Title page

Sampling and modelling rare species: conceptual guidelines for the neglected majority

Running title: Sampling and modelling rare species

Type of manuscript: Opinion

Abstract
Introduction
Where to sample
How to sample
How to model
Conclusion and future perspectives

Figure 1. Synthesis figure
Box 1. Glossary
Table 1. Details on Where to sample
This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/GCB. 16114

This article is protected by copyright. All rights reserved

Table 2. Details on How to sample
Table 3. Details on How to model

Authors

Alienor Jeliazkov*\$a,
Yoni Gavish ${ }^{\$ b}$
Charles J. Marshe, ${ }^{\text {l }}$
Jonas Geschked
Neil Brummitt ${ }^{f}$
Duccio Rocchinig,h
Peter Haase ${ }^{\text {i,j }}$
William E. Kunin\#,k
Klaus Henle ${ }^{\#, \mathrm{e}}$
alienor.jeliazkov@gmail.com ORCID 0000-0001-5765-3721
gavishyoni@gmail.com ORCID 0000-0002-6025-5668 charliem2003@gmail.com ORCID 0000-0002-0281-3115 jonas.geschke@ips.unibe.ch ORCID 0000-0002-5654-9313
n.brummitt@nhm.ac.uk ORCID 0000-0001-7769-4395
duccio.rocchini@unibo.it ORCID 0000-0003-0087-0594
peter.haase@senckenberg.de ORCID0000-0002-9340-0438
w.e.kunin@leeds.ac.uk ORCID 0000-0002-9812-2326
klaus.henle@ufz.de ORCID 0000-0002-6647-5362

* Corresponding author

Alienor Jeliazkov and Yoni Gavish should be considered as joint first author.
Klaus Henle and William E. Kunin should be considered as joint senior author.

Affiliations

a University of Paris-Saclay, INRAE, UR HYCAR, Antony, France
b School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
c
Department of Plant Sciences, University of Oxford, UK
d Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
e UFZ - Helmholtz Centre for Environmental Research, Department of Conservation Biology \& Social-Ecological Systems, Permoserstrasse 15, 04318 Leipzig, Germany f Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK

This article is protected by copyright. All rights reserved

BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy
h Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Spatial Sciences, Kamýcka 129, Praha - Suchdol, 16500, Czech Republic i Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
j Faculty of Biology, University of Duisburg-Essen, Essen, Germany
k University of Leeds, Leeds, UK
I Department of Ecology and Evolution \& Yale Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA

Contact information: alienor.jeliazkov@gmail.com; Phone: +33140966069

Abstract

Biodiversity conservation faces a methodological conundrum: Biodiversity measurement often relies on species, most of which are rare at various scales, especially prone to extinction under global change, but also the most challenging to sample and model. Predicting the distribution change of rare species using conventional species distribution models is challenging because rare species are hardly captured by most survey systems. When enough data is available, predictions are usually spatially biased toward locations where the species is most likely to occur, violating the assumptions of many modelling frameworks. Workflows to predict and eventually map rare species distributions imply important trade-offs between data quantity, quality, representativeness, and model complexity that need to be considered prior to survey and analysis. Our opinion is that study designs need to carefully integrate the different steps, from species sampling to modelling, in accordance to the different types of rarity and available data in order to improve our capacity for sound assessment and prediction of rare species distribution. In this article, we summarize and comment on how different categories of species rarity lead to different types of occurrence and distribution data depending on choices made during the survey process,

namely the spatial distribution of samples (where to sample) and the sampling protocol in each selected location (how to sample). We then clarify which species distribution models are suitable depending on the different types of distribution data (how to model). Among others, for most rarity forms, we highlight the insights from systematic species-targeted sampling coupled with hierarchical models that allow correcting for overdispersion and for spatial and sampling sources of bias. Our article provides scientists and practitioners with a much-needed guide through the ever-increasing diversity of methodological developments to improve prediction of rare species distribution depending on rarity type and available data.

Keywords

bias, detectability, distribution change, methods, occupancy, rare species, sampling, spatial data, species distribution modelling, survey

Box 1. Glossary (of the terms underlined in the main text)

- Hierarchical Models (HM): or multi-level models. Statistical models of parameters that vary at more than one level of data organization (e.g., nested data, such as abundances of a given species located in different habitat types themselves located in different ecoregions) and thus allow accounting for the potential interdependence between the data points (for further details, see e.g. (Gelman \& Hill, 2007; Raudenbush \& Bryk, 2002)).
- Mark-release-recapture (MRR): Mark-release-recapture, or capture-mark-recapture, is a sampling technique that consists in capturing, marking and releasing individuals of a species in a first capture session. In one or more follow-up capture sessions, the ratio of marked to unmarked specimens is taken to estimate population size (see e.g. (Southwood \& Henderson, 2009; B. K. Williams et al., 2002)).
- Occupancy: Occupancy can refer to two different notions (MacKenzie et al., 2017); (1) the probability of a site to be occupied by a given species, i.e. the a priori expectation that a particular site will be occupied by the species as determined by
some underlying process (or occurrence probability), (2) the proportion of area or sites occupied, which results from the realization of the former process.
- Patchiness: The way habitat patches (and populations) are distributed through space. Habitat patches can be clumped (i.e. spatially aggregated in patches concentrated in a few places, potentially most at risk under environmental stochasticity), patchy (i.e. spatially aggregated according to irregular patterns, e.g. one, two, or five patches per group of patches), random, and regular (i.e. uniformly distributed apart from each other).
- Spatially representative sample-set: Sample-set collected at a set of locations that are spatially distributed in a statistically unconstrained manner, e.g. by a stratified design, in which areas are stratified according to their environmental conditions and the number of samples in each stratum is proportional to the area of that stratum. Such sampling is spatially representative of the variability of these conditions over the whole study area and does not over-represent unusual but rare environmental conditions.
- Species Distribution Model (SDM): Here used as a generic catch-all term to refer to any empirical model that allows spatially-explicit prediction of the current or future environmental suitability for a species (using presence-only, presence/absence and/or abundance data) based on predictors (such as climate, land-use, etc.) and, possibly, scenarios (e.g. IPCC's climate change scenarios) (Guisan \& Thuiller, 2005). Depending on the objectives and underlying assumptions - but mostly using the same types of data and algorithms, these models are also called ecological niche models (ENMs), habitat suitability models (HSMs), niche-based models (NBMs), potential habitat distribution models (PHDMs), and when used only with climate variables, climate-envelope models (CEMs) or climate matching models (CMMs) (Guisan et al. 2013). For instance, ENM can give more focus to species niche quantification or requirements while strict SDMs focus more on getting spatial predictions of species distribution(Saupe et al., 2012). In the context of rare species modelling, models aim to predict either the probability / likelihood of occurrence, or
the probability of environmental suitability for the species, with the caution that these predictions may differ from the realized distribution because a location may be suitable but not reachable by the species.

Introduction

Almost all international, national, and local conservation planning activities flag biodiversity as a crucial environmental property (e.g. Aichi Targets, Sustainable Development Goals) (Butchart et al., 2016; Griggs et al., 2013) to be protected from the deleterious effects of habitat loss, exploitation, pollution and climate change (IPBES, 2019; Maxwell et al., 2016; Rands et al., 2010). However, biodiversity measurement often relies on species, most of which are rare at various scales (Enquist et al., 2019; Fontaine et al., 2007; Hartley \& Kunin, 2003; Henle et al., 2010; Rabinowitz, 1981; Steege et al., 2013). Several initiatives to halt biodiversity loss have questioned whether current measures of biodiversity do actually sufficiently account for rare species (e.g. Fontaine et al., 2007). For example, one third of plant species worldwide are too poorly known and have too few data for a Red List assessment (Brummitt et al., 2015; Enquist et al., 2019). At the same time, rare species are especially prone to extinction (Courchamp et al., 2006; Henle et al., 2004; Işik, 2011; Kunin \& Gaston, 1993; McKinney, 1997). One way to assess extinction risk is to track the change in spatial distribution through time (Araújo et al., 2002; Benito et al., 2009; Gärdenfors et al., 2001; Thomas et al., 2004). Therefore, protecting species diversity directly implies protecting rare species, which requires understanding their distribution patterns.

Unfortunately, rarity causes considerable methodological difficulties in obtaining sufficient data from survey programmes or alternative sources (e.g. D. L. Roberts et al., 2016), which limits the ability of models to predict distribution patterns. For example, many studies using species distribution models (SDMs, defined in Box 1) need a minimum number of occurrences below which the models cannot be reliably trained and/or validated (e.g. van Proosdij et al., 2016). Thus, we are locked in the 'rare-species modelling paradox' (Lomba et
al., 2010): the majority of species that require the greatest protection also are the species we know least about and are most difficult to model.

However, rarity is an umbrella term used to describe various types of distribution patterns at various scales. Rabinowitz (1981) defined seven categories of rarity based on combinations of the range of a species, the distribution of populations within its range and the local density of the species when present (Figure 1a). Whatever measure used (e.g. range size, occupancy, abundance, relative cover, biomass), and ecosystem or scale of the study, a community is likely to include a handful of common species and a long tail of rare species (Fisher et al., 1943; Preston, 1948). The resulting pattern of species-abundance distributions, following a log-like curve in most natural systems (but also see (Magurran \& Henderson, 2003)), is observed on local to global scales, with correspondingly fine abundance (McGill et al., 2007) to range size frequency (Gaston, 1998) data.

With the goal of mapping rare species' distribution ranges and changes for protection purposes, each of the seven types of rarity implies different problems in accumulating data for modelling. For example, two species A and B with similar prevalence are both found within an area: Species A has a narrow range with high local density (rarity category 2) and species B has a broad range with low local density (rarity category 4). Randomly distributed sampling in this area is likely to sample only a few sites where species A is present and many sites where species B is present; consequently, species B's distribution is likely to be better evaluated than species A's distribution. However, a priori knowledge on where species A is present may mean that species A is more often encountered than species B; consequently, the dataset contains more presences of species A than of species B. The type of rarity, the spatial distribution of samples and the protocol used to sample each location thus all affect the data generated, and the types of model used to project the species' distribution range. Finally, with the perpetual changes in taxonomy (taxonomic revisions), the identification, assessment, and conservation of rare species are constantly challenged (Ota, 2000; Schwartz \& Simberloff, 2001; Standley, 1992) (but see also (Domínguez Lozano et al.,

2007; Simkins et al., 2020)) and the expected increase of species number for some taxonomic groups (Morrison III et al., 2009) foresees an endless need to coping with rarity issues.

We therefore face a conundrum in which, although rarity is ubiquitous, it is particularly challenging to account for, sample and model, at all scales. While some publications already provide comprehensive overview on specific aspects of the different steps from sampling to modelling rare species (Cunningham \& Lindenmayer, 2005; Green \& Young, 1993; Hermoso et al., 2015; Kenkel et al., 1990; Milner-Gulland \& Rowcliffe, 2007; Robinson et al., 2018; W. Thompson, 2013), how to improve our prediction of rare species distribution changes remains a complete challenge to date (Aubry et al., 2017; Didham et al., 2020; Galante et al., 2018; Helmstetter et al., 2021). Our perspective is that all steps need to be integrated in study design. In particular, their sequence needs to be adapted to the different types of rarity to improve our capacity for sound assessments and predictions of the distribution of the majority of biodiversity. However, the trade-offs faced when modelling the distribution of rare species and the decision path linking the form of rarity with the sampling and modelling strategies have largely been neglected. Therefore, to help untangle the rarity conundrum and adapt modelling strategies to the rarity issues, we aim, for each of Rabinowitz's categories of rarity:
(i) To identify the main trade-offs involved in selecting adequate, cost-effective sampling strategies and how these affect the properties of the data,
(ii) To identify modelling frameworks that are potentially suitable for the type of data generated and to highlight gaps that require model development.
To address the first aim, we focus on the spatial distribution of samples ('where to sample') and on the protocols used to do the sampling ('how to sample'). For the second aim, we list and discuss the main modelling frameworks suitable for producing distribution maps for different types of rarity ('how to model'). We synthesize our findings, provide guidelines to optimize and integrate monitoring and modelling of rare species depending on their rarity

This article is protected by copyright. All rights reserved
characteristics and briefly discuss remaining challenges with respect to sampling and modelling rare species.

Where to sample

When setting up a survey program there are multiple ways by which the spatial allocation of samples can be decided (Table 1; Figure 1b). Any choice made at this stage will affect the properties of the collected data. The main trade-off to consider is between sampling efficiency and spatial coverage.

Locally-focused sampling targeting a particular species allows its population to be studied efficiently, but at the expense of a spatially non-representative sample of the species distribution. This conflicts with the aim of covering the realised niche of a species, an assumption of most modelling frameworks. For species whose distribution range is relatively wide and distribution pattern is dispersed (common species and rarity category 4), a spatially representative sample-set of the entire extent is more likely to provide the required occurrence data. Spatially representative sampling has several positive properties. First, data are comparable among species, allowing cost-effective monitoring of multiple species. Second, even if the location of samples is not constant, data remain comparable between years, allowing the detection of temporal changes in distribution (if sampling intensity is kept constant). Third, data on the focal species fit easily into most modelling frameworks, if enough are collected. This is usually done with a systematic sampling scheme on a grid, stratifying the sampling according to habitat or land cover (while ensuring proportional sampling in each stratum), or by randomly selecting the sampling locations (Table 1; Figure 1b).

