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Abstract

Biodiversity conservation faces a methodological conundrum: Biodiversity measurement 

often relies on species, most of which are rare at various scales, especially prone to 

extinction under global change, but also the most challenging to sample and model. 

Predicting the distribution change of rare species using conventional species distribution 

models is challenging because rare species are hardly captured by most survey systems. 

When enough data is available, predictions are usually spatially biased toward locations 

where the species is most likely to occur, violating the assumptions of many modelling 

frameworks. Workflows to predict and eventually map rare species distributions imply 

important trade-offs between data quantity, quality, representativeness, and model 

complexity that need to be considered prior to survey and analysis. Our opinion is that study 

designs need to carefully integrate the different steps, from species sampling to modelling, in 

accordance to the different types of rarity and available data in order to improve our capacity 

for sound assessment and prediction of rare species distribution. In this article, we 

summarize and comment on how different categories of species rarity lead to different types 

of occurrence and distribution data depending on choices made during the survey process, A
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namely the spatial distribution of samples (where to sample) and the sampling protocol in 

each selected location (how to sample). We then clarify which species distribution models 

are suitable depending on the different types of distribution data (how to model). Among 

others, for most rarity forms, we highlight the insights from systematic species-targeted 

sampling coupled with hierarchical models that allow correcting for overdispersion and for 

spatial and sampling sources of bias. Our article provides scientists and practitioners with a 

much-needed guide through the ever-increasing diversity of methodological developments to 

improve prediction of rare species distribution depending on rarity type and available data.

Keywords
bias, detectability, distribution change, methods, occupancy, rare species, sampling, spatial 

data, species distribution modelling, survey

Box 1. Glossary (of the terms underlined in the main text)

● Hierarchical Models (HM): or multi-level models. Statistical models of parameters 

that vary at more than one level of data organization (e.g., nested data, such as 

abundances of a given species located in different habitat types themselves located 

in different ecoregions) and thus allow accounting for the potential interdependence 

between the data points (for further details, see e.g. (Gelman & Hill, 2007; 

Raudenbush & Bryk, 2002)). 

● Mark-release-recapture (MRR): Mark-release-recapture, or capture-mark-recapture, 

is a sampling technique that consists in capturing, marking and releasing individuals 

of a species in a first capture session. In one or more follow-up capture sessions, the 

ratio of marked to unmarked specimens is taken to estimate population size (see e.g. 

(Southwood & Henderson, 2009; B. K. Williams et al., 2002)).

● Occupancy: Occupancy can refer to two different notions (MacKenzie et al., 2017); 

(1) the probability of a site to be occupied by a given species, i.e. the a priori 

expectation that a particular site will be occupied by the species as determined by A
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some underlying process (or occurrence probability), (2) the proportion of area or 

sites occupied, which results from the realization of the former process.

● Patchiness: The way habitat patches (and populations) are distributed through 

space. Habitat patches can be clumped (i.e. spatially aggregated in patches 

concentrated in a few places, potentially most at risk under environmental 

stochasticity), patchy (i.e. spatially aggregated according to irregular patterns, e.g. 

one, two, or five patches per group of patches), random, and regular (i.e. uniformly 

distributed apart from each other).

● Spatially representative sample-set: Sample-set collected at a set of locations that 

are spatially distributed in a statistically unconstrained manner, e.g. by a stratified 

design, in which areas are stratified according to their environmental conditions and 

the number of samples in each stratum is proportional to the area of that stratum. 

Such sampling is spatially representative of the variability of these conditions over the 

whole study area and does not over-represent unusual but rare environmental 

conditions.

● Species Distribution Model (SDM): Here used as a generic catch-all term to refer to 

any empirical model that allows spatially-explicit prediction of the current or future 

environmental suitability for a species (using presence-only, presence/absence 

and/or abundance data) based on predictors (such as climate, land-use, etc.) and, 

possibly, scenarios (e.g. IPCC’s climate change scenarios) (Guisan & Thuiller, 2005). 

Depending on the objectives and underlying assumptions – but mostly using the 

same types of data and algorithms, these models are also called ecological niche 

models (ENMs), habitat suitability models (HSMs), niche-based models (NBMs), 

potential habitat distribution models (PHDMs), and when used only with climate 

variables, climate-envelope models (CEMs) or climate matching models (CMMs) 

(Guisan et al. 2013). For instance, ENM can give more focus to species niche 

quantification or requirements while strict SDMs focus more on getting spatial 

predictions of species distribution(Saupe et al., 2012). In the context of rare species 

modelling, models aim to predict either the probability / likelihood of occurrence, or A
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the probability of environmental suitability for the species, with the caution that these 

predictions may differ from the realized distribution because a location may be 

suitable but not reachable by the species.

Introduction

Almost all international, national, and local conservation planning activities flag biodiversity 

as a crucial environmental property (e.g. Aichi Targets, Sustainable Development Goals) 

(Butchart et al., 2016; Griggs et al., 2013) to be protected from the deleterious effects of 

habitat loss, exploitation, pollution and climate change (IPBES, 2019; Maxwell et al., 2016; 

Rands et al., 2010). However, biodiversity measurement often relies on species, most of 

which are rare at various scales (Enquist et al., 2019; Fontaine et al., 2007; Hartley & Kunin, 

2003; Henle et al., 2010; Rabinowitz, 1981; Steege et al., 2013). Several initiatives to halt 

biodiversity loss have questioned whether current measures of biodiversity do actually 

sufficiently account for rare species (e.g. Fontaine et al., 2007). For example, one third of 

plant species worldwide are too poorly known and have too few data for a Red List 

assessment (Brummitt et al., 2015; Enquist et al., 2019). At the same time, rare species are 

especially prone to extinction (Courchamp et al., 2006; Henle et al., 2004; Işik, 2011; Kunin 

& Gaston, 1993; McKinney, 1997). One way to assess extinction risk is to track the change 

in spatial distribution through time (Araújo et al., 2002; Benito et al., 2009; Gärdenfors et al., 

2001; Thomas et al., 2004). Therefore, protecting species diversity directly implies protecting 

rare species, which requires understanding their distribution patterns. 

Unfortunately, rarity causes considerable methodological difficulties in obtaining sufficient 

data from survey programmes or alternative sources (e.g. D. L. Roberts et al., 2016), which 

limits the ability of models to predict distribution patterns. For example, many studies using 

species distribution models (SDMs, defined in Box 1) need a minimum number of 

occurrences below which the models cannot be reliably trained and/or validated (e.g. van 

Proosdij et al., 2016). Thus, we are locked in the ‘rare-species modelling paradox’ (Lomba et 
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al., 2010): the majority of species that require the greatest protection also are the species we 

know least about and are most difficult to model. 

However, rarity is an umbrella term used to describe various types of distribution patterns at 

various scales. Rabinowitz (1981) defined seven categories of rarity based on combinations 

of the range of a species, the distribution of populations within its range and the local density 

of the species when present (Figure 1a). Whatever measure used (e.g. range size, 

occupancy, abundance, relative cover, biomass), and ecosystem or scale of the study, a 

community is likely to include a handful of common species and a long tail of rare species 

(Fisher et al., 1943; Preston, 1948). The resulting pattern of species-abundance 

distributions, following a log-like curve in most natural systems (but also see (Magurran & 

Henderson, 2003)), is observed on local to global scales, with correspondingly fine 

abundance (McGill et al., 2007) to range size frequency (Gaston, 1998) data.

With the goal of mapping rare species' distribution ranges and changes for protection 

purposes, each of the seven types of rarity implies different problems in accumulating data 

for modelling. For example, two species A and B with similar prevalence are both found 

within an area: Species A has a narrow range with high local density (rarity category 2) and 

species B has a broad range with low local density (rarity category 4). Randomly distributed 

sampling in this area is likely to sample only a few sites where species A is present and 

many sites where species B is present; consequently, species B’s distribution is likely to be 

better evaluated than species A’s distribution. However, a priori knowledge on where 

species A is present may mean that species A is more often encountered than species B; 

consequently, the dataset contains more presences of species A than of species B. The type 

of rarity, the spatial distribution of samples and the protocol used to sample each location 

thus all affect the data generated, and the types of model used to project the species’ 

distribution range. Finally, with the perpetual changes in taxonomy (taxonomic revisions), the 

identification, assessment, and conservation of rare species are constantly challenged (Ota, 

2000; Schwartz & Simberloff, 2001; Standley, 1992) (but see also (Domínguez Lozano et al., A
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2007; Simkins et al., 2020)) and the expected increase of species number for some 

taxonomic groups (Morrison III et al., 2009) foresees an endless need to coping with rarity 

issues. 

