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Highlights: 

 

 Low protein intakes drive fasting hyperglycaemia in ageing female rats. 

 A low protein diet differentially affects the pancreas-liver-muscle axis based on 

oestrogen status. 

 A low protein diet drives a down-regulation of GLUT4 protein expression in 

skeletal muscle of ageing SHAM rats. 

 A low protein diet drives a hyperglucagonemia-associated hepatic stress in 

ageing OVX rats. 

 

 

 

Abstract for Journal of Nutritional Biochemistry 

 

The need to consume adequate dietary protein to preserve physical function during 

ageing is well recognized. However, the effect of protein intakes on glucose metabolism 

is still intensively debated. During age-related oestrogen withdrawal at the time of the 

menopause, it is known that glucose homeostasis may be impaired but the influence of 

dietary protein levels in this context is unknown. The aim of the present study is to 

elucidate the individual and interactive effects of oestrogen deficiency and suboptimal 

protein intake on glucose homeostasis in a preclinical model involving ovariectomy 

(OVX) and a 13-week period of a moderately reduced protein intake in 7-month-old 

ageing rats. To investigate mechanisms of action acting via the pancreas-liver-muscle 

axis, fasting circulating levels of insulin, glucagon, IGF-1, FGF21 and glycemia were 

measured. The hepatic lipid infiltration and the protein expression of GLUT4 in the 

gastrocnemius were analyzed. The gene expression of some hepatokines, myokines and 

lipid storage/oxidation related transcription factors were quantified in the liver and the 

gastrocnemius. We show that, regardless of the oestrogen status, moderate dietary 

protein restriction increases fasting glycaemia without modifying insulinemia, body 

weight gain and composition. This fasting hyperglycaemia is associated with oestrogen 

status-specific metabolic alterations in the muscle and liver. In oestrogen-replete 

(SHAM) rats, GLUT4 was down-regulated in skeletal muscle while in oestrogen-

                  



deficient (OVX) rats, hepatic stress-associated hyperglucagonaemia and high serum 

FGF21 were observed. These findings highlight the importance of meeting dietary 

protein needs to avoid disturbances in glucose homeostasis in ageing female rats with or 

without oestrogen withdrawal. 

 

Keywords: 

Protein intake, oestrogen deficiency, hyperglycaemia, muscle, liver, glucagon, FGF21  

                  



1. Introduction: 

Asymptomatic hyperglycaemia in association with progressive metabolic dysregulation 

represent important risk factors associated with age-related chronic diseases [1,2] and 

mortality [3]. Although the impact of diet on age-related health is largely recognized [4] 

including the role of fats and carbohydrates on dysregulation of glucose metabolism, the 

influence  of dietary protein is  still the subject of debate. Several clinical studies 

advocate that high protein consumption could be diabetogenic [5–7] while others argue 

that it does not affect fasting glycaemia adversely and even decreases glycated HbA1C 

levels significantly in patients with type 2 diabetes [8–10]. Higher protein intake could 

delay age-related muscle loss and have beneficial effects on glycemic control [11]. In 

studies considering risk of sarcopenia, a substantial proportion of ageing individuals 

have suboptimal protein intake [12–14] and this was shown to be associated with higher 

risk of functional decline, particularly in women [15]. During age-related menopause, it 

is still controversial  whether or not the oestrogen status independently influences the 

regulation of glucose homeostasis  [16]. While some studies did not observe any 

differences between pre- and postmenopausal women in fasting glycaemia and/or 

insulin sensitivity [17,18] others found a direct involvement of menopause in increased 

fasting glycaemia [3,19,20]. 

The maintenance of a normal glycaemic state relies on the synchronicity of complex 

regulatory mechanisms between organs mediated through a multiplicity of signals such 

as hormones and nutrients. The three main organs that interact for ensuring glucose 

homeostasis are: 1) the pancreas which orchestrates peripheral tissue glucose uptake and 

release through its secretion of insulin and glucagon respectively; 2) the liver, through 

glycogenesis and gluconeogenesis/glycogenolysis in response to insulin and glucagon 

respectively and 3) the skeletal muscle which is responsible for 50-60% of systemic 

glucose uptake mainly due to the expression of GLUT4, an insulin-responsive glucose 

transporter [21,22]. Moreover, fasting or postprandial hyperglycemia has been shown to 

be a steatogenic factor [23,24], a state of hepatic stress that could lead to the production 

of FGF21 [25,26]. FGF21, which is mainly produced by the liver, is a hepatokine that 

improves the whole-body insulin sensitivity [27] and inhibits the secretion of glucagon 

[28]. FGF21 circulating levels are increased in T2D obese patients [29] as well as in 

response to dietary protein restriction  [30,31]. In preclinical models, low protein 

                  



intakes and impairment of oestrogen signalling have been shown to affect individually 

the skeletal muscle and/or the liver metabolic fitness (↑ hepatic fat accumulation, ↓ 

muscle oxidative metabolism) [30,32–36]. However, to date, how glucose homeostasis 

in response to suboptimal dietary protein is regulated by the liver and/or the skeletal 

muscle in the absence of oestrogen is unknown.   

Thus, the aim of this study was to elucidate the individual and interactive effects of 

oestrogen deficiency and moderately reduced protein intake on glucose homeostasis in a 

rodent menopausal model and to understand the mechanisms of action via the pancreas-

liver-muscle axis. Hence, fasting glycaemia, insulin, glucagon, IGF-1 and FGF21 

circulating levels were assessed as well as the lipid infiltration in the liver and the 

protein expression of GLUT4 in the gastrocnemius. The gene expressions of some 

myokines, hepatokines and transcription factors involved in lipid storage or oxidation 

were evaluated at the liver and gastrocnemius levels. We found that a moderate protein 

restriction increases the fasting glycaemia in SHAM and OVX animals and this is 

associated with oestrogen status-specific metabolic alterations at the liver and muscle 

level. 