However, for species with narrow and/or clumped and patchy distribution patterns (rarity categories $1,2,3,5,6,7$), a random sample-set of the entire extent is unlikely to capture sufficient information. For example, in the 2007 UK plants countryside survey, 591 one-km²

This article is protected by copyright. All rights reserved
locations were included in a stratified random design (Bunce et al., 2014; Carey et al., 2008): the survey recorded 880 species. As there are approximately 4000 plant species in the UK, the survey failed to detect 2400 rare species. In fact, the narrower and clumpier the distribution of a species, the larger the number of random sites needed to encounter the species in enough locations to make credible estimates of abundance or distributional status and changes. Thus, one may need to constrain the sampling towards the target species.

Various methods allow the distribution of samples to target locations more likely to contain a certain rare species (Table 1; Figure 1b). One such example is adaptive sampling (W. Thompson, 2013; Yoccoz et al., 2001). Many programs periodically monitoring rare species sample locations where the species is known to occur, but rarely look in new sites. Such adaptive sampling may be excellent in keeping track of known populations, but eventually leads to erroneous conclusions regarding distribution trends. Consider a species subject to metapopulation dynamics, experiencing local extinctions and colonization of patches: if sampling is in known locations only, one may identify all local extinctions (and a preceding gradual decrease in population size) but not identify the colonization of new patches. Thus, we might wrongly conclude that the species distribution is deteriorating while it may in fact be in an equilibrium state (Magurran et al., 2010) (but see (McRae et al., 2017)).

Another fruitful approach is to combine adaptive with SDM-guided sampling (Aizpurua et al., 2015; Chiffard et al., 2020; e.g. Lin et al., 2014) where one sampling session provides information to model and the following sessions allow adjusting the distribution of samples (S. K. Thompson, 2013; W. Thompson, 2013; Yoccoz et al., 2001). For example, a SDM with data sampled at a certain time can tag potentially unknown local populations for sampling the next year (e.g. Lin et al., 2014). Once the area is sampled and SDM parameters updated, the SDM is re-run and new locations targeted. Such a strategy may be very efficient at accumulating observations of rare species. However, it comes with the risk of estimating an over-optimistic occupancy trend, as the number of detected presences can increase over time while the distribution actually decreases (Table 1). Appropriately
parametrized stacked SDMs, including rarity weighting, can further allow improving the sampling of multiple rare species and help prioritize sampling areas (Rosner-Katz et al., 2020). Any form of adaptive sampling therefore needs considerable manipulation and/or reliable complementary information for further species distribution modelling (Dorazio, 2014; Hefley et al., 2014; Phillips et al., 2009; Raes \& ter Steege, 2007).

The transition from spatially representative sampling to species-targeted sampling also reflects a gradient of a priori knowledge (Table 1). Random sampling does not require specific knowledge. Adaptive sampling and SDM-guided approaches instead need considerable knowledge of the species and its requirements before designing the sampling scheme. Stratified schemes require knowledge about sampling sites and their habitats or environmental conditions across the full range of the target species. Additionally, stratified schemes depend on the quality of the original information used to guide the stratification that has its own uncertainty, due to potential spatial errors and classification issues (Rocchini et al., 2011).

To summarize, different strategies for defining the spatial distribution of samples reflect the compromise between sampling efficiency and spatial representativeness (Figure 1b). Overall, three main types of data may be generated, each with implications for modelling: data can be spatially representative (of the species range, potentially for multiple species), spatially constrained independent of the species, or spatially constrained towards particular species.

How to sample

For assessing the distribution of species and changes therein, sampling should aim to collect the appropriate quantity of presence data, reduce the number of false absences, and account for detectability of the sampled species (Table 2; Figure 1c). Locally rare as well as elusive (e.g. cryptic or trap-shy) species (W. Thompson, 2013) both pose specific challenges. The probability of detecting a species depends on a range of factors, such as
habitat type, time of the day and year, population density and methods employed to survey the species. Repeated sampling with methods targeting rare and elusive species reduce the probability of false absences and the latter may generate presence/absence data accounting for detection probability (MacKenzie et al., 2017).
Multiple methods increase the detectability of species; some are just a function of sampling effort (e.g. longer transects), others are more directly related to the known ecology of the target species (Table 2; Figure 1c). These latter methods include, for example, baited traps (e.g. Steyer et al., 2013), camera traps (e.g. Schüttler et al., 2017), species-specific markers in environmental DNA (eDNA) sampling (e.g. Carraro et al., 2018), expert knowledge of the species' habitat preference and/or behaviour, or the use of detection dogs (Grimm-Seyfarth et al., 2019; Grimm-Seyfarth \& Klenke, 2019; Hollerbach et al., 2018).

There are several points to consider. First, most of these methods increase the effort or costs required compared with simpler methods, especially when the sampling aims to detect several rare species simultaneously. Second, methods increase detection probability differently for different species, producing output less comparable between species unless methods are highly standardized. For example, a trap baited with pheromones of a specific species will attract more individuals of the focal species than baiting a trap with food utilized by many species (e.g. dung for dung beetles) (Marsh et al., 2013). However, recent advances in genetic monitoring, such as improved markers in eDNA detection of stream species (Carraro et al., 2021; e.g. Jerde et al., 2011; Leese et al., 2021), significantly increase the number of species detected, including many rare species, especially from rivers over several kilometres in length (Altermatt et al., 2020; e.g. Mächler et al., 2019) - but these methods still need further calibration works (Alsos et al., 2018; e.g. Beng \& Corlett, 2020; Cristescu \& Hebert, 2018). Third, highly standardized protocols are essential for comparisons among sites, although some variability in detectability between sites will remain; for example, bird songs are less audible in leaved deciduous forests than in mixed pine forests (Pacifici et al., 2008).

This article is protected by copyright. All rights reserved

Some sampling methods generate presence/absence and even abundance data in sufficient quality and quantity to account for detection probability (with repeated sampling of selected sites during a specific period (Mackenzie \& Royle, 2005). Among others, such methods include distance sampling (Buckland et al., 2015) and capture-mark-recapture (B. K. Williams et al., 2002). For the latter, capture by camera traps coupled with image analysis is particularly promising for rare species (Schüttler et al., 2017) (Table 2; Figure 1c). Although these data greatly increase the spectrum of models that can be applied, they require high effort and cost; hardly suitable for rare species except perhaps for those with high local density. However, combining such methods with occupancy surveys or opportunistic observations (e.g. atlas or citizen-science data) and the incorporation of environmental data as potential predictors of occupancy and/or abundance may allow the extrapolation of rare species distributions across large spatial scales (e.g. Bowler et al., 2019; Giraud et al., 2016).

How to model

As discussed above, choices on the spatial distribution of samples eventually lead to three types of datasets: spatially representative, spatially constrained independent of the species (e.g. due to unrepresentative sampling of environments (see e.g. Bystriakova et al., 2012; Varela et al., 2014)), or spatially constrained towards target species. From a modelling perspective, this results in a trade-off between the number of presences and the need to account for spatial auto-correlation in the data. Similarly, sampling protocols affect the type of data obtained for modelling, be it presence-only, presence/absence, or presence/absence with detectability or estimates of abundances, and thus condition the type and quality of inference. Depending on the type of rarity, the 'where to sample' and 'how to sample' decisions, successful modelling of rare species require modelling tools that fall into all combinations of the cases above (Figure 1d).

This article is protected by copyright. All rights reserved

When only presences are available, some methods produce pseudo-absences based on external information (e.g. habitat suitability (Barbet-Massin et al., 2012)). For some models, such as Maxent and Poisson point-process models (PPPMs), pseudo-absences are better interpreted as background points, not implying absences but rather samples of the available environment, where presences are compared against unsampled background locations (Merow et al., 2013; Phillips et al., 2009). They do not produce probability of occurrence but relative occurrence rates (Guillera-Arroita et al., 2015) and can be appropriate for rare species modelling if proper bias correction is applied (Table 3; Figure 1d).

Where presence/absence data are available, developments in SDMs allow handling of data over-dispersion (e.g. negative-binomial and mixed effect models (Harrison, 2014; Molenberghs et al., 2007; O’Hara \& Kotze, 2014)), spatial-autocorrelation (e.g. F. C. Dormann et al., 2007; Marcer et al., 2013), uncertainty in predictions (e.g. ensemble forecasting (Araújo \& New, 2007; Guisan et al., 2017; Thuiller et al., 2019)), and biases due to sampling scales (Keil et al., 2013; Keil \& Chase, 2019). Hierarchical models (HM) are especially useful due to their flexibility: they describe, on the one hand, the true state of nature that is not or only partly observable (e.g. variation in occurrence probability potentially due to variation in available resources), and on the other hand, the measurement error (e.g. variation in detection probability potentially due to variable observer skills) (Kéry \& Royle, 2015). Multi-scale hierarchical SDMs account for the fact that increasing the sampling extent increases the probability of detecting rare species (Rocchini et al., 2017). HMs thus allow imperfect detectability to be considered in the modelling procedure (Table 3). By integrating prior knowledge, Bayesian Belief Networks explicitly decompose causal pathways involved in the capture rate of species, including respective influences of detection and occupancy in small or incomplete datasets (Uusitalo, 2007): capture can be considered dependent on detectability, influenced by date and trapping effort, and by occupancy, influenced by suitability of local habitat conditions (Marcot et al., 2006). Such methods have already proved useful for modelling species distributions (Van Echelpoel et al., 2015) and responses of rare and endangered species (Hamilton et al., 2015; Smith et al., 2007) (Table 3).

This article is protected by copyright. All rights reserved

When abundance data from standardized survey or monitoring protocols are available, these can be used to fit rare species distribution models and track distribution changes (Howard et al., 2014). However, because such protocols usually do not detect most of the rare species, especially clumped and low local-density species (see 'how to sample’ section), abundancebased SDMs are rarely possible for rare species.
If recapture data are available, distribution modelling can be done using classical siteoccupancy models and different methods developed as mark-release-recapture analyses (MacKenzie et al., 2017; K. H. Pollock et al., 1990) (Table 3).

For occurrence data from spatio-temporally replicated measurements of presences/absences, under the assumption of population closure (i.e. if the populations did not exchange propagules between the time steps under study), the Royle-Nichols model (Kéry \& Royle, 2015; Royle \& Nichols, 2003) allows occurrence probability to be estimated and detection heterogeneity accommodated (Table 3; Figure 1d). When 'unmarked' abundance data are available, N -mixture models can estimate both detectability and abundances used in large-scale species distribution modelling (Guélat \& Kéry, 2018; Jakob et al., 2014; Kéry, 2018) (Table 3; Figure 1d). When potential sources of measurement bias are known (e.g. type of observer, weather, vegetation density), these can be integrated as covariates in the latent state submodel (e.g. Cunningham \& Lindenmayer, 2005).

When data are zero-inflated, as typical for rare species data, variants of Royle-Nichols or N mixture models can be applied that allow extra parameters and account for data overdispersion. Variants of N -mixture models have further been developed that address spatial bias and scale-dependence, such as variation of sampling grain size (Keil et al., 2018) or scales of environmental influence (R. Chandler \& Hepinstall-Cymerman, 2016). However, the underlying assumptions are quite restrictive for species distribution modelling and further simulation studies are needed to assess their performance with rare species when assumptions are not met. This approach is also not necessarily the most cost-effective

This article is protected by copyright. All rights reserved
strategy when it comes to tracking species distribution changes over time compared with presence/absence data (Joseph et al., 2006).

When multiple types of data are available (presences, presence/absence, abundance), their combination within single modelling frameworks provides valuable insights into predicting species distributions, occupancy, even abundance (Table 3). Even if available over a restricted spatial extent, multiple sources of abundance data can be used together with more extensive data, such as occupancy surveys or opportunistic observations. HMs can include different submodels for the different sources of data, and potential detection biases, and incorporate environmental data as potential predictors of occupancy and/or abundance. Such methods allow extrapolation and even comparison of rare species' distributions across large spatial scales (e.g. Bowler et al., 2019; Giraud et al., 2016) and potentially for all categories of rarity if data sources are available and models well built (Figure 1d).

To summarize, model choice will mainly depend on the nature of the data and biases involved. From presence only, to presence/absence, to abundance, in Figure 1d, there is a change in the temporal comparability of SDMs, and thus their ability to track distributional changes. In the top row, the output is relative likelihood, which is not comparable even for a given species over multiple time steps. Naïve presence/absence SDMs provide an estimate that does not separate probability of occurrence from detectability, but if we assume detectability to be constant across time and space (including no drastic change in abundances), the resulting probability map is comparable for a given species over time. Finally, population size information allows the separate estimation of detectability and probability of occurrence, which is comparable over time, species and space. Comparability is important as it enables conservationists to assess changes in the environmental suitability, and ideally (see Dallas \& Hastings, 2018; Jiménez-Valverde et al., 2021; Weber et al., 2017), in the distribution of rare species that could require revision of a species' status and protection needs.

This article is protected by copyright. All rights reserved

More generally, whatever the type of rarity, several methodological aspects are to be considered to ensure SDM quality, including predictor selection (e.g. Le Rest et al., 2014; Saupe et al., 2012; K. J. Williams et al., 2012), model averaging (e.g. Burnham \& Anderson, 2004; C. F. Dormann et al., 2018), spatial-explicit cross-validation (e.g. D. R. Roberts et al., 2017), optimisation of model performance (e.g. Anderson \& Gonzalez, 2011; Norberg et al., 2019; Radosavljevic \& Anderson, 2014), and testing or improvement of the extrapolation abilities of the fitted models (e.g. Mesgaran et al., 2014; Owens et al., 2013; Qiao et al., 2019; Stohlgren et al., 2011; Zurell et al., 2012).