We therefore face a conundrum in which, although rarity is ubiquitous, it is particularly 

challenging to account for, sample and model, at all scales. While some publications already 

provide comprehensive overview on specific aspects of the different steps from sampling to 

modelling rare species (Cunningham & Lindenmayer, 2005; Green & Young, 1993; Hermoso 

et al., 2015; Kenkel et al., 1990; Milner-Gulland & Rowcliffe, 2007; Robinson et al., 2018; W. 

Thompson, 2013), how to improve our prediction of rare species distribution changes 

remains a complete challenge to date (Aubry et al., 2017; Didham et al., 2020; Galante et 

al., 2018; Helmstetter et al., 2021). Our perspective is that all steps need to be integrated in 

study design. In particular, their sequence needs to be adapted to the different types of rarity 

to improve our capacity for sound assessments and predictions of the distribution of the 

majority of biodiversity. However, the trade-offs faced when modelling the distribution of rare 

species and the decision path linking the form of rarity with the sampling and modelling 

strategies have largely been neglected. Therefore, to help untangle the rarity conundrum 

and adapt modelling strategies to the rarity issues, we aim, for each of Rabinowitz’s 

categories of rarity: 

(i) To identify the main trade-offs involved in selecting adequate, cost-effective 

sampling strategies and how these affect the properties of the data, 

(ii) To identify modelling frameworks that are potentially suitable for the type of data 

generated and to highlight gaps that require model development.

To address the first aim, we focus on the spatial distribution of samples (‘where to sample’) 

and on the protocols used to do the sampling (‘how to sample’). For the second aim, we list 

and discuss the main modelling frameworks suitable for producing distribution maps for 

different types of rarity (‘how to model’). We synthesize our findings, provide guidelines to 

optimize and integrate monitoring and modelling of rare species depending on their rarity 
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characteristics and briefly discuss remaining challenges with respect to sampling and 

modelling rare species.

Where to sample

When setting up a survey program there are multiple ways by which the spatial allocation of 

samples can be decided (Table 1; Figure 1b). Any choice made at this stage will affect the 

properties of the collected data. The main trade-off to consider is between sampling 

efficiency and spatial coverage. 

Locally-focused sampling targeting a particular species allows its population to be studied 

efficiently, but at the expense of a spatially non-representative sample of the species 

distribution. This conflicts with the aim of covering the realised niche of a species, an 

assumption of most modelling frameworks. For species whose distribution range is relatively 

wide and distribution pattern is dispersed (common species and rarity category 4), a spatially 

representative sample-set of the entire extent is more likely to provide the required 

occurrence data. Spatially representative sampling has several positive properties. First, 

data are comparable among species, allowing cost-effective monitoring of multiple species. 

Second, even if the location of samples is not constant, data remain comparable between 

years, allowing the detection of temporal changes in distribution (if sampling intensity is kept 

constant). Third, data on the focal species fit easily into most modelling frameworks, if 

enough are collected. This is usually done with a systematic sampling scheme on a grid, 

stratifying the sampling according to habitat or land cover (while ensuring proportional 

sampling in each stratum), or by randomly selecting the sampling locations (Table 1; Figure 
1b). 

However, for species with narrow and/or clumped and patchy distribution patterns (rarity 

categories 1, 2, 3, 5, 6, 7), a random sample-set of the entire extent is unlikely to capture 

sufficient information. For example, in the 2007 UK plants countryside survey, 591 one-km2 A
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locations were included in a stratified random design (Bunce et al., 2014; Carey et al., 2008): 

the survey recorded 880 species. As there are approximately 4000 plant species in the UK, 

the survey failed to detect 2400 rare species. In fact, the narrower and clumpier the 

distribution of a species, the larger the number of random sites needed to encounter the 

species in enough locations to make credible estimates of abundance or distributional status 

and changes. Thus, one may need to constrain the sampling towards the target species.

Various methods allow the distribution of samples to target locations more likely to contain a 

certain rare species (Table 1; Figure 1b). One such example is adaptive sampling (W. 

Thompson, 2013; Yoccoz et al., 2001). Many programs periodically monitoring rare species 

sample locations where the species is known to occur, but rarely look in new sites. Such 

adaptive sampling may be excellent in keeping track of known populations, but eventually 

leads to erroneous conclusions regarding distribution trends. Consider a species subject to 

metapopulation dynamics, experiencing local extinctions and colonization of patches: if 

sampling is in known locations only, one may identify all local extinctions (and a preceding 

gradual decrease in population size) but not identify the colonization of new patches. Thus, 

we might wrongly conclude that the species distribution is deteriorating while it may in fact 

be in an equilibrium state (Magurran et al., 2010) (but see (McRae et al., 2017)).

Another fruitful approach is to combine adaptive with SDM-guided sampling (Aizpurua et al., 

2015; Chiffard et al., 2020; e.g. Lin et al., 2014) where one sampling session provides 

information to model and the following sessions allow adjusting the distribution of samples 

(S. K. Thompson, 2013; W. Thompson, 2013; Yoccoz et al., 2001). For example, a SDM 

with data sampled at a certain time can tag potentially unknown local populations for 

sampling the next year (e.g. Lin et al., 2014). Once the area is sampled and SDM 

parameters updated, the SDM is re-run and new locations targeted. Such a strategy may be 

very efficient at accumulating observations of rare species. However, it comes with the risk 

of estimating an over-optimistic occupancy trend, as the number of detected presences can 

increase over time while the distribution actually decreases (Table 1). Appropriately A
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parametrized stacked SDMs, including rarity weighting, can further allow improving the 

sampling of multiple rare species and help prioritize sampling areas (Rosner-Katz et al., 

2020). Any form of adaptive sampling therefore needs considerable manipulation and/or 

reliable complementary information for further species distribution modelling (Dorazio, 2014; 

Hefley et al., 2014; Phillips et al., 2009; Raes & ter Steege, 2007). 

The transition from spatially representative sampling to species-targeted sampling also 

reflects a gradient of a priori knowledge (Table 1). Random sampling does not require 

specific knowledge. Adaptive sampling and SDM-guided approaches instead need 

considerable knowledge of the species and its requirements before designing the sampling 

scheme. Stratified schemes require knowledge about sampling sites and their habitats or 

environmental conditions across the full range of the target species. Additionally, stratified 

schemes depend on the quality of the original information used to guide the stratification that 

has its own uncertainty, due to potential spatial errors and classification issues (Rocchini et 

al., 2011).

To summarize, different strategies for defining the spatial distribution of samples reflect the 

compromise between sampling efficiency and spatial representativeness (Figure 1b). 

Overall, three main types of data may be generated, each with implications for modelling: 

data can be spatially representative (of the species range, potentially for multiple species), 

spatially constrained independent of the species, or spatially constrained towards particular 

species. 

How to sample

For assessing the distribution of species and changes therein, sampling should aim to 

collect the appropriate quantity of presence data, reduce the number of false absences, and 

account for detectability of the sampled species (Table 2; Figure 1c). Locally rare as well as 

elusive (e.g. cryptic or trap-shy) species (W. Thompson, 2013) both pose specific 

challenges. The probability of detecting a species depends on a range of factors, such as A
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habitat type, time of the day and year, population density and methods employed to survey 

the species. Repeated sampling with methods targeting rare and elusive species reduce the 

probability of false absences and the latter may generate presence/absence data accounting 

for detection probability (MacKenzie et al., 2017).

Multiple methods increase the detectability of species; some are just a function of sampling 

effort (e.g. longer transects), others are more directly related to the known ecology of the 

target species (Table 2; Figure 1c). These latter methods include, for example, baited traps 

(e.g. Steyer et al., 2013), camera traps (e.g. Schüttler et al., 2017), species-specific markers 

in environmental DNA (eDNA) sampling (e.g. Carraro et al., 2018), expert knowledge of the 

species’ habitat preference and/or behaviour, or the use of detection dogs (Grimm-Seyfarth 

et al., 2019; Grimm-Seyfarth & Klenke, 2019; Hollerbach et al., 2018). 

