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Tumor cells show widespread genetic alterations that change the expression of genes
driving tumor progression, including genes that maintain genomic integrity. In recent years,
it has become clear that tumors frequently reactivate genes whose expression is typically
restricted to germ cells. As germ cells have specialized pathways to facilitate the exchange
of genetic information between homologous chromosomes, their aberrant regulation
influences how cancer cells repair DNA double strand breaks (DSB). This drives
genomic instability and affects the response of tumor cells to anticancer therapies.
Since meiotic genes are usually transcriptionally repressed in somatic cells of healthy
tissues, targeting aberrantly expressed meiotic genes may provide a unique opportunity to
specifically kill cancer cells whilst sparing the non-transformed somatic cells. In this review,
we highlight meiotic genes that have been reported to affect DSB repair in cancers derived
from somatic cells. A better understanding of their mechanistic role in the context of
homology-directed DNA repair in somatic cancers may provide useful insights to find novel
vulnerabilities that can be targeted.
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INTRODUCTION

In the 19th century, the hypothesis was put forward that cancers arise from embryonic remnants that
remain in adult organs (Durante, 1874; Cohnheim, 1875). When the microenvironment changes and
provides the necessary blood supply, these remnants grow in an uncontrolled fashion. This theory
was based on the observation of pathologists that the microscopic morphology of some cancers (e.g.
Teratoma and Wilm’s tumor) highly resembles that of embryonic tissues. Later on, Theodor Boveri
(1862–1915) concluded from his observations that embryonic characteristics of cancer cells are
rather side effects of the abnormal distribution of chromosomes and that remnant embryonic tissues
only explain rare cases (Boveri, 2008). This fostered the concept that cancer cells can arise from well-
differentiated cells and can de-differentiate. Today we know that cancer is caused by various genetic
alterations that affect both germ cells and somatic cells. Intriguingly, many somatic cancer cells seem
to benefit from the expression of genes that are typically present in germ cells and contribute to
meiotic cell division. As several of these affect processing of DNA double strand breaks in the context
of homologous recombination, some cancers may benefit from the double-strand break (DSB) repair
mediated by aberrantly expressed meiotic genes. If particular cancers are dependent on their
expression when exposed to DNA damage, they may provide interesting drug targets. Whereas
normal somatic cells do not depend on the expression of meiotic genes for DSB repair, tumor cells
that do depend on them in the context of DNA damage may die when their function is blocked. Such
a therapeutic approach would still harm germ cells, but since many cancers arise in people beyond

Edited by:
Sylvie M. Noordermeer,

Leiden University Medical Center,
Netherlands

Reviewed by:
Joao Matos,

Max F. Perutz Laboratories GmbH,
Austria

Robert Weiss,
Cornell University, United States

*Correspondence:
Sven Rottenberg
sven.rottenberg@
vetsuisse.unibe.ch

Paola Francica
paola.francica@vetsuisse.unibe.ch

Specialty section:
This article was submitted to

Human and Medical Genomics,
a section of the journal
Frontiers in Genetics

Received: 08 December 2021
Accepted: 02 February 2022
Published: 18 February 2022

Citation:
Lingg L, Rottenberg S and Francica P
(2022) Meiotic Genes and DNA Double

Strand Break Repair in Cancer.
Front. Genet. 13:831620.

doi: 10.3389/fgene.2022.831620

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8316201

REVIEW
published: 18 February 2022

doi: 10.3389/fgene.2022.831620

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.831620&domain=pdf&date_stamp=2022-02-18
https://www.frontiersin.org/articles/10.3389/fgene.2022.831620/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.831620/full
http://creativecommons.org/licenses/by/4.0/
mailto:sven.rottenberg@vetsuisse.unibe.ch
mailto:sven.rottenberg@vetsuisse.unibe.ch
mailto:paola.francica@vetsuisse.unibe.ch
https://doi.org/10.3389/fgene.2022.831620
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.831620


the wish to have children, the loss of germ cells may be tolerated.
In this review, we briefly highlight mitotic and meiotic cell
division with a focus on DSB-related meiotic genes that have
been found to be aberrantly expressed in cancer.

The primary goal of each cell division for non-cancerous
somatic cells is to ensure that daughter cells are genetically
identical to their parent cells (Nurse, 2000). Errors happening
during cell division result in various forms of genome
alterations in the daughter cells and include mutations of
specific genes, amplifications, deletions or rearrangements
(including gain or loss) of entire chromosomes (Levine and
Holland, 2018). Cells use a number of mechanisms to prevent
these alterations, including error-free repair of sporadic DNA
damage, high fidelity DNA replication during S-phase,
precise chromosome segregation during mitosis and a
coordinated cell cycle progression (Shen, 2011). Inherited
or acquired defects in DNA repair, DNA replication,
chromosome segregation or cell cycle control lead to an
increased mutation frequency. Accumulation of these
genomic alterations is generally referred to as genome
instability, which predisposes cells to malignant
transformation (Negrini et al., 2010). In most cases,
significant genome alterations result in a non-viable cell,
but in rare events it might confer a selective growth
advantage, leading to cancer initiation and progression. It
has been clear for a long time that such genomic changes
involve genes encoding tumor suppressors, proto-oncogene
or genes that function to maintain genomic integrity (Negrini
et al., 2010). Moreover, there is emerging evidence that an
inappropriate activation of meiotic genes in somatic cells
results in both initiation and maintenance of the malignant
phenotype in a range of cancer types (Feichtinger and
McFarlane, 2019). The aberrant expression of meiotic
genes in cancer cells has been shown to contribute to
various hallmarks of cancer by altering centromeric
polarity control, motility, chromosome dynamics and DNA
repair (Hanahan and Weinberg, 2011; McFarlane and
Wakeman, 2017) (Figure 1). In particular, alterations of
how cancer cells repair DNA breaks due to unscheduled
expression of meiotic genes, has been shown to drive
genomic instability and to affect tumor cells’ response to

anticancer therapies (Nielsen and Gjerstorff, 2016; Mantere
et al., 2017; Trussart et al., 2018).

These observations have raised a significant interest towards
the study of meiotic genes in somatic cancers, as they could be
used as cancer-specific predictive biomarkers of therapy response.
Moreover, in the era of immunotherapy aberrantly expressed
germ cell proteins are prime targets for cancer vaccination and
adoptive T-cell transfer with chimeric T-cell receptors. For
example, male germ cells lack HLA-class I molecules and
cannot present antigens to T cells to induce immunotolerance
(Janitz et al., 1994). When expressed in somatic cancers, cancer/
testis antigens therefore represent promising targets for cancer
immunotherapy (Gjerstorff et al., 2015).