Conclusion and future perspectives

Protecting species diversity implies protecting rare species. However, surveying and modelling rare species involves considerable methodological challenges. In this paper, we have identified how the main decisions on sampling strategy condition properties of the data, and how these in turn condition the range of appropriate modelling methods. With this perspective, we provide guidelines to optimize monitoring and modelling of rare species depending on their rarity characteristics and to ensure consistency between sampling methods, and modelling approaches (Figure 1).

Significant data on the occurrence of species is collected by citizen scientists (Amano et al., 2016; M. Chandler et al., 2017). It is highly valuable for monitoring biodiversity at different scales, but often biased and limited to specific areas. While there are ways to correct biases in such data (Bird et al., 2014; Robinson et al., 2018), for monitoring "rarest" species (i.e. narrow distributional range, clumped population, low local density), a systematic speciestargeted sampling design may be preferred. Significant advances are expected from advanced remote sensing techniques, genetic tools and using detection dogs, all with the potential to significantly increase the detection rate of rare species at comparatively low cost and with more or less bias towards the species. Above all, future research is still needed to integrate the type of rarity more explicitly into decisions on how and where to sample with the selection of appropriate models. Another challenge with respect to species conservation
is that, although the rarity status is defined with respect to endemicity over a given period, it may be dynamic in the longer term, requiring constant adaptation of assessment strategies.

Considering most forms of rarity, our synthesis highlights the particular potential of HMs as a flexible tool to improve rarity modelling while accounting for spatial, observer, and speciesspecific biases. Advances in zero-inflation modelling in particular have to be better integrated into rare species distribution modelling as both the conceptual and technical foundations of these approaches impact on the rarity sampling and modelling issues. Considering the rarest forms of rarity, our synthesis suggests that recent HM developments to combine multiple sources of data are extremely promising (Figure 1).

Other promising perspectives have recently emerged, such as functional rarity modelling (Carmona et al., 2017; Violle et al., 2017) and the use of co-occurring species information (or the "neighbourly advice" (McInerny \& Purves, 2011)) and of positive associations among rare species (Calatayud et al., 2019; Hines \& Keil, 2020) as potentially valuable information to model rarity distribution. Other model developments include harnessing information from other sources that either directly inform a species' distribution at larger scales, such as incorporating expert-drawn range maps (Merow et al., 2017) or elevation ranges (Ellis-Soto et al., 2021) as model offsets. Joint species distribution models (JSDMs), which model multiple species simultaneously to infer the species' environmental response based on species co-occurrences (Ovaskainen \& Soininen, 2011; L. J. Pollock et al., 2014), often incorporate ancillary information such as trait (L. J. Pollock et al., 2012) or phylogenetic similarity (Ovaskainen et al., 2017) and are promising further developments for rare species modelling (Tobler et al., 2019). Finally, machine-learning based methods, including nonparametric methods, and methods tolerant of unstructured data, have shown promise for modelling and mapping rarity with strong predictive ability (Pouteau et al., 2012; Robinson et al., 2018). Further research and sensitivity analyses are needed to assess the appropriateness of these methods in the workflow of rarity sampling and modelling, depending on the rarity type of the species.

This article is protected by copyright. All rights reserved

References

Aizpurua, O., Paquet, J.-Y., Brotons, L., \& Titeux, N. (2015). Optimising long-term monitoring projects for species distribution modelling: How atlas data may help. Ecography, 38(1), 2940. https://doi.org/10.1111/ecog. 00749

Alsos, I. G., Lammers, Y., Yoccoz, N. G., Jørgensen, T., Sjögren, P., Gielly, L., \& Edwards, M. E. (2018). Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. PLOS ONE, 13(4), e0195403. https://doi.org/10.1371/journal.pone. 0195403

Altermatt, F., Little, C. J., Mächler, E., Wang, S., Zhang, X., \& Blackman, R. C. (2020). Uncovering the complete biodiversity structure in spatial networks: The example of riverine systems. Oikos, 129(5), 607-618. https://doi.org/10.1111/oik. 06806
Amano, T., Lamming, J. D. L., \& Sutherland, W. J. (2016). Spatial Gaps in Global Biodiversity Information and the Role of Citizen Science. BioScience, 66(5), 393-400. https://doi.org/10.1093/biosci/biw022
Anderson, R. P., \& Gonzalez, I. (2011). Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecological Modelling, 222(15), 2796-2811. https://doi.org/10.1016/j.ecolmodel.2011.04.011
Araújo, M. B., \& New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology \& Evolution, 22(1), 42-47. https://doi.org/10.1016/j.tree.2006.09.010
Araújo, M. B., Williams, P. H., \& Fuller, R. J. (2002). Dynamics of extinction and the selection of nature reserves. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1504), 1971-1980. https://doi.org/10.1098/rspb.2002.2121
Aubry, K. B., Raley, C. M., \& McKelvey, K. S. (2017). The importance of data quality for generating reliable distribution models for rare, elusive, and cryptic species. PLOS ONE, 12(6), e0179152. https://doi.org/10.1371/journal.pone. 0179152

Barbet-Massin, M., Jiguet, F., Albert, C. H., \& Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution. https://doi.org/10.1111/j.2041-210X.2011.00172.x
Beng, K. C., \& Corlett, R. T. (2020). Applications of environmental DNA (eDNA) in ecology and conservation: Opportunities, challenges and prospects. Biodiversity and Conservation, 29(7), 2089-2121. https://doi.org/10.1007/s10531-020-01980-0

This article is protected by copyright. All rights reserved

Benito, B. M., Martínez-Ortega, M. M., Muñoz, L. M., Lorite, J., \& Peñas, J. (2009). Assessing extinction-risk of endangered plants using species distribution models: A case study of habitat depletion caused by the spread of greenhouses. Biodiversity and Conservation, 18(9), 25092520. https://doi.org/10.1007/s10531-009-9604-8

Bird, T. J., Bates, A. E., Lefcheck, J. S., Hill, N. A., Thomson, R. J., Edgar, G. J., Stuart-Smith, R. D., Wotherspoon, S., Krkosek, M., Stuart-Smith, J. F., Pecl, G. T., Barrett, N., \& Frusher, S. (2014). Statistical solutions for error and bias in global citizen science datasets. Biological Conservation, 173, 144-154. https://doi.org/10.1016/j.biocon.2013.07.037

Bowler, D. E., Nilsen, E. B., Bischof, R., O'Hara, R. B., Yu, T. T., Oo, T., Aung, M., \& Linnell, J. D. C. (2019). Integrating data from different survey types for population monitoring of an endangered species: The case of the Eld's deer. Scientific Reports, 9(1), 7766. https://doi.org/10.1038/s41598-019-44075-9

Brummitt, N. A., Bachman, S. P., Griffiths-Lee, J., Lutz, M., Moat, J. F., Farjon, A., Donaldson, J. S., Hilton-Taylor, C., Meagher, T. R., Albuquerque, S., Aletrari, E., Andrews, A. K., Atchison, G., Baloch, E., Barlozzini, B., Brunazzi, A., Carretero, J., Celesti, M., Chadburn, H., ... Lughadha, E. M. N. (2015). Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants. PLOS ONE, 10(8), e0135152. https://doi.org/10.1371/journal.pone. 0135152

Buckland, S. T., Rexstad, E. A., Marques, T. A., \& Oedekoven, C. S. (2015). Distance Sampling: Methods and Applications. Springer.

Bunce, R., Carey, P., Maskell, L., Norton, L., Scott, R., Smart, S., \& Wood, C. (2014). Countryside Survey 2007 vegetation plot data.

Burnham, K. P., \& Anderson, D. R. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods \& Research, 33(2), 261-304. https://doi.org/10.1177/0049124104268644

Butchart, S. H. M., Marco, M. D., \& Watson, J. E. M. (2016). Formulating Smart Commitments on Biodiversity: Lessons from the Aichi Targets. Conservation Letters, 9(6), 457-468. https://doi.org/10.1111/conl. 12278
Bystriakova, N., Peregrym, M., Erkens, R. H. J., Bezsmertna, O., \& Schneider, H. (2012). Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Systematics and Biodiversity, 10(3), 305-315. https://doi.org/10.1080/14772000.2012.705357

This article is protected by copyright. All rights reserved

Calatayud, J., Andivia, E., Escudero, A., Melián, C. J., Bernardo-Madrid, R., Stoffel, M., Aponte, C., Medina, N. G., Molina-Venegas, R., Arnan, X., Rosvall, M., Neuman, M., Noriega, J. A., Alves-Martins, F., Draper, I., Luzuriaga, A., Ballesteros-Cánovas, J. A., Morales-Molino, C., Ferrandis, P., ... Madrigal-González, J. (2019). Positive associations among rare species and their persistence in ecological assemblages. Nature Ecology \& Evolution, 4(1), 40-45. https://doi.org/10.1038/s41559-019-1053-5
Carey, P. D., Wallis, S., Emmett, B., Maskell, L., Murphy, J., Norton, L., Simpson, I., \& Smart, S. (2008). Countryside Survey: UK headline messages from 2007.

Carmona, C. P., Bello, F. de, Sasaki, T., Uchida, K., \& Pärtel, M. (2017). Towards a Common Toolbox for Rarity: A Response to Violle et al. Trends in Ecology \& Evolution, 32(12), 889891. https://doi.org/10.1016/j.tree.2017.09.010

Carraro, L., Hartikainen, H., Jokela, J., Bertuzzo, E., \& Rinaldo, A. (2018). Estimating species distribution and abundance in river networks using environmental DNA. Proceedings of the National Academy of Sciences, 115(46), 11724-11729.
https://doi.org/10.1073/pnas. 1813843115
Carraro, L., Stauffer, J. B., \& Altermatt, F. (2021). How to design optimal eDNA sampling strategies for biomonitoring in river networks. Environmental DNA, 3(1), 157-172. https://doi.org/10.1002/edn3.137
Chandler, M., See, L., Copas, K., Bonde, A. M. Z., López, B. C., Danielsen, F., Legind, J. K., Masinde, S., Miller-Rushing, A. J., Newman, G., Rosemartin, A., \& Turak, E. (2017). Contribution of citizen science towards international biodiversity monitoring. Biological Conservation, 213, 280-294. https://doi.org/10.1016/j.biocon.2016.09.004
Chandler, R., \& Hepinstall-Cymerman, J. (2016). Estimating the spatial scales of landscape effects on abundance. Landscape Ecology, 31(6), 1383-1394. https://doi.org/10.1007/s10980-016-0380-z
Chiffard, J., Marciau, C., Yoccoz, N. G., Mouillot, F., Duchateau, S., Nadeau, I., Fontanilles, P., \& Besnard, A. (2020). Adaptive niche-based sampling to improve ability to find rare and elusive species: Simulations and field tests. Methods in Ecology and Evolution, n/a(n/a). https://doi.org/10.1111/2041-210X. 13399
Courchamp, F., Angulo, E., Rivalan, P., Hall, R. J., Signoret, L., Bull, L., \& Meinard, Y. (2006). Rarity Value and Species Extinction: The Anthropogenic Allee Effect. PLoS Biology, 4(12), e415. https://doi.org/10.1371/journal.pbio. 0040415

This article is protected by copyright. All rights reserved

Cristescu, M. E., \& Hebert, P. D. N. (2018). Uses and Misuses of Environmental DNA in Biodiversity Science and Conservation. Annual Review of Ecology, Evolution, and Systematics, 49(1), 209-230. https://doi.org/10.1146/annurev-ecolsys-110617-062306
Cunningham, R. B., \& Lindenmayer, D. B. (2005). Modeling count data of rare species: Some statistical issues. Ecology, 86(5), 1135-1142.
Dallas, T. A., \& Hastings, A. (2018). Habitat suitability estimated by niche models is largely unrelated to species abundance. Global Ecology and Biogeography, 27(12), 1448-1456. https://doi.org/10.1111/geb. 12820
Didham, R. K., Basset, Y., Collins, C. M., Leather, S. R., Littlewood, N. A., Menz, M. H. M., Müller, J., Packer, L., Saunders, M. E., Schönrogge, K., Stewart, A. J. A., Yanoviak, S. P., \& Hassall, C. (2020). Interpreting insect declines: Seven challenges and a way forward. Insect Conservation and Diversity, 13(2), 103-114. https://doi.org/10.1111/icad. 12408

Domínguez Lozano, F., Moreno Saiz, J. C., Sainz Ollero, H., \& Schwartz, M. W. (2007). Effects of dynamic taxonomy on rare species and conservation listing: Insights from the Iberian vascular flora. Biodiversity and Conservation, 16(14), 4039-4050. https://doi.org/10.1007/s10531-007-9206-2

Dorazio, R. M. (2014). Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. Global Ecology and Biogeography, 23(12), 1472-1484. https://doi.org/10.1111/geb. 12216
Dormann, C. F., Calabrese, J. M., Guillera-Arroita, G., Matechou, E., Bahn, V., Bartoń, K., Beale, C. M., Ciuti, S., Elith, J., Gerstner, K., Guelat, J., Keil, P., Lahoz-Monfort, J. J., Pollock, L. J., Reineking, B., Roberts, D. R., Schröder, B., Thuiller, W., Warton, D. I., ... Hartig, F. (2018). Model averaging in ecology: A review of Bayesian, information-theoretic, and tactical approaches for predictive inference. Ecological Monographs, 88(4), 485-504. https://doi.org/10.1002/ecm. 1309
Dormann, F. C., M. McPherson, J., B. Araújo, M., Bivand, R., Bolliger, J., Carl, G., G. Davies, R., Hirzel, A., Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., R. Peres-Neto, P., Reineking, B., Schröder, B., M. Schurr, F., \& Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609-628. https://doi.org/10.1111/j.2007.0906-7590.05171.x

