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Abstract: Accurate remote sensing of mountainous forest cover change is important for myriad
social and ecological reasons, but is challenged by topographic and illumination conditions that
can affect detection of forests. Several topographic illumination correction (TIC) approaches have
been developed to mitigate these effects, but existing research has focused mostly on whether TIC
improves forest cover classification accuracy and has usually found only marginal gains. However,
the beneficial effects of TIC may go well beyond accuracy since TIC promises to improve detection
of low illuminated forest cover and thereby normalize measurements of the amount, geographic
distribution, and rate of forest cover change regardless of illumination. To assess the effects of
TIC on the extent and geographic distribution of forest cover change, in addition to classification
accuracy, we mapped forest cover across mountainous Nepal using a 25-year (1992–2016) gap-filled
Landsat time series in two ways—with and without TIC (i.e., nonTIC)—and classified annual forest
cover using a Random Forest classifier. We found that TIC modestly increased classifier accuracy
and produced more conservative estimates of net forest cover change across Nepal (−5.2% from
1992–2016). TIC also resulted in a more even distribution of forest cover gain across Nepal with
3–5% more net gain and 4–6% more regenerated forest in the least illuminated regions. These results
show that TIC helped to normalize forest cover change across varying illumination conditions with
particular benefits for detecting mountainous forest cover gain. We encourage the use of TIC for
satellite remote sensing detection of long-term mountainous forest cover change.

Keywords: topographic correction; Landsat; time series; LandTrendr; forest growth; land cover
change; Google Earth Engine

1. Introduction

Changes in global temperature and precipitation patterns are affecting the world’s
mountains at an unprecedented rate [1–4]. These changes have unfolding consequences for
the estimated 23–28% of global forests in mountainous areas as well as the over 700 million
people who depend on mountainous forests for timber and non-timber forest products for
their livelihoods, food security, and sustainable development [5–7]. Mountainous forests
also provide critical habitat for endemic and endangered species, often have an essential
role in national economic welfare [8,9], and offer essential ecosystem services such as carbon
sequestration, air purification, soil nutrient cycling, and slope stabilization [10]. Increasingly,
processes of deforestation and forest regeneration are monitored using a long-term and con-
tinuous (annual or sub-annual) perspective [11–14], which means that additional rigor must
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be given to measuring and mitigating intra- and inter-annual variation in image acquisition
conditions [15,16], especially in mountainous environments [17,18]. For example, frequent
cloud cover and rugged terrain lead to variability in surface reflectance that is unrelated to
land cover phenology, trends, or change in land cover type [19–21], and illumination condi-
tions that vary with solar geometry (i.e., solar azimuth and zenith) and terrain orientation
(i.e., slope and aspect) affect exitant radiance in spatially and temporally variable ways [18].

The goal of topographic illumination correction (TIC) is to reduce the variation in
apparent feature reflectance to better isolate legitimate differences in reflectance [17,22,23],
and several TIC approaches having been developed in recent years [18,22,24,25]. Most
forest remote sensing studies to date (Table 1) have focused on evaluating the effect of
TIC on classification accuracy using single-date satellite imagery (e.g., [17,26,27]) and have
generally found that TIC improved overall forest cover classification accuracy by 1–3%.
Studies on remote sensing of multi-date forest cover change have found similarly slight
improvements in change detection accuracy with TIC [20,28–34].

Table 1. Review of recent research on topographic illumination correction effect on Landsat-based measures of land cover,
forest cover, and forest cover change. PBM: Pixel Based Minnaert, PBC: Pixel-Based C-correction, SCS: Sun-Canopy-Sensor,
S-E: Statistical Empirical, VECA: Variable Empirical Coefficient Algorithm.

Image Frequency Theme Correction Approach(es) Study Area Citation

Single date

Forest Cover Band Ratioing, Cosine Correction, PBM, and PBC Carpathian Mountains,
Romania [35]

Vegetation Cover

Illumination Condition Weighted Mean, Minnaert,
C-correction

Cabañeros National Park,
Spain [27]

Band Ratioing, Cosine Correction, Pixel Based
Minnaert (PBM), and Pixel-Based C-correction (PBC)

Carpathian Mountains,
Romania [36]

Land Cover
Teillet-Regression, Cosine Correction,

Sun-Canopy-Sensor (SCS), SCS+C, Minnaert,
Minnaert-SCS

Shanxi Province, China [26]

Multi-date
Forest Cover

Change

C-corrected and modified C-correction Peloponnese Peninsula, Greece [33]

C-correction, Statistical Empirical (S-E) and Variable
Empirical Coefficient Algorithm (VECA)

Central Adirondack
Mountains, United States [28]

Bin Tan Tennessee, California, Utah,
and Colorado, United States [31]

PBM Carpathian Ecoregion,
Romania [32]

C-correction, Improved Cosine, Minnaert, S–E,
and VECA

Dong Phayayen-Khao Yai
Forest Complex, Thailand [29]

Bin Tan, C-correction, Minnaert with slope, S-E, SCS,
and VECA Nepal [37]

Time series

Vegetation Cover
Change Lambertian and C-correction Ebro Valley, Spain [34]

Forest Cover
Change

Semi-empirical C-correction Taita Hills, Kenya [38]

SCS Southwest British Columbia,
Canada [39]

C-correction Bago Mountains, Myanmar [30]

Despite recent scholarship, several underexplored aspects of TIC’s effects on forest
cover and forest cover change mapping remain. While the marginal effect of TIC on forest
cover classification accuracy is well-established, there has been very little attention towards
how TIC affects the actual areal measurements of forest cover and change over long periods
of time. TIC should reduce the apparent bias towards detecting forest cover that was better
illuminated at the time of satellite image acquisition and, in turn, normalize measurements
of the extent and rate of forest cover change across the landscape regardless of illumination.
Given a hypothetically uniform distribution of forest cover gain across a landscape, more
forest cover gain would be expected to be detected in less illuminated regions with TIC
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than without. Further, since the geographic distribution and rate of forest cover change
may vary over time, TIC may thus result in an over- or underestimate of forest cover or
forest cover gain compared to uncorrected data depending on the location and the stage
of forest regeneration. However, the effect of TIC on normalizing forest cover change
has never been directly addressed. Moreover, the routine examination of TIC effects at
validation sites that are all contained within a relatively small study area—often a single
Landsat footprint—impedes understanding of how TIC effects on forest cover change
measurements may vary across a landscape’s diverse topographic conditions.