MITOSIS AND MEIOSIS

Eukaryotic cells can undergo two different types of cell divisions.
On the one hand, with the goal of maintaining a functional
organism, somatic cells undergo mitosis and thereby create two
genetically identical daughter cells (Nurse, 2000). On the other
hand, germline cells undergo a different type of cell division,
known as meiosis, to produce haploid gametes, which have only
one copy of each chromosome. Both processes are tightly
regulated by a number of coordinated pathways to ensure the
correct segregation of genetic material. The molecular
mechanisms of mitosis and meiosis are well described in other
reviews (Nurse, 2000; Marston and Amon, 2004; Duro and
Marston, 2015; Ohkura, 2015; Bolcun-Filas and Handel, 2018);
we therefore provide only a succinct overview of both
processes here.

Mitosis
In brief, cells undergo four different phases during the cell cycle:
the two main phases, S- and M-phase (mitosis), are separated by
two gap phases called G1 (before S-phase) and G2 (after S-phase).
To create two identical daughter cells from a parental cell,
chromosomes are duplicated during S-phase to form sister
chromatids, which will be separated to each daughter cell in
the M-phase of the cell cycle. G1 and G2 are important to provide
cells time to control the correct replication and chromosomal

FIGURE 1 | Activation of meiotic genes in somatic cells contribute to properties of tumor formation and progression. The re-expression of meiotic genes in somatic
cancer cells is responsible for driving some of the hallmarks of cancers (shown in bold).
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segregation (Nurse, 2000; Williams and Stoeber, 2012). The
transition from one phase to another is tightly regulated by
cyclin-dependent kinases (CDKs), which phosphorylate
downstream factors allowing cells to initiate DNA replication
or chromosomal segregation to the daughter cells (Barnum and
O’Connell, 2014).

Meiosis
Meiosis is cell division for the generation of gametes in sexual
reproduction. The key feature of this process is the reduction
of the DNA content with the final goal of generating gametes
with a haploid set of DNA. This process involves two cycles of
cell division: meiosis I and meiosis II. In meiosis I,
homologous chromosomes are replicated and subsequently
segregated, generating diploid daughter cells. Meiosis I is
followed by another round of chromosome-segregation
(Meiosis II), which does not include another phase of
DNA replication and gives rise to four haploid gametes.
Gametes originating from the same cell are genetically
different from each other, not only due to the independent
segregation of maternal and paternal DNA but also due to

another mechanism exclusive to meiosis I: before segregation
of the homologous chromosome pairs in meiosis I,
chromosomes undergo a programmed recombination of
the genetic material, also known as homologous
recombination (HR), which involves the formation of
several DSBs. The repair of these lesions is associated with
non-crossover or crossover events, which in the latter case
leads to the exchange of genetic information and thus to an
increase in inter-individual diversity (Ohkura, 2015; Bolcun-
Filas and Handel, 2018).

In contrast to the programmed generation and repair of DSBs
during meiotic cell division, DNA lesions occur randomly in
somatic cells, and need to be repaired in an error-free manner to
minimize the risk of DNA alterations. To this purpose, somatic
cells also use HR, which repairs DSBs with high fidelity. HR in
somatic cells is restricted to S- or G2 -phase of the cell cycle as it
relies on the presence of a sister chromatid as a template for DNA
repair, though the homologous chromosome can also be used as a
template with a much lower frequency (Kadyk and Hartwell,
1992; Takata et al., 1998). HR in somatic cells is very well
described (Li and Heyer, 2008; Wright et al., 2018; Scully

FIGURE 2 | The aberrant expression of meiotic genes in somatic cancers affects HR-dependent-DNA repair. Simplified schematic representation of the first steps
of HR in meiosis (A) and mitosis (B) (A) PRDM9 is the protein responsible for the epigenetic marking of the hotspots for DSB introduction. This allows the binding of
SPO11, which is favoured by HORMAD1 and HORMAD2. SPO11 introduces strand breaks at the marked hotspots. This is followed by end resection at the break sites
by exonucleolytic activity. The subsequent binding of the RAD51 and DMC1 recombinases onto ssDNA allows the formation of a nucleoprotein filament, which in
turn recruits downstream factors promoting interaction between homologous chromosomes. The protein heterodimer HOP2-MND1 acts in concert during this process
favoring homology search and therefore resolution of the DSB (B)Upon recognition of the break site, the nucleases MRE11 and EXO1 resect the DNA generating ssDNA
which are stabilized by RPA. This allows the formation of the RAD51-ssDNA filaments, in cooperation with BRCA2 and PALB2, which search for the homologous DNA
template by invading the sister chromatid (C) In some cancer cells PRDM9 may also mark DNA regions that are favorable to the formation of chromosomic lesions (D)
Due to its meiotic function in generating DNA strand breaks, aberrantly expressed SPO11 may then promote crossover events in somatic cancer cells, as well as
translocations, insertions and deletions (E) Due to its ability in modulating HR-mediated DNA damage repair, increased expression of HORMAD in somatic cancers has
been shown to promote or disrupt HR-mediated repair, depending on the genetic background (F) Expression of DMC1 promotes meiosis-like reductional segregation of
homologues in polyploid cells, restoring the proliferative state of somatic cancer cells (G)HOP2-MND1may function in cancer cells to promote an alternative lengthening
of telomeres (ALT) in the absence of telomerase reactivation. Furthermore, as HOP2-MND1 favor recombination between homologous chromatids in meiotic cells, their
reactivation in somatic cancer cells could disrupt the recombination bias between sister chromatids that is typical of mitotic cells.
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et al., 2019) and will therefore not be discussed in further details
in this review. Overall, HR in mitosis and meiosis share many
similarities, but they do involve different key players (Figures 2,
3). In this review we will describe in more detail the process of HR
in human meiotic cells.