This article is protected by copyright. All rights reserved

Ellis-Soto, D., Merow, C., Amatulli, G., Parra, J. L., \& Jetz, W. (2021). Continental-scale 1 km hummingbird diversity derived from fusing point records with lateral and elevational expert information. Ecography, 44(4), 640-652. https://doi.org/10.1111/ecog.05119
Enquist, B. J., Feng, X., Boyle, B., Maitner, B., Newman, E. A., Jørgensen, P. M., Roehrdanz, P. R., Thiers, B. M., Burger, J. R., Corlett, R. T., Couvreur, T. L. P., Dauby, G., Donoghue, J. C., Foden, W., Lovett, J. C., Marquet, P. A., Merow, C., Midgley, G., Morueta-Holme, N., ... McGill, B. J. (2019). The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances, 5(11), eaaz0414. https://doi.org/10.1126/sciadv.aaz0414
Fisher, R. A., Corbet, A. S., \& Williams, C. B. (1943). The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population. Journal of Animal Ecology, 12(1), 42-58. JSTOR. https://doi.org/10.2307/1411

Fontaine, B., Bouchet, P., Van Achterberg, K., Alonso-Zarazaga, M. A., Araujo, R., Asche, M., Aspöck, U., Audisio, P., Aukema, B., Bailly, N., Balsamo, M., Bank, R. A., Barnard, P., Belfiore, C., Bogdanowicz, W., Bongers, T., Boxshall, G., Burckhardt, D., Camicas, J.-L., ... Willmann, R. (2007). The European union's 2010 target: Putting rare species in focus. Biological Conservation, 139(1), 167-185. https://doi.org/10.1016/j.biocon.2007.06.012
Galante, P. J., Alade, B., Muscarella, R., Jansa, S. A., Goodman, S. M., \& Anderson, R. P. (2018). The challenge of modeling niches and distributions for data-poor species: A comprehensive approach to model complexity. Ecography, 41(5), 726-736. https://doi.org/10.1111/ecog. 02909
Gärdenfors, U., Hilton-Taylor, C., Mace, G. M., \& Rodríguez, J. P. (2001). The Application of IUCN Red List Criteria at Regional Levels. Conservation Biology, 15(5), 1206-1212. https://doi.org/10.1111/j.1523-1739.2001.00112.x
Gaston, K. J. (1998). Species-range size distributions: Products of speciation, extinction and transformation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1366), 219-230. https://doi.org/10.1098/rstb.1998.0204
Gelman, A., \& Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.

Giraud, C., Calenge, C., Coron, C., \& Julliard, R. (2016). Capitalizing on opportunistic data for monitoring relative abundances of species. Biometrics, 72(2), 649-658. https://doi.org/10.1111/biom. 12431

This article is protected by copyright. All rights reserved

Green, R. H., \& Young, R. C. (1993). Sampling to Detect Rare Species. Ecological Applications, 3(2), 351-356. https://doi.org/10.2307/1941837
Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shyamsundar, P., Steffen, W., Glaser, G., Kanie, N., \& Noble, I. (2013). Sustainable development goals for people and planet. Nature, 495(7441), 305-307. https://doi.org/10.1038/495305a
Grimm-Seyfarth, A., \& Klenke, R. (2019). Wie findet man schwer zu erfassende Arten? Vorteile und Limitierungen von Artenspürhunden. In C. Schüler \& P. Kaul (Eds.), Faszinosum Spürhunde—Dem Geruch auf der Spur. Tagungsergebnisse des 4. Symposiums für Odorologie im Diensthundewesen an der Hochschule Bonn-Rhein-Sieg.: Vol. Band 2 (Schriften der Arbeitsgemeinschaft Odorologie e.V., pp. 40-47).

Grimm-Seyfarth, A., Zarzycka, A., Nitz, T., Heynig, L., Weissheimer, N., Lampa, S., \& Klenke, R. (2019). Performance of detection dogs and visual searches for scat detection and discrimination amongst related species with identical diets. Nature Conservation, 37, 81.

Guélat, J., \& Kéry, M. (2018). Effects of spatial autocorrelation and imperfect detection on species distribution models. Methods in Ecology and Evolution, 9(6), 1614-1625. https://doi.org/10.1111/2041-210X. 12983

Guillera-Arroita, G., Lahoz-Monfort, J. J., Elith, J., Gordon, A., Kujala, H., Lentini, P. E., McCarthy, M. A., Tingley, R., \& Wintle, B. A. (2015). Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography, 24(3), 276292. https://doi.org/10.1111/geb. 12268

Guisan, A., \& Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
Guisan, A., Thuiller, W., \& Zimmermann, N. E. (2017). Habitat Suitability and Distribution Models: With Applications in R. Cambridge University Press.
Hamilton, S. H., Pollino, C. A., \& Jakeman, A. J. (2015). Habitat suitability modelling of rare species using Bayesian networks: Model evaluation under limited data. Ecological Modelling, 299, 64-78. https://doi.org/10.1016/j.ecolmodel.2014.12.004
Harrison, X. A. (2014). Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ, 2, e616. https://doi.org/10.7717/peerj. 616
Harte, J., \& Kinzig, A. P. (1997). On the Implications of Species-Area Relationships for Endemism, Spatial Turnover, and Food Web Patterns. Oikos, 80(3), 417-427. JSTOR. https://doi.org/10.2307/3546614

This article is protected by copyright. All rights reserved

Hartley, S., \& Kunin, W. E. (2003). Scale dependency of rarity, extinction risk, and conservation priority. Conservation Biology, 17(6), 1559-1570. https://doi.org/10.1111/j.15231739.2003.00015.x

Hefley, T. J., Baasch, D. M., Tyre, A. J., \& Blankenship, E. E. (2014). Correction of location errors for presence-only species distribution models. Methods in Ecology and Evolution, 5(3), 207-214. https://doi.org/10.1111/2041-210X. 12144
Helmstetter, N. A., Conway, C. J., Stevens, B. S., \& Goldberg, A. R. (2021). Balancing transferability and complexity of species distribution models for rare species conservation. Diversity and Distributions, 27(1), 95-108. https://doi.org/10.1111/ddi. 13174
Henle, K., Davies, K. F., Kleyer, M., Margules, C., \& Settele, J. (2004). Predictors of Species Sensitivity to Fragmentation. Biodiversity \& Conservation, 13(1), 207-251. https://doi.org/10.1023/B:BIOC.0000004319.91643.9e

Henle, K., Kunin, W., Schweiger, O., Schmeller, D. S., Grobelnik, V., Matsinos, Y., Pantis, J., Penev, L., Potts, S. G., Ring, I., Similä, J., Tzanopoulos, J., van den Hove, S., Baguette, M., Clobert, J., Excoffier, L., Framstad, E., Grodzińska-Jurczak, M., Lengyel, S., ... Settele, J. (2010). Securing the Conservation of Biodiversity across Administrative Levels and Spatial, Temporal, and Ecological Scales - Research Needs and Approaches of the SCALES Project. GAIA - Ecological Perspectives for Science and Society, 19(3), 187-193. https://doi.org/10.14512/gaia.19.3.8

Hermoso, V., Kennard, M. J., \& Linke, S. (2015). Evaluating the costs and benefits of systematic data acquisition for conservation assessments. Ecography, 38(3), 283-292. https://doi.org/10.1111/ecog.00792
Hines, J., \& Keil, P. (2020). Common competitors and rare friends. Nature Ecology \& Evolution, 4(1), 8-9. https://doi.org/10.1038/s41559-019-1071-3
Hollerbach, L., Heurich, M., Reiners, T. E., \& Nowak, C. (2018). Detection dogs allow for systematic non-invasive collection of DNA samples from Eurasian lynx. Mammalian Biology, 90, 42-46. https://doi.org/10.1016/j.mambio.2018.02.003
Howard, C., Stephens, P. A., Pearce-Higgins, J. W., Gregory, R. D., \& Willis, S. G. (2014). Improving species distribution models: The value of data on abundance. Methods in Ecology and Evolution, 5(6), 506-513. https://doi.org/10.1111/2041-210X. 12184

This article is protected by copyright. All rights reserved

IPBES. (2019). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany.
Işik, K. (2011). Rare and endemic species: Why are they prone to extinction? TURKISH JOURNAL OF BOTANY, 35(4), 411-417.

Jakob, C., Ponce-Boutin, F., \& Besnard, A. (2014). Coping with heterogeneity to detect species on a large scale: N -mixture modeling applied to red-legged partridge abundance. The Journal of Wildlife Management, 78(3), 540-549. https://doi.org/10.1002/jwmg. 686
Jerde, C. L., Mahon, A. R., Chadderton, W. L., \& Lodge, D. M. (2011). "Sight-unseen" detection of rare aquatic species using environmental DNA. Conservation Letters, 4(2), 150-157. https://doi.org/10.1111/j.1755-263X.2010.00158.x
Jiménez-Valverde, A., Aragón, P., \& Lobo, J. M. (2021). Deconstructing the abundance-suitability relationship in species distribution modelling. Global Ecology and Biogeography, 30(1), 327338. https://doi.org/10.1111/geb. 13204

Joseph, L. N., Field, S. A., Wilcox, C., \& Possingham, H. P. (2006). Presence-Absence versus Abundance Data for Monitoring Threatened Species. Conservation Biology, 20(6), 16791687. https://doi.org/10.1111/j.1523-1739.2006.00529.x

Keil, P., Belmaker, J., Wilson, A. M., Unitt, P., \& Jetz, W. (2013). Downscaling of species distribution models: A hierarchical approach. Methods in Ecology and Evolution, 4(1), 82-94. https://doi.org/10.1111/j.2041-210x.2012.00264.x
Keil, P., \& Chase, J. M. (2019). Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nature Ecology \& Evolution, 3(3), 390-399. https://doi.org/10.1038/s41559-019-0799-0
Keil, P., Pereira, H. M., Cabral, J. S., Chase, J. M., May, F., Martins, I. S., \& Winter, M. (2018). Spatial scaling of extinction rates: Theory and data reveal nonlinearity and a major upscaling and downscaling challenge. Global Ecology and Biogeography, 27(1), 2-13. https://doi.org/10.1111/geb. 12669
Kenkel, N. C., Juhász-Nagy, P., \& Podani, J. (1990). On sampling procedures in population and community ecology. In G. Grabherr, L. Mucina, M. B. Dale, \& C. J. F. T. Braak (Eds.), Progress in theoretical vegetation science (pp. 195-207). Springer Netherlands. https://doi.org/10.1007/978-94-009-1934-1_17

This article is protected by copyright. All rights reserved

Kéry, M. (2018). Identifiability in N-mixture models: A large-scale screening test with bird data. Ecology, 99(2), 281-288. https://doi.org/10.1002/ecy. 2093
Kéry, M., \& Royle, J. A. (2015). Applied Hierarchical Modeling in Ecology: Analysis of distribution, abundance and species richness in R and BUGS: Volume 1:Prelude and Static Models. Academic Press.

Kunin, W. E. (1998). Extrapolating Species Abundance Across Spatial Scales. Science, 281(5382), 1513-1515. https://doi.org/10.1126/science.281.5382.1513
Kunin, W. E., \& Gaston, K. J. (1993). The biology of rarity: Patterns, causes and consequences. Trends in Ecology \& Evolution, 8(8), 298-301. https://doi.org/10.1016/0169-5347(93)90259-R
Le Rest, K., Pinaud, D., Monestiez, P., Chadoeuf, J., \& Bretagnolle, V. (2014). Spatial leave-one-out cross-validation for variable selection in the presence of spatial autocorrelation. Global Ecology and Biogeography, 23(7), 811-820. https://doi.org/10.1111/geb. 12161
Leese, F., Sander, M., Buchner, D., Elbrecht, V., Haase, P., \& Zizka, V. M. A. (2021). Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification. Environmental DNA, 3(1), 261-276. https://doi.org/10.1002/edn3.177
Lin, Y.-P., Lin, W.-C., Wang, Y.-C., Lien, W.-Y., Ding, T.-S., Lee, P.-F., Wu, T.-Y., Klenke, A., Schmeller, D. S., \& Henle, K. (2014). An optimal spatial sampling approach for modelling the distribution of species. In K. Henle, S. Potts, W. Kunin, Y. Matsinos, J. Simila, J. Pantis, V. Grobelnik, L. Penev, \& J. Settele, Scaling in Ecology and Biodiversity Conservation (Pensoft Publishers). Pensoft.
Lomba, A., Pellissier, L., Randin, C., Vicente, J., Moreira, F., Honrado, J., \& Guisan, A. (2010). Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 143(11), 2647-2657. https://doi.org/10.1016/j.biocon.2010.07.007
Mächler, E., Little, C. J., Wüthrich, R., Alther, R., Fronhofer, E. A., Gounand, I., Harvey, E., Hürlemann, S., Walser, J.-C., \& Altermatt, F. (2019). Assessing different components of diversity across a river network using eDNA. Environmental DNA, 1(3), 290-301. https://doi.org/10.1002/edn3.33
MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L., \& Hines, J. E. (2017). Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. Elsevier.