In moving beyond an examination of the effects of TIC on classification accuracy, this
is the first study to explicitly examine the effects of TIC on measures of forest cover and
change and describe how those effects vary over time and space. The specific goal of this
study is to assess the effects of TIC on the extent, geographic distribution, and type of forest
cover change. To achieve this goal, we created a nationwide, 25-year (1992–2016) gap-filled
Landsat time-series dataset across the topographically complex landscape of Nepal in
two ways—with TIC and without TIC (i.e., nonTIC). We mapped annual forest cover
across the country using a Random Forest classifier with TIC and nonTIC approaches and
summarized results at the national level as well as by physiographic zone and illumination
condition. Our specific objectives are:

1. Quantify differences in forest cover classification accuracy using TIC and non-topographic
illumination corrected (nonTIC) data;

2. Quantify differences in the extent and geographic distribution of forest cover change
with TIC and nonTIC approaches; and

3. Quantify differences in type of forest cover change (e.g., regenerated or lost forest
cover) using TIC and nonTIC approaches.

The results of this study offer a novel and comprehensive assessment of the effects of
TIC on measures of the extent, geographic distribution, and type of forest cover change
with practical relevance for forest inventory mapping, forest management, and forest
carbon monitoring in mountainous landscapes around the world.

2. Materials and Methods
2.1. Study Area

Extending over 147,181 km2, Nepal is predominantly a mountainous country com-
posed of three physiographic zones as defined by the Department of Survey Nepal in 1988
(http://rds.icimod.org/Home/DataDetail?metadataId=1597, accessed on 14 November
2020) (Figure 1): the Mountains (>3000 masl, 35% of Nepal’s total land area, 7% of pop-
ulation), Middle Hills (700–3000 masl, 35% of land area, 37% of population), and Terai
(lowland plains < 700 masl, 30% of land area, 56% of population). Forest and non-forest are
recorded across all three physiographic zones (Uddin et al., 2015). Nepal has an estimated
443 different tree species across forest types ranging from subalpine conifer and temperate
broadleaf forests to tropical and subtropical conifer forests and subtropical broadleaved
forests [40]. Over the past 3 decades, an extensive body of literature on satellite remote
sensing-derived forest cover change in Nepal has been developed. The authors in [40–43]
used remote sensing to measure forest cover at the national scale, and [44–48] measured
forest change at village and watershed scales. While there is a lack of direct comparability
between these studies, they point to a prominent trend of increasing forest cover across
Nepal starting in the late 1980s and continuing until the most recent studies. Much of
the forest cover expansion in the late 1980s and 1990s has been attributed to the imple-
mentation of community forest management, changes in rules on open grazing, expanded
forest plantations, and reduced need for cooking fuel [49,50]. By the 2000s and 2010s, the
effects of Nepal’s 10-year-long civil war, specifically conflict-induced out-migration, as
well as post-war economic diversification have been identified as drivers of forest cover
gain [46,51–53]. Being subject to subtle changes in mountainous forest cover—widespread
and prolonged forest regeneration amidst continued selected extraction of forest products—

http://rds.icimod.org/Home/DataDetail?metadataId=1597
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Nepal is thus an ideal case study to assess the effect of TIC on remote sensing estimates of
long-term forest cover change.

Figure 1. Nepal’s (a) topography based on Shuttle Radar Topography Mission 30-m resolution Digital
Elevation Model (Farr et al., 2007) with labeled physiographic zones (black), and (b) forest cover
(shown in green) as measured by ICIMOD in 2010 (Uddin et al., 2015) overlaid by 13 Landsat WRS-2
path-row images used in the study (gray). Note that the inclusion of potentially snow- or ice-covered
regions in the Middle Hills and Mountains zones have a negligible effect on forest cover mapping
since snow and ice are removed with image pre-processing, as described below.

2.2. Data and Materials

We gathered 3305 USGS Landsat 5, 7, and 8 Tier 1 Surface Reflectance Climate Data
Records (CDR) images at 13 WRS-2 footprints across Nepal (Figure 1b), collected during
the peak greenness period of July through October from 1992 to 2016; 1992 was the first
year with consistent Landsat coverage across Nepal, and 2016 was the last year with image
availability when the study began. We also used corresponding Tier 1 Top of Atmosphere
(TOA) Reflectance images solely for cloud masking purposes. We removed 299 Landsat SR
images with more than 80% cloud cover based on CFmask [54] or with more than 80% cloud
cover based on the Simple Cloud Score algorithm run on Landsat TOA images [55]), and
removed an additional 1113 images because of an insufficient number of cloud-free forest
pixels necessary for reliable estimation of TIC parameters or due to excessive atmospheric
haze undetected by CFmask. This left 1893 images for analysis (Appendix A, Table A1).
All image processing and analysis was carried out in Google Earth Engine [56].

To characterize topographic illumination (IL) conditions, we used the Shuttle Radar
Topography Mission (SRTM) 30-m Digital Elevation Model (DEM) [57]. We measured
the mean IL across all SR images in our time series. IL ranges from zero to one and is
equivalent to the cosine of the solar incidence angle, which is based on a location’s (i.e.,
pixel’s) slope and aspect and the sun’s position (solar zenith and azimuth) at the time
of image acquisition (Equation (1); [18]). To assess how TIC may affect forest cover and
change measurements differently due to IL conditions, we stratified Nepal’s IL range into
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deciles where IL stratum 1 includes the lowest (i.e., darkest) IL (0–0.09) and stratum 10
includes the highest (i.e., brightest) IL (0.90–1.00). IL tends to increase as elevation and
slope decrease, and the majority of Nepal’s land mass is in the brightest IL strata (7–10)
(Figure 2). Considering the distribution by physiographic zone, the Mountains contain
more (10.3%) of the least-illuminated strata (i.e., IL 1–4) than the Middle Hills (5.8%) and
Terai (1.5%) combined (Figure 2e). Approximately 95% of the Terai is in IL stratum 8 or 9,
showing that the Terai has a very uniform and high topographic illumination condition,
while the Middle Hills and Mountains have much more diverse IL conditions.

IL = cos(i) = cos(Z) × cos(s) + sin(Z) × sin(s) × cos
(
a− a′

)
(1)

Figure 2. (a) Elevation, (b) slope, (c) aspect (black lines: median; grey ribbon: interquartile range),
(d) area of each IL stratum, and (e) distribution of IL strata within Nepal’s Mountain, Middle Hills,
and Terai physiographic zones.