There are several points to consider. First, most of these methods increase the effort or 

costs required compared with simpler methods, especially when the sampling aims to detect 

several rare species simultaneously. Second, methods increase detection probability 

differently for different species, producing output less comparable between species unless 

methods are highly standardized. For example, a trap baited with pheromones of a specific 

species will attract more individuals of the focal species than baiting a trap with food utilized 

by many species (e.g. dung for dung beetles) (Marsh et al., 2013). However, recent 

advances in genetic monitoring, such as improved markers in eDNA detection of stream 

species (Carraro et al., 2021; e.g. Jerde et al., 2011; Leese et al., 2021), significantly 

increase the number of species detected, including many rare species, especially from rivers 

over several kilometres in length (Altermatt et al., 2020; e.g. Mächler et al., 2019) - but these 

methods still need further calibration works (Alsos et al., 2018; e.g. Beng & Corlett, 2020; 

Cristescu & Hebert, 2018). Third, highly standardized protocols are essential for 

comparisons among sites, although some variability in detectability between sites will 

remain; for example, bird songs are less audible in leaved deciduous forests than in mixed 

pine forests (Pacifici et al., 2008).
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Some sampling methods generate presence/absence and even abundance data in sufficient 

quality and quantity to account for detection probability (with repeated sampling of selected 

sites during a specific period (Mackenzie & Royle, 2005). Among others, such methods 

include distance sampling (Buckland et al., 2015) and capture-mark-recapture (B. K. 

Williams et al., 2002). For the latter, capture by camera traps coupled with image analysis is 

particularly promising for rare species (Schüttler et al., 2017) (Table 2; Figure 1c). Although 

these data greatly increase the spectrum of models that can be applied, they require high 

effort and cost; hardly suitable for rare species except perhaps for those with high local 

density. However, combining such methods with occupancy surveys or opportunistic 

observations (e.g. atlas or citizen-science data) and the incorporation of environmental data 

as potential predictors of occupancy and/or abundance may allow the extrapolation of rare 

species distributions across large spatial scales (e.g. Bowler et al., 2019; Giraud et al., 

2016).

How to model

As discussed above, choices on the spatial distribution of samples eventually lead to three 

types of datasets: spatially representative, spatially constrained independent of the species 

(e.g. due to unrepresentative sampling of environments (see e.g. Bystriakova et al., 2012; 

Varela et al., 2014)), or spatially constrained towards target species. From a modelling 

perspective, this results in a trade-off between the number of presences and the need to 

account for spatial auto-correlation in the data. Similarly, sampling protocols affect the type 

of data obtained for modelling, be it presence-only, presence/absence, or presence/absence 

with detectability or estimates of abundances, and thus condition the type and quality of 

inference. Depending on the type of rarity, the ‘where to sample’ and ‘how to sample’ 

decisions, successful modelling of rare species require modelling tools that fall into all 

combinations of the cases above (Figure 1d).
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When only presences are available, some methods produce pseudo-absences based on 

external information (e.g. habitat suitability (Barbet‐Massin et al., 2012)). For some models, 

such as Maxent and Poisson point-process models (PPPMs), pseudo-absences are better 

interpreted as background points, not implying absences but rather samples of the available 

environment, where presences are compared against unsampled background locations 

(Merow et al., 2013; Phillips et al., 2009). They do not produce probability of occurrence but 

relative occurrence rates (Guillera-Arroita et al., 2015) and can be appropriate for rare 

species modelling if proper bias correction is applied (Table 3; Figure 1d). 

Where presence/absence data are available, developments in SDMs allow handling of data 

over-dispersion (e.g. negative-binomial and mixed effect models (Harrison, 2014; 

Molenberghs et al., 2007; O’Hara & Kotze, 2014)), spatial-autocorrelation (e.g. F. C. 

Dormann et al., 2007; Marcer et al., 2013), uncertainty in predictions (e.g. ensemble 

forecasting (Araújo & New, 2007; Guisan et al., 2017; Thuiller et al., 2019)), and biases due 

to sampling scales (Keil et al., 2013; Keil & Chase, 2019). Hierarchical models (HM) are 

especially useful due to their flexibility: they describe, on the one hand, the true state of 

nature that is not or only partly observable (e.g. variation in occurrence probability potentially 

due to variation in available resources), and on the other hand, the measurement error (e.g. 

variation in detection probability potentially due to variable observer skills) (Kéry & Royle, 

2015). Multi-scale hierarchical SDMs account for the fact that increasing the sampling extent 

increases the probability of detecting rare species (Rocchini et al., 2017). HMs thus allow 

imperfect detectability to be considered in the modelling procedure (Table 3). By integrating 

prior knowledge, Bayesian Belief Networks explicitly decompose causal pathways involved 

in the capture rate of species, including respective influences of detection and occupancy in 

small or incomplete datasets (Uusitalo, 2007): capture can be considered dependent on 

detectability, influenced by date and trapping effort, and by occupancy, influenced by 

suitability of local habitat conditions (Marcot et al., 2006). Such methods have already 

proved useful for modelling species distributions (Van Echelpoel et al., 2015) and responses 

of rare and endangered species (Hamilton et al., 2015; Smith et al., 2007) (Table 3). A
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When abundance data from standardized survey or monitoring protocols are available, these 

can be used to fit rare species distribution models and track distribution changes (Howard et 

al., 2014). However, because such protocols usually do not detect most of the rare species, 

especially clumped and low local-density species (see ‘how to sample’ section), abundance-

based SDMs are rarely possible for rare species.

If recapture data are available, distribution modelling can be done using classical site-

occupancy models and different methods developed as mark-release-recapture analyses 

(MacKenzie et al., 2017; K. H. Pollock et al., 1990) (Table 3).  

For occurrence data from spatio-temporally replicated measurements of 

presences/absences, under the assumption of population closure (i.e. if the populations did 

not exchange propagules between the time steps under study), the Royle-Nichols model 

(Kéry & Royle, 2015; Royle & Nichols, 2003) allows occurrence probability to be estimated 

and detection heterogeneity accommodated (Table 3; Figure 1d). When ‘unmarked’ 

abundance data are available, N-mixture models can estimate both detectability and 

abundances used in large-scale species distribution modelling (Guélat & Kéry, 2018; Jakob 

et al., 2014; Kéry, 2018) (Table 3; Figure 1d). When potential sources of measurement bias 

are known (e.g. type of observer, weather, vegetation density), these can be integrated as 

covariates in the latent state submodel (e.g. Cunningham & Lindenmayer, 2005).

When data are zero-inflated, as typical for rare species data, variants of Royle-Nichols or N-

mixture models can be applied that allow extra parameters and account for data 

overdispersion. Variants of N-mixture models have further been developed that address 

spatial bias and scale-dependence, such as variation of sampling grain size (Keil et al., 

2018) or scales of environmental influence (R. Chandler & Hepinstall-Cymerman, 2016). 

However, the underlying assumptions are quite restrictive for species distribution modelling 

and further simulation studies are needed to assess their performance with rare species 

when assumptions are not met. This approach is also not necessarily the most cost-effective A
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strategy when it comes to tracking species distribution changes over time compared with 

presence/absence data (Joseph et al., 2006).

When multiple types of data are available (presences, presence/absence, abundance), their 

combination within single modelling frameworks provides valuable insights into predicting 

species distributions, occupancy, even abundance (Table 3). Even if available over a 

restricted spatial extent, multiple sources of abundance data can be used together with more 

extensive data, such as occupancy surveys or opportunistic observations. HMs can include 

different submodels for the different sources of data, and potential detection biases, and 

incorporate environmental data as potential predictors of occupancy and/or abundance. 

Such methods allow extrapolation and even comparison of rare species’ distributions across 

large spatial scales (e.g. Bowler et al., 2019; Giraud et al., 2016) and potentially for all 

categories of rarity if data sources are available and models well built (Figure 1d). 