This article is protected by copyright. All rights reserved

Mackenzie, D. I., \& Royle, J. A. (2005). Designing occupancy studies: General advice and allocating survey effort. Journal of Applied Ecology, 42(6), 1105-1114. https://doi.org/10.1111/j.13652664.2005.01098.x

Magurran, A. E., Baillie, S. R., Buckland, S. T., Dick, J. McP., Elston, D. A., Scott, E. M., Smith, R. I., Somerfield, P. J., \& Watt, A. D. (2010). Long-term datasets in biodiversity research and monitoring: Assessing change in ecological communities through time. Trends in Ecology \& Evolution, 25(10), 574-582. https://doi.org/10.1016/j.tree.2010.06.016
Magurran, A. E., \& Henderson, P. A. (2003). Explaining the excess of rare species in natural species abundance distributions. Nature, 422(6933), 714-716. https://doi.org/10.1038/nature01547
Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X., \& Pino, J. (2013). Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biological Conservation, 166, 221-230. https://doi.org/10.1016/j.biocon.2013.07.001

Marcot, B. G., Steventon, J. D., Sutherland, G. D., \& McCann, R. K. (2006). Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation. Canadian Journal of Forest Research. https://doi.org/10.1139/x06-135

Marsh, C. J., Louzada, J., Beiroz, W., \& Ewers, R. M. (2013). Optimising Bait for Pitfall Trapping of Amazonian Dung Beetles (Coleoptera: Scarabaeinae). PLOS ONE, 8(8), e73147. https://doi.org/10.1371/journal.pone. 0073147
Maxwell, S. L., Fuller, R. A., Brooks, T. M., \& Watson, J. E. M. (2016). Biodiversity: The ravages of guns, nets and bulldozers. Nature News, 536(7615), 143. https://doi.org/10.1038/536143a
McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., Dornelas, M., Enquist, B. J., Green, J. L., He, F., Hurlbert, A. H., Magurran, A. E., Marquet, P. A., Maurer, B. A., Ostling, A., Soykan, C. U., Ugland, K. I., \& White, E. P. (2007). Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 10(10), 995-1015. https://doi.org/10.1111/j.14610248.2007.01094.x

McInerny, G. J., \& Purves, D. W. (2011). Fine-scale environmental variation in species distribution modelling: Regression dilution, latent variables and neighbourly advice. Methods in Ecology and Evolution, 2(3), 248-257. https://doi.org/10.1111/j.2041-210X.2010.00077.x
McKinney, M. L. (1997). How do rare species avoid extinction? A paleontological view. In W. E. Kunin \& K. J. Gaston (Eds.), The Biology of Rarity: Causes and consequences of rare-

This article is protected by copyright. All rights reserved

Common differences (pp. 110-129). Springer Netherlands. https://doi.org/10.1007/978-94-011-5874-9_7
McRae, L., Deinet, S., \& Freeman, R. (2017). The Diversity-Weighted Living Planet Index: Controlling for Taxonomic Bias in a Global Biodiversity Indicator. PLoS ONE, 12(1), 1-20. https://doi.org/10.1371/journal.pone. 0169156
Merow, C., Smith, M. J., \& Silander, J. A. (2013). A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 10581069. https://doi.org/10.1111/j.1600-0587.2013.07872.x

Merow, C., Wilson, A. M., \& Jetz, W. (2017). Integrating occurrence data and expert maps for improved species range predictions. Global Ecology and Biogeography, 26(2), 243-258. https://doi.org/10.1111/geb. 12539

Mesgaran, M. B., Cousens, R. D., \& Webber, B. L. (2014). Here be dragons: A tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models. Diversity and Distributions, 20(10), 1147-1159. https://doi.org/10.1111/ddi. 12209

Milner-Gulland, E. J., \& Rowcliffe, J. M. (2007). Conservation and Sustainable Use: A Handbook of Techniques. Oxford University Press.

Molenberghs, G., Verbeke, G., \& Demétrio, C. G. B. (2007). An extended random-effects approach to modeling repeated, overdispersed count data. Lifetime Data Analysis, 13(4), 513-531. https://doi.org/10.1007/s10985-007-9064-y
Morrison III, W. R., Lohr, J. L., Duchen, P., Wilches, R., Trujillo, D., Mair, M., \& Renner, S. S. (2009). The impact of taxonomic change on conservation: Does it kill, can it save, or is it just irrelevant? Biological Conservation, 142(12), 3201-3206. https://doi.org/10.1016/j.biocon.2009.07.019
Norberg, A., Abrego, N., Blanchet, F. G., Adler, F. R., Anderson, B. J., Anttila, J., Araújo, M. B., Dallas, T., Dunson, D., Elith, J., Foster, S. D., Fox, R., Franklin, J., Godsoe, W., Guisan, A., O'Hara, B., Hill, N. A., Holt, R. D., Hui, F. K. C., ... Ovaskainen, O. (2019). A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 89(3), e01370. https://doi.org/10.1002/ecm. 1370
O'Hara, R. B., \& Kotze, D. J. (2014). Do not log-transform count data. Methods in Ecology and Evolution, 118-122. https://doi.org/10.1111/j.2041-210X.2010.00021.x@10.1111/(ISSN)2041-210X.TOPMETHODS

This article is protected by copyright. All rights reserved

Ota, H. (2000). Current status of the threatened amphibians and reptiles of Japan. Population Ecology, 42(1), 5-9. https://doi.org/10.1007/s101440050003
Ovaskainen, O., \& Soininen, J. (2011). Making more out of sparse data: Hierarchical modeling of species communities. Ecology, 92(2), 289-295. https://doi.org/10.1890/10-1251.1
Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, L., Dunson, D., Roslin, T., \& Abrego, N. (2017). How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters, 20(5), 561-576. https://doi.org/10.1111/ele. 12757

Owens, H. L., Campbell, L. P., Dornak, L. L., Saupe, E. E., Barve, N., Soberón, J., Ingenloff, K., LiraNoriega, A., Hensz, C. M., Myers, C. E., \& Peterson, A. T. (2013). Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling, 263, 10-18. https://doi.org/10.1016/j.ecolmodel.2013.04.011

Pacifici, K., Simons, T. R., \& Pollock, K. H. (2008). Effects of Vegetation and Background Noise on the Detection Process in Auditory Avian Point-Count Surveys. The Auk, 125(3), 600-607. https://doi.org/10.1525/auk.2008.07078

Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., \& Ferrier, S. (2009). Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecological Applications, 19(1), 181-197. https://doi.org/10.1890/07-2153.1
Pollock, K. H., Nichols, J. D., Brownie, C., \& Hines, J. E. (1990). Statistical Inference for CaptureRecapture Experiments. Wildlife Monographs, 107, 3-97.
Pollock, L. J., Morris, W. K., \& Vesk, P. A. (2012). The role of functional traits in species distributions revealed through a hierarchical model. Ecography, 35(8), 716-725. https://doi.org/10.1111/j.1600-0587.2011.07085.x
Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O’Hara, R. B., Parris, K. M., Vesk, P. A., \& McCarthy, M. A. (2014). Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution, 5(5), 397-406. https://doi.org/10.1111/2041-210X. 12180
Pouteau, R., Meyer, J.-Y., Taputuarai, R., \& Stoll, B. (2012). Support vector machines to map rare and endangered native plants in Pacific islands forests. Ecological Informatics, 9, 37-46. https://doi.org/10.1016/j.ecoinf.2012.03.003

This article is protected by copyright. All rights reserved

Preston, F. W. (1948). The Commonness, And Rarity, of Species. Ecology, 29(3), 254-283. https://doi.org/10.2307/1930989
Qiao, H., Feng, X., Escobar, L. E., Peterson, A. T., Soberón, J., Zhu, G., \& Papeş, M. (2019). An evaluation of transferability of ecological niche models. Ecography, 42(3), 521-534. https://doi.org/10.1111/ecog. 03986
Rabinowitz, D. (1981). Seven forms of rarity. In H. Synge (Ed.), The Biological Aspects of Rare Plant Conservation (pp. 205-217). Riley.
Radosavljevic, A., \& Anderson, R. P. (2014). Making better Maxent models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography, 41(4), 629-643. https://doi.org/10.1111/jbi. 12227
Raes, N., \& ter Steege, H. (2007). A null-model for significance testing of presence-only species distribution models. Ecography, 30(5), 727-736. https://doi.org/10.1111/j.2007.09067590.05041.x

Rands, M. R. W., Adams, W. M., Bennun, L., Butchart, S. H. M., Clements, A., Coomes, D., Entwistle, A., Hodge, I., Kapos, V., Scharlemann, J. P. W., Sutherland, W. J., \& Vira, B. (2010). Biodiversity Conservation: Challenges Beyond 2010. Science, 329(5997), 12981303. https://doi.org/10.1126/science. 1189138

Raudenbush, S. W., \& Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods. SAGE.
Roberts, D. L., Taylor, L., \& Joppa, L. N. (2016). Threatened or Data Deficient: Assessing the conservation status of poorly known species. Diversity and Distributions, 22(5), 558-565. https://doi.org/10.1111/ddi. 12418

Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., \& Dormann, C. F. (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8), 913-929. https://doi.org/10.1111/ecog. 02881

Robinson, O. J., Ruiz-Gutierrez, V., \& Fink, D. (2018). Correcting for bias in distribution modelling for rare species using citizen science data. Diversity and Distributions, 24(4), 460-472. https://doi.org/10.1111/ddi. 12698

Rocchini, D., Garzon-Lopez, C. X., Marcantonio, M., Amici, V., Bacaro, G., Bastin, L., Brummitt, N., Chiarucci, A., Foody, G. M., Hauffe, H. C., He, K. S., Ricotta, C., Rizzoli, A., \& Rosà, R.

This article is protected by copyright. All rights reserved
(2017). Anticipating species distributions: Handling sampling effort bias under a Bayesian framework. Science of The Total Environment, 584-585, 282-290.
https://doi.org/10.1016/j.scitotenv.2016.12.038
Rocchini, D., Hortal, J., Lengyel, S., Lobo, J. M., Jiménez-Valverde, A., Ricotta, C., Bacaro, G., \& Chiarucci, A. (2011). Accounting for uncertainty when mapping species distributions: The need for maps of ignorance. Progress in Physical Geography: Earth and Environment, 35(2), 211-226. https://doi.org/10.1177/0309133311399491
Rosner-Katz, H., McCune, J. L., \& Bennett, J. R. (2020). Using stacked SDMs with accuracy and rarity weighting to optimize surveys for rare plant species. Biodiversity and Conservation, 29(11), 3209-3225. https://doi.org/10.1007/s10531-020-02018-1

Royle, J. A., \& Nichols, J. D. (2003). Estimating abundance from repeated presence-absence data or point counts. Ecology, 84(3), 777-790.
Saupe, E. E., Barve, V., Myers, C. E., Soberón, J., Barve, N., Hensz, C. M., Peterson, A. T., Owens, H. L., \& Lira-Noriega, A. (2012). Variation in niche and distribution model performance: The need for a priori assessment of key causal factors. Ecological Modelling, 237-238, 11-22. https://doi.org/10.1016/j.ecolmodel.2012.04.001

Schüttler, E., Klenke, R., Galuppo, S., Castro, R. A., Bonacic, C., Laker, J., \& Henle, K. (2017). Habitat use and sensitivity to fragmentation in America's smallest wildcat. Mammalian Biology, 86(1), 1-8. https://doi.org/10.1016/j.mambio.2016.11.013
Schwartz, M. W. \& Simberloff. (2001). Taxon size predicts rates of rarity in vascular plants. Ecology Letters, 4(5), 464-469. https://doi.org/10.1046/j.1461-0248.2001.00241.x
Simkins, A. T., Buchanan, G. M., Davies, R. G., \& Donald, P. F. (2020). The implications for conservation of a major taxonomic revision of the world's birds. Animal Conservation, 23(4), 345-352. https://doi.org/10.1111/acv. 12545
Smith, C. S., Howes, A. L., Price, B., \& McAlpine, C. A. (2007). Using a Bayesian belief network to predict suitable habitat of an endangered mammal - The Julia Creek dunnart (Sminthopsis douglasi). Biological Conservation, 139(3), 333-347. https://doi.org/10.1016/j.biocon.2007.06.025
Southwood, T. R. E., \& Henderson, P. A. (2009). Ecological Methods. John Wiley \& Sons.
Standley, L. A. (1992). Taxonomic issues in rare species protection. Rhodora, 94(879), 218-242.
Steege, H. ter, Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., Phillips, O. L., Castilho, C. V., Magnusson, W. E., Molino, J.-F., Monteagudo, A., Vargas, P. N.,

This article is protected by copyright. All rights reserved

Montero, J. C., Feldpausch, T. R., Coronado, E. N. H., Killeen, T. J., Mostacedo, B., Vasquez, R., Assis, R. L., ... Silman, M. R. (2013). Hyperdominance in the Amazonian Tree Flora. Science, 342(6156). https://doi.org/10.1126/science. 1243092
Steyer, K., Simon, O., Kraus, R. H. S., Haase, P., \& Nowak, C. (2013). Hair trapping with valeriantreated lure sticks as a tool for genetic wildcat monitoring in low-density habitats. European Journal of Wildlife Research, 59(1), 39-46. https://doi.org/10.1007/s10344-012-0644-0
Stohlgren, T. J., Jarnevich, C. S., Esaias, W. E., \& Morisette, J. T. (2011). Bounding species distribution models. Current Zoology, 57(5), 642-647. https://doi.org/10.1093/czoolo/57.5.642