HR IN MEIOTIC CELLS

Marking of Hotspot Sites and Introduction
of DSBs
In contrast to mitosis, DSBs in meiotic cells are introduced in
a programmed way and many factors involved in the repair
are uniquely expressed in meiosis. The program is initiated at
recombination hotspots, which are preferentially targeted for
DSB formation. In mice and humans, PRDM9 is the main
protein catalyzing the epigenetic marking and thus the
initiation of the break-inducing process (Tock and
Henderson, 2018). The PRDM9 zinc-finger domain is able
to bind specific DNA sequences, bringing the PR/SET domain
in position to allow trimethylation of histone H3 on lysine 4
(H3K4me3) and histone H3 on lysine 36 (H3K36me3)
(Parvanov et al., 2010; Grey et al., 2011; Powers et al.,
2016). Epigenetic modifications of H3K4 are not only
promoted by PRDM9, they are also commonly induced at

promoters or enhancers by other methyltransferases (Brick
et al., 2012; Baudat et al., 2013; Tock and Henderson, 2018).
Therefore, it is not surprising that upon loss of PRDM9 DSBs
are still introduced at PRDM9-independent H3K4me3 sites,
even though they result in inefficient repair and meiotic
arrest (Berg et al., 2010; Brick et al., 2012). These findings
show that trimethylation of H3K4 is not sufficient to induce a
successful recombination, even though the exact mechanism
remains elusive (Baudat et al., 2013). In a next step, a DSB
machinery consisting of SPO11, IHO1, MEI4, MEI1 and
REC114 needs to be activated. These members are
evolutionarily conserved among eukaryotes (Kumar et al.,
2010; Baudat et al., 2013). Besides SPO11, which is the
catalytically active unit, IHO1, MEI4, MEI1 and REC114
are crucial for the introduction of DSBs and the
preferential interaction with the homologous chromosome
instead of the sister chromatid (Libby et al., 2003; Kumar
et al., 2010; Stanzione et al., 2016; Kumar et al., 2018). SPO11
is highly conserved among eukaryotes, suggesting an
important role of this protein in meiotic DSB repair. It is
responsible for the introduction of the strand break at the
marked hotspots by performing a topoisomerase-like
reaction: its tyrosine residue attacks a phosphorous on the
DNA, which then triggers the formation of a tyrosyl
phosphodiester linked to DNA. This in turn disrupts the

FIGURE 3 | The aberrant expression of meiotic genes in somatic cancers affects HR-dependent-DNA repair. Simplified schematic representation of the final steps
of HR inmeiosis (A) andmitosis (B) (A)Duringmeiosis, the sister chromatids (1) are connectedwith each other by the cohesin complex (3). Cohesins are also essential for
the formation of the synaptonemal complex (SC), which connects the homologous chromosomes (2). The SC consists of the axial elements (AEs) of the chromosomes
(4), which are connected to each other by transverse filaments (5) and the central element (6). Upon formation of the SC, AEs are turned into lateral elements (LEs),
which consist of two different SC proteins: SYCP2 and SYCP3. Between the AEs of the two homologous chromosomes SYCP1 builds parallel dimers that stabilize the
positioning of the homologous chromosomes and favor crossovers. The exonucleolytic activity of MEIOB allows the formation of a double Holliday junction between two
homologous chromosomes which can be resolved in both non-crossover and crossover formation (B) The RAD51-ssDNA filaments search for homologous DNA
template by invading the sister chromatid, which leads to the formation of the Holliday junctions and finally to DNA synthesis of the missing sequence that was lost at the
break point. After synthesis, the junctions are resolved by endonucleolytic cleavage, the invading strand is released and anneals to the other side of the break. The repair
is completed by ligation of the gaps by a DNA ligase (C) Aberrant expression of MEIOB and SYCP3 in somatic cancers inhibits HR-mediated DNA repair (D) STAG3
altered expression mediates chromosomal mis-segregation and genome reduction of cancer cells (E) Augmented expression of REC8 in somatic cancer cells promotes
meiosis-like reductional segregation of homologous chromosome, which provides a survival advantage following DNA damage-inducing treatment.
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double-helix and introduces a DNA break (Keeney et al.,
1997).

DNA end resection and initiation of the
synaptonemal complex
To allow further processing of the DNA break site, degradation of
the 5′ end is required. End resection occurs by a two-step
mechanism. In a first step, CtIP activates the Mre11-Rad50-
Nbs1 (MRN) complex to endonucleolytically cleave the 5′-
terminated DNA strands close to where SPO11 is bound. This
in turn, releases SPO11 with short oligonucleotides from the
DNA ends bound to it (Neale et al., 2005; Keeney, 2008; Garcia
et al., 2011; Symington, 2016). In a second step, EXO1 and/or
DNA2 nucleases extend the resected tracts to produce long 3′-
ssDNA overhangs, which favors homology search (Symington,
2016). While in prokaryotes RecA is the only protein involved in
homology search and strand invasion, in eukaryotes two of its
homologs are involved: RAD51, which is also active in mitotic
HR, and DMC1, which is exclusively expressed in meiotic cells
(Bugreev et al., 2011). Similarly to the process in somatic cells,
BRCA2 is required for proper loading of DMC1 and RAD51,
since BRCA2-deficient spermatocytes can induce DSBs but fail in
completing recombination (Sharan et al., 2004). Successful
binding of DMC1 proteins onto ssDNA allows the formation
of a nucleoprotein filament (Sehorn et al., 2004), which in turn
promotes the interaction between homologous chromosomes.
This process was shown to be stimulated by five Rad51 paralogs
(RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3), which
prime the nucleoprotein filaments for strand exchange with
the template duplex (Taylor et al., 2015). Moreover, the
protein heterodimer HOP2-MND1 acts in concert during this
process favoring homology search and therefore resolution of the
DSB (Tsubouchi and Roeder, 2002; Chen et al., 2004). Besides
recruiting MND1 to the break sites, HOP2 favors the interaction
between homologous chromosomes over sister chromatids (Leu
et al., 1998). There are three main modes of action of the HOP2-
MND1 complex. It orchestrates the localization of DMC1 on the
ssDNA and stabilizes the nucleoprotein complex (1) (Pezza et al.,
2007). This allows DMC1 to induce the formation of a D-loop
and the synaptonemal complex (SC) and together with HOP2-
MND1, it brings homologs in close juxtaposition (2) (Chen et al.,
2004; Pezza et al., 2007). Finally, HOP2-MND1 enhances the
homology search by the condensation of the dsDNA around the
filament (3) (Pezza et al., 2010).