 

 

  

                  



2. Materials and Methods: 

2.1. Animals and diets: 

All animal procedures received approval from the Animal Ethics Committee of the 

University of Geneva, School of Medicine. Seven-month-old female Sprague-Dawley 

rats (n = 38; Charles Rivers, Iffa Credo, l’Arbresle, France) were housed individually at 

25°C with 12: 12h light-dark cycle and had free access to demineralized water. After 2 

weeks of acclimatization and pair feeding equilibration with the diet containing 14% 

casein, the rats underwent transabdominal ovariectomy (OVX) or a sham surgery 

(SHAM) under anesthesia with intraperitoneal ketamine hydrochloride (100 mg/kg 

body weight). Animals were strictly pair-fed isocaloric diets containing 14% (normal 

protein: NP) or 5% casein (low protein: LP) for 13 weeks. The low protein diet was 

made isocaloric by the addition of corn carbohydrates to ensure a similar energy intake 

for all animals (for diet composition see supplementary table 1). Rats were restricted 

to the average amount of food eaten by the SHAM-NP group the previous day. Four 

groups (SHAM-NP; SHAM-LP; OVX-NP; OVX-LP) containing 9 or 10 animals were 

investigated. Body weight was monitored weekly throughout the study. At the end of 

the dietary intervention, all rats were fasted for 6h before being sacrificed by an 

overdose of ketamine hydrochloride. Blood was withdrawn from the abdominal aorta 

for biochemical measurements. Liver and tibial muscles were weighed and immediately 

frozen in liquid nitrogen and stored at -80°C for later analysis. 

 

2.2. Body composition: 

Total fat mass and lean body mass were analyzed by using an EchoMRI-700 

quantitative nuclear magnetic resonance analyzer (Echo Medical Systems, Houston, 

TX) at the end of treatment just before sacrifice. 

 

2.3. Oil red O staining and image analysis of hepatic sections: 

A section of frozen liver was embedded in NEG50TM compound (Thermo Fisher 

Scientific, UK) and sectioned at 5μm using a cryostat (MICROM HM 560). The liver 

section was then stained with Oil Red O and eosin using standard procedures. Images 

were acquired on Mirax 3DHistech microscope with 20x objective leading to calibration 

of 0.232 microns per pixels. To measure the fat content, subsequent image analysis was 

                  



performed with TissueStudio/Definiens software (Definiens AG, 80636 München 

Germany). Slides to be processed were assembled in workspaces and configurated for 

processing according to “IHC Dual Brown/Red Chromogene”. The first step in image 

processing was selection of liver section areas where processing should be applied. This 

area was selected automatically by specifying parameters of tissue detection steps 

Tissue/Background Separation, Composer:Inialization, Composer:Training used for 

subsequent automatic analysis. The resulting areas were processed to isolate the red 

staining of Oil Red O. The biological considerations were based on the percentage of 

Marker objects with respect to the total number of objects expressed for each tissue 

area. 

 

2.4. Quantitative Real-time PCR: 

A section of frozen liver or gastrocnemius was homogenized in Tri Reagent
®

 (Sigma 

Chemical Company, St Louis,Mo, USA) using a FastPrep system apparatus (QBiogene, 

Illkirch, France). Total RNA was extracted and then purified on mini-columns (RNeasy 

Plus Mini Kit, Basel, Switzerland) following the supplier’s instructions. Total RNA 

(0.5µg) was reverse-transcribed using a mix of random hexamers – oligo d(T) primers 

and PrimerScript reverse transcriptase enzyme (Takara bio inc. Kit) according to the 

manufacturer’s instructions. Real-time PCR was performed using SYBR Green master 

mix (Applied Biosystems) on a SDS 7900 HT instrument (Applied Biosystem), and 

each sample was run in triplicate. Results were normalized to the mean of expression 

levels of Actb and Gapdh for the liver and Ppia, Tubb4b and Gapdh for the 

gastrocnemius and expressed as a percentage of the SHAM-NP group. Primer 

sequences are described in supplementary table 2. 

 

2.5. Protein Immunoblotting: 

Western blot analysis was performed using the NuPage System precast gels as 

described by the manufacturer (Novex, Life Technologies). Homogenization of 

gastrocnemius sample was prepared with TissueLyser (Qiagen) using ice-cold lysis 

buffer A (50 mmol/L Tris-HCL, pH 7.5, 1 mmol EDTA/L, 1 mmol EGTA/L, 

10%glycerol, 1%triton-X, 50 mmol NaF/L, 5 mmolNa4P2O7/L, 1 

mmoldithiothreitol/L, 10 mg trypsin inhibitor/mL, 2 mg aprotinin/mL, 1 mmol 

                  



benzamidine/L, and 1 mmol phenylmethylsulfonylfluoride/L). The lysate was 

centrifuged (12,000 x g, 20 min, 4°C) and after supernatant collection, the protein 

concentration was determined using the Pierce ®BCA Protein Assay Kit (Thermo 

Scientific). For all samples, equal amounts (5 μg) of protein were denatured by boiling 

for 10 minutes and loaded onto 4–12% Bis‐Tris midi gels. Following electrophoresis, 

proteins were transferred to nitrocellulose membranes (iBlot gel Transfert Stacks, life 

technologies) and blocked for 1 hour with Odyssey Blocking Buffer at room 

temperature. The membranes were then incubated overnight at 4ºC with primary 

antibodies (GLUT4 (1:2000) ab654; Anti-AKT1 phospho (1:2000) ab66138; Anti-

AKT1 (1:1000) ab91505 were purchased from Abcam; α-Tubulin (1:1000) #3873 were 

purchased from Cell Signaling Technology) which were diluted in 0.1% Tween 

Odyssey Blocking Buffer. After incubating with primary antibodies, the membranes 

were washed four times for five minutes, in PBS containing 0.1% Tween 20 (PBST). 

