.81 0.81 0.86 0.84 0.84
Random forest 0.91 0.92 0.91 0.84 0.87 0.82 0.92 0.92 0.92

Python
J48 0.73 0.83 0.73 0.68 0.80 0.66 0.81 0.83 0.79
Naive Bayes 0.78 0.69 0.72 0.75 0.77 0.75 0.79 0.72 0.74
Random forest 0.84 0.85 0.83 0.78 0.81 0.78 0.85 0.86 0.84

Smalltalk
J48 0.60 0.87 0.58 0.61 0.88 0.59 0.72 0.88 0.70
Naive Bayes 0.84 0.80 0.82 0.85 0.83 0.83 0.86 0.82 0.84
Random forest 0.75 0.90 0.73 0.82 0.88 0.82 0.78 0.90 0.77
Fig. 10. Performance of the different classifiers based on F-measure for the TEXT + NLP feature set.
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attern recognition task. On the other hand, code in Smalltalk
esembles natural language (English) phrases, e.g., the method,
hown in Listing 6, ‘‘addString: using:’’ takes two parameters
‘string’’ and ‘‘CamelCaseScanner new’’ written in a natural lan-
uage sentence style. Similarly, class comments in Smalltalk are
ritten in a more informal writing style (often using the first-
erson form, and written in complete sentences as shown in
ig. 3), compared to Java and Python (which suggest to write in
formal way using the third-person form). As demonstrated in
revious work (Panichella et al., 2015; Di Sorbo et al., 2015), the
sage of predicate–argument patterns is particularly well-suited
hen dealing with classification problems in highly unstructured
nd informal contexts.

Terms subclasses Bag with support for handling stop words etc.

example: string
| terms |
terms := Terms new.
terms addString: string using: CamelCaseScanner new.
terms withCountDo: [ :term :count |term -> count ].

Listing 6: (Smalltalk) Code in MalTerms comment resembles
natural language

Finding 5. When dealing with sentences containing mixtures
of code elements and natural language texts, NLP tools based
on parse trees fail to correctly identify well-suited NLP features.
The usage of these features is otherwise recommended when the
class comments are mostly unstructured.

For the sake of brevity, we base the following analysis on
he NLP+TEXT configuration when used with the Random Forest
classifier. Table 6, Table 7, and Table 8 respectively report the
precision, recall, and F-Measure for the top frequent categories
(see Section 4.2) obtained through the Random Forest algorithm
with the NLP+TEXT features.

In the case of Java, as shown in Table 6, Deprecation, Ownership,
nd Rationale achieve high F-measure scores (≥ 95%), while
 c

11
Table 6
Results for Java using the random forest classification model.
Category NLP + TEXT

Precision Recall F-Measure

Summary 0.87 0.88 0.87
Expand 0.86 0.87 0.86
Ownership 0.99 0.99 0.99
Pointer 0.91 0.91 0.91
Usage 0.88 0.88 0.87
Deprecation 0.98 0.98 0.98
Rationale 0.95 0.95 0.95

Expand, Summary and Usage are the categories with the lowest
F-measure values (but still higher than 85%). This means that
for most Java categories Random Forest achieves very accurate
classification results. However, we observe a certain variability
in the results, depending on the category (see Table 4). While in
our manually validated sample Summary and Usage occur more
requently than other categories, we observe that they achieve a
lassification performance lower than Deprecation and Ownership
Table 6). This outcome can be due to the presence of specific an-
otations or words that often occur in sentences belonging to the
eprecation (e.g., @since) and Ownership (e.g., @author) categories.
lthough we removed all the special characters (annotation sym-
ols) from the sentences, the techniques based on NLP+TEXT
eatures can well capture the specific terms that frequently occur
nd are useful for identifying these categories. For instance, in the
aadin project, the Ownership category always contains ‘‘Vaadin’’
n the @author field. Similarly, in the other Java projects, author
ame patterns are included in the NLP+TEXT feature set.
In contrast with Deprecation and Ownership categories, we

o not observe recurrent annotations or words introducing sen-
ences of the Rationale type. However, they are more accurately
lassified compared to sentences in the Summary, and Expand
ategories. This could depend on the quantity and quality of the
LP features captured in these categories, jointly with a lower
ariability in the structure of comments falling in the Rationale
lass. In particular, we observed that for the Rationale category
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able 7
esults for Python using the random forest classification model.
Category NLP + TEXT