Sister Chromatid Cohesion
The role of cohesins is crucial for the next steps of meiosis.
Cohesion is not specific to meiosis but also occurs during
mitosis and is essential for DNA replication, DNA repair,
gene expression and development (Brooker and Berkowitz,
2014). During meiosis I, sister chromatids associate with each
other via cohesins along the chromatid arms and at the
centromere. The meiosis-specific members of this complex
are SMC1β, REC8, RAD21L and STAG3, while SMC1α,
RAD21 and STAG2 have been reported to be active in
germ cells as well as in somatic cells (Brooker and

Berkowitz, 2014). The chiasmata formed upon HR links
the homologous chromosomes and allows their localization
in the metaphase plate. This specific localization of the
chromosomes triggers the attachment of the microtubules
from the spindle machinery in a syntelic manner: the sister
kinetochores of the maternal centromeres are attached to
microtubules with opposite orientation of the paternal
centromeres (Peters et al., 2008; Brooker and Berkowitz,
2014; Ishiguro, 2019). Segregation of the homologous
chromosomes in meiosis I is triggered by the cleavage of
the cohesins along the sister chromatid arms and the
resolution of the chiasmata. A crucial component of the
meiotic cohesin complex is REC8. The separase enzyme
cleaves REC8 only from the sister chromatid arms, leaving
the cohesins at the centromeres (Marston and Amon, 2004).
REC8 knockout mice are sterile and show SC-like formation
between sister chromatids instead of the homologous
chromosomes (Xu et al., 2005). These data are further
supported by the finding that cohesin at centromeres
influences the orientation of the kinetochores (Ogushi
et al., 2021). This suggests that functional REC8 is crucial
for HR and proper chromosome segregation in meiotic cells.
How exactly cohesion at centromeres differs from the arm-
cohesion remains to be elucidated.

Synaptonemal Complex: Formation and
Resolution
Cohesins are important for the formation of the SC as they
initiate the recruitment of the complex members. The SC
consist of a tripartite proteinaceous structure that is able to
hold homologous chromosomes in close juxtaposition and
allows formation of synapsis (Figure 3A). The SC includes
three different parts: 1) the axial elements (AEs), that are
assembled along the cohesin on the sister chromatid arms,
and are connected to each other by transverse filaments (TFs)
(2) and the central element (CE) (3) (Page and Hawley, 2004).
Upon formation of the SC, AEs are turned into lateral
elements (LEs). They consist of two different proteins
SYCP2 and SYCP3 that form heterodimers (Yuan et al.,
1998; Yang et al., 2006). Between the AEs of the two
homologous chromosomes SYCP1 builds parallel dimers
(TFs), which stabilize the positioning of the homologous
chromosomes and favor crossovers (de Vries, 2005). The
CE forms a network between SYCE1, SYCE2 and TEX12
that also interacts with the TF component SYCP1 (Yang
and Wang, 2008). The SC controls in a feedback loop the
generation of DSBs: the assembly of the central region
triggers removal of HORMA-domain proteins which are
essential for the recruitment of, for example, IHO1 and
thus, hinders the assembly of the DSB machinery (Wojtasz
et al., 2009; Hollingsworth, 2020; Mu et al., 2020). As
mentioned earlier, after capturing the homologous
chromosome that is close enough to the DSB site, the
formation of the D-loop is triggered by DMC1. This
structure can be either resolved as a non-crossover (NCO)
or as a crossover (CO) after conversion into a double Holliday
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junction (dHJ). Following the D-loop formation and invasion
of the ssDNA, the homologous non-sister chromatid can be
used as a template to repair the break site. This process is
defined as single-end invasion (Hunter and Kleckner, 2001).
At this stage, the reannealing of the repaired end to its
parental strand results in a NCO event but in some cases
the D-loop is further processed into a dHJ if the second end of
the DSB site is captured by the same homologous non-sister
chromatid (Hunter and Kleckner, 2001; Petronczki et al.,
2003). This complex structure can be resolved either as NCO,
or CO if the cleavage is induced asymmetrically between the
homologous chromosomes, thus generating reciprocal
exchanges (Petronczki et al., 2003; Heyer, 2004). Luo et al.
suggest that the conversion of the D-loop to dHJ and thus
potential CO is dependent on MEIOB, which works in a
complex with SPATA22 and RPA (Luo et al., 2013).
Resolution of the dHJ is thought to be mediated by the
resolvases MUS81-EME1, SLX1-SLX4 and GEN1
(triggering COs) or BLM (NCO dissolution) (Wyatt and
West, 2014). Moreover, the presence of functional CE
seems to be essential for successfully CO events (Baudat
et al., 2013).

Checkpoint Surveillance
The completion of meiosis I requires the coordination of
different events. First of all, one CO event per homologous
chromosome pair is inevitable. Second, the CO frequency has
to be regulated and COs need to be evenly spaced along the
chromatids. Overall, the interaction with homologous
chromatids should be favored over sister chromatids
(Baudat et al., 2013). One group of proteins that mainly
serves as checkpoint controls in meiosis I are the HORMA
(Hop1, Rev7, Mad2)-domain proteins HORMAD1 and
HORMAD2. Loading of HORMAD1 was found to be
initiated by REC8 and RAD21L, two members of the
cohesin complex. Both HORMAD proteins cluster along
AEs until the assembly of the SC, where they are removed
and regulate DSB induction (Wojtasz et al., 2009; Fujiwara
et al., 2020; Mu et al., 2020). While HORMAD1 plays a role in
homology search by increasing the number of ssDNA ends as
well as in the synaptonemal complex formation, HORMAD2
is exclusively responsible as a checkpoint control element
(Shin et al., 2010; Daniel et al., 2011; Wojtasz et al., 2012).
Shin et al. observed that in the absence of HORMAD1, more
inter-sister chromatid repair takes place, suggesting that
HORMAD1 promotes the use of homologous DNA over
sister DNA for repair of DSBs (Shin et al., 2013).
Furthermore, HORMAD1 recruits IHO1 to unsynapsed
regions which in turn triggers DSB formation by SPO11
and its auxiliary proteins (Stanzione et al., 2016). Another
control checkpoint at this stage is the detection of unsynapsed
chromosomes. HORMAD2 seems to play a key role in this
process. It recruits ATR kinases along unsynapsed axes and
induces phosphorylation of H2AX (Turner et al., 2005;
Wojtasz et al., 2012). This leads to meiotic silencing of
unsynapsed chromatin as protecting mechanism (Turner
et al., 2005).

Hence, to ensure the programmed crossover of genetic
information during Meiosis I, germ cells express a toolkit of
specific genes involved in the induction of DSBs and their repair.

MEIOTIC DNA REPAIR GENES
ABERRANTLY EXPRESSED IN CANCERS

Intriguingly, several of these genes have been found to be
aberrantly expressed in mitotic cancer cells, and they are
thought to contribute to driving genomic instability and
carcinogenesis. Here we describe the main genes involved
(Figure 2 and Figure 3).