Then the membranes were incubated at room temperature for 1 hour in light restricted 

conditions with IRDye800CW-conjugated goat anti-rabbit or anti-mouse secondary 

antibodies (LI-COR Biosciences) diluted in Odyssey Blocking Buffer. The blots were 

then washed four times for five minutes, with PBST and rinsed with PBS. Proteins were 

visualized by scanning the membrane on an Odyssey Infrared Imaging System (LI-COR 

Biosciences) with 800-nm channels. 

 

2.6. Biochemical assays /measures: 

Plasma glucose, triglycerides (Roche Diagnostics, Basel, Switzerland) and free fatty 

acids (Wako, Neuss, Germany) were measured with commercial kits. Serum glucagon 

was evaluated using a glucagon radioimmunoassay kit (Linco Research, St Charles, 

MO). Serum insulin (Crystal Chem. USA), IGF-1 (IDS), FGF21 and adiponectin 

(Millipore) were evaluated by ELISA. The homeostasic model assessment of insulin 

resistance (HOMA-IR) was calculated as the product of the fasting glycaemia (mmol/L) 

and the fasting insulinemia (µU/mL), divided by the constant 22.5. 

 

2.7. Statistical analysis: 

Data were analyzed with Graphpad Prism (v8.4.0) and presented as mean ± SEM for all 

parameters measured except hepatic mRNA gene expression levels which are presented 

                  



as box plots. Data normality was tested with a D’Agostino and Pearson test. Normally 

distributed data were analyzed using a 2-way ANOVA to detect the OVX and protein 

diet effects and their interaction (O x D) after 13 weeks of treatment. Data that were 

determined to be non-normally distributed were transformed (square-root) and then re-

analyzed with a 2-way ANOVA. Significance of main effects and their interaction were 

reported and Sidak's multiple comparison post-hoc tests were performed in order to 

assess differences between groups. Any data that were still determined to be non-

normally distributed were analyzed using a non-parametric Kruskal-Wallis test (KW 

test). For body weight evolution a repeated measure ANOVA was applied. A p-value 

<0.05 was considered statistically significant. Pearson's correlation analyses were 

performed with variables normally distributed from untransformed and transformed 

(square-root) data. Although not removed from the statistical analysis, outlier values 

were identified according to the Grubb’s test. For details of statistics for simple effects 

and interactions for hepatic gene expressions see supplementary table 3 and for 

Pearson’s correlation analyses see supplementary table 4. 

3. Results: 

3.1. Body weight gain, body composition and tissue weight 

The reduced dietary protein diet resulted in a transient slower OVX-induced weight gain 

during the first 6 weeks following the surgery (Figure 1A) with complete catchup 

during the last 5 weeks of the study. Indeed, between week 0 and week 13, 

independently of the dietary protein intake, body weight gain was 3.8 and 3.9 times 

higher in the OVX group compared to the SHAM-NP group (p < 0.001) and the 

SHAM-LP group (p < 0.001), respectively (Figure 1B). This was associated with a rise 

of both fat mass (OVX effect; p < 0.01) and lean mass (OVX effect; p < 0.001) (Figure 

1C-D) while the daily food intake between SHAM-NP and OVX-NP and between 

SHAM-LP and OVX-LP was not statistically different (Table 1). Moreover, regardless 

of the oestrogen status, the 5% casein isocaloric diet did not significantly change the 

final body weight and composition when compared to the NP groups (Table 1 and 

Figure 1C-D). In NP and LP diet groups, OVX drastically decreased the uterus weight 

(g) and the uterus: body weight ratio (%), hence confirming the efficacy of the surgery 

(Table 1). In terms of skeletal muscle, OVX increased the gastrocnemius weight (g) 

(OVX effect; p < 0.01) whereas its relative weight (%) was not changed. Conversely, 

                  



OVX did not alter the soleus weight while its weight ratio was lowered (OVX effect; p 

< 0.01). At the liver level, although the weight (g) was not modified, in rats fed a 14% 

casein diet, OVX led to a reduction of the liver weight ratio (-15% vs. SHAM-NP 

group; p < 0.0001), whereas in the LP groups, no significant alteration was observed 

(Table 1). 

 

3.2. Serum substrates and hormone concentrations 

Independently of the oestrogen status, a 13-week period of a 5% casein isocaloric diet 

drastically increased the fasting glucose serum levels (+ 44% vs. SHAM-NP; p < 0.01; 

+ 53% vs. OVX-NP; p < 0.001). Although serum TG levels tended to rise during dietary 

protein restriction, mostly in SHAM rats (+ 48% vs. SHAM-NP) this difference was not 

statistically significant (p = 0.9561 vs. SHAM-NP). Plasma FFA were not significantly 

altered (Table 2). In order to understand the LP diet-induced fasting hyperglycaemia, 

several hormones involved in the regulation of glucose homeostasis were analyzed. 

While fasting serum insulin concentration was not modified, circulating levels of 

glucagon and FGF21 were increased by the reduced protein intake in OVX animals (+ 

78% vs. OVX-NP group; p < 0.001; + 153% vs. OVX-NP; group p < 0.01 respectively) 

(Table 2). For the serum glucagon, a significant interaction was observed (p = 0.035) 

indicating that the LP diet-induced hyperglucagonemia was related to the oestrogenous 

status of the animals. The concentrations of serum adiponectin and IGF-1 were not 

changed by the 5% casein isocaloric diet whereas OVX respectively increased them by 

43% (p < 0.001) and 46% (p < 0.001) relative to the SHAM-NP group and by 52% (p < 

0.0001) and 50% (p < 0.001) relative to the SHAM-LP group. Finally, the HOMA-IR, 

which is an index of insulin resistance, was increased by a low protein diet (Diet effect 

p < 0.001) mostly in OVX groups (+ 42% vs. SHAM-NP; p = 0.069; + 73% vs. OVX-

NP; p < 0.01) (Table 2). 