To summarize, model choice will mainly depend on the nature of the data and biases 

involved. From presence only, to presence/absence, to abundance, in Figure 1d, there is a 

change in the temporal comparability of SDMs, and thus their ability to track distributional 

changes. In the top row, the output is relative likelihood, which is not comparable even for a 

given species over multiple time steps. Naïve presence/absence SDMs provide an estimate 

that does not separate probability of occurrence from detectability, but if we assume 

detectability to be constant across time and space (including no drastic change in 

abundances), the resulting probability map is comparable for a given species over time. 

Finally, population size information allows the separate estimation of detectability and 

probability of occurrence, which is comparable over time, species and space. Comparability 

is important as it enables conservationists to assess changes in the environmental 

suitability, and ideally (see Dallas & Hastings, 2018; Jiménez-Valverde et al., 2021; Weber 

et al., 2017), in the distribution of rare species that could require revision of a species’ status 

and protection needs.
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More generally, whatever the type of rarity, several methodological aspects are to be 

considered to ensure SDM quality, including predictor selection (e.g. Le Rest et al., 2014; 

Saupe et al., 2012; K. J. Williams et al., 2012), model averaging (e.g. Burnham & Anderson, 

2004; C. F. Dormann et al., 2018), spatial-explicit cross-validation (e.g. D. R. Roberts et al., 

2017), optimisation of model performance (e.g. Anderson & Gonzalez, 2011; Norberg et al., 

2019; Radosavljevic & Anderson, 2014), and testing or improvement of the extrapolation 

abilities of the fitted models (e.g. Mesgaran et al., 2014; Owens et al., 2013; Qiao et al., 

2019; Stohlgren et al., 2011; Zurell et al., 2012). 

Conclusion and future perspectives

Protecting species diversity implies protecting rare species. However, surveying and 

modelling rare species involves considerable methodological challenges. In this paper, we 

have identified how the main decisions on sampling strategy condition properties of the data, 

and how these in turn condition the range of appropriate modelling methods. With this 

perspective, we provide guidelines to optimize monitoring and modelling of rare species 

depending on their rarity characteristics and to ensure consistency between sampling 

methods, and modelling approaches (Figure 1). 

Significant data on the occurrence of species is collected by citizen scientists (Amano et al., 

2016; M. Chandler et al., 2017). It is highly valuable for monitoring biodiversity at different 

scales, but often biased and limited to specific areas. While there are ways to correct biases 

in such data (Bird et al., 2014; Robinson et al., 2018), for monitoring “rarest” species (i.e. 

narrow distributional range, clumped population, low local density), a systematic species-

targeted sampling design may be preferred. Significant advances are expected from 

advanced remote sensing techniques, genetic tools and using detection dogs, all with the 

potential to significantly increase the detection rate of rare species at comparatively low cost 

and with more or less bias towards the species. Above all, future research is still needed to 

integrate the type of rarity more explicitly into decisions on how and where to sample with 

the selection of appropriate models. Another challenge with respect to species conservation A
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is that, although the rarity status is defined with respect to endemicity over a given period, it 

may be dynamic in the longer term, requiring constant adaptation of assessment strategies.

Considering most forms of rarity, our synthesis highlights the particular potential of HMs as a 

flexible tool to improve rarity modelling while accounting for spatial, observer, and species-

specific biases. Advances in zero-inflation modelling in particular have to be better 

integrated into rare species distribution modelling as both the conceptual and technical 

foundations of these approaches impact on the rarity sampling and modelling issues. 

Considering the rarest forms of rarity, our synthesis suggests that recent HM developments 

to combine multiple sources of data are extremely promising (Figure 1). 

Other promising perspectives have recently emerged, such as functional rarity modelling 

(Carmona et al., 2017; Violle et al., 2017) and the use of co-occurring species information 

(or the “neighbourly advice” (McInerny & Purves, 2011)) and of positive associations among 

rare species (Calatayud et al., 2019; Hines & Keil, 2020) as potentially valuable information 

to model rarity distribution. Other model developments include harnessing information from 

other sources that either directly inform a species’ distribution at larger scales, such as 

incorporating expert-drawn range maps (Merow et al., 2017) or elevation ranges (Ellis‐Soto 

et al., 2021) as model offsets. Joint species distribution models (JSDMs), which model 

multiple species simultaneously to infer the species’ environmental response based on 

species co-occurrences (Ovaskainen & Soininen, 2011; L. J. Pollock et al., 2014), often 

incorporate ancillary information such as trait (L. J. Pollock et al., 2012) or phylogenetic 

similarity (Ovaskainen et al., 2017) and are promising further developments for rare species 

modelling (Tobler et al., 2019). Finally, machine-learning based methods, including non-

parametric methods, and methods tolerant of unstructured data, have shown promise for 

modelling and mapping rarity with strong predictive ability (Pouteau et al., 2012; Robinson et 

al., 2018). Further research and sensitivity analyses are needed to assess the 

appropriateness of these methods in the workflow of rarity sampling and modelling, 

depending on the rarity type of the species. A
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List of items and captions

1 Box + 1 Figure + 3 Tables 

Figure 1
Synthesis infographic of (a) the Rabinowitz's seven categories of rarity, (b) examples of approaches 

to assess where to sample depending on the rarity category, (c) examples of approaches to assess 

how to sample depending on the rarity category and species local density, and (d) examples of 

modelling approaches to predict and map species distribution depending on the type of data 

generated in previous steps (a) and (b). Note that most of the methods can be used in more than one 

situation, but for the simplicity of the figure, we did not systematically repeat them and rather 

highlighted the methods we considered as the most useful or relevant. The references (numbers in 

brackets) are listed below the figure. 

References: [1] Breiner et al. 2015, [2] Lomba 2010, [3] Chen & Pollino 2012, [4] Fithian 2014, [5] 

Marcer et al. 2013, [6] Keil et al. 2013, [7] Rocchini et al. 2017, [8] El-Gabbas & Dormann 2018, [9] 

Radosavljevic & Anderson 2014, [10] Boria et al. 2014, [11] McKenzie et al. 2017, [12] Royle & 

Nichols 2003, [13] Kéry & Royle 2015, [14] Willson et al. 2011, [15] Nichols et al. 2008, [16] Giraud et 

al.  2016, [17] Bowler et al. 2019, [18] Joseph et al. 2009, [19] Cunningham & Lindenmayer 2005, 

[20] Chandler et al. 2011.

Tables 1, 2, 3
Non-exhaustive list of methods to assess (1) where to sample, (2) how to sample, and (3) how to 

model rare species data with their brief description, advantages and limits, the type of rarity for which 

they appear as most appropriate, and examples of references related. Inputs/outputs of modelling 

methods can be P (presences only), lik (presence likelihood), PA (Presences/Absences), ab 

(abundance), det (detectability information), pocc (probability of occurrence). Underlined words refer 

to the Glossary (Box 1). The references are listed below the Table 3.
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Figure 1

Synthesis infographic of (a) the Rabinowitz's seven categories of rarity, (b) examples of approaches 

to assess where to sample depending on the rarity category, (c) examples of approaches to assess 

how to sample depending on the rarity category and species local density, and (d) examples of 

modelling approaches to predict and map species distribution depending on the type of data 

generated in previous steps (a) and (b). Note that most of the methods can be used in more than one 

situation, but for the simplicity of the figure, we did not systematically repeat them and rather 

highlighted the methods we considered as the most useful or relevant. The references (numbers in 

brackets) are listed below the figure. 
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Tables 1, 2 & 3 

Non-exhaustive list of methods to assess (Table 1) where to sample, (Table 2) how to sample, and (Table 3) how to model rare species 

data with their brief description, advantages and limits, the type of rarity for which they appear as most appropriate, and examples of 

references related. In Table 3: inputs/outputs can be P (presences only), lik (presence likelihood), PA (Presences/Absences), ab 

(abundance), det (detectability information), pocc (probability of occurrence). Underlined words refer to the Glossary (Box 1). The 

references are listed below the Table 3.

Table 1. Where to sample?
Method Brief description Pros Cons Suitable for 

which rarity 

categories?

References

Accumulated 

opportunistic 

observations

Sampling locations 

are not chosen but 

emerge from external 

contribution of 

various sources, e.g. 

data from citizen 

science programs free 

from any observation 

- depending on the species 

attractivity and ease of 

detection/identification, a 

large number of observations 

can be accumulated over time, 

with minimal investment of 

time and funds

- can detect new populations 

- sample not representative of 

the entire extent

- species-targeted

- absences usually not reported, 

presence-only data

- sampling effort varies through 

time

- mainly done for charismatic 

All 1Chandler et al. 