Precision Recall F-Measure

Summary 0.86 0.86 0.85
Usage 0.83 0.83 0.82
Expand 0.83 0.86 0.83
Development Notes 0.87 0.89 0.87
Parameters 0.86 0.86 0.85

twelve unique NLP features have information gain values higher
han 0.01, whereas two unique NLP features for the Summary
ategory and only one NLP feature for the Expand category have
nformation gain scores higher than 0.01. In terms of quality, the
op-ranked NLP feature (or pattern) of the Summary category
i.e., ‘‘Represents [something]’’) occurs in only 3% of the overall
omments falling in this category, whereas the top-ranked feature
f the Rationale category (i.e., ‘‘Has [something]’’) occurs in 8% of
he total comments belonging to such category. Nevertheless, the
LP heuristics that occur in the sentences belonging to the Expand
lass are also frequent in the instances of the Pointer and Usage
ategories, making it harder to correctly predict the type of the
entences falling in these categories. Specifically, the NLP feature
ith the highest information gain score (i.e., ‘‘See [something]’’) for
he Expand category (information gain = 0.00676) is also relevant
or identifying sentences of the Pointer category, exhibiting an
nformation gain value higher than the one observed for the
xpand category (i.e., 0.04104).
In the case of Python (see Table 7), the F-measure results

re still positive (> 80%) for all the considered categories. Sim-
lar to Java, more frequent categories do not achieve the best
erformance. For example, the category Parameter is the least
requent among the categories considered but achieves higher
erformance than most of the categories, as shown in Table 7. In
ontrast to Java, Python developers frequently use specific words
e.g., ‘‘params’’, ‘‘args’’, or ‘‘note’’), rather than annotations, to
enote a specific information type. We observe that these words
requently appear in sentences of the Parameter and Development
ote categories and these terms are captured in the related fea-
ure sets. In the Python classification, the Usage category reports
he lowest F-measure due to its maximum ratio of incorrectly
lassified instances, i.e., 17% among all categories. This outcome
an be partially explained by the small number of captured NLP
euristics (one heuristic ‘‘[something] defaults’’ is selected accord-

ing to the information gain measure with threshold 0.005). We
also observe that instances of the Usage category often contain
code snippets mixed with informal text, making it hard to identify
features that would be good predictors of this class. Similarly, the
instances in the Expand category also contain mixtures of natural
language and code snippets. Separating code snippets from natu-
ral language elements and treating each portion of the mixed text
with a proper approach can help (i) to build more representative
feature sets for these types of class comment sentences, and (ii)
to improve overall classification performance.

Concerning Smalltalk, the Random Forest model provides
slightly less stable results compared to Python and Java (see
Table 5). As shown in Table 8, in the case of Smalltalk, Intent is
the comment type with the highest F-measure. However, for most
categories F-measure results are still positive (> 78%), except
for the Class references category. The Class references category
aptures the other classes referred to in the class comment.
andom Forest is the ML algorithm that achieves the worst
esults (F-Measure of 29%) for this category. However, the Naive
ayes algorithm achieves an F-Measure score of 93% for the
ame category. Similarly for the Collaborator category the Naive
12
Table 8
Results for Smalltalk using the random forest classification model.
Category NLP + TEXT

Precision Recall F-Measure

Responsibility 0.79 0.82 0.78
Intent 0.92 0.92 0.90
Collaborator 0.83 0.94 0.83
Example 0.85 0.84 0.85
Class references 0.29 0.98 0.29
Key messages 0.92 0.92 0.89
Key implementation points 0.87 0.89 0.85