Calculation of IL. i = incident angle with respect to surface normal; Z = solar zenith
angle; s = topographic slope; a = solar azimuth; a’ = topographic aspect (azimuth).
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2.3. Landsat Image Topographic Correction, Annual Compositing, and Trend Construction

We removed all clouds, cloud shadows, and snow cover identified using the CFmask
algorithm (SR data) and the Simple Cloud Score algorithm (TOA data) [54]. We produced
two separate Landsat time series for further analysis: one without topographic illumination
correction—referred to as the nonTIC dataset henceforth—and another with topographic
illumination correction—referred to as the TIC dataset henceforth. We smoothed the SRTM
DEM with a 3 × 3 Gaussian low pass filter to mitigate the effect of surrounding topog-
raphy and improve the performance of the TIC in areas with steep slopes [27]. Since our
study’s start in 1992 precludes use of ancillary data (e.g., MODIS, 2000–present) necessary
to implement a physical or semi-physical TIC approach (e.g., [25,28]), we followed the
recommendations by [37], who rigorously identified the best performing semi-empirical
topographic illumination correction approach for each individual band by evaluating six
methods at forested sites across four Landsat footprints within Nepal: C-correction [18],
Sun-Canopy-Sensor and C-correction [58], Bin Tan [31], Statistical-Empirical (S–E; [18],
Variable Empirical Coefficient Algorithm (VECA; [26]), and Minnaert with slope [59]. We
ranked each correction’s effect on each band using five criteria that consider how TIC
affects the relationship between IL and reflectance (i.e., the coefficient of determination,
and comparison of sunlit and shaded slopes) and the overall and variability of reflectance
(i.e., interquartile range reduction, coefficient of variation, and relative difference in median
reflectance); see [37] for full details on these band selection criteria. Following this ap-
proach, we found that VECA ranked best for the blue band and S–E ranked best for green,
red, near infrared (NIR), and shortwave infrared (SWIR 1, SWIR 2) bands. We therefore
applied an optimal band-wise TIC by applying VECA to the blue band and S–E to the
remaining bands for each image in the TIC time series from 1992–2016.

For the nonTIC and TIC time series, we harmonized Landsat 8 spectral values with
Landsat 5 and 7 using cross-sensor harmonization parameters provided by [60] and made
annual composites using July–October growing season images. We determined the best
pixel for each seasonal composite using three criteria previously used by [37]:

1. Distance to the peak greenness date (1 September): Since pixels acquired closer to the
peak greenness date are more helpful for discriminating forest cover, we assigned a
weight of 1 to pixels acquired on September 1 and a value of 0.1 to pixels acquired
at the beginning (1 July) or end (31 October) of the growing season following a
Gaussian curve.

2. Proximity of the pixel to clouds or cloud shadows: While CFmask is broadly effective
at removing clouds and cloud shadows, some cloud or shadow pixels may remain,
which would degrade the classification. We therefore weighted pixels by their Eu-
clidean distance to clouds or cloud shadows using a Sigmoid function. Pixels more
than 1500 m away from clouds or cloud shadows were given a weight of 1; for pixels
closer than 1500 m, weights linearly decreased to 0 for pixels adjacent to clouds or
cloud shadows.

3. Quality of NIR reflectance: In a further effort to exclude shaded (low NIR value) or
clouded pixels (high NIR value) in our classification, we calculated the median of all
growing season images within a given year and assigned pixels with an NIR value
equivalent to the median a weight of 1; pixels with the largest absolute deviation
from the median were given a weight of 0. Using the median and the largest absolute
deviation from the median, we linearly distributed weights between 0 and 1 to all
other pixels based on their absolute deviation from the median.

We calculated the arithmetic mean of these three weights and selected the pixel with
the highest mean weight for inclusion in a given year’s growing season quality composite.

To estimate missing seasonal composite values due to clouds, shadows, and Landsat’s
SLC Error gaps, we fit pixel-level linear interpolations across both time series using the
Google Earth implementation of LandTrendr [61]. LandTrendr identifies breakpoint dates
associated with disturbance or regeneration, and linearly interpolates values between
breakpoint dates [12,61]. We identified breakpoint dates using the SWIR 1 band and fit all
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other Landsat spectral bands to these identified breakpoints. SWIR 1 was selected since it
has been shown to be more sensitive to canopy moisture and forest structure compared to
NIR or visible bands, for example [62,63].

2.4. Forest Cover Classifier Model Construction

Using linearly interpolated multispectral values (i.e., blue, green, red, NIR, SWIR
1, SWIR 2), we calculated Normalized Difference Vegetation Index (NDVI), Enhanced
Vegetation Index (EVI), Normalized Burn Ratio (NBR), and Tasseled Cap Brightness,
Greenness, Wetness, and Angle [64,65]. We also measured three topographic variables
based on the SRTM DEM: elevation (masl), slope (degrees), and aspect (degrees). These
13 spectral and three topographic variables are commonly used in pixel-level forest cover
mapping for Landsat time-series imagery [62,63,66–68]; may differently support forest
detection with differences in condition, biomass, and illumination condition; effectively
characterize differences between forest and non-forest sites in mountainous areas; and are
broadly stable between TIC and nonTIC.

To generate an initial sample of forest and non-forest sites across Nepal, we conducted
a stratified random sample of ICIMOD land cover data from 1990 and 2010 [41]. Since the
purpose of this study was to assess the effects of topographic illumination correction on
the accuracy, extent, and changes in classified forest cover maps, we did not preemptively
remove any topographic regions, such as those above the tree line, from our sampling
design. At each sample site, we visually interpreted the central and surrounding eight
pixels using Landsat and very high-resolution reference imagery available in Google Earth.
A site was considered to be forest if at least 50% of the central pixel was visually interpreted
as being closed forest canopy, with higher interpretation confidence when surrounding
pixels were similarly forested. A site was considered to be non-forest if it was visually
interpreted to have less than 50% forest canopy closure. Using the 1990 ICIMOD data,
we verified 45% of ICIMOD-classified forest (F) and 31.5% of non-forest (NF) samples
with high confidence, and using the 2010 ICIMOD data, we verified 68% of ICIMOD-
classified F and 36% of NF samples with high confidence. After verification, we had
2621 high-confidence samples composed of 935 F (35.7%) and 1686 NF (64.3%) samples
(Figure 3a); this distribution mirrored the 2010 ICIMOD land cover distribution of 38.9% F
and 61.1% NF. Samples were well distributed across the three physiographic zones with
proportionately fewer F samples in the Mountains and IL strata 1 and 2 since much of these
regions lie above the forest line (approximately 4000 masl (Figure 3b); zero forest sample
sites were recorded above the forest line. Proportionate to IL stratum area, the number of
F samples generally declined with increasing IL, whereas NF samples tended to increase
(Figure 3c).