2017 (iNaturalist); 
2Sullivan et al. 2017 

(eBird);
3Deguines et al. 

2012 (spipoll)
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Method Brief description Pros Cons Suitable for 

which rarity 

categories?

References

protocol and species

- may be used to create atlas 

data

- rare species receive 

particular attention

taxa

- risk of misidentification in the 

case of non-expert observations 

(particularly critical as even a 

small fraction of misidentified 

common species may swamp 

the true records of a rare 

species)

Simple random 

sampling

Random selection of 

the locations, i.e. all 

the locations of the 

study area have the 

same probability to 

be sampled

- spatially unbiased sample

- objective and well-defined

- sample representative of the 

study extent

- temporally comparable 

samples

- no target species, multi-

species sample

- ignores environmental/habitat 

variability

- rare species are unlikely to be 

detected in sufficient numbers, 

even in huge samples

Cat4 4Greig-Smith 1964;
5Diekmann et al. 

2007;
6Hedgren & 

Weslien 2008
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Method Brief description Pros Cons Suitable for 

which rarity 

categories?

References

Systematic 

sampling

Sampling according to 

a fixed spatial 

interval(s) that 

depends on the 

predefined total 

number of locations 

to be sampled in the 

study area, e.g. plots 

arranged along a 

regular grid or 

(equidistant) 

transects that cover 

the space evenly 

(hyper dispersed 

distribution of 

samples)

- simple to implement, no 

need of external information 

nor a priori species-specific 

knowledge

- more cost-efficient than 

simple random sampling as it 

guarantees even distribution 

of sites and good coverage of 

the study area

- temporally comparable 

samples

- no target species, multi-

species sample

- needs prior information on 

total number of sites to be 

sampled

- detection strongly depends on 

the choice of the spatial interval 

of the sampling and on the 

starting point of the sampling, 

e.g. in species with clumped 

populations; if sampling interval 

is the same order of magnitude 

as the clumping interval, the 

sample will not be 

representative of the species 

distribution (will either under- 

or over-detect the species 

depending on the starting 

point)

Cat4 (and 

Cat5 if 

habitats are 

organised 

randomly)

7Madow 1953; 
8Fortin et al. 1989
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Method Brief description Pros Cons Suitable for 

which rarity 

categories?

References

Stratified 

sampling

Sampling organised 

with respect to a 

categorisation 

deemed to be 

important for the 

community or species 

of interest, e.g. 

habitat type

- sample representative of the 

study extent with respect to 

the stratification factor

- depends on subjective a priori, 

or a priori ecological knowledge

Cat1, Cat3, 

Cat5, Cat7 (if 

we consider 

that for non-

specialist 

species, 

habitat-

stratified 

sampling 

would work 

worse)

9Thompson W.L. 

2013
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Method Brief description Pros Cons Suitable for 

which rarity 

categories?

References

Adaptive 

(cluster) 

sampling / prior-

informed 

sampling

Sampling design 

where site selection 

depends on previous 

sampling raw 

outcomes, either a) 

from the overall 

survey, e.g. adaptive 

cluster sampling 

which consists in 

searching for a 

species in a given 

location and if the 

species is found, 

searches continue 

nearby 

(neighbourhood 

shape can vary 

according to the 

- accurate estimations of 

species abundances

- appropriate for rare, 

clustered and unevenly 

distributed species

- not widely used in ecological 

studies

- efficiency depends on the 

spatial distribution of the 

species

- difficult to know the final 

sample size needed prior to the 

survey

- data collection process is 

complicated

- not fully adapted yet to 

mobile species, sensitive 

species and habitats (side-

effects of intensive sampling)

- resulting data biased towards 

the species of interest

- sampling effort varies through 

time

Cat2, Cat3 10Krebs et al. 1989; 
11Yoccoz et al. 

2001; 
12,13Thompson S.K. 

1990; 2013; 
14Thompson W.L. 

2002

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Method Brief description Pros Cons Suitable for 

which rarity 

categories?

References

study needs), or b) 

from other surveys, 

i.e. site selection 

depends on external 

source of information 

and/or belief on the 

species potential 

presence, e.g.  atlas 

data 

“SDM”-guided 

sampling

Sampling locations 

are drawn from a 

probability surface 

generated by 

modelling the know 

P/A of a species 

against 

- sampling coverage 

optimisation

- allows a systematic and 

exhaustive pre-selection of 

suitable locations

- time-consuming process

- requires predictor layers (with 

good spatial and thematic 

resolution for narrow range 

species)

- subject to model error and 

uncertainty

Cat1, Cat3 

(potentially 

Cat5, Cat 7 if 

clumping is 

not due to 

dispersal 

limitations) 

84Austin et al. 1984; 
15Le Lay et al. 2010;
16Lin et al. 2014; 
17Aizpurua et al. 

2015; 
18Chiffard et al. 

2020
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Method Brief description Pros Cons Suitable for 

which rarity 

categories?

References

environmental 

predictors and 

extrapolating the 

model in space and 

time, e.g. adaptive 

niche-based sampling, 

Direct Gradient 

Analyses

- may work better for specialist 

species that are not too much 

dispersal limited (niche-based 

modelling)
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Table 2. How to sample?
Method Brief description Pros Cons Suitable for 

which rarity 

categories?

References

Standardized sampling Sampling with 

commonly use 

methods following a 

standardized 

protocol (e.g. 

quadrats, transects, 

traps, etc.) without 

any adaptation to 

increase the 

probability of 

detecting rare 

species, e.g. 

biodiversity 

observatories

- detection of a large 

number of species

- data comparable across 

locations

- unbiased with respect to 

sampling effort

- rare species less likely to 

be detected when 

populations have low 

local density

Cat1, Cat2, Cat3 19Enquist et al. 

2016; 
20Bruelheide et al. 

2019;
21Risely et al. 

2010;
22Jiguet et al. 2012
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Method Brief description Pros Cons Suitable for 

which rarity 

categories?

References

Occupancy sampling Sampling that 

consists of repeated 

sampling following a 

standardized 

protocol within a 

period during which 

the targeted species 

remain available for 

detection

- multi-species; allows 

estimating detection 

probability that can be 

used to obtain unbiased 

presence/absence data

- effort required is high 

unless detection 

probability is high 

- may require survey 

methods targeted to 

particular rare species, 

such as lures

All 23MacKenzie & 

Royle 2005; 
24MacKenzie et al. 

2017

Distance sampling Sampling that 

consists in recording 

the distance from the 

observer to the 

organism when 

detected. This 

information can then 

be used to adjust the 

sampling strategy 

- multi-species - requires expert 

knowledge (able to 

identify species at 

different distances within 

a given radius) 

- locally rare species will 

not provide sufficient 

observations for reliable 

estimates of abundance

Common species, 

Cat2

25Rosenstock et al. 

2002;
26Buckland et al. 

2015
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Method Brief description Pros Cons Suitable for 

which rarity 

categories?

References

and to correct for 

detection probability 

in prediction models 

Species-targeted 

sampling 

(or species-specific 

sampling)

Sampling specifically 

designed for given 

locally rare species, 

based on fine 

information on the 

species' habits, to 

increase the 

encounter rate, e.g. 

traps with specific 

food items or 

pheromone baits 

- highly efficient in 

detecting rare species of 

interest

- fine resolution data

- intensive field work

- cannot cover large 

spatial extent (but see 

promising methods such 

as detection dogs)

- species-targeted

All 27Grimm & Klenke 

2019; 
28Grimm et al. 

2019
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Method Brief description Pros Cons Suitable for 

which rarity 

categories?

References

Mark-Release-Recapture 

sampling

Sampling that 

consists in capturing, 

marking and 

releasing individuals 

of given species in 

order to keep track of 

their identity and be 

able to estimate 

capture rate and 

population 

parameters

- under particular 

assumptions, allows 

estimating population 

parameters, such as 

population size, fecundity, 

etc.

- fine resolution data

- highly time-consuming 

and field-work intensive

- cannot cover large 

spatial extents

- species-targeted

Cat1, Cat2, Cat3 29Williams et al. 