 

3.3. Hepatic lipid accumulation and related gene expression 

Since the liver plays a crucial role in the maintenance of the fasting glycaemia and since  

alteration of glucose metabolism and hepatic lipid accumulation have been shown to be 

associated [23,24], we quantified the liver fat content following Oil Red O staining. A 

5% casein isocaloric diet increased the % of Oil Red O staining relative to the total 

                  



surface analyzed and this statistically significant diet effect (p < 0.05) was mainly 

driven by the OVX-LP group (Figure 2A). Indeed, whereas 7 livers among 9 had more 

than 20% of the total surface stained with Oil-Red O in the OVX-LP group, there were 

only 3 livers out of 10 in OVX animals fed a NP diet. Thus, we hypothesized that fat 

accumulation in the liver may be the consequence of alterations in gene expression of 

key transcription (co-)factors involved in fat storage and/or oxidation. OVX increased 

the gene expression of Pparg, a lipogenic transcription factor (TF), by 45% and 68% 

(OVX effect; p < 0.01) when compared to the SHAM-NP and SHAM-LP groups, 

respectively (Figure 2B). Furthermore, in rats fed a 14% casein diet, OVX increased the 

gene expression of Ppara (+45% vs. SHAM-NP; p < 0.05) while, due to a significant 

outlier value in the SHAM-NP (Grubb’s test), only a trend was observed for Ppargc1a. 

Conversely, in OVX groups, a LP diet led to lower mRNA levels of these two TF 

controlling FA oxidation (- 29% vs. OVX-NP; p < 0.05 for Ppara and - 40% vs. OVX-

NP; p < 0.05 for Ppargc1a) (Figure 2B). These results suggest that a 13-week period of 

a 5% casein isocaloric diet dampened the oestrogen deficiency-related adaptation of the 

hepatic lipid metabolism in ageing pair-fed rats by notably involving a down-regulation 

of Ppara and Ppargc1a expression. 

Fatty liver is associated with increased inflammation and altered production of 

hepatokines [37,38]. While the gene expression of Tnfa was not modified in our model, 

a LP diet led to lower Hgf and Igf1 and higher Inbha mRNA levels in comparison with 

SHAM or OVX rats fed a 14% casein diet (Diet effect; p < 0.01; p < 0.05; KW p < 

0.01; respectively) (Figure 2C). Besides, regardless of the dietary protein intakes, OVX 

drove a slight increase of Igf1 gene expression and a ~2-fold rise of Fst mRNA levels 

when compared to SHAM groups (OVX effect; p < 0.01; respectively) (Figure 2C).  

Since a high Inhba/Fst mRNA ratio is associated with fatty liver [39], we evaluated how 

this ratio is modulated by OVX and/or dietary protein restriction. We did not observe 

any statistically significant differences due to the presence of two outlier values in the 

SHAM-LP and OVX-NP groups (Grubb’s test) (Figure 2D and supplementary Figure 

1A). Moreover, FGF21 was investigated here because it is a hepatokine produced in a 

situation of metabolic stress, hepatic fat accumulation [25,26] and dietary protein 

restriction [30,31]. Although the Fgf21 gene expression was not significantly modulated 

(Figure 2C), a positive correlation with the FGF21 circulating levels was observed (r = 

                  



0.59 p = 0.0004), supporting that the liver was certainly the main FGF21-producing 

organ in our model (Figure 2E) as previously observed [30]. 

Finally, since a dietary protein restriction can affect the growth hormone receptor 

(GHR)/IGF-1/IGF-1 receptor (IGF-1R) signaling pathway which has been shown to be 

related to fatty liver [34,40], we analyzed the gene expression of Ghr and Igf1r. To 

decipher the involvement of other mechanisms, we investigated mRNA levels of Gcgr, 

which is implicated in the glucagon action, Acvr2b, which drove the Activin A action 

and Sirt1 for which hepatic overexpression improves high fat diet (HFD)-related 

hepatosteatosis [41].  Gene expression of Igf1r, Gcgr and Sirt1 was not modified by 

either OVX or the LP diet. Whereas Ghr mRNA levels were decreased by OVX mainly 

in the LP group (- 45% vs. SHAM-LP group; p < 0.0001; - 29% for OVX-NP group vs. 

SHAM-NP; p < 0.001), Acvr2b gene expression was increased by OVX (OVX effect; p 

< 0.01) and reduced by dietary protein restriction (Diet effect; p < 0.01) 

(supplementary Figure 1).    

 

3.4. Expression of proteins and genes involved in protein synthesis and muscle 

energetic metabolism 

Since AKT1 and GLUT4 are two essential proteins involved in protein synthesis and 

muscle glucose uptake, respectively [22,42], we analyzed whether our model could 

modify their expressions in the gastrocnemius. Regardless of the dietary protein intakes, 

a statistically significant OVX effect drove a reduction of phospho-AKT1 (pAKT1) / 

total AKT1 (tAKT1) (p < 0.05) (Figure 3A-B). The 13-week period of a 5% casein 

isocaloric diet dramatically decreased GLUT4 protein levels in SHAM rats (- 52% vs. 