Bayes model achieved better results compared to the Random
Forest model. Both categories can contain similar information, i.e.,
the name of other classes the class interacts with. We observe
that in Smalltalk, camel case class names are generally split into
separate words in comments, thus making it hard to identify
them as classes from the text. Nevertheless, as demonstrated in
previous work (Pascarella and Bacchelli, 2017), the Naive Bayes
algorithm can achieve high performance in classifying informa-
tion chunks in code comments containing code elements (e.g.,
Pointer), while its performance degrades when dealing with less
structured texts (e.g., Rationale). We observe similar behavior for
the Links category in Python taxonomy. Fig. 8 shows that all these
categories such as Links, Pointer, Collaborator, and Class references
contain similar types of information. In contrast, developers fol-
low specific patterns in structuring sentences belonging to other
categories such as Intent and Example, as reported in previous
work (Rani et al., 2021). In future work, we plan to explore
combining various machine learning algorithms to improve the
results (Alexandre et al., 2001).

To qualitatively corroborate the quantitative results and un-
derstand the importance of each considered NLP heuristic, we
computed the popular statistical measure information gain for
the NLP features in each category, and ranked these features
based on their scores. We use the default implementation of
the information gain algorithm and the ranker available in Weka
with the threshold value 0.005 (Quinlan, 1986). Interestingly, for
each category, the heuristics having the highest information gain
values also exhibit easily explainable relations with the intent of
the category itself. For instance, for the Responsibility category in
Smalltalk (which lists the responsibilities of the class) we observe
that ‘‘Allows [something]’’ and ‘‘Specifies [something]’’ are among
the best-ranked heuristics. Similarly, we report that ‘‘[something]
is used’’ and ‘‘[something] is applied’’ are among the heuristics
having the best information gain values for the Collaborator cat-
egory (i.e., interactions of the class with other classes), while the
heuristics ‘‘[something] is class for [something]’’ and ‘‘Represents
[something]’’ have higher information gain values when used to
identify comments of the Intent type (i.e., describing the purpose
of the class). These heuristics confirm the patterns identified
by Rani et al. in their manual analysis of Smalltalk class com-
ments (Rani et al., 2021). Similar results are observed for the other
languages. More specifically, for the Summary category in Java,
the heuristics ‘‘Represents [something]’’ and ‘‘[something] tests’’ are
among the NLP features with the highest information gain. In-
stead, in the case of the Expand and Pointer categories, we observe
a common relevant heuristic: ‘‘See [something]’’.. The analysis of
the top heuristics for the considered categories highlight that
developers follow similar patterns (e.g., ‘‘[verb] [something]’’) to
summarize the purpose and responsibilities of the class across
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he different programming languages. However, no common pat-
erns are found when discussing specific implementation details
Expand and Usage in Java and Python and Example in Smalltalk).

Finding 6. In all the considered programming languages, de-
velopers follow similar patterns to summarize the purpose and
the responsibilities of a class. No common patterns are observed
when implementation details are discussed.

Discussion: To further confirm the reliability of our results,
we complement previous results with relevant statistical tests.
In particular, the Friedman test reveals that the differences in
performance among the classifiers is statistically significant in
terms of F-Measure. Thus, we can conclude that when com-
paring the performance of classifiers and using different input
configurations, the choice of the classifier significantly affects the
results. Specifically, to gain further insights about the groups that
statistically differ, we performed the Nemenyi test. Results of the
test suggest that the Naive Bayes and the J48 models do not
statistically differ in terms of F-Measure, while the Random Forest
model is the best performing model, with statistical evidence
(p-value < 0.05).