2002

Passive sampling Sampling based on 

the setting up of 

devices that 

automatically record 

species passing 

within a certain 

radius, e.g. camera 

- allows large-scale 

surveys

- multi-species

- non-specific, detects any 

species as well as noise

- costly in terms of 

resources (to buy devices, 

process data, etc.)

Cat3, Cat7 (+ 

Cat2, Cat6 if 

devices can be set 

anywhere)

30Schüttler et al. 

2016 (camera 

trapping)
31Jeliazkov et al. 

2016 (acoustic 

sampling)
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Method Brief description Pros Cons Suitable for 

which rarity 

categories?

References

trapping, acoustic 

sampling

eDNA Sampling based on 

DNA extraction from 

the environment (e.g. 

water, soil, 

sediments, snow) 

coming from cells of 

organisms that are 

and/or were present 

at some point in the 

environment. Specific 

or unspecific primers 

can be used to 

amplify eDNA 

samples, depending 

on whether the 

- rapid survey at large 

scales, cost-effective

- species-targeted as well 

as multi-species 

assessments

- high detection power

- non-invasive method

- no licence constraints for 

protected species

- in some cases, can 

provide semi-quantitative 

estimation of abundances 

- detectability depends on 

several parameters 

whose effects can be 

confounded with actual 

ecological responses, e.g. 

environmental conditions, 

such as UV light, 

temperature, and water 

flow, but also the activity 

and density of animals, 

their residence time, etc.

- the importance of 

primer specificity

Cat1, Cat2, Cat3 

(+Cat5, Cat7 if we 

consider that at 

low population 

density, habitat 

specificity may 

ensure higher 

eDNA 

concentrations 

than habitat 

unspecificity)

32Bohmann et al. 

2014; 
33Rees et al. 2014; 
34Jerde et al. 2011; 
35Wilcox et al. 

2013; 
36Beng & Corlett 

2020
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Method Brief description Pros Cons Suitable for 

which rarity 

categories?

References

survey targets 

specific species or 

the whole 

community, 

respectively
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Table 3. How to model?
Method Brief description Pros Cons Suitable 

for which 

rarity 

categorie

s?

Examples / 

references

Input data 

-> Output 

calculated/

estimate*
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Method Brief description Pros Cons Suitable 

for which 

rarity 

categorie

s?

Examples / 

references

Input data 

-> Output 

calculated/

estimate*

Data 

processing

Data processing Different processing 

strategies can be applied on 

data prior to actual modelling 

which allows making data 

more appropriate, more 

powerful, or more in line with 

the assumptions of 

subsequent modelling; e.g. 

combine opportunistic 

observations with atlas data, 

correct biases in presence-

only data, data 

transformations (e.g. 

abundances into rank 

abundance curves)

- data-saving, 

allows using the 

maximum of 

information 

available

- often requires to 

take arbitrary 

decisions to select 

thresholds, 

correcting factors, 

etc.

All 37Fithian et al. 

2015;
38Phillips 2009 

(correct 

biases in 

presence-only 

data); 
39Nekola et al. 

2008 (data 

transformatio

ns)

PA -> PA

ab -> ab
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Method Brief description Pros Cons Suitable 

for which 

rarity 

categorie

s?

Examples / 

references

Input data 

-> Output 

calculated/

estimate*

Modelling 

methods 

commonly 

grouped 

under 

"SDMs"

Regular SDMs 

with absence data

SDMs with no particular 

correction effect nor 

sophistication when enough 

data are available and meet 

all modelling assumptions 

(rarely the case), e.g. GLM

- simple - requires absence 

data

- often too 

simplistic, 

resulting in 

strongly biased 

results 

- can suffer 

overfitting if the 

number of 

predictors is too 

high compared to 

too few species 

occurrences

- assumes that 

habitat suitability 

is the most 

limiting driver of 

species 

distribution

- doesn't control 

for sampling 

biases or variable 

detectability

Common 

species

40Guisan & 

Zimmermann 

2000
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Method Brief description Pros Cons Suitable 

for which 

rarity 

categorie

s?

Examples / 

references

Input data 

-> Output 

calculated/

estimate*

SDMs + pseudo-

absences

SDMs where no absence data 

is unavailable. Models either 

attempt to generate absences 

where they believe the 

species to be absent (pseudo-

absences) or sample 

environmental conditions 

available to the species 

(background points)

- simple

- only requires 

readily-available 

presence data

- requires data 

and prior 

knowledge on 

habitat suitability

- assumes that 

habitat suitability 

is the most 

limiting driver of 

species 

distribution

Common 

species

41Barbet-

Massin et al. 

2012
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(+backgrou
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for which 

rarity 

categorie

s?

Examples / 

references

Input data 

-> Output 

calculated/

estimate*

Bias-corrected 

SDMs

(Hierarchical) SDMs 

accounting for different, 

potential sources of biases 

due to spatial location, 

autocorrelation, observation 

effects, etc. Examples of 

models are mixed effect 

models with an observer 

random effect, models 

accounting for spatial auto-

correlation, SDMs with 

model-based bias correction, 

zero-inflated models that 

allow modelling true and false 

absences separately

- accurate

- particularly 

appropriate and 

flexible for rare 

species 

modelling

- hypothesis-

driven

- interpretation 

sometimes 

difficult

- hypothesis-

driven

- requires 

information on 

observational 

conditions

All 42Dormann et 

al. 2007, 
43Marcer 2013 

(models 

accounting for 

spatial auto-

correlation); 
37Fithian et al. 

2015 (mixed 

effect models 

with an 

observer 

random 

effect);
44El-Gabbas & 

Dormann 

2018 (SDMs 

with model-

based bias 

correction);
45Zuur et al. 

2009 (zero-

inflated 

models)

P -> relative 

lik

PA -> 

relative 

pocc

ab+det -> 

relative ab
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Method Brief description Pros Cons Suitable 

for which 

rarity 

categorie

s?

Examples / 

references

Input data 

-> Output 

calculated/

estimate*

Multi-scale SDMs Models incorporating 

distribution information at 

multiple grain sizes

- information from 

distribution data at multiple 

grain sizes constrain fine-

grain predictions

- information on 

environmental conditions at 

multiple grain sizes used as 

inputs

- processes that 

operate at 

multiple spatial 

scales, and ones 

unrelated to 

environmental 

relationships, 

can be 

incorporated in 

to model 

predictions

- complicated 

fitting frameworks

Common 

species

46Keil et al. 

2013 

(hierarchical 

models 

incorporating 

distribution 

information at 

multiple grain 

sizes); 
47Rocchini et 

al. 2017
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P -> relative 

lik
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Method Brief description Pros Cons Suitable 

for which 

rarity 

categorie

s?

Examples / 

references

Input data 

-> Output 

calculated/

estimate*

Geographically-

structured SDMs

SDM procedure that:

1) splits evaluation data 

based on spatial clustering of 

the data;

2) using modelling data (e.g. 

creation of pseudo-absence/ 

background data), 

incorporates spatial bias of 

presence data or taxonomic 

group

- can use most 

traditional SDM 

algorithms (only 

affects input 

data)

- reduces the risk 

of overfitting 

data to spatial 

biases in 

sampling data

- assumes that 

habitat suitability 

is the most 

limiting driver of 

species 

distribution

- can cause nearly 

all data to be 

assigned to 1-2 

folds, and other 

folds being 

constructed with 

v. few occurrence 

points

Common 

species

48Radosavljevi

c & Anderson 

2014;
38Phillips et al. 

2009
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for which 

rarity 

categorie

s?

Examples / 

references

Input data 

-> Output 

calculated/

estimate*

Spatial-thinning 

SDMs

SDM procedure that consists 

in removing spatially 

clustered occurrence points 

to reduce the spatial 

autocorrelation in input data 

- can use most 

traditional SDM 

algorithms (only 

affects input 

data)

- reduces the 

spatial 

autocorrelation 

in input data

- reduces the risk 

of overfitting 

data to spatial 

biases in 

sampling data

- assumes that 

habitat suitability 

is the most 

limiting driver of 

species 

distribution

- reduces quantity 

of modelling data

Common 

species

49Boria et al. 

2014

PA -> 

relative 
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P -> relative 

lik
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for which 

rarity 

categorie

s?