HORMADs
HORMAD1 is one of the most studied meiotic genes implicated
in carcinogenesis and genomic instability. In physiological
conditions, HORMAD1 expression is restricted to meiotic cells
in testes and ovaries. However, many studies have shown that
HORMAD1 is significantly upregulated in several cancers where
it correlates with increased genomic instability and poor patient
prognosis (Adelaide et al., 2007; Watkins et al., 2015; Chen et al.,
2018; Gao et al., 2018; Nichols et al., 2018; Gantchev et al., 2020).
Increased expression of HORMAD1 has been detected in patient
samples isolated from breast cancer (including triple-negative
breast cancer (TNBC) and basal-like breast cancer (BLBC))
(Adelaide et al., 2007; Yao et al., 2014; Chen et al., 2018), lung
cancer (lung adenocarcinoma (Yao et al., 2014; Nichols et al.,
2018), lung squamous cell carcinoma (Yao et al., 2014), small cell
lung cancer, NSCLC (Chen et al., 2005)), esophageal,
endometrial, bladder, colon (Chen et al., 2005), epithelial
ovarian carcinoma (Shahzad et al., 2013), gastric cancer (Aung
et al., 2006), head and neck squamous cell carcinoma, melanoma
(Yao et al., 2014) and cutaneous T-cell lymphoma (CTCL) (Tsang
et al., 2018).

Recent studies have demonstrated that the positive correlation
between increased HORMAD1 expression and genomic
instability in tumors is due to its ability in modulating DNA
damage repair (Watkins et al., 2015; Gao et al., 2018; Nichols
et al., 2018; Liu et al., 2020). These studies suggest distinct
hypothesis on how HORMAD1 affects HR-mediated DNA
repair. The group of Andrew N. J. Tutt was the first to
demonstrate that the positive correlation between HORMAD1
expression and chromosomal instability observed in TNBC is the
consequence of the disruption of HR-mediated repair (Watkins
et al., 2015). Using a panel of TNBC cell lines, as well as non-
transformed cells, the authors showed that overexpression of
HORMAD1 suppresses RAD51-dependent HR. This drives the
error-prone 53BP1-dependent non-homologous end joining
(NHEJ) DNA repair pathway. In addition, HORMAD1
expression correlated with a better response to HR defect-
targeting agents (such as poly ADP-ribose polymerase
inhibitors PARPi or poly ADP-ribose polymerase (PARP)
inhibitors olaparib and BMN673) in both TNBC cell lines and
clinical trial data. With their data, the authors provided a possible
mechanism for the increased levels of allelic-imbalanced copy-
number aberrations (AiCNA) that are abundant in TNBC.
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In contrast, two distinct studies demonstrated that
HORMAD1 promotes HR in models of lung
adenocarcinomas, providing a selective survival advantage for
cancer cells (Gao et al., 2018; Nichols et al., 2018). HORMAD1
loss enhanced sensitivity to irradiation (IR), camptothecin and
PARP inhibition, and significantly reduced tumor growth in vivo.
Mechanistically, Gao and colleagues showed that HORMAD1 re-
distributes to nuclear foci and co-localizes with the DSB marker
yH2AX in response to IR and chemotherapeutic agents (Gao
et al., 2018). Both studies demonstrated that HORMAD1
expression promotes DSB repair by HR, thus offering a
mechanistic explanation for the reduced sensitivity to the
PARP inhibitor Rucaparib in the work of Wang and
colleagues (Wang et al., 2018). The conflicting data on the
modulation of HR by HORMAD1 reported in these studies
(Watkins et al., 2015; Gao et al., 2018; Nichols et al., 2018),
could be explained by the different cellular models that have been
used. HORMAD1might have opposing effects on HR in different
cancers due to tissue-specific expression of HR pathway
regulators targeted by HORMAD1. This may explain why
HORMAD1 inhibits HR in TNBC and stimulates HR in lung
adenocarcinomas.

More recently, HORMAD1 was shown to modulate another
DNA repair pathway besides HR. The group of Yidan Liu showed
that aberrant expression of HORMAD1 compromises DNA
mismatch repair in cancer cells (Liu et al., 2007).
Mechanistically, HORMAD1 interacts with the MCM8-MCM9
complex and prevents its efficient nuclear localization.
Consequently, HORMAD1-expressing cancer cells have
reduced MLH1 chromatin binding and DNA mismatch repair
defects. HORMAD1 expression is also associated with an
increased mutation load and genomic instability in a human
cancer samples cohort from the TCGA dataset (Liu et al., 2020).

Even though the homologous protein HORMAD2 was found
to be aberrantly expressed in lung cancer tissues (Liu et al., 2012),
its potential role in modulating DNA repair in cancer cells is less
clear. In one study, aimed at investigating the impact of candidate
genes on thyroid carcinoma (THCA), the authors found that
HORMAD2 was significantly hypermethylated in THCA cells.
Treatment with the DNA hypomethylating agent 5-Azacitidine,
suppressed THCA cells’ viability, motility and invasiveness (Lin
et al., 2018). However, follow-up studies are needed to investigate
a direct involvement of HORMAD2 in promoting cancer cell’
growth.

HOP2-MND1
The group of Greenberg and colleagues discovered that the
HOP2-MND1 heterodimer functions in cancer cells to
promote an alternative lengthening of telomeres (ALT)
mechanism in the absence of telomerase activity (Nam Woo
Cho et al., 2014). Similar to meiotic recombination, this process
involves the generation of DSBs to initiate the recombination
between homologous DNA sequences on non-sister chromatids.
Mechanistically, telomeres behave like a broken chromosome and
serve as a substrate for DNA replication-dependent de novo
telomere elongation, a process that is dependent on the ability
of HOP2-MND1 to stimulate non-sister chromosome

interactions (Nam Woo Cho et al., 2014). This discovery
added a new class of factors to the mix of germline genes that
become activated during oncogenesis. A role for HOP2 in tumors
is also supported by several studies that have described HOP2
germline mutations in familial breast and ovarian cancers (Peng
et al., 2013a; Peng et al., 2013b; Yang et al., 2016). These
mutations caused defective alternative splicing and truncated
the open reading frame of the HOP2 gene, generating an
isoform that is expressed in the cytoplasm and it is often
detected in tumor stromal cells. The splice variants act as
dominant negatives to counteract wild type HOP2 activity in
transcription and to abolish Rad51 foci formation after IR-
induced DNA damage. The constitutive expression of the
HOP2 cytoplasmic isoform, but not the wild type, induced
tumor growth in nude mice (Peng et al., 2013b). Another
study from the same group found that mutant HOP2 protein
production in the breast tumor microenvironment induced
VEGF expression by enhancing VEGF promoter activity and
potentially promote angiogenesis and adipogenesis (Yang et al.,
2016). These results suggest that mutated HOP2 protein
production in the tumor stroma may contribute to
carcinogenesis and therefore could be used as a biomarker to
define mutant reactive breast cancer stroma. HOP2 mutations
were also observed in cases of early onset familial breast and
ovarian cancer and a HOP2 mutation in the C-terminus (HOP2
p.del201Glu, is associated with XX ovarian dysgenesis (Zhao and
Sung, 2015). Lastly, the group of I.V. Litvinov reported that the
HOP2 protein is also ectopically expressed in cutaneous T-cell
lymphomas (CTCL), suggesting that HOP2 expression is not
unique to breast, ovarian and fallopian tube cancers (Tsang et al.,
2018).