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., Siqueira, M. F. de, Grainger, A., Hannah, L., Hughes, L., Huntley, B., Jaarsveld, A. S. van, Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., \& Williams, S. E. (2004). Extinction risk from climate change. Nature, 427(6970), 145148. https://doi.org/10.1038/nature02121

Thompson, S. K. (2013). Adaptive web sampling in ecology. Statistical Methods \& Applications, 22(1), 33-43. https://doi.org/10.1007/s10260-012-0222-3

Thompson, W. (2013). Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters. Island Press.
Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N., \& Zimmermann, N. E. (2019). Uncertainty in ensembles of global biodiversity scenarios. Nature Communications, 10(1), 1-9. https://doi.org/10.1038/s41467-019-09519-w
Tobler, M. W., Kéry, M., Hui, F. K. C., Guillera-Arroita, G., Knaus, P., \& Sattler, T. (2019). Joint species distribution models with species correlations and imperfect detection. Ecology, 100(8), e02754. https://doi.org/10.1002/ecy. 2754
Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling, 203(3), 312-318. https://doi.org/10.1016/j.ecolmodel.2006.11.033
Van Echelpoel, W., Boets, P., Landuyt, D., Gobeyn, S., Everaert, G., Bennetsen, E., Mouton, A., \& Goethals, P. L. M. (2015). Chapter 6—Species distribution models for sustainable ecosystem management. In Y.-S. Park, S. Lek, C. Baehr, \& S. E. Jørgensen (Eds.), Developments in Environmental Modelling (Vol. 27, pp. 115-134). Elsevier. https://doi.org/10.1016/B978-0-444-63536-5.00008-9

This article is protected by copyright. All rights reserved
van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J., \& Raes, N. (2016). Minimum required number of specimen records to develop accurate species distribution models. Ecography, 39(6), 542552. https://doi.org/10.1111/ecog. 01509

Varela, S., Anderson, R. P., García-Valdés, R., \& Fernández-González, F. (2014). Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography, 37(11), 1084-1091. https://doi.org/10.1111/j.1600-0587.2013.00441.x

Violle, C., Thuiller, W., Mouquet, N., Munoz, F., Kraft, N. J. B., Cadotte, M. W., Livingstone, S. W., \& Mouillot, D. (2017). Functional Rarity: The Ecology of Outliers. Trends in Ecology \& Evolution, 32(5), 356-367. https://doi.org/10.1016/j.tree.2017.02.002

Weber, M. M., Stevens, R. D., Diniz-Filho, J. A. F., \& Grelle, C. E. V. (2017). Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography, 40(7), 817-828. https://doi.org/10.1111/ecog. 02125

Williams, B. K., Nichols, J. D., \& Conroy, M. J. (2002). Analysis and Management of Animal Populations. Elsevier Science. https://books.google.fr/books?id=8emGAwAAQBAJ

Williams, K. J., Belbin, L., Austin, M. P., Stein, J. L., \& Ferrier, S. (2012). Which environmental variables should I use in my biodiversity model? International Journal of Geographical Information Science, 26(11), 2009-2047. https://doi.org/10.1080/13658816.2012.698015

Yoccoz, N. G., Nichols, J. D., \& Boulinier, T. (2001). Monitoring of biological diversity in space and time. Trends in Ecology \& Evolution, 16(8), 446-453.

Zurell, D., Elith, J., \& Schröder, B. (2012). Predicting to new environments: Tools for visualizing model behaviour and impacts on mapped distributions. Diversity and Distributions, 18(6), 628-634. https://doi.org/10.1111/j.1472-4642.2012.00887.x

Acknowledgements

We thank the EU BON project funded by the European Commission (EC) under the 7th Framework Programme (contract no. 308454) (Hoffmann et al. 2014) for making this study happen and for funding a part of the working group at an early stage. We thank an Anonymous Reviewer and Nigel G. Yoccoz for very constructive and useful comments on our manuscript and Anne-Christine Monnet for her help with SDM terminology.

This article is protected by copyright. All rights reserved

Author contribution

YG and AJ have equally contributed to ideas, first drafting of the paper, production of tables and figures, and coordination of the writing process. WK and KH, at the origin of the project, have jointly supervised the work as project leaders (EU BON) and have equally contributed with the central ideas, orientation and deep revisions of the manuscript. All authors have contributed with ideas and revisions on all versions of the manuscript.

List of items and captions

1 Box + 1 Figure + 3 Tables

Figure 1

Synthesis infographic of (a) the Rabinowitz's seven categories of rarity, (b) examples of approaches to assess where to sample depending on the rarity category, (c) examples of approaches to assess how to sample depending on the rarity category and species local density, and (d) examples of modelling approaches to predict and map species distribution depending on the type of data generated in previous steps (a) and (b). Note that most of the methods can be used in more than one situation, but for the simplicity of the figure, we did not systematically repeat them and rather highlighted the methods we considered as the most useful or relevant. The references (numbers in brackets) are listed below the figure.
References: [1] Breiner et al. 2015, [2] Lomba 2010, [3] Chen \& Pollino 2012, [4] Fithian 2014, [5] Marcer et al. 2013, [6] Keil et al. 2013, [7] Rocchini et al. 2017, [8] El-Gabbas \& Dormann 2018, [9] Radosavljevic \& Anderson 2014, [10] Boria et al. 2014, [11] McKenzie et al. 2017, [12] Royle \& Nichols 2003, [13] Kéry \& Royle 2015, [14] Willson et al. 2011, [15] Nichols et al. 2008, [16] Giraud et al. 2016, [17] Bowler et al. 2019, [18] Joseph et al. 2009, [19] Cunningham \& Lindenmayer 2005, [20] Chandler et al. 2011.

Tables 1, 2, 3

Non-exhaustive list of methods to assess (1) where to sample, (2) how to sample, and (3) how to model rare species data with their brief description, advantages and limits, the type of rarity for which they appear as most appropriate, and examples of references related. Inputs/outputs of modelling methods can be P (presences only), lik (presence likelihood), PA (Presences/Absences), ab (abundance), det (detectability information), pocc (probability of occurrence). Underlined words refer to the Glossary (Box 1). The references are listed below the Table 3.

This article is protected by copyright. All rights reserved

Figure 1

Synthesis infographic of (a) the Rabinowitz's seven categories of rarity, (b) examples of approaches to assess where to sample depending on the rarity category, (c) examples of approaches to assess how to sample depending on the rarity category and species local density, and (d) examples of modelling approaches to predict and map species distribution depending on the type of data generated in previous steps (a) and (b). Note that most of the methods can be used in more than one situation, but for the simplicity of the figure, we did not systematically repeat them and rather highlighted the methods we considered as the most useful or relevant. The references (numbers in brackets) are listed below the figure.
References: [1] Breiner et al. 2015, [2] Lomba 2010, [3] Chen \& Pollino 2012, [4] Fithian 2014, [5] Marcer et al. 2013, [6] Keil et al. 2013, [7] Rocchini et al. 2017, [8] El-Gabbas \& Dormann 2018, [9] Radosavljevic \& Anderson 2014, [10] Boria et al. 2014, [11] McKenzie et al. 2017, [12] Royle \& Nichols 2003, [13] Kéry \& Royle 2015, [14] Willson et al. 2011, [15] Nichols et al. 2008, [16] Giraud et al. 2016, [17] Bowler et al. 2019, [18] Joseph et al. 2009, [19] Cunningham \& Lindenmayer 2005, [20] Chandler et al. 2011.

Literature cited in Figure 1

1. Breiner, F. T., Guisan, A., Bergamini, A. \& Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution 6, 1210-1218 (2015).
2. Lomba, A. et al. Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation 143, 2647-2657 (2010).
3. Chen, S. H. \& Pollino, C. A. Good practice in Bayesian network modelling. Environmental Modelling \& Software 37, 134-145 (2012).
4. Fithian, W., Elith, J., Hastie, T. \& Keith, D. A. Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol Evol 6, 424-438 (2015).
5. Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X. \& Pino, J. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biological Conservation 166, 221-230 (2013).
6. Keil, P., Belmaker, J., Wilson, A. M., Unitt, P. \& Jetz, W. Downscaling of species distribution models: a hierarchical approach. Methods in Ecology and Evolution 4, 82-94 (2013).

This article is protected by copyright. All rights reserved
7. Rocchini, D. et al. Anticipating species distributions: Handling sampling effort bias under a Bayesian framework. Science of The Total Environment 584-585, 282-290 (2017).
8. El-Gabbas, A. \& Dormann, C. F. Improved species-occurrence predictions in data-poor regions: using large-scale data and bias correction with down-weighted Poisson regression and Maxent. Ecography 41, 1161-1172 (2018).
9. Radosavljevic, A. \& Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography 41, 629-643 (2014).
10. Boria, R. A., Olson, L. E., Goodman, S. M. \& Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275, 73-77 (2014).
11. MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. (Elsevier, 2017).
12. Royle, J. A. \& Nichols, J. D. Estimating abundance from repeated presence-absence data or point counts. Ecology 84, 777-790 (2003).
13. Kéry, M. \& Royle, J. A. Applied Hierarchical Modeling in Ecology: Analysis of distribution, abundance and species richness in R and BUGS: Volume 1:Prelude and Static Models. (Academic Press, 2015).
14. Willson, J. D., Winne, C. T. \& Todd, B. D. Ecological and methodological factors affecting detectability and population estimation in elusive species. The Journal of Wildlife Management 75, 36-45 (2011).
15. Nichols, J. D. et al. Multi-scale occupancy estimation and modelling using multiple detection methods. Journal of Applied Ecology 45, 1321-1329 (2008).
16. Giraud, C., Calenge, C., Coron, C. \& Julliard, R. Capitalizing on opportunistic data for monitoring relative abundances of species. Biom 72, 649-658 (2016).
17. Bowler, D. E. et al. Integrating data from different survey types for population monitoring of an endangered species: the case of the Eld's deer. Scientific Reports 9, 7766 (2019).
18. Joseph, L. N., Elkin, C., Martin, T. G. \& Possingham, H. P. Modeling abundance using N-mixture models: the importance of considering ecological mechanisms. Ecological Applications 19, (2009).
19. Cunningham, R. B. \& Lindenmayer, D. B. Modeling count data of rare species: some statistical issues. Ecology 86, 1135-1142 (2005).
20. Chandler, R. B., Royle, J. A. \& King, D. I. Inference about density and temporary emigration in unmarked populations. Ecology 92, 1429-1435 (2011).

This article is protected by copyright. All rights reserved

Tables 1, 2 \& 3

Non-exhaustive list of methods to assess (Table 1) where to sample, (Table 2) how to sample, and (Table 3) how to model rare species data with their brief description, advantages and limits, the type of rarity for which they appear as most appropriate, and examples of references related. In Table 3: inputs/outputs can be P (presences only), lik (presence likelihood), PA (Presences/Absences), ab (abundance), det (detectability information), pocc (probability of occurrence). Underlined words refer to the Glossary (Box 1). The references are listed below the Table 3.

Table 1. Where to sample?

Method	Brief description	Pros	Cons	Suitable for which rarity categories?	References
Accumulated opportunistic observations	Sampling locations	- depending on the species	- sample not representative of	All	${ }^{1}$ Chandler et al.
	are not chosen but	attractivity and ease of	the entire extent		2017 (iNaturalist);
	emerge from external	detection/identification, a	- species-targeted		${ }^{2}$ Sullivan et al. 2017
	contribution of	large number of observations	- absences usually not reported,		(eBird);
	various sources, e.g.	can be accumulated over time,	presence-only data		${ }^{3}$ Deguines et al.
	data from citizen	with minimal investment of	- sampling effort varies through		2012 (spipoll)
	science programs free	time and funds	time		
	from any observation	- can detect new populations	- mainly done for charismatic		

This article is protected by copyright. All rights reserved

Method	Brief description	Pros	Cons	Suitable for which rarity categories?	References
	protocol	and species - may be used to create atlas data - rare species receive particular attention	taxa - risk of misidentification in the case of non-expert observations (particularly critical as even a small fraction of misidentified common species may swamp the true records of a rare species)		
Simple random sampling	Random selection of the locations, i.e. all the locations of the study area have the same probability to be sampled	- spatially unbiased sample - objective and well-defined - sample representative of the study extent - temporally comparable samples - no target species, multispecies sample	- ignores environmental/habitat variability - rare species are unlikely to be detected in sufficient numbers, even in huge samples	Cat4	${ }^{4}$ Greig-Smith 1964; ${ }^{5}$ Diekmann et al. 2007; Weslien 2008

This article is protected by copyright. All rights reserved

Cons
Suitable for References
which rarity
categories?