SHAM-NP; p < 0.05) whilst no significant changes occurred in OVX groups (Figure 3 

A-C). Since  the muscle glucose uptake may be impaired by intramyocellular lipid 

accumulation [43], the gene expressions of Pparγ and Fabp4, two genes involved in the 

fatty acid uptake and storage, were evaluated. We observed no modifications of their 

mRNA levels in response to OVX and/or dietary protein restriction (Table 3). Finally 

we investigated the gene expression of several myokines implicated in the local and 

whole-body metabolic homeostasis [44]. Igf1 and Fgf21 mRNA levels did not change 

whereas Il6 gene expression tended to increase in OVX groups (OVX effect; p = 0.054), 

mainly in rats fed a 14% casein diet (+ 72% vs. SHAM-NP group). The gene expression 

                  



of myonectin (C1qtnf5), a myokine which has a key function in the regulation of the 

lipid metabolism at the hepatic and systemic level [45,46], was significantly up 

regulated by OVX only in rats fed a LP diet (+ 87% vs. SHAM-LP group; p < 0.001) 

(Table 3). 

4. Discussion: 

A high fasting plasma glucose has been shown to be one of the ten leading risk factors 

for global disability-adjusted life-years from 1990 to 2015 in 195 countries and 

territories [47]. Based on this, aiming to reduce the extent of fasting hyperglycaemia is a 

critical clinical objective that unbalanced macronutrient composition diets can render 

arduous [48]. In this study we investigated the impact of dietary protein restriction on 

fasting blood glucose levels, related-hormone modulations and related liver and skeletal 

muscle metabolic responses according to oestrogen status. We found that, regardless of 

the oestrogen status, a 13-week period of a moderately LP diet (5% of daily energy 

intake) in seven-month-old female rats led to fasting hyperglycaemia. In SHAM 

animals, this circulating glucose disturbance was mainly associated with a down-

regulation of the expression of GLUT4 protein in the gastrocnemius, while in OVX 

animals it was associated with higher glucagon and FGF21 serum concentrations and 

modifications of hepatic lipid metabolism. 

 

In the present study, OVX led to higher body weight, fat and lean mass without 

modification of fasting glycaemia, HOMA-IR and hepatic lipid content. Consistent with 

the gain of weight observed in estrogen receptor-α knockout mice having unaltered 

daily energy intake but reduced energy expenditure (↓ voluntary physical activity, ↓ 

basal metabolic activity and ↓ heat production) [49,50], the oestrogen signaling 

disruption in the OVX groups drove body weight increase despite the pair-feeding-

related limitation of food intake. Moreover, the prevention of OVX-related hyperphagia 

by pair-feeding has been shown to prevent hepatic lipid accumulation [51]. 

Accordingly, the pair-feeding that OVX animals sustained in our study, by limiting 

body weight gain, could prevent or delay insulin resistance and fatty liver establishment 

that some reports had noticed in response to OVX without food restriction [36,52,53]. 

At a molecular level, we showed that NP diet fed OVX rats presented an increased 

hepatic gene expression of both Pparg and Ppara, suggesting an effective adaptation of 

                  



the liver to oestrogen deficiency thanks to an adequate balance of lipogenesis and lipid 

oxidation to prevent lipid accumulation. While other studies found an OVX-related 

increase of Pparg expression in the liver in accordance with our results [54,55], 

discrepancies exist regarding the impact of oestrogen deprivation on the hepatic gene 

expression of Ppara (↓ [53]; ↔ [51,56]; ↑ [55] and the present study). Of note, the 

duration of fasting before sacrifice has a substantial impact on hepatic fat content [57] 

which may  help to explain the differences between studies in terms of gene expression. 

In addition, we found that estrogen deficiency caused higher circulating levels of IGF-1, 

as reported in our previous study [58], and adiponectin. These two factors are known to 

directly sensitize the whole body to insulin [59–61] and their high serum concentrations 

may dampen OVX-related glucose and hepatic metabolic disturbances especially in a 

food restriction state. Moreover, although we did not observe  any modification of 

fasting insulinemia and HOMA-IR in response to oestrogen depletion, to assess whole-

body insulin resistance further insulin measurements under a glucose challenge would 

be needed as previously reported  [52]. 

 

Although the impact of dietary protein levels on glucose homeostasis is still debated, 

the fact that protein intakes beyond the recommended dietary allowance (RDA) is 

beneficial to older people for the maintenance of muscle mass and health is now widely 

recognized  [62]. In the present study we showed that moderate protein restriction drove 

fasting hyperglycaemia regardless of the oestrogen status. In preclinical studies, the 

impact of dietary protein restriction on glucose metabolism has been mainly evaluated 

in young growing rats for which protein needs are particularly high. In this specific 

context, protein malnutrition leads to an impairment of body growth due to changes of 

circulating hormone amounts and/or actions that aim at using nutrients very efficiently 

(↑ insulin sensitivity, glucose tolerance, ↓ hepatic gluconeogenesis) and preventing 

protein anabolism concomitantly (↓ serum IGF-1, ↑ FGF21) [34,63–65]. Here, we 

employed seven-month old SHAM and OVX rats, which required reasonably lower 

protein intakes than growing animals. We showed that a 5% casein isocaloric diet did 

not compromise the body weight evolution over time, the final body composition and 

muscle weight. In addition, this decrease in protein intake was not associated with lower 

serum IGF-1. In comparison with our previous studies, in which a 2.5% casein 

                  



isocaloric diet induced a long-term reduction of body weight and serum IGF-1 in ageing 

intact, SHAM or OVX female rats [66,67], the dietary protein restriction used here is 

considered as moderate amino-acid depletion. 

 

Skeletal muscle and liver are two organs particularly involved in the regulation of 

glycaemia.  A novel observation in this study was the differential response of these two 

organs to moderate dietary protein restriction   in function of the oestrogen status.  

While the LP diet tested in this study had no impact on the weight of the liver and the 

gastrocnemius, important modifications of gene or protein expression were observed.  