Although less is known about MND1 in carcinogenesis, its
aberrant expression has been reported in ovarian cancers and
lung adenocarcinoma (Yeganeh et al., 2017; Zhang et al.,
2019; Wei et al., 2021; Zhang et al., 2021). By performing a
differential mRNA expression analysis of normal versus
malignant ovarian tumors, P.N. Yeganeh and colleagues
identified MND1 as one of the most significantly
dysregulated genes in the malignant tissues (Yeganeh et al.,
2017). In a recent study, genomic data from the GEO database
that were further validated with clinicopathological data from
the TCGA database revealed MND1 as a differentially
expressed gene that significantly associated with overall
survival of lung adenocarcinoma patients. The authors of
the study therefore concluded that MND1 could be used as a
prognostic biomarker and a molecular curative target for lung
adenocarcinoma (Wei et al., 2021). However, in all these
studies, the underlying molecular mechanism of how
aberrant expression of MND1 contributes to
carcinogenesis has not been reported. Using a genome-
wide insertional mutagenesis screen in somatic cancer
cells, we identified MND1 as a factor which increases
cellular fitness following exposure to irradiation (IR)
(Francica et al., 2020). Similarly, in somatic Arabidopsis
thaliana cells, the homologue of MND1, AtMnd1, is
induced by IR and its loss causes IR sensitivity, suggesting
that AtMnd1 is required for DSB repair in somatic cells
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(Domenichini et al., 2006). Hence, MND1 may be an
interesting drug target to sensitize somatic cancers to DSB-
inducing therapy.

SPO11
The human SP O 11 gene is located in chromosome 20q13.2-13.3,
a region that is amplified inmultiple breast cancers and associated
with genomic instability (Tanner et al., 1994; Courjal et al., 1996;
Collins et al., 1998). However, there are limited studies to date
that have investigated the potential role of SPO11 in
carcinogenesis. The aberrant expression of SP O 11 has been
reported in patients samples of melanoma (Koslowski et al.,
2002), colorectal cancer (Eldai et al., 2013), cervical cancer
(Koslowski et al., 2002) as well as in Acute Myeloid Leukemia
(AML) (Atanackovic et al., 2011), CTCL (Litvinov et al., 2014)
and lung cancer (Koslowski et al., 2002) cell lines. High-
resolution cytogenetic microarray data of 15 tumor-normal
paired colorectal cancer samples revealed a gain in
chromosome copy number of the SP O 11 gene (Eldai et al.,
2013). Increased SP O 11 expression was also detected in patients
with CTCL compared to expression in normal skin and benign
inflammatory dermatoses (Litvinov et al., 2014). Based on the
function of SPO11 in the induction of DSBs, it would be
interesting to investigate whether its expression contributes to
the genomic instability by promoting translocations, insertions
and deletions.

PRDM9
PRDM9 is recurrently mutated in head and neck squamous cell
carcinoma (Stransky et al., 2011), and an excess of rare PRDM9
alleles has been reported in aneuploid and infant B-cell precursor
acute lymphoblastic leukemia patients (Hussin et al., 2013). Based
on its function, altered PRDM9 expression could create
vulnerable DNA regions that are favorable to the formation of
chromosomic lesions. Indeed, new evidence has recently emerged
to suggest a link between PRDM9-driven meiotic recombination
hotspots and genomic instability (Houle et al., 2018; Kaiser and
Semple, 2018). In a study where PRDM9 expression was analyzed
in 1879 cancer samples, PRDM9 was unexpectedly found to be
expressed in 20% of these tumors. Intriguingly, PRDM9
expression correlated with areas of chromosomal instability
and in samples with aberrant PRDM9 expression, structural
variant breakpoints frequently neighbor the DNA motif
recognized by PRDM9 (Houle et al., 2018). This might suggest
that PRDM9 generates chromatin regions that become more
fragile and could favor genomic instability. All this evidence
has raised the interest for targeting meiotic genes that are
aberrantly expressed in somatic cancer cells. In a recent study,
Allali-Hassani and colleagues reported the discovery of a potent
and selective PRDM9 inhibitor (MRK-740) (Allali-Hassani et al.,
2019). In HEK293T cells, MRK-740 specifically and directly
inhibited PRDM9 catalytic activity on chromatin, reducing
H3K4 methylation at intragenic and intergenic target sites.
However, MRK-740 did not reveal any significant effect on
proliferation of several cancer cell lines tested, indicating that
at least for the cell lines tested their proliferation was not PRDM9-
dependent (Allali-Hassani et al., 2019).

DMC1
Similarly to other genes involved in meiotic recombination,
DMC1 was found to be ectopically expressed in various cancer
cell lines including cervical (Erenpreisa et al., 2009), colon
(Ianzini et al., 2009), breast (Salmina et al., 2019),
glioblastoma (Rivera et al., 2015) and lymphoma cancer cell
lines (Kalejs et al., 2006) as well as in CTCL biopsy samples
(Gantchev et al., 2020). Interestingly, the upregulation of DMC1
was reported in a number of studies to drive the resistance of
cancer cells to various cytotoxic and genotoxic agents (Kalejs
et al., 2006; Erenpreisa et al., 2009; Ianzini et al., 2009; Rivera et al.,
2015; Salmina et al., 2019). When challenged with high doses of
ionizing radiation, tumor cells can escape cell death by transient
endopolyploidisation (Illidge, 2000). While most of these
polyploid cells will undergo cell death following aberrant
mitosis (mitotic catastrophe), some will undergo genome
reduction giving rise to viable tumor cells with reduced ploidy
that can resume the mitotic cell cycle and are resistant to the
treatment (Illidge, 2000). Experiments conducted with the large-
scale digital cell analysis system, show that meiosis-specific genes
such as DMC1, are expressed in the polyploid cells during
depolyploidization allowing them to escape radiation-induced
cell death (Ianzini et al., 2009). The study suggests that tumor cells
might take advantage of the temporary change from a pro-mitotic
to a pro-meiotic division regimen to facilitate depolyploidization
and restore the proliferative state of the tumor cell population
(Ianzini et al., 2009). A few years later, another study investigated
the aberrant activity of DMC1 in glioma and showed that loss of
DMC1 inhibited the activation of the DNA damage response and
increased radiosensitivity. Furthermore, loss of DMC1 reduced
tumor growth and prolonged survival in vivo (Rivera et al., 2015).
These data suggest that the activation of meiotic repair genes in
neoplastic cells selectively provides tumor cells with a repair
mechanism to evade cell death caused by DNA damage, while
at the same timeincreasing genetic diversity to drive clonal
evolution (Rivera et al., 2015).