Systematic sampling	Sampling according to a fixed spatial	- simple to implement, no need of external information	- needs prior information on total number of sites to be	Cat4 (and Cat5 if	7Madow 1953; ${ }^{8}$ Fortin et al. 1989
sampling	interval(s) that	nor a priori species-specific	sampled	habitats are	
	depends on the	knowledge	- detection strongly depends on	organised	
	predefined total	- more cost-efficient than	the choice of the spatial interval	randomly)	
	number of locations	simple random sampling as it	of the sampling and on the		
	to be sampled in the	guarantees even distribution	starting point of the sampling,		
	study area, e.g. plots	of sites and good coverage of	e.g. in species with clumped		
	arranged along a	the study area	populations; if sampling interval		
	regular grid or	- temporally comparable	is the same order of magnitude		
	(equidistant)	samples	as the clumping interval, the		
	transects that cover	- no target species, multi-	sample will not be		
	the space evenly	species sample	representative of the species		
	(hyper dispersed		distribution (will either under-		
	distribution of		or over-detect the species		
	samples)		depending on the starting		
			point)		

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

Method	Brief description	Pros	Cons	Suitable for which rarity categories?	References
Adaptive (cluster) sampling / prior- informed sampling	Sampling design where site selection	- accurate estimations of species abundances	- not widely used in ecological studies	Cat2, Cat3	${ }^{10}$ Krebs et al. 1989; ${ }^{11}$ Yoccoz et al.
	depends on previous	- appropriate for rare,	- efficiency depends on the		2001;
	sampling raw	clustered and unevenly	spatial distribution of the		${ }^{12,13}$ Thompson S.K.
	outcomes, either a)	distributed species	species		1990; 2013;
	from the overall		- difficult to know the final		${ }^{14}$ Thompson W.L.
	survey, e.g. adaptive		sample size needed prior to the		2002
	cluster sampling		survey		
	which consists in		- data collection process is		
	searching for a		complicated		
	species in a given		- not fully adapted yet to		
	location and if the		mobile species, sensitive		
	species is found,		species and habitats (side-		
	searches continue		effects of intensive sampling)		
	nearby		- resulting data biased towards		
	(neighbourhood		the species of interest		
	shape can vary		- sampling effort varies through		
	according to the		time		

This article is protected by copyright. All rights reserved

Suitable for
 References which rarity
 categories?

study needs), or b)
from other surveys,
i.e. site selection
depends on external
source of information
and/or belief on the
species potential
presence, e.g. atlas
data

"SDM"-guided	Sampling locations	- sampling coverage	- time-consuming process	Cat1, Cat3	${ }^{84} \mathrm{Austin} \mathrm{et} \mathrm{al}. \mathrm{1984;}$
sampling	are drawn from a	optimisation	- requires predictor layers (with	(potentially	${ }^{15}$ Le Lay et al. 2010;
	probability surface	- allows a systematic and	good spatial and thematic	Cat5, Cat 7 if	${ }^{16}$ Lin et al. 2014;
	generated by	exhaustive pre-selection of	resolution for narrow range	clumping is	${ }^{17} \mathrm{Aizpurua} \mathrm{et} \mathrm{al}$.
	modelling the know	suitable locations	species)	not due to	$2015 ;$
	P/A of a species		- subject to model error and	dispersal	${ }^{18} \mathrm{Chiffard} \mathrm{et} \mathrm{al}$.
	against	uncertainty	limitations)	2020	

This article is protected by copyright. All rights reserved

Cons

Suitable for References
which rarity
categories?

- may work better for specialist
predictors and
extrapolating the
model in space and
dispersal limited (niche-based
modelling)
time, e.g. adaptive
niche-based sampling,
Direct Gradient
Analyses

This article is protected by copyright. All rights reserved

Table 2. How to sample?

Method	Brief description	Pros	Cons	Suitable for which rarity categories?	References
Standardized sampling	Sampling with commonly use methods following a standardized protocol (e.g. quadrats, transects, traps, etc.) without any adaptation to increase the probability of detecting rare species, e.g. biodiversity observatories	- detection of a large number of species - data comparable across locations - unbiased with respect to sampling effort	- rare species less likely to be detected when populations have low local density	Cat1, Cat2, Cat3	${ }^{19}$ Enquist et al. 2016; ${ }^{20}$ Bruelheide et al. 2019; ${ }^{21}$ Risely et al. 2010; ${ }^{22}$ Jiguet et al. 2012

This article is protected by copyright. All rights reserved

Method	Brief description	Pros	Cons	Suitable for which rarity categories?	References
Occupancy sampling	Sampling that consists of repeated sampling following a standardized protocol within a period during which the targeted species remain available for detection	- multi-species; allows estimating detection probability that can be used to obtain unbiased presence/absence data	- effort required is high unless detection probability is high - may require survey methods targeted to particular rare species, such as lures	All	 Royle 2005; ${ }^{24}$ MacKenzie et al. 2017
Distance sampling	Sampling that consists in recording the distance from the observer to the organism when detected. This information can then be used to adjust the sampling strategy	- multi-species	- requires expert knowledge (able to identify species at different distances within a given radius) - locally rare species will not provide sufficient observations for reliable estimates of abundance	Common species, Cat2	${ }^{25}$ Rosenstock et al. 2002; ${ }^{26}$ Buckland et al. 2015

This article is protected by copyright. All rights reserved

Method	Brief description	Pros	Cons	Suitable for which rarity categories?	References
	and to correct for detection probability in prediction models				
Species-targeted sampling (or species-specific sampling)	Sampling specifically designed for given locally rare species, based on fine information on the species' habits, to increase the encounter rate, e.g. traps with specific food items or pheromone baits	- highly efficient in detecting rare species of interest - fine resolution data	- intensive field work - cannot cover large spatial extent (but see promising methods such as detection dogs) - species-targeted	All	${ }^{27}$ Grimm \& Klenke 2019; ${ }^{28}$ Grimm et al. 2019

This article is protected by copyright. All rights reserved

Method	Brief description	Pros	Cons	Suitable for which rarity categories?	References
Mark-Release-Recapture sampling	Sampling that consists in capturing, marking and releasing individuals of given species in order to keep track of their identity and be able to estimate capture rate and population parameters	- under particular assumptions, allows estimating population parameters, such as population size, fecundity, etc. - fine resolution data	- highly time-consuming and field-work intensive - cannot cover large spatial extents - species-targeted	Cat1, Cat2, Cat3	${ }^{29}$ Williams et al. 2002
Passive sampling	Sampling based on the setting up of devices that automatically record species passing within a certain radius, e.g. camera	- allows large-scale surveys - multi-species	- non-specific, detects any species as well as noise - costly in terms of resources (to buy devices, process data, etc.)	Cat3, Cat7 (+ Cat2, Cat6 if devices can be set anywhere)	${ }^{30}$ Schüttler et al. 2016 (camera trapping) ${ }^{31}$ Jeliazkov et al. 2016 (acoustic sampling)

This article is protected by copyright. All rights reserved

Method	Brief description	Pros	Cons	Suitable for which rarity categories?	References
	trapping, acoustic sampling				
eDNA	Sampling based on	- rapid survey at large	- detectability depends on	Cat1, Cat2, Cat3	${ }^{32}$ Bohmann et al.
	DNA extraction from	scales, cost-effective	several parameters	(+Cat5, Cat7 if we	2014;
	the environment (e.g.	- species-targeted as well	whose effects can be	consider that at	${ }^{33}$ Rees et al. 2014;
	water, soil,	as multi-species	confounded with actual	low population	${ }^{34}$ Jerde et al. 2011;
	sediments, snow)	assessments	ecological responses, e.g.	density, habitat	${ }^{35}$ Wilcox et al.
	coming from cells of	- high detection power	environmental conditions,	specificity may	2013;
	organisms that are	- non-invasive method	such as UV light,	ensure higher	${ }^{36}$ Beng \& Corlett
	and/or were present	- no licence constraints for	temperature, and water	eDNA	2020
	at some point in the	protected species	flow, but also the activity	concentrations	
	environment. Specific	- in some cases, can	and density of animals,	than habitat	
	or unspecific primers	provide semi-quantitative	their residence time, etc.	unspecificity)	
	can be used to	estimation of abundances	- the importance of		
	amplify eDNA		primer specificity		
	samples, depending				
	on whether the				

This article is protected by copyright. All rights reserved
survey targets
specific species or
the whole
community,
respectively

This article is protected by copyright. All rights reserved

Table 3. How to model?

Suitable	Examples /	Input data
for which	references	-> Output
rarity		calculated/
categorie		estimate*
$s ?$		

This article is protected by copyright. All rights reserved

Method	Brief description	Pros	Cons	Suitable for which rarity categorie s?	Examples / references	Input data -> Output calculated/ estimate*
Data Data processing processing	Different processing strategies can be applied on data prior to actual modelling which allows making data more appropriate, more powerful, or more in line with the assumptions of subsequent modelling; e.g. combine opportunistic observations with atlas data, correct biases in presenceonly data, data transformations (e.g. abundances into rank abundance curves)	- data-saving, allows using the maximum of information available	- often requires to take arbitrary decisions to select thresholds, correcting factors, etc.	All	${ }^{37}$ Fithian et al. 2015; ${ }^{38}$ Phillips 2009 (correct biases in presence-only data); ${ }^{39}$ Nekola et al. 2008 (data transformatio ns)	$\begin{aligned} & \text { PA -> PA } \\ & a b->a b \end{aligned}$

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

Method	Brief description	Pros	Cons	Suitable for which rarity categorie s?	Examples / references	Input data -> Output calculated/ estimate*
Spatial-thinning SDMs	SDM procedure that consists in removing spatially clustered occurrence points to reduce the spatial autocorrelation in input data	- can use most traditional SDM algorithms (only affects input data) - reduces the spatial autocorrelation in input data - reduces the risk of overfitting data to spatial biases in sampling data	- assumes that habitat suitability is the most limiting driver of species distribution - reduces quantity of modelling data	Common species	${ }^{49}$ Boria et al. 2014	PA -> relative pocc P -> relative lik

This article is protected by copyright. All rights reserved

Method		Brief description	Pros	Cons	Suitable for which rarity categorie s?	Examples / references	Input data -> Output calculated/ estimate*
Ensemble of multiple SDMs	Ensemble SDMs	Procedure that takes outputs from several algorithms of	- does not rely on single best	- all the cons of SDM approaches	Common species	 New 2007; ${ }^{85} \mathrm{Hao}$ et al. 2019; ${ }^{86} 2020$	PA -> relative pocc P -> relative lik
		SDMs, weights these outputs	model	above			
		based on respective model performances (using e.g. AIC)	- ensemble predictions	- model averaging also has			
		and generates single	perform better	limitations (e.g.			
		'consensus' predictions by	compared to	sensitivity to			
		model averaging methods	single modelling	performance			
			techniques	score and			
			- can use	thresholds used)			
			variance	- predictive			
			between models	performance still			
			as estimate of	questioned			
			uncertainty				

This article is protected by copyright. All rights reserved

Method		Brief description	Pros	Cons	Suitable for which rarity categorie s?	Examples / references	Input data -> Output calculated/ estimate*
Bayesian Belief Network SDMs	Bayesian Belief	(a.k.a. Bayesian networks,	- all the pros	- requires to	Potentiall	53,54 Marcot et	P -> relative
	Network SDMs	causal probability networks,	related to	discretize input	y all	al. 2006a,b;	lik
		acyclic directed graphs)	Bayesian	predictors with	(provided	${ }^{55}$ Smith et al.	PA ->
		Statistical tool derived from	statistical	choices of	that	2007;	relative
		graph theory and Bayesian	frameworks:	thresholds which	enough	${ }^{56}$ Aguilera et	pocc
		inference that predicts the	flexibility,	can lead to class	prior	al. 2010;	relative $a b$
		probability of ecological	accounting and	edge effects (but	knowledg	${ }^{57}$ Chen \&	
		responses to varying input	quantification of	see Aguilera et al.	e and	Pollino 2012;	
		assumptions such as habitat	uncertainties,	2010)	validation	${ }^{58}$ MacCracken	
		and population demography	integration of	- more	data are	et al. 2012;	
		conditions and to	prior knowledge	appropriate for	available)	${ }^{59}$ Hamilton et	
		hypothesized causal	information on	risk or		al. 2015;	
		relationships.	the rare species	conservation		${ }^{60}$ Van	
			of interest, easily	category		Echelpoel et	
			updatable with	assessment than		al. 2015	
			new data /	for predicting or			
			information, etc.	mapping species			
			- integration,	distribution			
			assessment and	- assumptions and			
			visualization of	reasoning behind			
This article is protected by copyright. All rights reserved			causal pathways	the hypothesized			
			to explain	influence diagram			

Suitable	Examples /	Input data
for which	references	-> Output
rarity		calculated/
categorie		estimate*
s?		

*P=presence only, $\mathrm{PA}=$ presence/absence, $\mathrm{ab}=$ abundance, $\mathrm{pocc}=$ probability of occurrence, det=detection probability, lik=likelihood

Literature cited in Tables 1, 2 \& 3

1. Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biological Conservation 213, 280-294 (2017).
2. Sullivan, B. L. et al. Using open access observational data for conservation action: A case study for birds. Biological Conservation 208, 5-14 (2017).
3. Deguines, N., Julliard, R., de Flores, M. \& Fontaine, C. The whereabouts of flower visitors: contrasting land-use preferences revealed by a country-wide survey based on citizen science. PLoS ONE 7, e45822 (2012).
4. Greig-Smith, P. Quantitative plant ecology. Quantitative plant ecology. (1964).
5. Diekmann, M., Kühne, A. \& Isermann, M. Randomvs non-random sampling: Effects on patterns of species abundance, species richness and vegetation-environment relationships. Folia Geobot 42, 179 (2007).
6. Hedgren, O. \& Weslien, J. Detecting Rare Species with Random or Subjective Sampling: a Case Study of Red-Listed Saproxylic Beetles in Boreal Sweden: Random or Subjective Sampling. Conservation Biology 22, 212-215 (2008).