Figure 3. Distribution of forest (F, green) and non-forest (NF, orange) samples (a) across Nepal, (b) by dominant physio-
graphic zones, and (c) by IL stratum.
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Two distinct Random Forest classifier models were built in Google Earth Engine with
one thousand decision trees in out-of-bag (OOB) mode, which supports a bootstrapped
accuracy estimation approach that randomly subsamples the training and validation
data without replacement. The models were trained using 16 spectral and topographic
predictor variables (as described above) from TIC and nonTIC annual composites sampled
at validated 1990 and 2010 sites labeled as “forest” (F) or “non-forest” (NF). The models
differed only in that the nonTIC model used uncorrected spectral data while the TIC model
used band-specific topographic illumination correction, as detailed above. The differences
between nonTIC and TIC model accuracy are examined in Objective 1, differences in inter-
annual and long-term forest cover change are examined in Objective 2, and differences in
forest cover conversions (i.e., stability, regeneration, loss) are examined in Objective 3.

Objective 1: Compare nonTIC and TIC Classification Accuracy

We measured each model’s accuracy using the OOB accuracy as well as validation,
user’s, and producer’s accuracies using three-fold cross-validation of one-third samples
used for testing and two-thirds reserved for validation. Our accuracy measures apply to
forest cover maps for any given year in the study period. Since we harmonize our spectral
data across all years and use linear interpolation to estimate values for locations with
missing data on a given year, this helps ensure that our spectral measurements from one
year are directly comparable to another year, and that our validation data collected in a
given year support an accuracy assessment for the entire study period.

Since aggregating all forest and non-forest samples to the national level negates the
ability to assess the effect of TIC on classification accuracy under more specific physio-
graphic or illumination conditions, we measured classification accuracies at three ana-
lytical scales: at the national level (i.e., using all available samples), by physiographic
zone, and by IL stratum. For the physiographic zonation, we used three commonly used
zones-the Mountains, Middle Hills, and Terai—that were delineated at the administrative
district level by the Department of Survey Nepal in 1988 (http://rds.icimod.org/Home/
DataDetail?metadataId=1597, accessed on 14 November 2020). Physiographic zones are
topographically and societally relevant since they are used broadly for forest policy plan-
ning, implementation, and monitoring as well as national forest cover change mapping,
and offer an analytical scale positioned in between the national level and the finely detailed
IL stratum level. At each analytical scale, we examined differences in accuracies between
nonTIC and TIC models with respect to the 95% confidence interval (CI) and offered
explanations for any substantive similarities or differences.

Objective 2: Measure the Effect of TIC on Long-Term Forest Cover Change

We assessed the effect of TIC on long-term forest cover change by measuring differences
in annual forest cover extent as well as the net amount and rate of forest cover change from
1992 to 2016 with nonTIC and TIC data across Nepal as well as by physiographic zone and IL
stratum. To examine the potentially spatially and temporally varying differences between TIC
and nonTIC results, we measured the differences (i.e., over or underestimate) between nonTIC
and TIC forest cover extent and net forest cover change at every year and described how
differences between TIC and nonTIC forest cover extent values vary over time at these three
geographic levels. We also investigated whether TIC effectively normalized the distribution
of net forest cover change across illumination conditions by measuring differences in the skew
of nonTIC and TIC net forest cover change from 1992–2016 at the IL stratum level.

Objective 3: Measure the Effect of TIC on Type of Forest Cover Change

We assessed the effect of TIC on the type of forest cover change by measuring the
area of land that was (a) Never Forest (i.e., stable non-forest from 1992–2016); (b) Always
Forest (i.e., stable forest from 1992–2016); (c) Regenerated Forest (i.e., non-forest in 1992
but forest for at least one year between 1992–2016); and (d) Lost Forest (i.e., forest in 1992
but non-forest for at least one year between 1992–2016) using nonTIC and TIC data. We

http://rds.icimod.org/Home/DataDetail?metadataId=1597
http://rds.icimod.org/Home/DataDetail?metadataId=1597
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measured differences in the respective amounts of these four kinds of conversions using
nonTIC and TIC data at national, physiographic zone, and IL stratum levels.

3. Results
Objective 1: Compare nonTIC and TIC Classification Accuracy

Across various assessments of classifier model performance, TIC yielded a positive but
small improvement (1.15%) on average classification accuracy at the national level (Table 2).
The largest increase with TIC was found for the forest user’s accuracy (3.25%), while TIC
resulted in a decreased forest producer’s accuracy of 0.69%. These results are generally
in line with [30,39] that found modest gains in accuracy with TIC. Note, however, that
the differences between nonTIC and TIC accuracies are usually within the respective 95%
confidence intervals (CI) for nonTIC and TIC models. Across all measures, TIC has a lower CI,
which suggests higher classification precision with TIC. The small difference in accuracies at
the national level is likely a result of the training data being clustered in certain regions due to
verification data availability, which may limit the variation of biophysical, physiographic, and
illumination conditions being sampled. Furthermore, training data could only be sampled
in regions that were sufficiently illuminated to visually discriminate forest from non-forest.
This fundamental requirement, along with the fact that most of IL 10 lies above the tree line,
effectively eliminated the potential to collect samples in the least-illuminated regions of the
country where TIC would likely have the most improvement.

Table 2. Nepal-wide comparison of model accuracies (%) for nonTIC and TIC models with respective
95% CIs (in parentheses) based on three-fold cross-validation. OOB: Out-of-bag.