Examples / 

references

Input data 

-> Output 

calculated/

estimate*

Ensemble of 

multiple 

SDMs

Ensemble SDMs Procedure that takes outputs 

from several algorithms of 

SDMs, weights these outputs 

based on respective model 

performances (using e.g. AIC) 

and generates single 

'consensus' predictions by 

model averaging methods

- does not rely 

on single best 

model

- ensemble 

predictions 

perform better 

compared to 

single modelling 

techniques

- can use 

variance 

between models 

as estimate of 

uncertainty

- all the cons of 

SDM approaches 

above

- model averaging 

also has 

limitations (e.g. 

sensitivity to 

performance 

score and 

thresholds used)

- predictive 

performance still 

questioned

Common 

species

50Araújo & 

New 2007; 
85Hao et al. 

2019; 862020
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relative 

pocc

P -> relative 

lik

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Method Brief description Pros Cons Suitable 

for which 
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references

Input data 

-> Output 

calculated/

estimate*

Ensemble of Small 

Models (ESM)

Strategy that consists in 

modelling the distribution of 

rare species

based on fitting a larger 

number of small (bivariate, 

trivariate, etc.) models,

that is models with only two 

predictors at a time (although

only one or three could also 

be used), and averaging them 

in an

ensemble prediction using 

weights based on model 

performances (e.g. based on 

AUC score).

- circumvents 

the risk of 

overfitting when 

applying an SDM 

on too few 

occurrences data

- excellent 

performance on 

species data 

with low number 

of occurrences

- allows 

structuring the 

modelling 

framework 

according to 

different scales 

of drivers of 

species 

distribution (e.g. 

local vs. climatic 

predictors)

- requires to 

choose thresholds 

of performance 

scores to decide 

which models are 

included in the 

ensemble

- remains unclear 

how this method 

performs for the 

different forms of 

rarity, especially 

the spatially-

biased ones, as it 

is mainly based on 

the number of 

occurrences and 

related IUCN 

status

- ESM 

performance 

(compared to 

both single-model 

Regular SDM and 

standard 

Ensemble SDMs) 

depends on the 

number of species 

occurrences 

available in the 

data

Cat4, 

Cat6 (low 

density 

but 

spatially 

dispersed

)

51Lomba 

2010; 
52Breiner et 

al. 2015
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references

Input data 

-> Output 

calculated/

estimate*

Bayesian 

Belief 

Network 

SDMs

Bayesian Belief 

Network SDMs

(a.k.a. Bayesian networks, 

causal probability networks, 

acyclic directed graphs) 

Statistical tool derived from 

graph theory and Bayesian 

inference that predicts the 

probability of ecological 

responses to varying input 

assumptions such as habitat 

and population demography 

conditions and to 

hypothesized causal 

relationships.

- all the pros 

related to 

Bayesian 

statistical 

frameworks: 

flexibility, 

accounting and 

quantification of 

uncertainties, 

integration of 

prior knowledge 

information on 

the rare species 

of interest, easily 

updatable with 

new data / 

information, etc.

- integration, 

assessment and 

visualization of 

causal pathways 

to explain 

species 

distribution

- due to its visual 

nature and 

relative ease of 

use, highly 

suitable for 

participatory 

modelling

- requires to 

discretize input 

predictors with 

choices of 

thresholds which 

can lead to class 

edge effects (but 

see Aguilera et al. 

2010)

- more 

appropriate for 

risk or 

conservation 

category 

assessment than 

for predicting or 

mapping species 

distribution

- assumptions and 

reasoning behind 

the hypothesized 

influence diagram 

must be clearly 

documented/justi

fied as the latter 

strongly 

influences 

predictions

Potentiall

y all 

(provided 

that 

enough 

prior 

knowledg

e and 

validation 

data are 

available)

53,54Marcot et 

al. 2006a,b;
55Smith et al. 

2007;
56Aguilera et 

al. 2010;
57Chen & 

Pollino 2012;
58MacCracken 

et al. 2012;
59Hamilton et 

al. 2015;
60Van 

Echelpoel et 

al. 2015

P -> relative 
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A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Method Brief description Pros Cons Suitable 

for which 
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s?
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references

Input data 

-> Output 

calculated/

estimate*

Occupancy 

downscalin

g modelling

Occupancy 

downscaling 

modelling

Models that describe the 

OAR* are fitted at large grain 

sizes to atlas data and then 

extrapolated to predict 

occupancy at fine grain sizes.

*Occupancy-Area 

Relationship (OAR) (or scale-

area curve or range-area 

relationship) (Harte & Kinzig, 

1997; Kunin, 1998) is the 

relationship between the area 

occupied by a species and the 

sampling grain size. This 

relationship is positive and its 

shape is characteristic of the 

species distribution pattern 

(extent, patchiness, 

prevalence).

- by aggregating 

data at large 

scales, 

overcomes 

sampling gaps 

(false absences 

in atlas data) and 

effects of 

sampling biases

- no need for 

covariates

- needs some atlas 

data

- only determines 

occupancy in 

terms of 

proportion of sites 

or area occupied, 

i.e. not spatial-

explicit

- may be subject 

to some 

errors/uncertainty 

from the models

- requires to think 

carefully about 

how to fit the 

upscaling 

functions

- may not be 

possible to fit 

models for some 

species - e.g. very 

rare, dispersed 

species, or very 

common 

widespread 

species - as the 

OAR* reaches the 

scale of endemism 

or saturation

Cat1, 

Cat2, 

Cat4, 

Cat5, 

Cat6

61Azaele et al. 

2012; 
62Barwell et 

al. 2014;
63Marsh et al. 

2019

PA (atlas 

data) -> 

occupancy 

(as the 

proportion 

of sites or 

area 

occupied)
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s?
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references

Input data 

-> Output 

calculated/

estimate*

Modelling 

methods 

commonly 

grouped 

under "site-

occupancy* 

models" 

Mark-release-

recapture* 

modelling (robust 

design)

HM* using mark-recapture 

histories to estimate 

population parameters 

(colonization, extinction, 

etc.), occurrence probability, 

and detectability. Requires to 

fulfil the population closure 

assumption between the 

temporal replicates and to 

have relatively good temporal 

replication (robust design). 

Can use covariates to 

estimate detectability and 

other potential biases.

- provides 

accurate 

estimations of 

population 

parameters (e.g. 

population size, 

survivorship, 

fecundity) 

- provides 

accurate 

estimations of 

detectability 

(e.g. trap 

happiness/shyne

ss effects, time-

varying capture, 

sex-dependent 

detectability)

- thanks to the 

robust design 

principle, if one 

has multiple 

visits that are 

separated by 

sufficiently short 

periods of time, 

one can consider 

each visit as 

fulfilling the 

assumption of 

population 

closure

- hypothesis-

driven

- computationally 

intensive

All, 

especially 

for Cat4, 

Cat5, 

Cat6, 

Cat7 (low 

local 

density) 

but for 

low local 

density, it 

may be 

challengin

g to get 

enough 

data for 

reliable 

estimates

64Pollock et al. 

1990; 
65MacKenzie 

et al. 2002;
66MacKenzie 

2006; 
67Willson et 

al. 2011
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estimate*

Multi-scale 

occupancy models

HM* site-occupancy model 

that allows estimation of 

occupancy at different spatial 

scales to account for different 

scales of habitat, 

environmental, ecological or 

sampling influences; e.g. local 

habitat vs. landscape-scale 

effects. The approach 

accounts for the lack of 

independence of detections 

within a sampling occasion 

and use this dependence to 

infer scale-specific occupancy, 

namely the study area scale 

and the site scale. This 

method is a variation of the 

classical site-occupancy 

model robust design, except 

that it does not model 

seasonal colonization

and extinction, but simply 

presence or absence at the 

sample unit.

- accounts for 

the scale-

dependence of 

occupancy 

estimation

- hypothesis-

driven

- requires good 

data with 

sufficient spatial-

temporal 

replicates and 

detections

All, 

providing 

that 

sufficient 

spatial-

temporal 

replicates 

are 

available

68Nichols et al. 

2008;
69Mordecai et 

al. 2011. 
70Pavlacky et 

al. 2012;
71Hagen et al. 