MEIOB
Analysis of multiple independent transcriptome databases
containing both normal and tumor samples, identified the
aberrant activation of MEIOB in lung adenocarcinomas
(Wang et al., 2016). In the same study its meiotic partner,
SPATA22, was also found to be aberrantly activated and co-
expressed with MEIOB. Expression of MEIOB was also greatly
enhanced in several lung cancer cell lines after treatment with the
DNA methylation inhibitor 5-Aza-2′-deoxycytidine, known to
induce the expression of certain meiotic genes by the
demethylation of promoter CpG islands (De Smet et al., 1999).
More recently, MEIOB aberrant expression was reported in vitro
and in vivo models for TNBCs as well as in patients, where it
correlated with poor survival (Gu et al., 2021). The authors of the
study showed that MEIOB significantly promoted the
proliferation of TNBC cells as well as DSBs repair. However,
in contrast to its function in meiosis, MEIOB expression
mediated homologous recombination deficiency (HRD)
through the activation of polyADP-ribose polymerase (PARP).
Furthermore, MEIOB was shown to confer sensitivity to PARP
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inhibitors in vitro, as well as in a PDX model of TNBC (Gu et al.,
2021). Together this suggests that MEIOB expression could be
useful as a predictive biomarker of PARP inhibitor response
in TNBC.

Genes of the Cohesin Complex
Consistent with roles in chromosome segregation and regulation of
gene expression, aberrant expression and malfunctioning of cohesins
is expected to be associated with cancer development (Losada, 2014).
Indeed, several studies reported that meiosis-specific cohesins are
aberrantly expressed in different types of somatic cancers.

STAG3
Asmost meiosis-specific genes, STAG3 is silenced in somatic cells
by methylation of histone H3 on lysines 9 and 27 (Storre et al.,
2005). However, reactivation of the cancer testis antigen STAG3
has been reported in cancers. For instance, mutations on the
STAG3 gene in cases of colorectal cancers have been identified
(Barber et al., 2008). While it has still to be clarified whether the
aneuploidy and tumorigenesis observed in these cancers are due
to altered gene expression or due to chromosomemis-segregation
(or both), the authors suggest that these mutations may lead to
chromosome instability. Aberrant expression of STAG3 was also
reported in patient-derived lymphocytes isolated from a CTCL
patient as well as in skin biopsy samples from Sézary Syndrome
patient (Tsang et al., 2018; Gantchev et al., 2020). Microarray
analysis associated STAG3 gene expression with tumorigenicity
in ovarian cancer cell lines (Notaridou et al., 2011) while another
study reported that multiple meiotic genes, including STAG3, are
aberrantly activated during mitotic catastrophe in lymphoma
cells after irradiation and may mediate chromosomal mis-
segregation and genome reduction (Kalejs et al., 2006).

REC8
One of the first indications of a role for REC8 in cancer progression
comes froma study that revealedREC8upregulation inTp53-mutated
lymphoma cells after irradiation. REC8-augmented expression
induced mitotic catastrophe and the generation of endopolyploid
tumor cells (Kalejs et al., 2006). Similar findings were reported in
additional endopolyploid p53-deficient tumor cells, where REC8
upregulation upon irradiation induced pseudomeiotic chromosome
segregation events that enabled them to survive genotoxic treatment
(Erenpreisa et al., 2009). A few years later, the work of Grewal et al. in
fission yeast significantly contributed to the understanding of the
mechanistic role of REC8 in cancer progression (Folco et al., 2017).
The authors found that upregulation of REC8 expression was caused
by the dysregulation of the Mmi1 pathway, which plays a crucial role
in suppressing meiotic genes during mitotic proliferation (Harigaya
et al., 2006). This causes high levels of chromosome mis-segregation
events in mitotically dividing diploid cells, including high levels of
uniparent disomy (UPD), a phenomenon that is linked to congenital
disorders (Mobasheri et al., 2007)and various cancers (Tuna et al.,
2009; Andersen and Petes, 2012), where it can drive loss of
heterozygosity. Strikingly, REC8 overexpression in mitotically
dividing diploid cells was sufficient to induce UPD, suggesting that
the expression of a single meiotic cohesin gene is enough to promote
meiosis-like reductional segregation of homologues in mitotic cells. In

contrast to other meiotic genes, reactivation of REC8 in mitotic cells
was also shown to play a tumor suppressor role in certain cancer cell
lines, such us gastric cancer cells where induced overexpression of
REC8 inhibited cell proliferation, invasion and migration (Yu et al.,
2017; Zhao et al., 2018). However, the role of REC8 as a tumor
suppressor remains elusive and further studies are needed to decipher
how reactivation of a cohesin protein could protect cells from cancer
progression.

Genes of the Synaptonemal Complex
The formation of the SC is mediated by proteinaceous axial
structures, which include the central SYCP1 and the two lateral
SYCP2 and SYCP3 components. Remarkably, re-expression of
synaptonemal complex genes has been implicated in cancer to
modulate the level of genome integrity (Gantchev et al., 2020;
Hosoya and Miyagawa, 2021).

SYCP1
Aberrant expression of SYCP1 was first reported in melanoma, breast
cancer, glioma, stomach cancer, NSCLC and renal carcinoma (Tureci
et al., 1998). Subsequently, elevated SYPC1 expression was also
reported in other types of tumors and cancer cell lines including
gastric (Mashino et al., 2001), hepatocellular (Chen et al., 2001),
pancreatic adenocarcinomas (Kubuschok et al., 2004), head and neck
squamous cell carcinoma (Atanackovic et al., 2006), meningiomas,
astrocytomas and oligodendrogliomas (Sahin et al., 2000),
medulloblastomas (Oba-Shinjo et al., 2008) and testicular germ cell
tumors (Zhang et al., 2005). SYCP1 expression was also detected in
various hematological malignancies such as myelomas, acute
lymphatic leukemia (AML), chronic myeloid leukemias (Lim et al.,
1999), acute lymphocytic leukemias (Niemeyer et al., 2003), chronic
lymphocytic leukemia, B-Cell lymphomas, Burkitt’s lymphomas,
lymphoblastic lymphomas (Xie et al., 2003) and non-hodgkin’s
lymphomas (Huang et al., 2002). Despite the expression of SYCP1
in a vast variety of tumors, there is currently no solid evidence
describing the consequence of ectopic expression in somatic cancer
cells or the underlying mechanism of action.