TIC
Model

Accuracy Measure

OOB Validation
User’s Producer’s

Non-Forest Forest Non-Forest Forest

nonTIC 89.71
(0.38)

87.05
(1.81)

88.24
(4.83)

85.44
(5.43)

90.37
(5.17)

82.17
(8.48)

TIC 90.04
(0.21)

88.39
(0.35)

88.28
(3.02)

88.69
(4.21)

93.02
(3.23)

81.48
(5.51)

At the physiographic zone-level, the Mountains generally had the highest classification
accuracies that were often 10% greater than corresponding measures in the Middle Hills
(Table 3). The generally lower classification accuracies in the Middle Hills may be associated
with this region’s exceptional forest cover gain over the 25-year study period; with more
conversions from non-forest to forest than other regions, the classifier seemingly had more
difficulty capturing the resulting forested site. Even in the Mountains and the Middle Hills,
zones that are characterized by a broad distribution of illumination conditions, differences
between accuracies of nonTIC and TIC models remain small and rarely surpass either
model’s 95% CI. In the Mountains, TIC increases the producer’s accuracy for forested
samples by 2.38%, which is in excess of the CI. In the Middle Hills, TIC increases all
accuracies except for the user’s forest and producer’s non-forest accuracies, even increasing
the producer’s accuracy for forest samples by 5.13%, but none of these accuracy changes
exceed the respective CIs. Even in the highly illuminated Terai, the differences between
nonTIC and TIC models across accuracy measures do not exceed the respective CIs.

Assessing accuracy differences by IL stratum reveals the same general pattern as
above—that the differences in accuracies between nonTIC and TIC models rarely exceed
the CIs—but spatial differentiation in TIC effects begins to be evident across the IL strata
(Table 4). In less illuminated IL strata 2–6, the TIC model increased accuracies in 19 out of
30 measures where an additional 8 measures of accuracy are equal. For better illuminated
IL strata 7–10, on the other hand, the relationship was inverted as TIC decreased accuracy
in 18 of 24 measures. In contrast to the national and physiographic zone perspectives, OOB
accuracy increases exceeded respective CIs for IL strata 4–6 and occasionally for other
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accuracy measures across IL strata 3–6. The generally higher accuracies in less illuminated
strata could be the result of more readily detected tree types in steeper slopes that typify
low IL strata or, simply, a starker contrast between forest and non-forest land covers with
increasing elevations and lower IL strata. It is unlikely that the higher accuracies are
associated with the potential presence of snow cover since snow and ice were removed
in pre-processing and forest cover classifications were based on growing season imagery.
Nonetheless, assessing classification accuracy at the IL stratum-level accuracy is suggestive
that TIC improves classification accuracy in low to moderately illuminated regions.

Table 3. Physiographic zone-level comparison of model accuracies (%) for nonTIC and TIC models with respective 95% CIs
(in parentheses) based on three-fold cross-validation. OOB: Out-of-bag.

Physiographic
Zone TIC Model

Accuracy Measure

OOB Validation
User’s Producer’s

Non-Forest Forest Non-Forest Forest

Mountains

nonTIC 94.42
(0.68)

92.48
(1.69)

93.70
(0.79)

90.35
(3.32)

94.44
(1.81)

89.12
(1.79)

TIC 94.91
(0.18)

93.25
(1.63)

94.72
(1.33)

90.91
(2.33)

94.33
(1.49)

91.50
(2.06)

Middle Hills

nonTIC 86.06
(0.39)

82.79
(3.10)

80.69
(4.98)

85.45
(0.68)

87.53
(0.80)

77.75
(6.27)

TIC 85.97
(0.32)

83.65
(3.41)

83.29
(4.30)

84.02
(4.29)

84.41
(5.75)

82.88
(4.74)

Terai

nonTIC 92.01
(0.49)

92.23
(0.26)

92.33
(1.60)

91.96
(5.44)

96.85
(1.12)

81.75
(1.94)

TIC 91.69
(0.55)

91.59
(1.26)

95.05
(2.91)

84.21
(9.65)

92.76
(4.98)

88.89
(7.48)

Table 4. Illumination condition stratum-level differences (i.e., TIC – nonTIC) in nonTIC and TIC model accuracies (%) with
average 95% CIs (in parentheses) based on 3-fold cross-validation. Accuracy differences are presented for ease of comparison
across ten strata. Note that IL stratum 1 is broadly above the tree line and was not sampled (i.e., N/A). OOB: Out-of-bag.

IL
Stratum

Differences in Accuracy Measure

OOB Validation
User’s Producer’s

Non-Forest Forest Non-Forest Forest

1 N/A

2 0.00 (0.00) 0.28 (1.73) 0.00 (0.00) 0.28 (1.73) 0.00 (0.00) 0.00 (0.00)

3 5.55 (0.00) 7.16 (4.65) 0.00 (0.00) 7.55 (5.09) 2.23 (1.25) 0.00 (0.00)

4 1.98 (0.03) 1.24 (4.97) 0.00 (0.00) 1.58 (5.85) 1.58 (2.90) 0.00 (0.00)

5 2.58 (0.00) 0.63 (2.55) 3.72 (7.21) −0.67 (1.21) −0.75 (3.40) 1.51 (3.79)

6 2.38 (1.13) 3.35 (3.87) 0.16 (7.83) 5.17 (3.46) 10.93 (4.26) −1.27 (5.02)

7 −0.39 (0.69) −1.50 (3.76) 0.59 (3.98) −3.77 (3.74) −2.65 (2.24) −0.23 (6.71)

8 −0.33 (0.46) −0.23 (2.08) 0.10 (2.62) −1.15 (1.98) −0.58 (0.90) 0.52 (6.49)

9 −1.24 (0.60) −0.92 (1.28) 0.09 (1.36) −3.80 (2.29) −1.37 (0.77) −0.35 (3.73)

10 0.28 (0.76) −0.66 (4.14) −1.22 (4.80) 0.05 (4.29) −0.43 (3.81) −0.73 (5.68)

Objective 2: Measure the Effect of TIC on Long-term Forest Cover Change

Both nonTIC and TIC models show a steady expansion of forest cover across Nepal
from 1992–2016 but differ in their estimates of annual net forest cover change (Figure 4).
The nonTIC model (blue line) estimates a net forest cover gain of 29,960 km2 (an average of



Remote Sens. 2021, 13, 2131 11 of 22

1248 km2/year) while the TIC model (magenta line) estimates a lower net gain 28,076 km2

(an average of 1170 km2/year). The nonTIC model thus overestimates the TIC estimate
of 1992–2016 net forest cover gain by 1884 km2 (difference shown as black line), which
corresponds to 1.3% of Nepal’s land mass or 5.2% of Nepal’s forest cover in 1992 as
measured by the nonTIC model. Of special note, the direction of bias in the annual
difference in forest cover area between nonTIC and TIC models inverts between 2000
and 2001. This flip from TIC over- to underestimating forest cover relative to nonTIC
data is likely associated with the steady expansion and regeneration of forest cover into
better-illuminated regions following well-documented agricultural abandonment and
out-migration from the Middle Hills [49,53].