In oestrogen replete ageing animals, the expression of GLUT-4 in the gastrocnemius 

was reduced by the LP diet and this was not associated with changes in insulin, 

glucagon or FGF21 serum concentrations. Although the main mechanism responsible 

for muscle glucose uptake is the insulin-stimulated translocation of GLUT-4 from the 

cytoplasm to the plasma membrane, the total amount of GLUT-4 protein in the muscle 

is also crucial for controlling the glycaemia. This was well demonstrated previously by 

a princeps study using mice with muscle-specific deletion of GLUT-4 in which fasting 

glycaemia and insulin-stimulated muscle glucose transport were increased and blunted 

respectively when compared to control mice [22]. Another study has also shown that the 

insulin-independent upregulation of GLUT-4 protein in the skeletal muscle in response 

to exercise is related to posttranscriptional regulation and is associated with the reversal 

of some metabolic disturbances in obese mice [68]. These results support the major role 

of the total amount of GLUT-4 protein and not only its subcellular location for 

glycaemia control. Based on that, our results suggest a likely implication of the LP diet-

induced downregulation of the GLUT-4 protein in the gastrocnemius for the altered 

fasting glycaemia in SHAM ageing rats. The observation of a negative association 

between the expression of GLUT4 and fasting glycaemia is also consistent with this 

hypothesis (supplementary table 4; r = -0.75 p = 0.005).  

The liver is highly sensitive to protein deprivation, a stressful nutritional state leading to 

fatty liver and hepatic production of FGF21 [30,34,69]. In this study, the moderate 

dietary protein restriction-related hepatic lipid accumulation and FGF21 serum increase 

is mostly driven by the OVX-LP group. This is consistent with the 5% casein isocaloric 

diet-associated gene down expression of Ppara and Ppargc1a, two major TFs involved 

                  



in fatty acid oxidation. In agreement with our findings, chronic and medium reduction 

of PGC1α in the liver has been shown to lead to hepatic fat accumulation and hepatic 

insulin resistance [70]. Moreover, a LP diet could modify the protein expression pattern 

of insulin receptor substrate-2 (IRS-2) in mouse liver while IRS-2 signaling is important 

for insulin action and resistance in hepatocytes [71]. In the present study HOMA-IR is 

increased in the OVX rats fed a reduced protein intake suggesting that this type of diet 

favours insulin resistance in oestrogen depleted ageing pair-fed animals. Although we 

did not investigate the insulin resistance at the liver level directly, we observed in the 

OVX groups a negative correlation between fasting glycaemia and hepatic gene 

expression of Ppargc1a (supplementary table 4; r = -0.73; p = 0.002). This finding 

raises an interesting question on the role of this TF at the hepatic level and the need to 

better understand its implication in the disturbances of hepatic and systemic glucose 

metabolism in response to various diets particularly in an oestrogen withdrawal state. 

Indeed, the crosstalk between oestrogen signaling and PGC1α in the hepatic response to 

nutrient stressors is crucial and the disruption of both of them potentiates liver damage 

[72]. 

 

Consistent with the known role of glucagon in regulation of glycaemia via hepatic 

release of glucose, the results found here show a positive association between fasting 

glycaemia and the increase in the fasting circulating concentration of glucagon with 

moderate dietary protein restriction (supplementary table 4; r = 0.65; p = 0.003) in 

OVX rats. Oestrogen depletion has been shown to increase glucagon production both in 

mouse and human pancreatic α cells [73]. Although we did not find any modification of 

glucagon serum in response to OVX, the LP diet-associated hyperglucagonemia was 

observed only in oestrogen depleted rats highlighting the interaction between dietary 

protein restriction and oestrogen withdrawal on glucagon secretion in a fasted state. 

Moreover, glucagon stimulates hepatocyte fatty acid oxidation by specifically inducing 

the protein or gene expression of PPARα or Ppargc1a, respectively [74,75] and 

increases the hepatic amino acid catabolism [76]. In a state of oestrogen depletion, the 

dietary protein restriction induced- hyperglucagonemia was associated with lower 

hepatic mRNA levels of Ppara and Ppargc1a suggesting rather a reduced fatty acid 

oxidation and possibly a liver resistance to the glucagon lipolytic action 

                  



(supplementary table 4). Importantly, whereas fasting hyperglucagonemia 

characterizes T2D and prediabetic patients, not all show alterations of fasting glucagon 

circulating levels. Hepatic steatosis has been proposed to discriminate patients with 

fasting hyperglucagonemia by inducing glucagon resistance and subsequent pancreatic 

α-cell over activity [77]. 

FGF21 is a hepatokine which transmits the metabolic status of the liver to other 

metabolically active tissues (adipose tissue, muscles, nervous system). While FGF21 

has been shown to improve the sensitivity to insulin, its circulating levels are increased 

in humans and rats with obesity and diabetes due to a resistance state to FGF21 [78,79]. 

Consistent with these studies, even if serum FGF21 is increased in the OVX-LP group, 

the level of insulin resistance remains higher when compared with OVX rats fed a NP 

diet. These results support a resistance state to FGF21 in our model as well.  

FGF21 is also a mediator of the glucagon actions [80,81]. FGF21 has been shown to 

inhibit glucagon secretion in isolated rat pancreatic islets [82] and to reduce plasma 

glucagon in mice [83]. In the OVX-LP group, although FGF21 is increased, serum 

glucagon levels remain high, possibly reflecting an impaired liver-α cells axis 

characterized by a pancreatic resistance to FGF21 in addition to a hepatic resistance to 

glucagon. Although further studies on the underlying mechanisms are necessary for 

understanding the LP diet-associated disturbances of glucose homeostasis in a state of 

oestrogen withdrawal, the current results suggested that the alteration of the crosstalk 

between the liver and the pancreas would be involved. 