To analyze how the usage of different features (NLP, TEXT,
NLP+TEXT) affects the classification results, we also executed a
Friedman test on the F-Measure scores obtained by the Random
Forest algorithm for each possible input combination. The test
concluded that the difference in the results with different inputs
is statistically significant (p-value < 0.05). To gain further insight
into the groups that statistically differ, we performed a Nemenyi
test. The test revealed that there is significant difference between
the NLP and NLP+TEXT combinations (p-value < 0.05). This
result confirms the importance of both NLP and TEXT features
when classifying class comment types in different languages. The
input data and the scripts used for the tests are provided in the
Replication package.23 Currently, we use the TF–IDF weighting
scheme for TEXT features but we plan to experiment with other
weighting schemes for future work, for instance, TF–IDF-ICSDF
(Inverse Class Space Density Frequency) as it considers also the
distribution of inter-class documents when calculating the weight
of each term (Dogan and Uysal, 2020).

4.3. Reproducibility

In order to automate the study, we developed a Command Line
Interface (CLI) application in Java. The application integrates the
external tool NEON, and the required external libraries (Standford
NLP) to process and analyze the data (WEKA) using Maven. The
input parameters for the application are the languages (e.g., Java,
Python) to analyze, their input dataset path, and the tasks to
perform. Various tasks fetch the required input data from the
database, perform the analysis, and store the processed output
data back in it. The results of intermediate steps are stored in the
database24 and the final results are exported as CSV automatically
using Apache Commons CSV.

5. Threats to validity

We now outline potential threats to the validity of our study.
Threats to construct validity mainly concern the measurements
sed in the evaluation. To answer the RQs, we did not consider
he full ecosystem of projects in each language but selected a
ample of projects for each language. To alleviate this concern to

23 Folder ‘‘RP/Result/RQ2/Statistical-analysis’’ in the Replication package.
24 File ‘‘RP/Results/RQ2/All-steps-result.sqlite’’ in the Replication package.
13
some extent, we selected heterogeneous projects used in the ear-
lier comment analysis work of Java, Python, and Smalltalk (Pas-
carella and Bacchelli, 2017; Zhang et al., 2018; Rani et al., 2021).
The projects in each language focus on different domains such
as visualization, data analysis, or development frameworks. They
originate from different ecosystems, such as Google and Apache
in Java, or Django Foundation, or community project in Python.
Thus, the projects follow different comment guidelines (or cod-
ing style guidelines). Additionally, the projects are developed by
many contributors (developers), which further lowers the risk
toward a specific developer commenting style.

Another important issue could be due to the fact that we sam-
pled only a subset of the extracted class comments. However, the
sample size limits the estimation imprecision to 5% of error for a
confidence level of 95%. To further mitigate concerns related to
subjectiveness and bias in the evaluation, the truth set was built
based on the judgment of four annotators (four authors of this
work) who manually analyzed the resulting sample. Moreover,
an initial set of 50 elements for each language was preliminarily
labeled by all annotators and all disagreements were discussed
between them. To reduce the likelihood that the chosen sam-
ple comments are not representative of the whole population,
we used a stratified sampling approach to choose the sample
comments from the dataset, thus considering the quartiles of the
comment distribution for each language.25

Another threat to construct validity concerns the definition of
the CCTM and the mappings of the different language taxonomies
performed by four human subjects. To counteract this issue, we
used the categories defined by the earlier works in the comment
analysis (Pascarella and Bacchelli, 2017; Zhang et al., 2018; Rani
et al., 2021).

Threats to internal validity concern confounding factors that
could influence our results. The main threat to internal validity in
our study is related to the manual analysis carried out to prepare
the CCTM and the mapping taxonomy. Since it is performed by
human subjects, it could be biased. Indeed, there is a level of sub-
jectivity in deciding whether a comment type belongs to a specific
category of the taxonomy or not, and whether a category of
one language taxonomy maps to a category in another language
taxonomy or not. To counteract this issue, the evaluators of this
work were two Ph.D. candidates and two faculty members, each
having at least four years of programming experience. All the de-
cisions made during the evaluation process and validation steps
are reported in the replication package (to provide evidence of
the non-biased evaluation), and described in detail in the paper.26
Also, we performed a two-level validation step. This validation
step involved further discussion among the evaluators, whenever
their opinions diverged, until they reached a final consensus.