2016; 
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N-mixture 

models

Royle-Nichols 

models (RN) or 

Bernoulli-Poisson 

N-mixture models 

(for occurrences)

HM* that estimate species 

occurrence probability using 

different submodels (and 

potentially different sets of 

predictors) for the 

"detection" and the 

"occurrence" processes. RN 

model provides the 

conceptual links between the 

N-mixture models for 

abundances and the classical 

site-occupancy* models. RN 

can estimate abundances 

from spatio-temporally 

replicated measurements of 

presences/absences, can 

accommodate detection 

heterogeneity when focusing 

on occupancy and can link 

occupancy and abundance 

data in an integrated model. 

Some people consider RN as 

an occupancy model because 

the modelled data are 

identical. Can account for 

spatial autocorrelation using 

covariates as random or fixed 

effects

- provides two 

useful estimates 

: one for the 

detection 

probability and 

one for the 

occurrence 

probability

- requires a 

sufficient amount 

of spatio-

temporal 

replications in the 

data

- requires good 

sets of predictors 

for both the 

detection and the 

occurrence parts 

of the model

All, 

especially 

for Cat4, 

Cat5, 

Cat6, 

Cat7 (low 

local 

density)

72Royle & 

Nichols 2003; 
73Kéry & Royle 

2015
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N-mixture models 

for abundances

HM that estimate species 

abundances using different 

submodels (and potentially 

different sets of predictors) 

for the "detection" and the 

"abundance" processes. For 

instance, in "The N-mix" 

model, the detection 

probability can be estimated 

based on a binomial function 

of some predictors assumed 

as relevant to the detection 

process (e.g. vegetation 

density). This estimation is 

then incorporated in a 

(mixed) Poisson model that 

estimates species abundances 

(based on predictors relevant 

to the species ecology) while 

weighting by the imperfect 

detection (weighted 

likelihood). Examples of N-

mixture models are: zero-

inflated, Poisson-binomial, 

multinomial, Poisson-Poisson, 

multiscale N-mixture models, 

hurdle models, spatially-

explicit density models

- provides two 

useful estimates 

: one for the 

detectability and 

one for the 

relative 

abundances

- provides fine 

estimation of 

species relative 

abundances 

- with a 

sufficient 

amount of data 

and in some 

circumstances, 

some of these 

models can be 

used relaxing the 

population 

closure 

assumption

- zero-inflated 

and hurdle 

models are 

particularly 

interesting for 

rare species (due 

to high risk of 

data 

overdispersion), 

quite intuitive to 

use and 

relatively easy to 

apply even in a 

likelihood 

framework

- most of these 

models require 

good quality and 

large amount of 

abundance data 

with both spatial 

and temporal 

replications 

(except zero-

inflated and 

hurdle models)

- computationally 

intensive

- requires good 

sets of predictors 

for both the 

detection and the 

abundance parts 

of the model

All, 

especially 

for Cat4, 

Cat5, 

Cat6, 

Cat7 (low 

local 

density)

74Welsh et al. 

2000, 
75Martin et al. 

2005, 
76Joseph et al. 

2009 (zero-

inflated N-

mixture 

models);
77Royle 2004, 
78Dénes et al. 

2015 ("The N-

mix" model);
73Kéry & Royle 

2015 

(Poisson-

binomial/Pois

son-

Poisson/multi

nomial/densit

y models);
79Cunningham 

& 

Lindenmayer 

2005, 
80Fletcher et 

al. 2005, 
45Zuur et al. 

2009 (hurdle 

models);
81Chandler & 

Hepinstall-

Cymerman 

2016 

(multiscale N-

mixture 

models)
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-> Output 

calculated/
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Occupancy 

or 

abundance 

modelling 

with 

multiple 

detection 

methods

Occupancy or 

abundance 

modelling with 

multiple detection 

methods

HM that permits 

simultaneous use of data 

from multiple detection 

methods for inference about 

method-specific detection 

probabilities. The approach 

accounts for the lack of 

independence of detections 

within a sampling campaign 

and use this dependence to 

infer method-specific 

occupancy and detectability. 

- can be used 

with data that 

are produced by 

different 

sampling 

methods and 

devices 

(provides device-

specific 

detection 

probability 

estimates for use 

in survey design)

- if the species of 

interest is locally 

rare or solitary, 

and one of the 

detection devices 

is a method that 

retains (a trap) or 

repels (a camera’s 

flash) an 

individual upon 

detection, then 

the model needs 

to be extended to 

include different 

device-specific 

detection 

probabilities that 

differ based on 

whether or not 

the species was 

detected by one 

of the other 

devices at the 

immediate 

sampling site

All, 

especially 

for Cat4, 

Cat5, 

Cat6, 

Cat7 (low 

local 

density)

68Nichols et al. 

2008;
82Giraud et al. 

2016;
83Bowler et al. 

2019
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*P=presence only, PA=presence/absence, ab=abundance, pocc=probability of occurrence, det=detection probability, lik=likelihood
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b) Where to samplec) How to sample

d) How to model 
(for mapping 

species distribution)

Presence / AbsencePresence only

Presence / Absence or Abundance 

• Pitfall traps 
• Strict protocols
• eDNA (general 

primers)

Cost ; Effort
Narrow, 
clumped

Type of rarity
Broad, 
dispersed

Spatially representative 
sampling

Spatially constrained, 
independent of species

Spatially constrained, 
favours species presences

• Baited traps
• Active search by experts
• eDNA (species primers)

• Distance sampling
• Unmarked replicated sampling

• Mark-release-recapture

• Spatially-biased 
occasional observations 
(e.g., gardens, roads)

Low coverage:
• Systematic
• Stratified
• Random

• Targeted sampling 
(e.g., SDM guided)

• Occasional observations 
(e.g., charismatic species)

Detectability values HighLow
High coverage is

rarely done due to 
high cost

• SDMs + random pseudo-
absences

• Ensemble of small models 
[1,2]

• Bayesian Network SDMs [3]

• SDMs + pseudo absences with 
the same spatial bias as the 
sample set

• Bias-corrected SDMs [4]

• SDMs + pseudo absences from 
environmentally different 
locations

• SDMs + account for spatial 
autocorrelations [5]

• Regular SDMs (if enough 
data)

• Ensemble of small models 
[1,2]

• Bayesian Network SDMs [3]

• Spatially explicit SDMs
• Multi-scale SDMs [6,7]
• SDMs with model-based bias 

correction [8]

• Geographically-structured SDM 
[9]

• SDMs using spatial-thinning [10]
• SDMs with model-based bias 

correction [8]

• Occupancy models (closure, 
with good temporal 
replications, Robust Design) 
[11]

• Royle-Nichols (RN) models 
(possibly estimate 
abundance) [12]

• Advanced occupancy models 
(with covariates in detectability) 

• Spatial-explicit RN models (with 
random effects/covariates) [13]

• Advanced mark-recapture 
models [14]

• RN models (with random 
effects/covariates)

• Multi-scale occupancy models 
[15]

• Bias-corrected SDMs with 
multi-source data [16,17]

• Zero-inflated N-mixture 
models [18]

• Poisson-binomial N-mixture 
models (with random 
effects/covariates)

• Multinomial N-mixture models 
(MRR, possible open pop)

• Spatially explicit density models
[13]

• Poisson-Binomial N-mixture 
models (with random 
effects/covariates) 

• Poisson-Poisson N-mixture model 
(incl. false positive prob.) [13]

• Hurdle models (zero-truncated) 
[19]

• Multi-scale N-mixture models [20]

Low detectability Increasing detectability

Low 
efficiency

High 
efficiency

Detectability 
not 

quantified

Detectability 
quantified

Biased Representative

Input Model Output

Presence only

SDMs + pseudo-
absences

Relative likelihood

Presence/absence

SDMs

Relative probability 
of occurrence

Presence/absence + 
detectability

Occupancy models

Probability of 
occurrence

Abundance + 
detectability

N-Mixture models

Relative abundance

Representative (low coverage) Bias independent of species Bias favours species presences

Very few presences  zero inflated models More presences

Representative Spatially biased  Account for spatial auto-correlation

a) Typology of rarity

Distribution range Broad Narrow

Patchiness Dispersed Clumped Dispersed Clumped

Local 
density

High Common Cat1 Cat2 Cat3

Low Cat4 Cat5 Cat6 Cat7

Narrow + 
clumped 

distribution of 
speciesLow local 

density species

low high
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