SYCP3
SYPC3 expression has also been documented in various cancers,
including NSCLC (Kitano et al., 2017), acute lymphoblastic leukemia
(Niemeyer et al., 2003), breast cancers, brain, gastrointestinal, skin
tumors (Mobasheri et al., 2007) and cervical cancers (Hanbyoul Cho
et al., 2014). It was reported that SYCP3 expression can be induced in
the colorectal carcinoma cell line DLD1 after treatment with the
demethylating agent 5-azacytidine, indicating that SYCP3 expression
in mitotic cells is regulated by a demethylation-dependent process,
similarly to other meiotic genes (Hosoya et al., 2012). The clinical
relevance of SYCP3 expression was described in cervical cancer and
NSCLC. Cho et al., examined SYCP3 expression in tumor specimens
from 181 cervical cancer and 400 cervical intraepithelial neoplasia
(CIN) patients by immunohistochemistry and analyzed the
correlation between SYCP3 expression and clinicopathologic
factors or survival. High expression of SYCP3 was significantly
associated with late stage and high grade. At a molecular level,
SYCP3 expression positively correlated with pAKT protein levels,
suggesting that SYCP3 role in carcinogenesis may be mediated by an
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activatedAKT signaling (Hanbyoul Cho et al., 2014). InNSCLC, there
are two studies describing the clinical relevance of SYCP3 expression.
Immunohistochemical and tissue microarray analysis of NSCLC
patient samples revealed high cytoplasmic SYCP3 expression,
which correlates with early stage NSCLC, lymph node metastasis,
pleural invasion and poor survival (Chung et al., 2013). Consistent
with these data, increased SYCP3 expression was also detected in
another immunohistochemical analysis in NSCLC cases with lymph
node metastasis (Kitano et al., 2017). In this study, SYPC3 expression
positively correlated with VEGF-C and VEGF-D expression, which
are both involved in NSCLC lymphangiogenesis and metastatic
spread to lymph nodes (Kitano et al., 2017). Mechanistically,
SYCP3 expression outside the meiotic context has been shown to
disrupt the activity of the tumor-suppressing recombination regulator
BRCA2 (Hosoya et al., 2012). In SYCP3-expressing somatic cells, the
BRCA2-mediated recruitment of RAD51 to the break site is in fact
inhibited, resulting in defective sister-chromatid recombination. The
authors of the study further show that expression of SYCP3 inhibits
homologous recombination, inducing hypersensitivity to DNA-
damaging agents such as PARP inhibitors and chromosomal
instability. These findings highlight a new mechanism for genomic
instability and extend the range of PARP-inhibitor sensitive tumors to
those expressing SYCP3 (Hosoya et al., 2012).

SUMMARY

From these studies, it emerges that the ectopic activation of meiotic
genes is detected in a wide variety of cancers, where it drives genomic
instability and cancer progression. Even if cancer cells are not
dependent on these genes for normal growth, they may become
essential in tumors (but not in healthy tissues) to tackle endogenous
DNA damage or DNA lesions induced by anticancer therapies.
Indeed, most of the meiotic genes that are aberrantly expressed in
cancer cells have a direct or indirect effect on pathways that are
responsible for the repair of the DSBs induced by anticancer
therapies. Examples include the HORMAD1/2, MND1, MEIOB
and SYCP3 genes, which directly influence the HR activity of cancer
cells. Their loss may induce sensitivity to agents that put more
pressure on a functional HR pathway, such as PARP inhibitors.
Other genes, including DMC1, STAG3 and REC8, allow somatic
cancer cells to escape radiation-induced cell death without directly
affecting the intracellular DNA repair pathways. Instead, they appear
to promote meiosis-like reductional segregation of homologues in
polyploid cells and thereby restore the proliferative state of the tumor
cell population. For SPO11 and PRDM9, which induce DNA strand
breaks and create crossover events in cancer cells, one can speculate
that their activation in cancer cells drives genomic instability and
might therefore increase the sensitivity of these cells to DNA-
damaging agents.

The expression of meiotic genes in somatic cells appears to
provide an evolutionary advantage for cancer initiation and
progression. Such re-expression occurs via different
mechanisms, including gain in copy number, increased
expression following a genotoxic stress, and most frequently,
via demethylation of meiotic gene promoters. In addition to

promoting genomic instability, the activation of germ cell
genes in mitotic cells influences how cells handle genomic
instability.

While the re-expression of meiosis-specific genes promotes
cancer progression, it may provide a new vulnerability that can be
exploited therapeutically. As ectopic expression of meiotic genes
has been shown to affect the response of tumor cells to anticancer
therapies, it might be used as a predictive biomarker of therapy
response and thus guide treatments’ decision in the clinic.
Further, meiotic genes represent promising candidate targets
for cancer immunotherapy with little risk of side effects, due
to high tumor specificity and immunogenicity. Since germ cells in
adults lack HLA-class I molecules and cannot present the
antigens to T cells, meiotic genes expressed in cancer cells
have the capacity to promote immune responses that are
strictly cancer specific. There are currently two
immunotherapy strategies that are being tested in clinical
settings, which exploit meiotic genes as cancer antigens:
adoptive transfer, where recombinant T-cell receptors specific
for cancer antigen epitopes are inserted into patient T cells and
transferred back to patients, and vaccination, which stimulates
the patient’s intrinsic immune response to cancer antigens thanks
to the use of immunogenic peptides (Gjerstorff et al., 2015). The
therapeutic function of these two approaches is currently being
tested in a variety of clinical settings and recent clinical trials have
provided encouraging results (Gjerstorff et al., 2015).

We therefore think that studying the role of meiotic genes in
somatic cancers is an interesting area to further explore,
particularly in the context of DSB repair. We may also find
out that several of the genes that we link to meiosis-specific
exchange of genetic information actually have an additional and
thus far unknown role in homology-directed DNA repair in
somatic cells, even in non-transformed ones. It may not be
remnants of embryonic tissue, but rather remnant DSB repair
pathways that are reactivated to promote cancer growth.
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