Figure 4. Annual forest cover area (left y-axis) based on nonTIC (blue line) and TIC (magenta line)
models and difference (i.e., TIC – nonTIC; black line; right y-axis). Note the difference in scale
between the two y-axes. While both nonTIC and TIC measures of forest cover area increase from
1992–2016, nonTIC exceeds the TIC estimate by over 500 km2 at the beginning of the study. This
difference diminishes until 2001, at which time the TIC estimate begins to exceed the nonTIC estimate,
eventually capturing more than 1250 km2 forest cover than the nonTIC estimate by 2016.

Moving to the physiographic zones, the Mountains, Middle Hills, and Terai each
showed different spatial (Figure 5) and temporal (Figure 6) signatures revealing differences
between nonTIC and TIC forest cover area measurements. At the beginning of the study
period, the most pronounced difference in forest cover area was in the Terai, which saw 1.2%
more forest cover with TIC. However, by the end of the study period, TIC underestimated
Terai forest cover by 0.7% compared to the nonTIC model. The Middle Hills meanwhile
had 0.4% more forest cover with TIC, but this bias inverted by 2016 where TIC found
1.4% less forest cover compared to the nonTIC model. By contrast, the TIC model in the
Mountains consistently measured less forest cover than the nonTIC mode from 0.13% to
0.32% by the end of the study, though these differences are minor compared to the amount
and overall flux of difference measured in the Middle Hills and Terai. At the national level,
the Middle Hills and Terai expressed an inversion in bias 2001 and 2003, respectively, after
which nonTIC exceeded TIC forest cover area. These findings echo the national assessment
(Figure 4) and show that the effects of TIC on forest cover change measurements vary by
physiographic conditions.

Differences in annual forest cover area and change between nonTIC and TIC models
are much more pronounced at the IL stratum level than at physiographic (Figure 6) or
national levels (Figure 4). TIC captured from 2% to 5.4% more net forest cover gain in
less illuminated strata 1–6, and 1.3% to 3.3% less net forest cover gain in IL strata 7–10
(Figure 7). In effect, TIC rebalanced the distribution of net forest cover gain into both
the less and moderately illuminated IL strata (i.e., IL 1–5) of Nepal. Looking at these
IL strata differences over time, both TIC and nonTIC models show net forest cover gain
each year from 1992–2016, but the better-illuminated strata 6–10 showed more rapid, early
expansion in forest cover than less or moderately illuminated strata 1–5 (Figure 8a,b); this
is likely the result of agricultural abandonment in the 1990s [49]. As TIC and nonTIC
models captured regenerating forests differently in different strata, the nearly 13% range
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in differences between forest cover area estimates in 1992 (i.e., IL 10 and IL 5) shrank to
nearly 8% by 2016 (i.e., IL 1 and IL 4) (Figure 8c). TIC captured more net forest cover
gain in IL 1–6 with the fastest gains occurring in the 1990s, which likely resulted from
forest planting and expansion that started in the 1980s, while differences in IL 7–10 steadily
decreased over the course of the study period as nonTIC captured ever more net forest
cover gain in these strata. These results show the varying effects of TIC on forest cover
measurement by year and by IL stratum, which are in part driven by specific kinds of forest
cover change processes and patterns that vary by place and time. This is an important
finding since it shows that different effects of TIC on forest cover change mapping are
affected by illumination condition as well as the socioeconomic drivers at play.

Figure 5. Variation in forest cover difference (i.e., TIC – nonTIC) expressed as percentage of area of Nepal’s physiographic
zones (Mountains, Middle Hills, and Terai) in 1992, 2000, 2010, and 2016. Across these four example years, the changing
distribution of differences between nonTIC and TIC forest cover area estimates is apparent.

Objective 3: Measure the Effect of TIC on Type of Forest Cover Change

Compared to differences in model accuracy or the amount or rate of net forest cover
change, larger differences between nonTIC and TIC are evident in measures of Never
Forest (i.e., stable non-forest from 1992–2016); Always Forest (i.e., stable forest from 1992–
2016); Regenerated Forest (i.e., non-forest in 1992 but forest for at least one year between
1992–2016); and Lost Forest (i.e., forest in 1992 but non-forest for at least one year between
1992–2016) (Figure 9). At the national-level, TIC estimates of Never Forest and Always
Forest exceeded nonTIC estimates by 1.4% (1067 km2) and 2.4% (744 km2), respectively.
The TIC model detected a more stable landscape with 4.6% (1637 km2) less Regenerated
Forest and 3.6% (174 km2) less Lost Forest than the nonTIC model. Since the TIC model
captured more forest cover in 1992 compared to the nonTIC model, it would be expected
that the TIC model would see more Always Forest, which is indeed the case. However, the
TIC model also measured more Never Forest. These results as well as the nonTIC model’s
detection of more net forest cover gain (Figure 4) speak to the rapid regeneration across the
country over the 25-year period and show TIC yields a more conservative assessment of
this forest cover change.
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Figure 6. Annual forest cover area expressed as percentage of area of Nepal’s physiographic zones
(left y-axis) based on nonTIC (blue line) and TIC (magenta line) models and difference (i.e., TIC –
nonTIC; black line; right y-axis). Note the difference in scale across all y-axes. The magnitude and
rate of change in the difference between nonTIC and TIC estimates of forest cover change differently
vary between the three physiographic zones due to differing rates of forest cover regeneration.

Figure 7. Distribution of the difference (TIC – nonTIC) in net forest cover from 1992–2016 by IL
stratum. The TIC approach detects more forest cover gain from 1992–2016 in IL strata 1–6, while the
nonTIC approach detects more forest cover gain in IL strata 7–10.
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Figure 8. Annual forest cover area estimates for (a) nonTIC and (b) TIC models and (c) differences (i.e., TIC – nonTIC) by IL
stratum from 1992–2016. IL strata show divergent trends of difference in forest cover area estimates over time, a result of
differentiated rates of forest cover gain within each stratum.