 

In conclusion, our findings show that a moderate dietary protein restriction in ageing 

females rats drives fasting hyperglycaemia mostly associated with an impairment of the 

skeletal muscle GLUT-4 expression in oestrogen-replete rats and an impairment of the 

liver-α cells axis in oestrogen depleted animals. Our study highlights the importance to 

consider the dietary protein intakes according to the protein requirements for a specific 

physiological state in order to avoid hepatic, muscular and systemic metabolic disorders 

potentially promoting the development of a pre-diabetic/diabetic state with ageing.  
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Figure legends: 

Figure 1: 

Design of the study (A). Evolution of body weight throughout the experimental period, 

including 2 weeks of diet equilibration and 13 weeks of isocaloric diets containing 14% 

(normal protein: NP) or 5% casein (low protein: LP) (B). Body weight gain between 

week 0 and week 13 in grams (C). Fat and lean masses in grams at the end of the 

experimentation (D-E). N = 9-10 per group. P value for differences between groups: * p 

< 0.05, ** p < 0.01, *** p < 0.001 vs. SHAM group for corresponding protein intake; # 

p < 0.05, ## p < 0.01, ### p < 0.001 vs. normal protein group for corresponding 

oestrogen status using a post-hoc Sidak’s test (for the two-way ANOVA) or a post-hoc 

Dunn’s test (for the Kruskal-Wallis test). When the interaction in the two-way ANOVA 

or the Kruskal-Wallis test is statistically significant (p < 0.05); groups were compared 

regardless the protein intake and the oestrogen status. 

 

Figure 2: 

Representative images of Oil Red O and eosin-staining of liver frozen sections after 13 

weeks of experimentation. Quantification of the % of Oil Red O stained surface relative 

to the total surface analyzed. N = 8-10 per group (A). Hepatic expression of genes 

involved in lipid metabolism (B). Hepatic gene expression of soluble molecules with 

local and whole-body action. N = 7-8 per group (C). Hepatic Inhba/Fst mRNA ratio N = 

7-8 per group (D). Scatterplot of serum FGF21 correlation with hepatic Fgf21 gene 

expression using all groups (E). P value for differences between groups: * p < 0.05, ** 

p < 0.01, *** p < 0.001 vs. SHAM group for corresponding protein intake; # p < 0.05, 

## p < 0.01, ### p < 0.001 vs. normal protein group for corresponding oestrogen status; 

¤ p < 0.05 vs. OVX-NP using a post-hoc Sidak’s test (for the two-way ANOVA) or a 

post-hoc Dunn’s test (for the Kruskal-Wallis test). When the interaction in the two-way 

ANOVA or the Kruskal-Wallis test is statistically significant (p < 0.05); groups were 

compared regardless the protein intake and the oestrogen status. 

 

Figure 3: 

Western blots of pAKT1, AKT1, GLUT4 and α-Tubulin (A). Quantification of 

pAKT1/AKT1 ratio (B) and GLUT4/ α-Tubulin ratio (C). N = 5-6 per group. P value 

                  



for differences between groups: * p < 0.05, ** p < 0.01, *** p < 0.001 vs. SHAM group 

for corresponding protein intake; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. normal 

protein group for corresponding oestrogen status using a post-hoc Sidak’s test (for the 

two-way ANOVA) or a post-hoc Dunn’s test (for the Kruskal-Wallis test). When the 

interaction in the two-way ANOVA or the Kruskal-Wallis test is statistically significant 

(p < 0.05); groups were compared regardless the protein intake and the oestrogen status.  

 

Supplementary Figure 1: 

Hepatic Inhba/Fst mRNA ratio without outliers. N = 6-8 per group (A). Hepatic gene 

expression of Ghr, Igf1r, Acvr2b, Gcgr, Sirt1. N = 8 per group (B). P value for 

differences between groups: * p < 0.05, ** p < 0.01, *** p < 0.001 vs. SHAM group for 

corresponding protein intake; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. normal protein 

group for corresponding oestrogen status using a post-hoc Sidak’s test (for the two-way 

ANOVA) or a post-hoc Dunn’s test (for the Kruskal-Wallis test). When the interaction 

in the two-way ANOVA or the Kruskal-Wallis test is statistically significant (p < 0.05); 

groups were compared regardless the protein intake and the oestrogen status. 
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Table 1: Final body weight, food intake and organ weight 

 

     Statistical analysis (p) 

 
SHAM-

NP 

SHAM-

LP 
OVX-NP OVX-LP 

OVX 

effect 

Diet 

effect 
Interaction 

Final body 

weight (g) 

334.1 ± 

7.6 

335.0 ± 

6.3 

375.6 ± 

4.4**** 

372.4 ± 

5.3*** 

< 

0.0001 
0.851 0.737 

Food intake 

(g/day) 
14.5 ± 0.2

⸸
 

14.8 ± 

0.3 
15.1 ± 0.1 15.2 ± 0.1 Kruskal-Wallis test : < 0.05 

Organ weight 

(g) 
       

Uterus 
0.73 ± 

0.07 

0.77 ± 

0.09 

0.15 ± 

0.01*** 

0.16 ± 

0.01** 

Kruskal-Wallis test : < 

0.0001 

Liver 
7.81 ± 

0.28 

7.74 ± 

0.24 
7.43 ± 0.22 7.97 ± 0.19 0.760 0.334 0.207 

Gastrocnemius 
1.58 ± 

0.02 

1.64 ± 

0.03 

1.75 ± 

0.03** 
1.70 ± 0.05 0.002 0.870 0.171 

Soleus 
0.138 ± 

0.006 

0.137 ± 

0.003 

0.138 ± 

0.003 

0.135 ± 

0.006 
0.888 0.623 0.834 

Organ weight ratio (% of 

body weight) 
      

Uterus 
0.22 ± 

0.02 

0.23 ± 

0.03 

0.04 ± 

0.002*** 

0.04 ± 

0.002** 

Kruskal-Wallis test : < 

0.0001 

Liver 
2.34 ± 

0.06 

2.31 ± 

0.07 

1.98 ± 

0.0005*** 

2.14 ± 

0.0005
(
* 

p 

=
 
0.07)