Threats to conclusion validity concern the relationship between
treatment and outcome. Appropriate statistical procedures have
been adopted to draw our conclusions. To answer RQ2, we inves-
tigate whether the differences in the performance achieved by
the different machine learning models with different combination
of features were statistically significant. To perform this task, we
used the Friedman test, followed by a post-hoc Nemenyi test, as
recommended by Demšar (2006).

Threats to external validity concern the generalization of our
esults. The main aim of this paper is to investigate the class com-
enting practices for the selected programming languages. The

25 File ‘‘RP/Dataset/RQ1/Java/projects-distribution.pdf’’ in the Replication
package.
26 Folder ‘‘RP/Result/RQ1/Manually-classified-comments’’ in the Replication
package.

https://github.com/poojaruhal/RP-class-comment-classification
https://github.com/poojaruhal/RP-class-comment-classification
https://github.com/poojaruhal/RP-class-comment-classification
https://github.com/poojaruhal/RP-class-comment-classification
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roposed approach may achieve different results in other pro-
ramming languages or projects. To limit this threat, we consid-
red both static and dynamic types of object-oriented program-
ing languages having different commenting style and guide-

ines. To reduce the threat related to the project selection, we
hose diverse projects, used in previous studies about comment
nalysis and assessment. The projects vary in terms of size, do-
ain, contributors, and ecosystems. Finally, during the definition
f our taxonomy (i.e., CCTM) we mainly rely on a quantitative

analysis of class comments, without directly involving the actual
developers of each programming language. Specifically, for future
work, we plan to involve developers, via surveys and interviews.
This step is particularly important to improve the results of our
work and to design and evaluate further automated approaches
that can help developers achieve a high quality of comments.

6. Related work

Comment classification. Comments contain various informa-
tion types (Ying et al., 2005) useful to support numerous software
development tasks. Recent work has categorized the links found
in comments (Hata et al., 2019), and proposed comment cate-
gories based on the actual meaning of comments (Padioleau et al.,
2009). Similar to these studies, our work is aimed at supporting
developers in discovering important types of information from
class comments.

Steidl et al. classified the comments in Java and C/C++ pro-
grams automatically using machine learning approaches. The pro-
posed categories are based on the position and syntax of the
comments, e.g., inline comments, block comments, header com-
ments etc (Steidl et al., 2013). Differently from Steidl et al. our
work focuses on analyzing and identifying semantic informa-
tion found in class comments in Java, Python, and Smalltalk.
Pascarella et al. presented a taxonomy of code comments for
Java projects (Pascarella and Bacchelli, 2017). In the case of Java,
we used the taxonomy from Pascarella et al. to build our Java
CCTM categories. However, our work is different from the one of
Pascarella et al. as it focuses on class comments in three different
languages, which makes our work broader in terms of studied
languages and more specific in terms of type of code comments
studied. Complementary to Pascarella, et al.’s work, Zhang et al.
(2018) reported a code comment taxonomy in Python. Compared
to the Python comment taxonomy of Zhang et al. we rarely
observed the Version, Todo, and Noise categories in our Python
lass comment taxonomy. More importantly, we found other
ypes of information in Python class comments that developers
mbed in the class comments but were not included in the Python
omment taxonomy of Zhang et al. such as the Warning, Observa-
tion, Recommendation and Precondition categories of the proposed
CTM. More in general, our work complement and extend the
tudies of Pascarella et al. and Zhang et al. by focusing on class
omments in three different languages, which makes our work
roader in terms of studied languages as well as the types of code
omments reported and automatically classified.
Several studies have experimented with numerous approaches

o identify the different types of information in comments (Dra-
an et al., 2010; Ying and Robillard, 2014; Shinyama et al., 2018;
eist et al., 2020). For instance, Dragan et al. used a rule-based
pproach to identify the Stereotype of a class based on the class
ignature (Dragan et al., 2010). Their work is aimed at recognizing
he class type (e.g., data class, controller class) rather than the
ype of information available within class comments, which is the
ocus of our work. Shinyama et al. (2018) focused on discovering
pecific types of local comments (i.e., explanatory comments) that
xplain how the code works at a microscopic level inside the
unctions. Similar to our work, Shinyama et al. and Geist et al.
14
considered recurrent patterns, but crafted themmanually as extra
features to train the classifier. Thus, our approach is different,
as it is able to automatically extract different natural language
patterns (heuristics), combining them with other textual features,
to classify class comment types of different languages.