Figure 9. Comparison of national-level forest cover conversion areas between nonTIC and TIC
models. The nonTIC model shows more total regeneration and loss than the TIC model between
1992–2016.

At the level of physiographic zones, the Mountains and Terai are primarily charac-
terized as Never Forest by both models (approximately 68% and 57%, respectively) while
the Middle Hills is rather balanced between Regenerated Forest (approximately 34%),
Never Forest (33%), and Always Forest (29%) with very little Lost Forest (4%) (Figure 10a).
The Middle Hills is thus a much more dynamic region with regard to long-term forest
cover gain compared to the Mountains and the Terai. However, the largest differences
between the nonTIC and TIC models in their estimation of forest cover conversion are
found in the Terai, which has a 3.1% range of difference defined by TIC’s 1.2% overestimate
of Always Forest and −1.9% underestimate of Regenerated Forest compared to nonTIC
(Figure 10b). The Middle Hills, meanwhile, had a 2.4% range of difference between Never
Forest and Regenerated Forest, while the Mountains showed very little difference in the
four conversion estimates with a total range of 0.5% across the four conversions. TIC thus
generally overestimates Never Forest and Always Forest, and underestimates Regenerated
Forest and Lost Forest compared to nonTIC, but TIC and nonTIC never disagree by more
than 1.9% (i.e., in the case of Terai Regenerated Forest).
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Figure 10. (a) Area and (b) difference (i.e., TIC – nonTIC) of Never Forest (N), Always Forest (A),
Regenerated Forest (R), and Lost Forest (L) of nonTIC and TIC models by physiographic zone. The
differences in forest cover conversions across physiographic zones are associated with varying drivers
and rates of forest cover change.

Both nonTIC and TIC models measured Regenerated Forest at 10–30% in each IL
stratum with the most Regenerated Forest in IL 6–8 (Figure 11a); the sun-oriented and
not-too-steep topography of these IL strata suggests that forest regeneration followed agri-
cultural abandonment here. The models nonetheless showed considerable disagreement
with TIC measuring 4–6% more Regenerated Forest in IL 1–5 and 2–3% less Regenerated
Forest in IL 8–10 than the nonTIC model (Figure 11b). Lost Forest, by comparison, was
consistently low across IL strata with a mean of 3.5% per stratum for nonTIC and TIC
alike, and very little difference (<1%) between models across IL strata. Considering stable
conversion classes, Never Forest pervaded the lowest (1–3) and highest (7–10) IL strata,
while Always Forest dominated IL strata 4–5 (Figure 11a). The TIC model detected 4–5.2%
less Never Forest in IL 1–2 but >3% more Never Forest in IL 6–7 than the nonTIC model.
The TIC model consistently detected less Always Forest than the nonTIC model from IL
strata 1–7, since these strata were broadly characterized as Regenerating Forest or net forest
cover gain by the TIC model. Thus, the effect of nonTIC on forest cover conversion not
only varies by IL strata; it also varies by conversion type: nonTIC sees more Regenerated
Forest in IL strata 1–5, more Never Forest from IL strata 6–7, and more Always Forest
from IL strata 8–10. In contrast to national-level forest conversion trends that show TIC
capturing more forest cover stability (principally due to the very large areas of IL strata
8–10, Figure 2), these IL stratum-level views of forest conversion show that TIC has a highly
variable effect for quantifying both forest cover stability and change.

Figure 11. (a) Area and (b) difference (i.e., TIC – nonTIC) of Never Forest (N), Always Forest (A),
Regenerated Forest (R), and Lost Forest (L) of nonTIC and TIC models by IL stratum. The differences
in forest cover conversions across IL strata are associated with varying drivers and rates of forest
cover change.
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4. Discussion

This study offers several novel insights towards understanding the effects of TIC
on measurements of forest cover area and change. First, our cross-scale assessment of
classifier accuracy showed that the TIC model yielded only modest accuracy gains at the
national level, which were broadly negligible at the physiographic zone and IL stratum
levels. Second, our use of a 25-year-long time series allowed us to show that TIC does not
have a stable effect on forest cover mapping but rather varies over time. TIC resulted in a
more conservative assessment of net forest cover gain and forest cover conversion over the
entire study period of 1992–2016. However, these trends are not consistent over the full
25-year-long study period. From 1992–2001, TIC captured more annual forest cover than
the nonTIC model at the national level (Figure 4) but, from 2001–2016, nonTIC captured
more forest cover than TIC. Third, TIC effects on measures of forest cover and change
show considerable variation by physiographic zone and IL stratum. For example, the
larger increase in forest cover gain from 1992–2001 measured with TIC was partially driven
by exceptional forest cover expansion in IL strata 4–5 (Figure 12a). By 2001–2016, forest
cover expansion in IL strata 4–5 and the Middle Hills had waned, resulting in more similar
change estimates between TIC and nonTIC (Figure 12b). Taken together, these findings
show that even if classification accuracies between nonTIC and TIC are comparable, nonTIC
approaches may alternately under- or overestimate forest cover area and net forest cover
change depending on the period under investigation as well as the regional physiographic
and illumination conditions. The temporally divergent effects of TIC on forest cover area
measurements were only detectable through using a multi-decadal annual time series and
are especially important to consider for accurate documentation of long-term forest cover
change in mountainous or otherwise topographically complex regions.

Figure 12. Difference (i.e., TIC – nonTIC) in forest cover change from (a) 1992–2001 and (b) 2001–2016.
Differences in forest cover change estimates between nonTIC and TIC models result from differences
in model sensitivity to forest cover under different illumination conditions as well as the rate of forest
cover change in different time periods.

This study also shows that TIC not only consistently detects additional forest cover
(up to 4%) in the least-illuminated strata (IL 1–2), but also that TIC detects more forest cover
(up to 5.1%) in the most-illuminated strata (IL 9–10) for all but the last 2 years of the study.
Indeed, as the study progressed from 1992–2016, TIC measured an increasingly larger
area of forest cover than the nonTIC model in low IL strata and increasingly less forest
cover in high IL strata. These annual forest cover differences translated into TIC detecting
more net forest cover gain (3–5.5%) and Regenerated Forest (4–6%) in low and moderately
illuminated strata (IL 1–5) than the nonTIC model and less forest cover gain in the most-
illuminated strata (IL 7–10). The additional forest cover gain in low IL strata captured in the
TIC model helped to balance the net forest cover change across IL conditions. The ultimate
effect of TIC helping to normalize the distribution of forest cover gain highlights the
importance of examining spatially divergent effects of TIC on forest cover change mapping
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at different stages of a forest transition. In the absence of using TIC in mountainous or
otherwise topographically complex regions, scholars should give pause to net forest cover
change results that are positively skewed towards better illuminated regions.