 

< 

0.0001 
0.216 0.109 

Gastrocnemius 
0.47 ± 

0.01 

0.49 ± 

0.01 
0.47 ± 0.01 0.46 ± 0.01 0.064 0.808 0.233 

Soleus 
0.041 ± 

0.002 

0.041 ± 

0.001 

0.037 ± 

0.001* 

0.036 ± 

0.001* 
0.0010 0.605 0.983 

 

The results are means ± SEM. They were obtained after 13 weeks of diet. N = 9-10 per group. P 

value for differences between groups: * p < 0.05, ** p < 0.01, *** p < 0.001 vs. SHAM group 

for corresponding protein intake; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. normal protein group 

for corresponding oestrogen status; ⸸ p < 0.05 vs. OVX-LP group using a post-hoc Sidak’s test 

(for the two-way ANOVA) or a post-hoc Dunn’s test (for the Kruskal-Wallis test). When the 

interaction in the two-way ANOVA or the Kruskal-Wallis test is statistically significant (p < 

0.05); groups were compared regardless the protein intake and the oestrogen status.   

                  



Table 2: Biochemical measurements 
 

     Statistical analysis (p) 

 
SHAM-

NP 
SHAM-LP OVX-NP OVX-LP 

OVX 

effect 

Diet 

effect 
Interaction 

        

Glucose 

(mmol/L) 
10.3 ± 0.6 

14.8 ± 

0.9
##

 
10.6 ± 1.0 

16.2 ± 

0.6
###

 
0.392 

< 

0.0001 
0.469 

FFA 

(mEq/L) 

0.61 ± 

0.03 

0.49 ± 

0.04 

0.61 ± 

0.06 

0.58 ± 

0.04 
0.348 0.093 0.336 

Triglycerides 

(mmol/L) 

0.58 ± 

0.05 

0.86 ± 

0.11
¤¤

 

0.43 ± 

0.02 

0.53 ± 

0.04 
Kruskal-Wallis test : 0.003 

Insulin 

(ng/mL) 

0.34 ± 

0.03 

0.35 ± 

0.03 

0.32 ± 

0.01 

0.36 ± 

0.04 
Kruskal-Wallis test : 0.782 

Glucagon 

(pg/mL) 
61.1 ± 6.9  70.2 ± 4.6

¤
 44.5 ± 4.5

 79.4 ± 

7.2
###

 
0.535 0.0007 0.035 

FGF21 

(pg/mL) 

294.6 ± 

45.0 

465,1 ± 

170.2 

243.4 ± 

30.5 

616,0 ± 

150,2
#
 

Kruskal-Wallis test : 0.032 

Adiponectin 

(ng/mL) 

15330.0 ± 

1602.1 

14785.0 ± 

1658.3 

21961.5 ± 

716.8** 

22533.3 ± 

928.0*** 

< 

0.0001 
0.992 0.663 

IGF-1 

(ng/mL) 

539,7 ± 

59.0 

570.2 ± 

58.1 

786.3 ± 

36.9** 

854.6 ± 

52.1** 

< 

0.0001 
0.345 0.716 

HOMA-IR 
4.72 ± 

0.64 

6.72 ± 

0.76 
(# p = 

0.07)
 

4.40 ± 

0.52 

7.61 ± 

0.80
##

  
0.694 0.0004 0.376 

 

The results are means ± SEM. They were obtained after 13 weeks of diet. N = 8-10 per group. P 

value for differences between groups: * p < 0.05, ** p < 0.01, *** p < 0.001 vs. SHAM group 

for corresponding protein intake; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. normal protein group 

for corresponding oestrogen status; ¤ p < 0.05; ¤¤ p < 0.01 vs. OVX-NP using a post-hoc Sidak’s 

test (for the two-way ANOVA) or a post-hoc Dunn’s test (for the Kruskal-Wallis test). When the 

interaction in the two-way ANOVA or the Kruskal-Wallis test is statistically significant (p < 

0.05); groups were compared regardless the protein intake and the oestrogen status. 

  

                  



Table 3: Gene expressions in the gastrocnemius 

     Statistical analysis (p) 

 SHAM-NP SHAM-LP OVX-NP OVX-LP 
OVX 

effect 

Diet 

effect 
Interaction 

Ppary 100.0 ± 11.1 78.6 ± 9.9 90.9 ± 19.3 105.7 ± 18.7 0.564 0.832 0.252 

Fabp4 100.0 ± 1.8 89.5 ± 4.4 104.7 ± 16.6 105.4 ± 16.4 0.398 0.689 0.641 

Il6 100.0 ± 11.4 101.0 ± 21.8 171.6 ± 17.1 134.3 ± 41.5 0.054 0.487 0.463 

Fgf21 100.0 ± 19.1 127.8 ± 15.2 124.2 ± 32.1 92.0 ± 14.1 0.706 0.960 0.203 

Igf1 100.0 ± 10.4 95.4 ± 10.7 101.8 ± 8.6 117.2 ± 15.5 0.322 0.642 0.397 

C1qtnf5 100.0 ± 10.1 73.0 ± 5.5 110.2 ± 9.0 
136.3 ± 

12.6***  
0.001 0.961 0.012 

 

The results are means ± SEM. They were obtained after 13 weeks of diet and were expressed in 

% of the SHAM-NP group. N = 6 per group. P value for differences between groups: * p < 0.05, 

** p < 0.01, *** p < 0.001 vs. SHAM group for corresponding protein intake; # p < 0.05, ## p < 

0.01, ### p < 0.001 vs. normal protein group for corresponding oestrogen status using a post-hoc 

Sidak’s test. When the interaction in the two-way ANOVA or the Kruskal-Wallis test is 

statistically significant (p < 0.05); groups were compared regardless the protein intake and the 

oestrogen status 
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