This article is protected by copyright. All rights reserved
7. Madow, W. G. On the Theory of Systematic Sampling, III. Comparison of Centered and Random Start Systematic Sampling. The Annals of Mathematical Statistics 24, 101-106 (1953).
8. Fortin, M.-J., Drapeau, P. \& Legendre, P. Spatial Autocorrelation and Sampling Design in Plant Ecology. Vegetatio 83, 209-222 (1989).
9. Thompson, W. Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters. (Island Press, 2013).
10. Krebs, C. J. \& others. Ecological methodology. (Harper \& Row New York, 1989).
11. Yoccoz, N. G., Nichols, J. D. \& Boulinier, T. Monitoring of biological diversity in space and time. Trends in Ecology \& Evolution 16, 446-453 (2001).
12. Thompson, S. K. Adaptive Cluster Sampling. Journal of the American Statistical Association 85, 1050-1059 (1990).
13. Thompson, S. K. Adaptive web sampling in ecology. Stat Methods Appl 22, 33-43 (2013).
14. Thompson, W. L. Towards reliable bird surveys: accounting for individuals present but not detected. The Auk 119, 18-25 (2002).
15. Le Lay, G., Engler, R., Franc, E. \& Guisan, A. Prospective sampling based on model ensembles improves the detection of rare species. Ecography 33, 1015-1027 (2010).
16. Lin, Y.-P. et al. An optimal spatial sampling approach for modelling the distribution of species. in Scaling in Ecology and Biodiversity Conservation (Pensoft, 2014).
17. Aizpurua, O., Paquet, J.-Y., Brotons, L. \& Titeux, N. Optimising long-term monitoring projects for species distribution modelling: how atlas data may help. Ecography 38, 29-40 (2015).

This article is protected by copyright. All rights reserved
18. Chiffard, J. et al. Adaptive niche-based sampling to improve ability to find rare and elusive species: simulations and field tests. Methods in Ecology and Evolution n/a, (2020).
19. Enquist, B. J., Condit, R., Peet, R. K., Schildhauer, M. \& Thiers, B. M. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. https://peerj.com/preprints/2615v2 (2016) doi:10.7287/peerj.preprints.2615v2.
20. Bruelheide, H. et al. sPlot - A new tool for global vegetation analyses. Journal of Vegetation Science 30, 161-186 (2019).
21. Risely, K. et al. Breeding Bird Survey 2009. 559 (2010).
22. Jiguet, F., Devictor, V., Julliard, R. \& Couvet, D. French citizens monitoring ordinary birds provide tools for conservation and ecological sciences. Acta Oecologica 44, 58-66 (2012).
23. Mackenzie, D. I. \& Royle, J. A. Designing occupancy studies: general advice and allocating survey effort. Journal of Applied Ecology 42, 11051114 (2005).
24. MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. (Elsevier, 2017).
25. Rosenstock, S. S. et al. Landbird counting techniques: current practices and an alternative. The Auk 119, 46-53 (2002).
26. Buckland, S. T., Rexstad, E. A., Marques, T. A. \& Oedekoven, C. S. Distance Sampling: Methods and Applications. (Springer, 2015).
27. Grimm-Seyfarth, A. \& Klenke, R. Wie findet man schwer zu erfassende Arten? Vorteile und Limitierungen von Artenspürhunden. in Faszinosum Spürhunde - Dem Geruch auf der Spur. Tagungsergebnisse des 4. Symposiums für Odorologie im Diensthundewesen an der Hochschule Bonn-Rhein-Sieg. (eds. Schüler, C. \& Kaul, P.) vol. Band 2 40-47 (2019).

This article is protected by copyright. All rights reserved
28. Grimm-Seyfarth, A. et al. Performance of detection dogs and visual searches for scat detection and discrimination amongst related species with identical diets. Nature Conservation 37, 81 (2019).
29. Williams, B. K., Nichols, J. D. \& Conroy, M. J. Analysis and Management of Animal Populations. (Elsevier Science, 2002).
30. Schüttler, E. et al. Habitat use and sensitivity to fragmentation in America's smallest wildcat. Mamm Biol 86, 1-8 (2017).
31. Jeliazkov, A. et al. Large-scale semi-automated acoustic monitoring allows to detect temporal decline of bush-crickets. Global Ecology and Conservation 6, 208-218 (2016).
32. Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology \& Evolution 29, 358-367 (2014).
33. Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M. \& Gough, K. C. REVIEW: The detection of aquatic animal species using environmental DNA - a review of eDNA as a survey tool in ecology. J Appl Ecol 51, 1450-1459 (2014).
34. Jerde, C. L., Mahon, A. R., Chadderton, W. L. \& Lodge, D. M. "Sight-unseen" detection of rare aquatic species using environmental DNA. Conservation Letters 4, 150-157 (2011).
35. Wilcox, T. M. et al. Robust Detection of Rare Species Using Environmental DNA: The Importance of Primer Specificity. PLOS ONE 8, e59520 (2013).
36. Beng, K. C. \& Corlett, R. T. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers Conserv 29, 2089-2121 (2020).
37. Fithian, W., Elith, J., Hastie, T. \& Keith, D. A. Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol Evol 6, 424-438 (2015).

This article is protected by copyright. All rights reserved
38. Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications 19, 181-197 (2009).
39. Nekola, J. C., Šizling, A. L., Boyer, A. G. \& Storch, D. Artifactions in the Log-Transformation of Species Abundance Distributions. Folia Geobot 43, 259-268 (2008).
40. Guisan, A. \& Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecological Modelling 135, 147-186 (2000).
41. Barbet-Massin, M., Jiguet, F., Albert, C. H. \& Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution (2012) doi:10.1111/j.2041-210X.2011.00172.x
42. Dormann, F. C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609-628 (2007).
43. Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X. \& Pino, J. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biological Conservation 166, 221-230 (2013).
44. El-Gabbas, A. \& Dormann, C. F. Improved species-occurrence predictions in data-poor regions: using large-scale data and bias correction with down-weighted Poisson regression and Maxent. Ecography 41, 1161-1172 (2018).
45. Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. \& Smith, G. M. Zero-truncated and zero-inflated models for count data. Mixed effects models and extensions in ecology with R 261-293 (2009).
46. Keil, P., Belmaker, J., Wilson, A. M., Unitt, P. \& Jetz, W. Downscaling of species distribution models: a hierarchical approach. Methods in Ecology and Evolution 4, 82-94 (2013).

This article is protected by copyright. All rights reserved
47. Rocchini, D. et al. Anticipating species distributions: Handling sampling effort bias under a Bayesian framework. Science of The Total Environment 584-585, 282-290 (2017).
48. Radosavljevic, A. \& Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography 41, 629-643 (2014).
49. Boria, R. A., Olson, L. E., Goodman, S. M. \& Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275, 73-77 (2014).
50. Araújo, M. B. \& New, M. Ensemble forecasting of species distributions. Trends in Ecology \& Evolution 22, 42-47 (2007).
51. Lomba, A. et al. Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation 143, 2647-2657 (2010).
52. Breiner, F. T., Guisan, A., Bergamini, A. \& Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution 6, 1210-1218 (2015).
53. Marcot, B. G., Steventon, J. D., Sutherland, G. D. \& McCann, R. K. Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation. Canadian Journal of Forest Research (2006) doi:10.1139/x06-135.
54. Marcot, B. G. et al. Characterizing Species at Risk II: Using Bayesian Belief Networks as Decision Support Tools to Determine Species Conservation Categories Under the Northwest Forest Plan. Ecology and Society 11, (2006).
55. Smith, C. S., Howes, A. L., Price, B. \& McAlpine, C. A. Using a Bayesian belief network to predict suitable habitat of an endangered mammal The Julia Creek dunnart (Sminthopsis douglasi). Biological Conservation 139, 333-347 (2007).

This article is protected by copyright. All rights reserved
56. Aguilera, P. A., Fernández, A., Reche, F. \& Rumí, R. Hybrid Bayesian network classifiers: Application to species distribution models. Environmental Modelling \& Software 25, 1630-1639 (2010).
57. Chen, S. H. \& Pollino, C. A. Good practice in Bayesian network modelling. Environmental Modelling \& Software 37, 134-145 (2012).
58. MacCracken, J. G., Garlich-Miller, J., Snyder, J. \& Meehan, R. Bayesian belief network models for species assessments: An example with the Pacific walrus. Wildlife Society Bulletin 37, 226-235 (2012).
59. Hamilton, S. H., Pollino, C. A. \& Jakeman, A. J. Habitat suitability modelling of rare species using Bayesian networks: Model evaluation under limited data. Ecological Modelling 299, 64-78 (2015).
60. Van Echelpoel, W. et al. Chapter 6 - Species distribution models for sustainable ecosystem management. in Developments in Environmental Modelling (eds. Park, Y.-S., Lek, S., Baehr, C. \& Jørgensen, S. E.) vol. 27 115-134 (Elsevier, 2015)
61. Azaele, S., Cornell, S. J. \& Kunin, W. E. Downscaling species occupancy from coarse spatial scales. Ecological Applications 22, 1004-1014 (2012).
62. Barwell, L. J., Azaele, S., Kunin, W. E. \& Isaac, N. J. B. Can coarse-grain patterns in insect atlas data predict local occupancy? Diversity and Distributions 20, 895-907 (2014).
63. Marsh, C. J., Gavish, Y., Kunin, W. E. \& Brummitt, N. A. Mind the gap: Can downscaling Area of Occupancy overcome sampling gaps when assessing IUCN Red List status? Diversity and Distributions 25, 1832-1845 (2019).
64. Pollock, K. H., Nichols, J. D., Brownie, C. \& Hines, J. E. Statistical Inference for Capture-Recapture Experiments. Wildlife Monographs 3-97 (1990).
65. MacKenzie, D. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248-2255 (2002).

This article is protected by copyright. All rights reserved
67. Willson, J. D., Winne, C. T. \& Todd, B. D. Ecological and methodological factors affecting detectability and population estimation in elusive species. The Journal of Wildlife Management 75, 36-45 (2011)
68. Nichols, J. D. et al. Multi-scale occupancy estimation and modelling using multiple detection methods. Journal of Applied Ecology 45, 13211329 (2008).
69. Mordecai, R. S., Mattsson, B. J., Tzilkowski, C. J. \& Cooper, R. J. Addressing challenges when studying mobile or episodic species: hierarchical Bayes estimation of occupancy and use. Journal of Applied Ecology 48, 56-66 (2011)
70. Pavlacky, D. C., Blakesley, J. A., White, G. C., Hanni, D. J. \& Lukacs, P. M. Hierarchical multi-scale occupancy estimation for monitoring wildlife populations. The Journal of Wildlife Management 76, 154-162 (2012).
71. Hagen, C. A. et al. Multiscale occupancy modeling provides insights into range-wide conservation needs of Lesser Prairie-Chicken (Tympanuchus pallidicinctus). cond 118, 597-612 (2016).
72. Royle, J. A. \& Nichols, J. D. Estimating abundance from repeated presence-absence data or point counts. Ecology 84, 777-790 (2003).
73. Kéry, M. \& Royle, J. A. Applied Hierarchical Modeling in Ecology: Analysis of distribution, abundance and species richness in R and BUGS:

Volume 1:Prelude and Static Models. (Academic Press, 2015).
74. Welsh, A. H., Cunningham, R. B. \& Chambers, R. L. Methodology for estimating the abundance of rare animals: seabird nesting on North East Herald Cay. Biometrics 56, 22-30 (2000).
75. Martin, T. G. et al. Zero tolerance ecology: improving ecological inference by modelling the source of zero observations: Modelling excess zeros in ecology. Ecology Letters 8, 1235-1246 (2005).

This article is protected by copyright. All rights reserved
76. Joseph, L. N., Elkin, C., Martin, T. G. \& Possingham, H. P. Modeling abundance using N-mixture models: the importance of considering ecological mechanisms. Ecological Applications 19, (2009).
77. Royle, J. A. N-Mixture Models for Estimating Population Size from Spatially Replicated Counts. Biometrics 60, 108-115 (2004)
78. Dénes, F. V., Silveira, L. F. \& Beissinger, S. R. Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. Methods Ecol Evol 6, 543-556 (2015).
79. Cunningham, R. B. \& Lindenmayer, D. B. Modeling count data of rare species: some statistical issues. Ecology 86, 1135-1142 (2005).
80. Fletcher, D., MacKenzie, D. \& Villouta, E. Modelling skewed data with many zeros: a simple approach combining ordinary and logistic regression. Environmental and ecological statistics 12, 45-54 (2005).
81. Chandler, R. \& Hepinstall-Cymerman, J. Estimating the spatial scales of landscape effects on abundance. Landscape Ecol 31, 1383-1394 (2016).
82. Giraud, C., Calenge, C., Coron, C. \& Julliard, R. Capitalizing on opportunistic data for monitoring relative abundances of species. Biom 72, 649658 (2016).
83. Bowler, D. E. et al. Integrating data from different survey types for population monitoring of an endangered species: the case of the Eld's deer. Scientific Reports 9, 7766 (2019).
84. Austin, M. P., Cunningham, R. B., \& Fleming, P. M.. New Approaches to Direct Gradient Analysis Using Environmental Scalars and Statistical Curve-Fitting Procedures. Vegetatio, 55(1), 11-27 (1984)
85. Hao, T., Elith, J., Guillera-Arroita, G., \& Lahoz-Monfort, J. J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Diversity and Distributions, 25(5), 839-852. (2019). https://doi.org/10.1111/ddi. 12892

This article is protected by copyright. All rights reserved
86. Hao, T., Elith, J., Lahoz-Monfort, J. J., \& Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography, 43(4), 549-558 (2020). https://doi.org/10.1111/ecog. 04890

This article is protected by copyright. All rights reserved