The various ways, summarized above, in which TIC can affect forest cover area
and change mapping are directly related to shifts in forest cover change drivers over
time. In Nepal, two of the most important indirect drivers of forest cover change are
community forest management and migration [53,69]. In 1988, 61% of Nepal’s forested area
(estimated at 3.5 million ha) was designated by the Department of Forests (DoF) as being
eligible for community management, which decentralized access, usage, and management
rights of the forest to community user groups [70]. In the intervening decades, many
scholars have identified the positive effect of Nepal’s community forest management on the
conservation and expansion of forest cover within the country through local interview data
collection, participatory mapping, and regional satellite image analysis (e.g., [49,53,69]).
The expansion of community forestry, especially in the Middle Hills in the 1980s, brought
reduced cutting and increased tree planting, which drove the rapid expansion of forest
cover in the 1990s detected by the TIC model (Figure 12a). By the 1990s, the selective
curtailing of timber harvesting led to forest cover starting to expand in regions that had
not been forested for decades [71]. In the early 2000s, the Maoist insurgency and political
disorder following the 2001 assassination of the king drove widespread out-migration from
the Middle Hills and Mountains, which led to forest cover gain following the abandonment
of rainfed agricultural lands and the great decline of tree harvesting in these regions [46].
Given the history of shifting importance of forest cover change drivers, research that seeks
to understand the influence of drivers on the spatial pattern and timing of forest cover
change would also do well to use TIC on long-term forest cover change measurements.

The findings of this study thus reinforce the need for adopting TIC for policy-relevant
mountainous forest cover mapping since nonTIC results may suggest a more rapid or
otherwise effective intervention. For example, the nonTIC model measured 1884 km2 more
net forest cover gain across Nepal from 1992–2016 compared to the TIC model (Figure 4).
This overestimation of net forest cover gain at the national level is important to recognize
when assessing the outcomes of national forest cover conservation efforts or REDD+
initiatives in Nepal [72,73]. Similarly, TIC should be applied when collecting empirical
data on forest cover or change to examine pathways of forest recovery such as resource
scarcity or economic development [74–77]. Evidence of resource scarcity and economic
development vary by spatial scale, location, and time, all of which benefit from annual,
long-term assessments of forest cover change and conversion dynamics [78]. However, to
date, TIC is rarely used in satellite-based studies of forest transition in Nepal (e.g., [48])
and other mountainous forested regions.

Future research examining the effect of TIC on satellite image-based forest cover and
forest cover change mapping would do well to examine in more detail the changes that
TIC introduces to time-series segmentation and trend fitting that were not considered in
this study. While time-series segmentation and trend fitting help to build a spectrally
stabilized profile for training data generation and classification, they may minimize some
of the change in spectral condition caused by TIC. This study also used a long-term mean
IL across all input imagery to stratify the landscape and summarize results, but did not
examine areas with high inter-annual variation in IL, which may affect both TIC and
nonTIC measurements of forest cover presence. Future work could look at the role of IL
variation on forest cover classification accuracy and derived measures of change in more
detail, and could examine whether TIC effects on Random Forest-classified forest cover
are consistent when using other classification approaches. An examination of TIC effects
using object-based classification approaches would also be warranted since TIC may affect
image segmentation in ways that are not relevant for consideration using the pixel-based
classifier used here. Finally, the late morning overpass time of Landsat, Sentinel-2, and
commercial Earth observing satellites (including those commonly used to generate high
resolution reference imagery) means that we commonly lack imagery with illuminated
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west-facing slopes. Future research on forest cover mapping in topographically complex
environments would thus benefit from incorporating imagery acquired at different times
showing more diverse illumination conditions.

5. Conclusions

This study characterized the previously undocumented effects of TIC on forest cover
and forest cover change mapping in Nepal from 1992–2016 using Landsat surface re-
flectance time series. We developed parallel TIC and nonTIC assessments on classifier
model accuracy, long-term trends, and forest cover conversion and quantified the differ-
ences introduced by TIC. We summarized results at national, physiographic zone, and IL
stratum levels and over various time periods to account for the ways in which TIC affects
our understanding of forest cover change in different regions at different times due to
different socioeconomic drivers. Compared to the nonTIC approach, we found that TIC
modestly improves classifier accuracy by an average of 1.15% and measured 1884 km2 less
net forest cover gain than the nonTIC approach, which is equivalent to 1.3% of Nepal’s land
area. However, the TIC approach resulted in more forest cover gain in less-illuminated
regions (IL strata 1–5), effectively helping to normalize measures of forest cover change
regardless of illumination conditions. Mountainous forest cover change mapping without
using TIC thus risks overestimating forest cover gain in well illuminated strata (by 1–3%
in Nepal) and underestimating forest cover gain in darker regions (by 3–5% in Nepal).
In countries such as Nepal where different drivers (e.g., forest policy, out-migration, and
social conflict) impact forest cover change differently over space and time, the spatially
and temporally harmonized estimates provided by TIC offer more quantitative accuracy
in forest cover change measurements at the national and local scale, and support a more
confident interpretation of the reasons for and consequences of forest cover change.
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Appendix A

Table A1. Annual and monthly distributions of 1893 Landsat 5, 7, and 8 images used in study,
collected from July–October from 1992–2016.

Year/Month July (7) August (8) September (9) October (10)

1992 4 8 11 12

1993 10 13 7 14

1994 13 9 17 23
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Table A1. Cont.

Year/Month July (7) August (8) September (9) October (10)

1995 3 7 2 6

1996 9 7 20 20

1997 6 11 12 16

1998 4 7 17 19

1999 7 7 14 21

2000 9 11 23 24

2001 16 20 18 12

2002 7 9 11 18

2003 6 7 3 14

2004 14 13 26 36

2005 7 13 25 30

2006 8 11 35 32

2007 7 12 19 23

2008 11 10 27 47

2009 21 15 35 44

2010 8 10 17 41

2011 14 20 23 37

2012 2 10 19 29

2013 20 26 48 46

2014 20 30 38 53

2015 32 25 50 50

2016 13 39 37 51

Total 271 350 554 718
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