Further comment analysis. Apart from identifying informa-
tion types within comments, analyzing comments for other pur-
poses has also gained a lot of attention in the research community
in the past years. Researchers are investigating methods and
techniques for generating comments (Haiduc et al., 2010; Niele-
bock et al., 2019), assessing their quality (Khamis et al., 2010;
Steidl et al., 2013; Yu et al., 2016), detecting inconsistency be-
tween code and comments (Ratol and Robillard, 2017; Wen et al.,
2019; Zhou et al., 2017; Liu et al., 2018), examining co-evolution
of code and comments (Jiang and Hassan, 2006; Fluri et al.,
2007, 2009; Ibrahim et al., 2012), identifying bugs using com-
ments (Tan et al., 2007), or establishing traceability between code
and comments (Marcus and Maletic, 2003; Antoniol et al., 2000).

Other work has focused on experimenting with rule-based
and machine-learning-based techniques and identified further
program comprehension challenges. For instance, for labeling
source code, De Lucia et al. (2012) found that simple heuristic
approaches work better than more complex approaches, e.g., LSI
and LDA. Moreno et al. (2013) proposed NLP and heuristic-based
techniques to generate summaries for Java classes. Finally, recent
research by Fucci et al. (2019) studied how well modern text
classification approaches can identify the information types in API
documentation automatically. Their results have shown how neu-
ral network outperforms traditional machine learning approaches
and naive baselines in identifying multiple information types
(multi-label classification). In the future, we plan to experiment
with class comment classification using neural networks.

7. Conclusion

Class comments provide a high-level understanding of the
program and help one to understand a complex program. Differ-
ent programming languages have their own commenting guide-
lines and notations, thus identifying a particular type of informa-
tion from them for a specific task or evaluating them from the
content perspective is a non-trivial task.

To handle these challenges, we investigate class commenting
practices of a total of 20 projects from three programming lan-
guages, Java, Python, and Smalltalk. We identify more than 17
types of information class comments of each programming lan-
guage. To automatically identify the most frequent information
types characterizing these languages, we propose an approach
based on natural language processing and text analysis that clas-
sifies, with high accuracy, the most frequent information types of
all the investigated languages.

The contributions of our work are (i) an empirically validated
taxonomy for class comments in three programming languages;
(ii) a mapping of taxonomies from previous works; (iii) a common
automated classification approach able to classify class comments
according to a broad class comment taxonomy using various
machine learning models trained on top of different feature sets;
and (iv) a publicly available dataset of 37446 class comments
from 20 projects and 1066 manually classified class comments.27

Our results highlight the different kinds of information class
comments contain across languages. We found many instances of
specific information types that are not suggested or mentioned by
their respective coding style guidelines. To what extent developer
commenting practices adhere to these guidelines is not known
yet and is part of our future work agenda. We argue that such

27 Folder ‘‘RP/Dataset/RQ1/Java’’ in the Replication package.

https://github.com/poojaruhal/RP-class-comment-classification
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n analysis can help in evaluating the quality of comments, also
uggested by previous works (Padioleau et al., 2009; Haouari
t al., 2011; Steidl et al., 2013). To investigate this aspect, we plan
o extract the coding style guidelines of heterogeneous projects
elated to comments and compare the extracted guidelines with
he identified comment information types (using our proposed
pproach). Moreno et al. used a template-based approach to
enerate Java comments (Moreno and Marcus, 2017) where the
emplate includes specific types of information they deem im-
ortant for developers to understand a class. Our results show
hat frequent information types vary across systems. Using our
pproach to identify frequent information types, researchers can
ustomize the summarization templates based on their software
ystem.
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